Problem 1.3.5, 4ed

- Write the system below in vector form.
 - \(x + 2y = 7 \)
 - \(3x + y = 11 \)
- Use your answer to represent the system and represent the solution geometrically.
- (not from the book) Write the system below in vector form.
 - \(x + 2y + 4z = 7 \)
 - \(3x + y - 2z = 11 \)
- Arguing geometrically, show that this system has infinitely many solutions.

Definition

A vector \(b \) in \(\mathbb{R}^m \) is a linear combination of the vectors \(v_1, v_2, \ldots, v_n \) in \(\mathbb{R}^m \) if there exist scalars \(x_1, x_2, \ldots, x_n \) such that

\[b = x_1 v_1 + x_2 v_2 + \ldots + x_n v_n \]

Think of vectors as columns
(in all this slides)

Problem

Determine whether the vector \((1,4)\) is a linear combination of the vectors \((5,8)\) and \((3,5)\).

Think of vectors as columns
(in all this slides)

Review: Definition of Function

A function is a relation between two sets, the domain and the range such that each element of the domain is associated with at least one element of range.

1. \(F(x,y) = x \)
2. \(G(x,y,z) = (x,x+y) \)
3. \(H(x,y,z) = (x^2, y) \)
4. \(T(x,y) = (x,y) \)
5. \(U(x) = \sin(x) \)
6. \(V(x) = 2x + 3 \)
7. \(Z(x) = 1/x \)
8. \(W(x,y) = (y + 1, -10x, 2x + 3y) \)

Think of vectors as columns
(in all this slides)

Examples

- Consider two vectors \(a = (a_1,a_2) \) and \(x = (x_1,x_2) \).
- The dot product \(a \cdot x \) is a scalar.
- The assignment \(x \mapsto a \cdot x \) (or \(f(x) = a \cdot x \)) is a function.
- This is an example of linear function.
- What are the domain and range?
Example of function

- Consider a 2 x 2 matrix \(A \) and a vector \(x = (x_1, x_2) \).

- The product \(A \cdot x \) is a new vector with two entries.

- The assignment \(x \rightarrow A \cdot x \) is a function.

- This is an example of linear function.

Definition

- A function \(f \) from \(\mathbb{R}^m \) to \(\mathbb{R}^n \) is a linear transformation if there exists an \(n \times m \) matrix \(A \) such that for each \(x \) in \(\mathbb{R}^m \), \(f(x) = A \cdot x \).

Which of the following functions are linear transformations?

1. \(F(x, y) = x \)
2. \(G(x, y, z) = (x, x + y) \)
3. \(H(x, y, z) = (x^2, y) \)
4. \(I(x, y) = (x, y) \)
5. \(U(x) = \sin(x) \)
6. \(V(x) = 2x + 3 \)
7. \(Z(x) = 1/x \)
8. \(W(x, y) = (y + 1, -10x, 2x + 3y) \)

Find the matrices associated to each of the functions which are linear transformations.

The identity matrix and transformation

- A function \(f \) from \(\mathbb{R}^n \) to \(\mathbb{R}^n \) defined for each \(x \) in \(\mathbb{R}^n \) by \(f(x) = x \) is called the identity transformation.
- Is the identity a linear transformation?
- The matrix associated with the identity transformation is the identity matrix.
- Examples
- Is the linear transformation \(f(x, y, z) = (x, y) \) the identity transformation?

Definition

- The vectors of \(\mathbb{R}^n \), \(e_1 = (1, 0, 0, \ldots) \), \(e_2 = (0, 1, 0, 0, \ldots) \), \(\ldots \), \(e_n = (0, 0, \ldots, 0, 1) \) are called the standard vectors.

Example

- Find the image of the standard vectors under the linear transformation with matrix

\[
\begin{pmatrix}
1 & 2 & 3 & 1 \\
0 & 4 & -1 & 2 \\
1 & 3 & 2 & 0
\end{pmatrix}
\]
Theorem

- If T is a linear transformation from \mathbb{R}^m to \mathbb{R}^n then the matrix of T is $[T(e_1), T(e_2), \ldots, T(e_m)]$.

Example

- Find the image of the standard vectors under the linear transformation with matrix

\[
\begin{pmatrix}
1 & 2 & 3 & 1 \\
0 & 4 & -1 & 2 \\
1 & 3 & 2 & 0
\end{pmatrix}
\]

Problem

1. Consider a linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ such that $T(v) = 3v$ and $T(w) = \left[\frac{-1}{2} \right]w$ for the vectors $v = (1,2)$ and $w = (-3, 3)$. Sketch geometrically $T(x)$ for a given vector x.
2. Given a vector v and a scalar k, find the relationship between $kT(v)$ and $T(kv)$.
3. Given two vectors, v and w, find the relationship between $T(v)$, $T(w)$ and $T(v+w)$.

Theorem

A function f from \mathbb{R}^m to \mathbb{R}^n is linear if and only if

1. For every x and y in \mathbb{R}^m, $f(x+y) = f(x) + f(y)$.
2. For every x in \mathbb{R}^m and for every scalar k, $f(kx) = kf(x)$.

Recall: A function f from \mathbb{R}^n to \mathbb{R}^m is a linear transformation if there exists an $n \times m$ matrix A such that for each x in \mathbb{R}^m, $f(x) = Ax$.

Review:

- A function g from \mathbb{R}^n to \mathbb{R}^m is the inverse of f if for each x in \mathbb{R}^n, $g(f(x)) = x$ and for each y in \mathbb{R}^m, $f(g(y)) = y$.
- Example: If $f(x) = x + 4$ then $g(y) = x - 4$ is the inverse of f.
- The inverse of a function f is denoted by f^{-1}.
- Note that not all functions have an inverse.
- Question: If f has an inverse, f^{-1}, does f^{-1} have an inverse? If so, what is the inverse of f^{-1}?

Study which of the following functions are linear transformations using the theorem below:

1. $F(x,y) = x$
2. $G(x,y,z) = (x, x+y)$
3. $H(x,y,z) = (x^2, y)$
4. $T(x,y) = (x,y)$
5. $U(x) = \sin(x)$
6. $V(x) = 2x + 3$
7. $Z(x) = 1/x$
8. $W(x,y) = (y+1, -10x, 2x+3y)$
Find the inverse of the linear transformations below if possible.

1. \(F(x) = -4x \)
2. \(G(x,y) = (5x+3y, 8x+5y) \)
3. \(H(x,y,z) = (y, y+z, z) \)

Invertible matrices

- If the linear transformation \(T(x) = Ax \) is invertible, then the inverse \(T^{-1} \) is also a linear transformation. (Can you prove it?)
- Thus, there exists a matrix \(B \) such that \(T^{-1}(y) = By \).
- The matrix \(B \) is the inverse of \(A \) and we write \(B = A^{-1} \).

Find the inverse of the matrix associated to the linear transformation \(G(x,y) = (5x+3y, 8x+5y) \).

The effect of a linear transformation demo

Definition

A linear transformation \(T \) from \(\mathbb{R}^n \) to \(\mathbb{R}^n \) defined by \(T(x) = kx \), is called a scaling.

Example: Effect of scaling in \(\mathbb{R}^2 \) by a factor of 3.