

• Describe the image of the linear transformation f(x,y)=(3x+6y,x+2y)

Definition

Let v_1 , v_2 ,..., v_m be in \mathbb{R}^n . The span of v_1 , v_2 ,..., v_m is the set of all linear combinations

c1. v1+ c2. v2+...+ cm vm

We denote it by $span(v_1, v_2, ..., v_m)$

Consider two vectors v and w in Rⁿ. Describe geometrically span(v) and span(v,w).

Theorem

The image of a linear transformation T(x)=Ax is the span of the columns of A.

(Compare this theorem with the previous Example)

Theorem: Properties of the Image

Consider a linear transformation T from R^{m} to R^{n}

The zero vector is in the image.

- If x and y are in the image, then x+y is in the image.
- If x is in the image and k is an scalar, then k.x is in the image.

An n x n matrix A is invertible if and only if one of the following holds

- The linear system A.x=b has a unique solution.
- rref(A)=Id
- rank(A)=n
- im(A)=Rⁿ
- ker(A)={0}

Definition

- A subset W of Rⁿ is a (linear) subspace of Rⁿ if satisfies the following
- I. W contains the zero vector.
- 2. If v and w are in W then v+w are in W.
- 3. If v is in W and k is any scalar then k.v is in W.

EXAMPLE: Are the following sets subspaces?

- I. A line L in R²
- 2. The union of two lines in ${\sf R}^2$
- 3. A plane in R³
- 4. {0}
- 5. The kernel and image of a linear transformation.

Definition

Consider vectors v_1 , v_2 , ... v_m in R^n .

- A vector v_i is redundant if v_i is a linear combination of v₁, v₂, ... v_{i-1}.
- The vectors v₁, v₂, .. v_m are linearly independent if none of them is redundant.