Consider the projection P on \mathbb{R}^2 onto the x-axis. Find all vectors v such that $P(v)$ is parallel to v.

Consider the reflection on \mathbb{R}^2 with respect to the x-axis. Find all vectors v such that $R(v)$ is parallel to v.

Definition

Consider an $n \times n$ matrix A.
- A vector v in \mathbb{R}^n is an eigenvector if Av is a multiple of v, that is, if there exists a scalar k such that $Av = kv$.
- A scalar k such that $Av = kv$ for some vector v is an eigenvalue.

Example

- Consider an orthogonal projection onto a plane P on \mathbb{R}^3. Find all the eigenvalues and eigenvectors.
- Consider reflection with respect to a plane P on \mathbb{R}^3. Find all the eigenvalues and eigenvectors.
- Consider reflection with respect to a line L on \mathbb{R}^3. Find all the eigenvalues and eigenvectors.

Example

- Consider the matrix of a rotation of angle $\pi/3$ in \mathbb{R}^2. Find all the eigenvalues and eigenvectors.
- What are the eigenvalues and eigenvectors of any rotation?
Example 7.2-29

- Consider an $n \times n$ matrix A such that the sum of the entries of each row is 1. Show that the vector $(1,1,...,1)$ is an eigenvector.
- What is the corresponding eigenvalue?

Consider the matrix A

\[
\begin{pmatrix}
1 & 1 \\
-2 & 4
\end{pmatrix}
\]

Find all eigenvalues and eigenvectors

Definition

Consider an $n \times n$ matrix A. The polynomial

\[P(\lambda) = \det(A-\lambda I) \]

called the characteristic polynomial of A.

Theorem

Consider an $n \times n$ matrix A. A scalar λ is an eigenvalue of A if and only if λ is a root of the characteristic polynomial of A, that is if and only if $\det(A-\lambda I)=0$.

Example

Find the eigenvalues

\[
\begin{pmatrix}
0 & -1 & 1 & 2 & -1 \\
-1 & 0 & 1 & 0 & 1 \\
0 & 1 & 4 & -4 & 5 \\
-1 & 0 & & &
\end{pmatrix}
\]
Theorem
- If λ is an eigenvalue of an $n \times n$ matrix A, then the associated eigenvectors form the kernel of the transformation $(A-\lambda I_n)$.
- In other words, v is an eigenvector with eigenvalue λ if and only if $(A-\lambda I_n)v=0$.

Example
Find the eigenvalues and associated eigenvectors.

$$
\begin{pmatrix}
0 & -1 \\
-1 & 0 \\
0 & 1 \\
-1 & 0
\end{pmatrix}
\begin{pmatrix}
1 & 2 & -1 \\
1 & 0 & 1 \\
4 & -4 & 5
\end{pmatrix}
$$

Definition
- Consider an eigenvalue λ of an $n \times n$ matrix A. The kernel of the matrix $(A-\lambda I_n)$ is called the eigenspace associated with λ and denoted by E_λ. In symbols,

\[E_\lambda = \ker(A-\lambda I_n) = \{v \in \mathbb{R}^n : Av = \lambda v\}\]

Review: Consider $n \times n$ matrix A.
- Eigenvalues: solutions λ in \mathbb{R} of $\det(A-\lambda I_n)=0$
- Eigenvectors: v in \mathbb{R}^n solution of $(A-\lambda I_n)v=0$
- Eigenspace subspace of \mathbb{R}^n $E_\lambda = \ker(A-\lambda I_n)$

Example 7.1-41
- Find a basis of the linear space V of all 2×2 matrices A for which $(0,1)$ is an eigenvector.
- Find a basis of the linear space V of all 2×2 matrices A for both $(1,1)$ and $(1,2)$ are eigenvectors.
- In both cases, determine the dimension of V.

Definition:
- If A is a square matrix, the sum of the diagonal entries of A is called the trace of A, and denoted by $\text{tr}(A)$.

Example

• Find the trace of the identity matrix

\[
\begin{bmatrix}
0 & -1 \\
-1 & 0
\end{bmatrix}
\]

Find the trace of the following matrices.

\[
\begin{bmatrix}
0 & -1 & 1 & 2 & -1 \\
-1 & 0 & 1 & 0 & 1 \\
4 & -4 & 5
\end{bmatrix}
\]

Example

Find the trace of the following matrices.

\[
\begin{bmatrix}
0 & -1 \\
-1 & 0
\end{bmatrix}
\]

\[
\begin{bmatrix}
1 & 2 & -1 \\
1 & 0 & 1 \\
4 & -4 & 5
\end{bmatrix}
\]

Theorem:

• If \(A \) is an \(n \times n \) matrix then the characteristic polynomial of \(A \) has the form

\[
(-\lambda)^n + \text{tr}(A)(-\lambda)^{n-1} + \ldots + \text{det}(A).
\]

In particular, if \(n=2 \) then the characteristic polynomial of \(A \) is

\[
\lambda^2 - \text{tr}(A)\lambda + \text{det}(A).
\]

Example. 7.2-15

• Consider the matrix \(A \), where \(k \) is an arbitrary constant. For which values of \(k \) does \(A \) have two distinct real eigenvalues? When is there no real eigenvalue?

\[
\begin{bmatrix}
1 & k \\
1 & 1
\end{bmatrix}
\]

Definition

An eigenvalue \(\lambda_0 \) of an \(n \times n \) matrix \(A \) has algebraic multiplicity \(k \) if it is a root of multiplicity \(k \) of the characteristic polynomial of \(A \). In symbols, if

\[
\text{det}(A-\lambda I_n)=(\lambda_0-\lambda)^k g(\lambda)
\]

for some polynomial \(g(\lambda) \) such that \(g(\lambda_0)\neq0 \)

Example

Find the eigenvalues with their multiplicity.

\[
\begin{bmatrix}
1 & 1 & 1 & 0 & 1 & 0 \\
1 & 1 & 1 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 & 1
\end{bmatrix}
\]