MAT211 Lecture 14

Orthogonal projections and orthogonal basis

- •Orthogonality, length, unit vectors
- Orthonormal vectors: definition and propertiesOrthogonal projections: definition, formula and properties.
- •Orthogonal complements

•Pythagorean theorem, Cauchy inequality, angle between two vectors

Definition

- Two vectors u and v in Rⁿ are <u>perpendicular or</u> <u>orthogonal</u> if u.v=0
- The <u>length</u> of a vector v in \mathbb{R}^n is $||v|| = \sqrt{v.v}$
- A vector v in Rⁿ is called a *unit vector* if ||v||=1

Example

- Find a unit vector in the line of multiples of (1,1,3)
- Find a vector of length 2 orthogonal to (1,1,3)

Definition

A vector v in \mathbb{R}^n is orthogonal to a subspace V of \mathbb{R}^n if it is orthogonal to all vectors in V

Remark: If $(b_1, b_2, ..., b_m)$ is a basis of V, then v is orthogonal to V if (and only if) v is orthogonal to $b_1, b_2, ...$ and b_m .

EXAMPLE

Consider the subspace V of \mathbb{R}^3 span by (1,1,1) and (1,0,1).

Find all the vectors orthogonal to V.

EXAMPLE (5.2-33)

Find an orthonormal basis of the kernel of the matrix

EXAMPLE

Consider the vectors $v_1 = (1/2)(1,1,1,1)$,

 $v_2=(1/\sqrt{2})(1,1,1,1), v_3=(1/2)(1,-1,1,-1)$. Find a vector v_4 such that v_1,v_2,v_3,v_4 form an orthonormal basis of \mathbb{R}^4

Theorem

- Orthonormal vectors are linearly independent.
- A set of n orthonormal vectors in Rⁿ form a basis.

EXAMPLE:

Consider the vectors $v_1 = (1/2)(1, 1, 1, 1)$,

 $v_2=(1/\sqrt{2})(1,1,1,1), v_3=(1/2)(1,-1,1,-1)$. Find a vector v_4 such that v_1,v_2,v_3,v_4 form an orthonormal basis of \mathbb{R}^4

Write (1,0,0,0) as a linear combination of $v_{1,v_{2},v_{3},v_{4}}$

Theorem Let V be a subspace of Rⁿ and let x be a vector Rⁿ. Then there exists unique vectors x[⊥] and x^{||} such that x = x^{||} + x[⊥] x^{||} in V x[⊥] is orthogonal to V.

Theorem

If V us a subspace of R^n with orthonormal basis $(b_1,b_2,..,b_m)$ then

 $proj_{V}(x) = (b_{1}.x) \ b_{1+} (b_{2}.x) \ b_{2+\dots} (b_{m}.x) \ b_{m}$

In particular if $V = R^n$

 $x=(b_1.x) b_{1+} (b_2.x) b_{2+...} (b_n.x) b_n$

Example

Find the orthogonal projection of (1,2,3) onto the subspace of \mathbb{R}^3 spanned by (1,1,0) and (1,0,0).

Definition

Consider V a subspace of \mathbb{R}^n . The orthogonal complement V^{\perp} of V is the set of vectors x of \mathbb{R}^n that are orthogonal to all vectors in V.

In other words V^{\perp} is the kernel of the linear transformation $proj_{V}$

Theorem: Consider V, a subspace of Rⁿ

- $\bullet\,$ The orthogonal complement of V is a subspace of R^n
- $\mathbf{V} \cap \mathbf{V}^{\perp} = \{0\}$
- $\dim(V) + \dim(V^{\perp}) = n$
- (V[⊥])[⊥]=V

Example

Find the orthogonal complement V where V is the subspace of R^3 spanned by (1,1,0) and (1,0,0).

Theorem: Consider two vectors x and y

- ||x+y||²=||x||² +||y||² if an only if x and y are orthogonal (Pythagorean theorem)
- If V is a subspace of R^n then $||proj_V(x)|| \leq ||x||$
- Cauchy-Schwarz Inequality: $|x.y| \le ||x|| \cdot ||y||$.

Definition

Consider two non-zero vectors x and y in R^n . The angle θ between these two vectors is defined as arc $\cos(x.y/||x||.||y||)$.

EXAMPLE

Find the angle between the vectors x=(1,1,1) and (1,0,1).