MAT211 Lecture 13
The matrix of a linear transformation
✦ The B-matrix of a linear transformation
✦ The columns of the B-matrix of a linear transformation
✦ Change of basis matrix
✦ Change of basis in a subspace of \(R^n \)
✦ Change of basis for the matrix of a linear transformation

Overview
- \(A \) and \(B \) basis of linear space \(V \), \(T \) a linear transformation from \(V \) to \(V \).
- Coordinate Transformation from \(V \) to \(R^n \) \(L(f) = [f]_B \)
- B-matrix of \(T \) is \(L_B \circ T \circ L_B^{-1} \)
- Change of basis from \(B \) to \(A \), \(S_{B \rightarrow A} = L_A \circ (L_B)^{-1} \)
- If \(B \) is \(B \)-matrix of \(T \) and \(A \) is \(A \)-matrix of \(T \), \(S \) the change of basis from \(B \) to \(A \), \(AS = S B \)

EXAMPLE
- Consider the space \(U \) of upper triangular \(2 \times 2 \) matrices and the linear transformation \(T \) from \(U \) to \(U \) defined by \(T(M) = AM \) where \(A \) is
 \[
 \begin{pmatrix}
 1 & -2 \\
 0 & 3
 \end{pmatrix}
 \]
 For each element \(z \) of \(U \), find \([T(z)]_B \) where \(B \) is the standard basis

Definition
- Consider a linear transformation \(T \) from \(V \) to \(V \) where \(V \) is an \(n \)-dimensional linear space. Let \(B \) denote a basis of \(V \).
- The matrix \(B \) of the transformation from \(R^n \) to \(R^n \) defined by \(L_B \circ T \circ L_B^{-1} \) is called the \(B \)-matrix of \(T \).

EXAMPLE
- Consider the space \(U \) of upper triangular \(2 \times 2 \) matrices and the linear transformation \(T \) from \(U \) to \(U \) defined by \(T(M) = AM \) where \(A \) is
 \[
 \begin{pmatrix}
 1 & .2 \\
 0 & 3
 \end{pmatrix}
 \]
 Find the \(B \)-matrix of \(T \) where \(B \) is the standard basis of \(U \).

Theorem
- Consider a linear transformation \(T \) from \(V \) to \(V \). Let \(B \) be matrix of \(T \) with respect to a basis \(B = (b_1, b_2, \ldots, b_n) \)
- Then columns of \(B \) are the \(B \)-coordinate vectors \([T(b_1)]_B, [T(b_2)]_B, \ldots, [T(b_n)]_B \)
EXAMPLE

• Give the matrix of the linear transformation \(T(f) = f'' + 2f\) from \(P_2\) to \(P_2\) with respect to the basis \((1,t,t^2)\).
• Find basis of the kernel and the image and compute rank and nullity of \(T\).

Definition

• Consider two bases \(A\) and \(B\) of an \(n\)-dimensional vector space \(V\).
• The matrix \(S = S_{B \rightarrow A}\) of the linear transformation \(L_A \circ (L_B)^{-1}\)
• \((L_B)^{-1}\) from \(R^n\) to \(R^n\) is called the change of basis matrix from \(B\) to \(A\).

EXAMPLE

• Find the change of basis matrix \(S\) from the standard basis \(B\) to basis \(A\) of \(U^{2x2}\) where \(A\) is

\[
\begin{pmatrix}
1 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}
\]

Find the change of basis matrix from \(A\) to \(B\).

Remarks

• If \(B= (b_1, b_2, ... b_m)\) then the columns of \(S\) are \(S_1, S_2, ..., S_m\) and

\[S_1 = [b_1]_A, S_2 = [b_2]_A, ..., S_m = [b_m]_A\]

Remarks

• If \(A\) and \(B\) are two basis of a vector space then \(S_{B \rightarrow A}\) is an invertible matrix and

\[S_{B \rightarrow A} = (S_{A \rightarrow B})^{-1}\]

Theorem

• Consider a subspace \(V\) of \(R^n\) and two basis of \(V\), \(A = (a_1, a_2, ... a_m)\) and \(B = (b_1, b_2, ... b_m)\). Denote by \(S\) the change of basis matrix from \(B\) to \(A\).
• Then \([b_1, b_2, ... b_m] = [a_1, a_2, ... a_m] S\).
EXAMPLE (4.3-60)

- In the plane V defined by the equation $2x+y-2z=0$ consider the basis
 \[A=\{(1,2,2),(2,-2,1)\} \]
 \[B=\{(1,2,2),(3,0,3)\} \]

1. Find the change of basis matrix from B to A
2. Find the change of basis matrix from A to B
3. Write an equation relating the matrices $[a_1,a_2]$ and $[b_1,b_2]$ where $A=\{(a_1,a_2)\}$ and $B=\{(b_1,b_2)\}$

Theorem

- Consider a linear space V and two basis of V, $A=(a_1, a_2, \ldots, a_n)$ and $B=(b_1, b_2, \ldots, b_n)$. Let T be a linear transformation from V to V, and let A and B be the A-matrix and the B-matrix of T, respectively. Then A is similar to B and
 \[AS=SB \]
 where S is the change of basis matrix from B to A.

EXAMPLE

- Find the change of basis matrix S from the standard basis B of \mathbb{R}^{2x2} to basis A where A is
 \[
 \begin{bmatrix}
 1 & 0 & 0 & 1 \\
 0 & 1 & 0 & 1 \\
 0 & 0 & 1 & 0 \\
 0 & 0 & 0 & 1
 \end{bmatrix}
 \]
 \[
 \begin{bmatrix}
 1 & -2 \\
 0 & 3
 \end{bmatrix}
 \]

Let T be the transformation $T(M)=AM$ where A is

Verify the formula $SB = AS$ (A is the A-matrix of T, B is the B-matrix of T)

Find the change of basis matrix from A to B.

A and B basis of linear space V, T a linear transformation from V to V.

- Coordinate Transformation from V to $\mathbb{R}^n L(f) = [f]_B$
 \[
 B\text{-}matrix \ of \ T \ is \ L_B \ o \ T \ o \ L_B^{-1}
 \]
- Change of basis from B to A, $S_{B\rightarrow A}=L_A \ o \ (L_B)^{-1}$
- If B is B-matrix of T and A is A-matrix of T, $S_{B\rightarrow A}=S_{A\rightarrow B} \ B$