Review exercises for midterm I

1. Find the limit
 a. \(\lim_{x \to 2} \frac{x + 3}{x - 2} \)
 b. \(\lim_{x \to \infty} e^{x^3} \)
 c. \(\lim_{x \to -\infty} e^{x^3} \)

2. If an arrow is shot upward on the moon with a velocity of 70m/s, its height (in meters) after t seconds is given by \(H(t) = 70t - 0.83t^2 \).
 a. Find the velocity of the arrow after one second.
 b. Find the velocity of the arrow when \(t = b \).
 c. When will the arrow hit the moon?
 d. With what velocity will the arrow hit the moon?

3. Sketch the graph of a function \(g \) for which \(g(0) = 1, g'(0) = 2, g'(1) = 0 \) and \(g'(2) = -2 \).

4. Each limit represents the derivative of some function \(f \) at some number \(a \). State \(f \) and in each case and find the limit.
 a. \(\lim_{h \to 0} \frac{(2 + h)^3}{h} - 8 \)
 b. \(\lim_{h \to 0} \frac{\tan(h + \pi)}{h} \)
 c. \(\lim_{h \to 0} \frac{\cos(\pi + h) + 1}{h} \)
 d. \(\lim_{h \to 0} \frac{e^{2+h} - e^2}{h} \)

5. Decide about each of the following statements whether is true or false.
 a. If a function is differentiable at a point \(c \), then it is continuous at \(c \).
 b. There is a function \(F \) on the interval \((0, 6)\) with the following properties
 i. \(F' \) exists and is continuous
 ii. \(F \) is decreasing on \((0, 1)\)
 iii. \(F \) is increasing on \((5, 6)\)
 iv. \(F'(x) \) is different from 0 for all \(x \) in \((0, 6)\).
 c. If a function is continuous at -2 then it is differentiable at -2
 d. If \(f \) and \(g \) are differentiable functions then \((f - g)' = f' - g' \)

6. Find the derivative using the definition of derivative. State the domain of the function and the domain of the derivative.
a. \[f(x) = x + \sqrt{x} \]

b. \[g(t) = \frac{2t}{t + 3} \]

7. The graph of the derivative of a function \(G \) is shown.
 a. On what intervals \(G \) is increasing or decreasing?
 b. At which values of \(x \) does \(G \) have a local maximum or minimum?
 c. If it is know that \(G(1)=3 \), sketch a possible graph of \(G \).

8. The graph of \(f \) is given. Sketch the graph of \(f' \).
9. Sketch the graph of a function that satisfies all the given conditions.
 a. \(\lim_{{x \to 4}} f(x) = -\infty \)
 b. \(f(x) < 0 \) if \(x \neq 4 \)
 c. \(f(0) = 0 \)
 d. \(f(x) > 0 \) if \(x < 0 \) or \(x > 4 \)

10. Differentiate the functions
 a. \(f(x) = \sin(2x)e^{x^3} \)
 b. \(g(x) = \frac{\cos x}{3x^4 + 2x^3} \)
 c. \(h(x) = \ln(\sqrt{x} + 3) \)
 d. \(r(x) = \frac{\cos x}{3x^4 + 2x^3} \)
 e. \(s(x) = \cos^{-1}(x^2) \)
 f. \(n(x) = e^x \ln x \)

11. Differentiate the function.
 a. \(f(x) = (\cos^{-1}(x)) \)
 b. \(u(x) = (\ln x)^x \)
 c. \(v(x) = \frac{\sin^2 x \tan^4 x}{(x + 1)^2} \)
 d. \(w(x) = \sqrt{\frac{x^2 + 1}{x^2 + 1}} \)
 e. \(f(x) = e^{e^x} \)
 f. \(g(x) = \frac{x}{\sin x + \cos x} \)
 g. \(h(x) = x^{\sin x} \)
11. If f is a differentiable function, find an expression for the derivative of each of the following functions.
 a. $y=x^3f(x)^2$
 b. $y=x^2/f(x)$
 c. $y=(1+\sin x)f(x)/(x+3)$
 d. $y=\ln|f(x)|$

12. Find an equation to the tangent line to the curve $y=3/(1+e^{-2x})$ at the point $(0, \frac{3}{2})$

13. On what intervals is the curve $y=x^3-3x+7$
 a. increasing?
 b. concave upward?

14. Find an equation to the tangent line to the curve $y^2=x^3(2-x)$ at the point $(1,1)$

15. Find dy/dx if a) $\cos(x-y)=xe^x$ b) $x^3+x^2+4y^2=6$

16. Find the linearization of $f(x) = \sqrt[3]{4x+1}$ at $a=0$. State the corresponding linear approximation and use to give an approximate value for $\sqrt[3]{1.03}$

17. Find the points on the ellipse $x^2+2y^2=1$ where the tangent line has slope 1.

18. Find the tangent to the curve $x^2y+xy^2=3x$ at the point $(2,1)$.

19. Let f be a function such that $f(1)=2$ and $f'(x) = \sqrt{x^2+3}$. Use a linear approximation to estimate the value of $f(0.99)$.