1. Suppose \(X \) is a topological space, \(R \) is equivalence relation. Show that
 (1) if the quotient space \(X/R \) is Hausdorff, then \(R \) is closed in the product space \(X \times X \).
 (2) if the projection \(p \) of a space \(X \) onto the quotient space \(X/R \) is open, and \(R \) is closed in \(X \times X \), then \(X/R \) is a Hausdorff space.
 (3) Give an example of equivalence relation \(R \) on the set \(X \) such that \(X \to X/R \) is not open.

Definition 1.
(1) A continuous function \(f : X \to Y \) is called proper if \(f \) maps closed sets to closed sets and \(f^{-1}(K) \) is compact for all compact \(K \subset Y \).
(2) Let \(G \) be a topological group acting continuously on a topological space \(X \). The action is called proper if the map \(: G \times X \to X \times X \) given by \((g, x) \to (x, gx)\) is proper.

2. Show that
 (1) If \(G \) acts by homeomorphisms, then the quotient map \(p : X \to X/G \) is always open (contrary to general quotient maps). This is a generalization of Problem 2 HW3.
 (2) \(X/G \) is Hausdorff if and only if the orbit equivalence relation is a closed subset of \(X \times X \).
 (3) If \(G \) acts properly on \(X \) then \(X/G \) is Hausdorff. In particular, each orbit \(Gx \) is closed. The stabilizer \(G_x \) of each point is compact and the map \(G/G_x \to Gx \) is a homeomorphism.
 (4) If \(H \) is a closed subgroup then \(G/H \) is Hausdorff.
 (5) Let \(G \) be a topological group and \(N \) the component of the identity in \(G \). Then \(G/N \) is Hausdorff.

3. (1) Let \(V \) be an inner product space with signature \((1, -1, \ldots, -1)\). Show that if \((l_1, l_1) > 0, (l_2, l_2) > 0 \) then \((l_1, l_2)^2 \geq (l_1, l_1)(l_2, l_2)\)
 (2) Let \(\mathbb{C}^2 \) be a two-dimensional complex space with a basis \(\{e, e'\} \). The space \(\mathbb{C}^2 \otimes \mathbb{C}^2 \)
 has a real structure \(j, j^2 = 1 \) defined by the formula \(j(e \otimes e') = e' \otimes e, j(e \otimes e) = e \otimes e, j(e' \otimes e') = e' \otimes e' \). Identify the space of real points of \(\mathbb{C}^2 \otimes \mathbb{C}^2 \) with the space of Hermitian matrices \(M \). Compute the signature of the bilinear form \(\langle A, B \rangle \) associated with the homogeneous quadratic function \(\det A \) on \(M \). Verify that the group \(G_{\mathbb{C}} = \{g \in \text{GL}(2, \mathbb{C})| |\det g| = 1\} \) acts on the space \(M \) by the formula
\(gA = gAg^t \). Compute the signature of \(\langle A, B \rangle \). Identify the group \(Aut(\langle ., . \rangle) \).
Compute the image and the kernel of the homomorphism.

(3) Let \(C^2 \) be a two-dimensional complex space with a basis \(\{e, e'\} \). The space \(C^2 \otimes C^2 \)
has a real structure \(j, j^2 = 1 \) defined by the formula
\[
\begin{align*}
j(e \otimes e') &= e \otimes e', \\
j(e' \otimes e) &= e' \otimes e, \\
j(e \otimes e) &= e \otimes e', \\
j(e' \otimes e') &= e' \otimes e'.
\end{align*}
\]
\(j \) defines a real structure on the symmetric part \(\text{Sym}^2 C^2 \) of \(C^2 \otimes C^2 \).
Let \(M \) be the space of real points in \(\text{Sym}^2 C^2 \).
Compute the signature of the bilinear form \(\langle A, B \rangle \) associated with the homogeneous quadratic function \(\det A \) on \(M \).
Verify that the group \(G_R = \{ g \in \text{GL}(2, \mathbb{R}) | \det g = \pm 1 \} \) acts on the space \(M \) by the formula \(gA = gAg^t \) and preserves \(\langle A, B \rangle \).
Identify the group \(Aut(\langle ., . \rangle) \) and compute the image of the homomorphism \(G_R \rightarrow Aut(\langle ., . \rangle) \).

(4) One dimensional quaternionic space \(\mathbb{H} \) is the same as two-dimensional complex space \(C^2 \) with a structure map \(j, j^2 = -1 \).
The space \(C^4 = C^2 + C^2 \) carries the diagonal structure map \(j \).
Let \(\Lambda^2 C^4 \) be the skew-symmetric part of \(C^4 \otimes C^4 \).
\(j \otimes j \) defines a real structure \((j^2 \otimes j^2 = \text{id} \otimes \text{id}) \) on \(\Lambda^2 C^4 \).
The Pfaffian function \(\text{Pf}(A) \) can be used to define a bilinear form \(\langle A, B \rangle \) on \(\Lambda^2 C^4 \).
Compute the signature of \(\langle A, B \rangle \).
Verify that the group \(G_H = \{ g \in \text{GL}(4, \mathbb{C}) | \det g = \pm 1, gj = jg \} \) acts on the space \(M \) by the formula \(gA = gAg^t \) and preserves \(\langle A, B \rangle \).
Compute the image of the homomorphism \(G_H \rightarrow Aut(\langle ., . \rangle) \).