MAT544 Fall 2009

Homework 5

Let Lip[a, b] be a subset $\{f\}$ of space of functions on the interval [a, b] which satisfy

$$|f|_{Lip} = \sup_{[a,b]} |f(x)| + \sup_{x,y \in [a,b]} \frac{|f(x) - f(y)|}{|x - y|} < +\infty$$

Problem 1 Prove that

- *Lip* is a linear space. The space of infinitely differentiable functions C[∞][a, b] is a subspace in *Lip*.
- $C^{\infty}[a, b]$ is not a dense subset in *Lip*. Hint:Show that the function

$$f(x) = \begin{cases} 0 \text{ if } a \le x \le \frac{a+b}{2} \\ x - \frac{a+b}{2} \text{ if } \frac{a+b}{2} \le x \le b \end{cases}$$
(1)

can not be approximated by a smooth function $g \in C^{\infty}[a, b]$

Problem 2 Let f_n be a sequence of differentiable functions on interval [0, 1]. Assume there are constants c_0, c_1 such that

$$\sup_{[0,1]} |f_n(x)| \le c_0, \quad \int_0^1 (f'(x))^2 dx \le c_1$$

Prove that $\{f_n(x)\}$ contains a uniformly converging subsequence.

Problem 3 Let $\{f_n\}$ be a sequence of continuous functions on \mathbb{R} to \mathbb{R} which converges at each point of the set \mathbb{Q} of rationals. If the set $\mathcal{F} = \{f_n\}$ is equicontinuous on \mathbb{R} , show that the sequence is actually convergent at every point of \mathbb{R} and that this convergence is uniform on \mathbb{R} .

Problem 4 Let \mathcal{F} be a bounded and equicontinuous set of functions with domain M contained in metric space X and with range in \mathbb{R} . Let $f^*(x)$ be defined on M to \mathbb{R} by

$$f^*(x) = \sup_{\mathcal{F}} f(x).$$

Show that $f^*(x)$ is continuous on *M* to \mathbb{R} .

Problem 5 Show that a unit sphere in a Hilbert space E is compact iff E is finitedimensional.

Problem 6 Let *M* be a subset in C[a, b] that consists of polynomials of degree ≤ 10 , that satisfy inequality $\int_{a}^{b} |p(x)| dx \leq 10$. Is the space *M* compact?

Problem 7 Let A be a map from C[0, 1] to itself defined by the formula

$$A(f)(x) = \lambda \int_0^1 K(x, y) f(y) dy + g(x),$$

where $K(x, y) \in C([0, 1] \times [0, 1]), g(x) \in C[0, 1]$. Find a sufficient condition that the equation Af = f has a solution.

Problem 8 Construct a function $f : [0,1] \rightarrow \mathbb{R}$ or prove that such construction is impossible:

- A function that is discontinuous at all points.
- A function that is discontinuous at all rational points.
- A function that is discontinuous at all irrational points.