MAT544 Fall 2009

Homework 10

Problem 1 Using results of HW9 prove that

- 1. All norms $||x||_p = \sqrt[n]{\sum_{i=1}^n |x_i|^p}$, $p \ge 1$ and $||x||_{\infty} = \max_{i=1,\dots,n} |x_i|$ are equivalent on \mathbb{R}^n .
- 2. Define l_p as a space of sequences $x = (x_1, ..., x_n, ...)$ such that $\sum_{n \ge 1} |x_n|^p < \infty$, $p \ge 1$. Prove that l_p is a Banach space with respect to l_p norm

$$||x||_p = \sqrt[p]{\sum_{n\geq 1} |x_n|^p}$$

3. Show that if 1/p + 1/q = 1 then the pairing $l_p \times l_q \to \mathbb{R}$ defined by the formula

$$(x_1,\ldots,x_n,\ldots)\times(y_1,\ldots,y_n,\ldots)\to\sum_{n\geq 1}x_ny_n$$

is well defined and continuous in both arguments.

Problem 2 Let E_i , $i \ge 1$ be a collection of subsets of a set *X*. Define

$$\overline{\lim_{i\to\infty}}E_i = \bigcap_{i\ge 1}\bigcup_{n\ge i}E_n$$

and

$$\underline{\lim}_{i\to\infty}E_i=\bigcup_{i\ge 1}\bigcap_{n\ge i}E_n$$

This you probably already know from HW9, but still:

Prove that

- 1. $\overline{\lim_{i \to \infty}} E_i = \{x \in X | x \text{ contains in infinitely many } E_i\}$
- 2. $\lim_{i \to \infty} E_i = \{x \in X | x \text{ contains in all } E_i \text{ starting with some } i_0\}$
- 3. $\underbrace{\lim_{i\to\infty}} E_i \subset \overline{\lim_{i\to\infty}} E_i$

Problem 3 Let (X, \mathcal{M}, μ) be a measure space. A set $E \subset X$ is called locally measurable if $E \cap A \subset \mathcal{M}$ for all $A \in \mathcal{M}$ such that $\mu(A) < \infty$. Let $\widetilde{\mathcal{M}}$ be the collection of all locally measurable sets. Clearly $\mathcal{M} \subset \widetilde{\mathcal{M}}$; if $\mathcal{M} = \widetilde{\mathcal{M}}$, then μ is called saturated.

- a If μ is σ -finite, then μ is saturated. (Recall if $X = \bigcup E_j$ where $E_i \in \mathcal{M}$ and $\mu(E_j) < \infty$ for all j, μ is called σ -finite.)
- b $\widetilde{\mathcal{M}}$ is a σ -algebra.
- c Define $\tilde{\mu}$ on $\widetilde{\mathcal{M}}$ by $\tilde{\mu}(E) = \mu(E)$ if $E \in \mathcal{M}$ and $\tilde{\mu}(E) = \infty$ otherwise. Then $\tilde{\mu}$ is a saturated measure on $\widetilde{\mathcal{M}}$, called the saturation of μ .
- d If μ is complete, so is $\tilde{\mu}$.
- e Suppose that μ is semifinite. For $E \in \widetilde{\mathcal{M}}$, define $\underline{\mu}(E) = \sup\{\mu(A)|A \in \mathcal{M} \text{ and } A \subset E\}$. Then $\underline{\mu}$ is a saturated measure on $\widetilde{\mathcal{M}}$ that extends μ . (Recall if for each $E \in \mathcal{M}$ with $\mu(E) = \infty$ there exists $F \in \mathcal{M}$ with $F \subset E$ and $0 < \mu(F) < \infty$, μ is called semifinite.)
- f Let X_1, X_2 be disjoint uncountable sets, $X = X_1 \cup X_2$, and \mathcal{M} the σ -algebra of countable or co-countable sets in X. Let μ_0 be counting measure on $\mathcal{P}(X_1)$, and define μ on \mathcal{M} by $\mu(E) = \mu_0(E \cap X_1)$. Then μ is a measure on $\mathcal{M}, \widetilde{\mathcal{M}} = \mathcal{P}(X)$, and in the notation of parts (c) and (e), $\tilde{\mu} \neq \mu$.

Problem 4 Let $\mathcal{A} \subset \mathcal{P}(X)$ be an algebra, \mathcal{A}_{σ} be a collection of countable unions of sets in \mathcal{A} , and $\mathcal{A}_{\sigma\delta}$ be a collection of countable intersections of sets in \mathcal{A}_{σ} . Let μ_0 be a premeasure on \mathcal{A} and μ^* be the induced outer measure on $\mathcal{P}(X)$. Prove that

- 1. For any $E \subset X$ and $\epsilon > 0$ there is $A \in \mathcal{R}_{\sigma}$ with $E \subset A$ and $\mu^*(A) < \mu^*(E) + \epsilon$
- If μ*(E) < ∞, then E is μ*-measurable iff there exists B ∈ A_{σδ} with E ⊂ B and μ*(B\E) = 0(Hint: for B take the intersection of sets from the first part of the problem. Use that B is measurable (proven in class)).

Problem 5 Let μ^* be an outer measure on X induced from a finite premeasure μ_0 . If $E \subset X$, define an inner measure $\mu_*(E)$ to be $\mu_*(E) = \mu_0(X) - \mu^*(\overline{E})$. Prove that E is

measurable iff $\mu^*(E) = \mu_*(E)$. (Hint: use the result of the second part of the previous problem.)

Problem 6 Let \mathcal{A} be the collection of finite unions of sets of the form $(a, b] \cap \mathbb{Q}$ where $-\infty \le a < b \le \infty$.

- a \mathcal{A} is an algebra on \mathbb{Q} .
- b The σ -algebra generated by \mathcal{A} is $\mathcal{P}(\mathbb{Q})$.
- c Define μ_0 on \mathcal{A} by $\mu_0(\emptyset) = 0$ and $\mu_0(A) = \infty$ for $A \neq \emptyset$. Then μ_0 is a premeasure on \mathcal{A} , and there is more than one measure on $\mathcal{P}(\mathbb{Q})$ whose restriction to \mathcal{A} is μ_0 .

Problem 7 Let *m* denote Lebesgue measure. Let $E \subset [0, 1]$, and let \overline{E} be the closure of *E*. Show that $m(\overline{E}) = 0$ iff for every $\epsilon > 0$ there is a *finite* disjoint collection of open intervals $I_j \subset \mathbb{R}$ with $E \subset \cup I_j$ and with $\sum m(I_j) < \epsilon$.

Problem 8 A linear map $T : E_1 \to E_2$ between two Banach spaces is called bounded if it satisfies $||T(x)||_2 \le K||x||_1$, where $K \ge 0$. A trivial example of bounded map is a map proportional to identity map.

- a Give a nontrivial example of a bounded map $T : l_2 \rightarrow l_2$ with no kernel and find the constant *K*.
- b Find a bounded $T: l_2 \rightarrow l_2$ with dense image $\text{Im}T \subset l_2$ such that $\text{Im}T \neq l_2$