1 Semifields

Definition 1 A semifield $\mathbb{P} = (\mathbb{P}, \oplus, \cdot)$:

1. (\mathbb{P}, \cdot) is an abelian (multiplicative) group.
2. \oplus is an auxiliary addition: commutative, associative, multiplication distributes over \oplus.

Exercise 1 Show that semi-field \mathbb{P} is torsion-free as a multiplicative group. Why doesn’t your argument prove a similar result about fields?

Exercise 2 Show that if a semi-field contains a neutral element 0 for additive operation and 0 is multiplicatively absorbing

$$0a = a0 = 0$$

then this semi-field consists of one element

Exercise 3 Give two examples of non injective homomorphisms of semi-fields

Exercise 4 Explain why a concept of kernel is undefined for homorphisms of semi-fields.

A semi-field Trop_{min} as a set coincides with \mathbb{Z}. By definition $a \cdot_{\text{Trop}} b = a + b$, $a \oplus b = \min(a, b)$. Similarly we define Trop_{max}.

Exercise 5 Show that $\text{Trop}_{\text{min}} \cong \text{Trop}_{\text{max}}$

Let $\mathbb{Z}[u_1, \ldots, u_n]_{\geq 0}$ be the set of nonzero polynomials in u_1, \ldots, u_n with non-negative coefficients.

A free semi-field $\mathbb{P}(u_1, \ldots, u_n)$ is by definition a set of equivalence classes of expression $\frac{P}{Q}$, where $P,Q \in \mathbb{Z}[u_1, \ldots, u_n]_{\geq 0}$.

$$\frac{P}{Q} \sim \frac{P'}{Q'}$$

if there is P'', Q'', a, a' such that $P'' = aP = a'P', Q'' = aQ = a'Q'$.
Exercise 6 Show that for any semi-field \(P \) and a collection \(v_1, \ldots, v_n \) there is a homomorphism

\[
\psi : P(u_1, \ldots, u_n) \to P', \psi(u_i) = v_i
\]

Let \(k \) be a ring. Then \(k[P] \) is the group algebra of the multiplicative group of the semi-field \(P \).

2 Cluster algebras - foundations

Definition 2 \(B = (b_{ij}) \) is an \(n \times n \) integer matrix is skew-symmetrizable if there exists a diagonal matrix \(D \) with positive diagonal entries such that \(DBD^{-1} \) is skew-symmetric.

Exercise 7 Show that \(B \) is skew-symmetrizable if and only if there exist positive integers \(d_1, \ldots, d_n \) such that \(d_i b_{ij} = -d_j b_{ji} \) for all \(i \) and \(j \).

Definition 3 An exchange matrix is a skew-symmetrizable \(n \times n \) matrix \(B = (b_{ij}) \) with integer entries.

Let \(F \) be purely transcendental extension (of transcendental degree \(n \)) of the field of fractions \(\mathbb{Q}(P) \) of \(\mathbb{Q}[P] \).

Definition 4 A labeled seed is a triple \((x, y, B)\), where

- \(B \) is an \(n \times n \) exchange matrix,
- \(y = (y_1, \ldots, y_n) \) is a tuple of elements of \(P \) called coefficients, and
- \(x = (x_1, \ldots, x_n) \) is a tuple (or cluster) of algebraically independent (over \(\mathbb{Q}(P) \)) elements of \(F \) called cluster variables.

A pair \((y, B)\) is called a \(Y \)-seed.

Definition 5 Let \(B = (b_{ij}) \) be an exchange matrix. Write \([a]_+ \) for \(\max(a, 0) \).

The mutation of \(B \) in direction \(k \) is the matrix \(b'_{ij} \) where

\[
b'_{ij} = \begin{cases}
-b_{ij}, & \text{if } k \in \{i, j\} \\
-b_{ij} + \text{sign}(b_{kj})[b_{ik}b_{kj}]_+, & \text{otherwise}
\end{cases}
\]
Exercise 8 Show that $\mu_k(B)$ is an exchange matrix, e.g. it is skew-symmetrizable.

Exercise 9 Show that matrix mutation can be equivalently defined by

$$b'_{ij} = \begin{cases}
-b_{ij}, & \text{if } k \in \{i,j\} \\
 b_{ij} + [b_{ik}]_+ b_{kj} + b_{ik}[b_{kj}]_+, & \text{otherwise}
\end{cases}$$

Definition 6 Let (y, B) be a Y-seed. The mutation of (y, B) in direction k is the Y-seed $(y', B') = \mu_k(y, B)$, where $B' = \mu_k(B)$ and y' is the tuple (y'_1, \ldots, y'_n) given by

$$y'_j = \begin{cases}
 y_k^{-1}, & \text{if } j = k \\
 y_j y_k^{[b_{kj}]_+} (y_k \oplus 1)^{-b_{kj}}, & \text{if } j \neq k
\end{cases}$$

Definition 7 Let (x, y, B) be a labeled seed. The mutation of (x, y, B) in direction k is the labeled seed $(x', y', B') = \mu_k(x, y, B)$, where (y', B') is the mutation of (y, B) and where x' is the cluster (x'_1, \ldots, x'_n) with $x'_j = x_j$ for $j \neq k$, and

$$x'_k = \frac{y_k \prod x_i^{[b_{ik}]_+} + \prod x_i^{-[b_{ik}]_+}}{(y_k \oplus 1)x_k}$$

Exercise 10 Show that each mutation μ_k is an involution on labeled seeds.

Applying several mutations $\mu_{i_1} \cdots \mu_{i_l}$ to a labeled seed (x, y, B) we get a new labeled seed. Let $\Delta_n(x, y, B)$ be the set of all such seeds.

Definition 8 A cluster algebra $A(x, y, B)$ is a subalgebra in $\mathbb{Q}(\mathbb{P})(x_1, \ldots, x_n)$ generated by all cluster variables in $\Delta_n(x, y, B)$.

Definition 9 Let \tilde{B} be $(m+n) \times n$ matrix, such that the top $n \times n$ matrix is skew-symmetrizable and $\tilde{x} = (x_1, \ldots, x_n, x_{n+1}, \ldots, x_{n+m})$. Then we say that (\tilde{x}, \tilde{B}) is a labeled seed for a cluster algebra of geometric type. Collection (x_1, \ldots, x_n) is known as exchangeable variables; $(x_{n+1}, \ldots, x_{n+m})$ as frozen variables or "coefficients". Notation: (u_1, \ldots, u_m) is occasionally used for frozen variables.

Let $\tilde{x}' = \mu_k(\tilde{x})$, $\tilde{B}' = \mu_k(\tilde{B})$, $k = 1, \ldots, n$. Then $\mu_k(\tilde{B})$ is defined as in $n \times n$ case: $x'_j = x_j$, $j \neq k$

$$x'_k = \frac{\prod x_i^{[b_{ik}]_+} + \prod x_i^{-[b_{ik}]_+}}{x_k}$$

3
Definition 10 Let $\Delta_n(x, B)$ be the set of mutations of geometric seed (x, B). By definition cluster algebra of geometric type as a subalgebra in $\mathbb{Q}(x_1, \ldots, x_{n+m})$ generated by cluster variables in $\Delta_n(x, B)$.

Exercise 11 Let \mathbb{P} a tropical semi-field on n generators y_1, \ldots, y_n. Show that the homomorphism of fields $\phi : \mathbb{Q}(x_1, \ldots, x_n, y_1, \ldots, y_n) \rightarrow \mathbb{Q}(x_1, \ldots, x_n, x_{n+1}, \ldots, x_{n+m})$ identical on x_1, \ldots, x_n and on y_1, \ldots, y_n defined by the formula:

$$\phi(y_j) = \prod_{i=1}^{m} x_{n+i}^{b_{n+i,j}}$$

is compatible with mutations.

Exercise 12 Consider the cluster algebra of geometric type defined by the initial labeled seed given by $x = (x_1, x_2, u_1, u_2, u_3)$ and

$$B = \begin{pmatrix} 0 & 2 \\ -1 & 0 \\ -1 & 0 \\ 1 & 0 \\ 1 & 2 \end{pmatrix}$$

Compute all cluster variables generating this cluster algebra.
3 Root systems

Definition 11 Given a nonzero vector \(\alpha \) in Euclidean space \(V \), the reflection in the hyperplane orthogonal to \(\alpha \) is \(\sigma_\alpha \), given by

\[
\sigma_\alpha(x) = x - 2\left(\frac{\alpha}{\sqrt{\langle \alpha, \alpha \rangle}}, x\right) \cdot \left(\frac{\alpha}{\sqrt{\langle \alpha, \alpha \rangle}}\right) = x - 2\frac{\langle \alpha, x \rangle}{\langle \alpha, \alpha \rangle}
\] (1)

Define \(\alpha^\vee = 2\frac{\alpha}{\langle \alpha, \alpha \rangle} \). Then \(\sigma_\alpha(x) = \langle \alpha^\vee, x \rangle \alpha \)

Definition 12 A root system is a collection \(\Phi \) of nonzero vectors (called roots) in a real vector space \(V \) such that:

1. \(\Phi \) is finite,
2. \(0 \notin \Phi \) and \(\Phi \) spans \(V \),
3. For each root \(\beta \), the reflection \(\sigma_\beta \) permutes \(\Phi \),
4. Given a line \(L \) through the origin, either \(L \cap \Phi \) is empty or \(L \cap \Phi = \{\pm \beta\} \) for some \(\beta \) (reduced system condition),
5. \(\langle \alpha^\vee, \beta \rangle \in \mathbb{Z} \), for each \(\alpha, \beta \in \Phi \) (crystallographic condition).

Definition 13 Two root systems \(\Phi \subset V \) and \(\Phi' \subset V' \) are isomorphic if there is an isometry \(f : V \to V \) with \(f(\Phi) = \Phi' \).

Exercise 13 Describe all not necessarily reduced finite one-dimensional crystallographic root systems up to an isomorphism.

Exercise 14 Let \(\theta \) be an angle between vectors \(\alpha, \beta \). Show that \(\langle \alpha^\vee, \beta \rangle\langle \beta^\vee, \alpha \rangle = 4\cos^2 \theta \) and find possible values of \(\theta \), \(\langle \alpha^\vee, \beta \rangle \), \(\langle \beta^\vee, \alpha \rangle \) and \(4\cos^2 \theta \) for vectors in a finite crystallographic root system.

Exercise 15 Let \(\alpha, \beta \) be two non proportional vectors in a finite crystallographic root system \(\Phi \). Show that if \(\langle \alpha, \beta \rangle < 0 \) then \(\alpha + \beta \in \Phi \). If \(\langle \alpha, \beta \rangle > 0 \) then \(\alpha - \beta \in \Phi \).
Definition 14 Let \(\alpha, \beta \) be a pair of linearly independent roots. A subset \(\{ \gamma \in \Phi | \gamma = \beta + k\alpha (k \in \mathbb{Z}) \} \) of a root system \(\Phi \) is called an \(\alpha \)-series of roots, containing \(\beta \). In particular if \(\beta - \alpha \notin \Phi \) then \(\beta + \alpha \in \Phi \) iff \(\langle \beta, \alpha \rangle < 0 \).

Exercise 16 An \(\alpha \)-series of roots, containing \(\beta \) has a form \(\{ \beta + k\alpha | -p \leq k \leq q \} \), where \(p, q \geq 0 \) and \(p - q = \langle \alpha^\vee, \beta \rangle \).

Definition 15 Exercise 17 We define a collection \(\Phi^\vee = \{ \alpha^\vee | \alpha \in \Phi \} \subset V \). Prove that \(\Phi^\vee \) is a root system.

(Direct sums). Let \(\Phi \) and \(\Phi' \) be root systems in \(V \) and \(V' \), respectively. Then \(\Phi \cup \Phi' \) is a root system in the vector space \(V \oplus V' \). A root system is reducible if it can be written as such an (orthogonal) direct sum, and irreducible otherwise.

Definition 16 Let \(\Phi \) be a root system. Then the Weyl group of \(\Phi \) is the group generated by \(\sigma_\alpha \) for all \(\alpha \in \Phi \).

Exercise 18 Is the Weyl group well-defined (i.e., do isomorphic root systems give isomorphic Weyl groups?).

Exercise 19 Is the Weyl group of a finite root system finite?

Exercise 20 What are the Weyl groups of the four crystallographic root systems in \(\mathbb{R}^2 \)?

Exercise 21 Find a root system having the symmetric group on four letters, \(S_4 \), as its Weyl group.

Definition 17 Let \(\Phi \subset V \) be a root system, and choose \(v \in V \). Define \(\Phi^+(v) = \{ \alpha \in \Phi | \langle \alpha, v \rangle > 0 \} \). We say that \(v \) is regular if \(\Phi = \pm \Phi^+(v) \), and singular otherwise. If \(v \) is regular, we call \(\Phi^+(v) \) a positive system for \(\Phi \).

Exercise 22 Why does a regular \(v \) exist?

Let \(v \) be regular we set \(\Phi^+ = \Phi^+(v) \). In general \(\Phi^+ \) depends on the choice of \(v \).

Definition 18 The set \(\Pi(\Phi^+) \subset \Phi^+ \) is formed by elements \(\alpha \) that can not be presented as a sum \(\alpha = \beta \gamma, \beta \gamma \in \Phi^+ \).
Exercise 23 Show that any $\alpha \in \Phi^+$ can be written in the form $\alpha = \sum_{\beta \in \Pi(\Phi^+)} c_{\beta} \beta$, where c_{β} are nonnegative integers.

Exercise 24 If $\alpha, \beta \in \Pi(\Phi^+)$ and $\alpha \neq \beta$, then $\alpha - \beta \neq \Phi$ and $\langle \alpha, \beta \rangle \leq 0$.

Exercise 25 Let $\alpha_1, \ldots, \alpha_k$ be a set of vectors in V such that $\langle \alpha_i, \alpha_j \rangle \leq 0, i \neq j$. Suppose we have a nontrivial linear combination with positive c_i, c'_j:

$$\sum_{r=1}^{k} c_r \alpha_{i_r} - \sum_{r'=1}^{l} c'_{r'} \alpha_{j_{r'}} = 0$$

with all $i_1, \ldots, i_k, j_1, \ldots, j_l$ distinct. Then

1. $\sum_{r=1}^{k} c_r \alpha_{i_r} = \sum_{r'=1}^{l} c'_{r'} \alpha_{j_{r}} = 0$.
2. $\langle \alpha_{i_r}, \alpha_{j_{r'}} \rangle = 0, r = 1, \ldots, k, r' = 1, \ldots, l$

Exercise 26 Let $\alpha_1, \ldots, \alpha_k \in V$ be a set of linearly independent vectors. Show that there is $\beta \in V$ such that $\langle \alpha_i, \beta \rangle > 0, i = 1, \ldots, k$

Definition 19 The n-th Catalan number C_n is the number of full binary planar trees with $n + 1$ leaves.

Exercise 27 Prove the formula

$$C_n = \frac{(2n)!}{n!(n+1)!}$$

Exercise 28 Prove the Ptolemy’s theorem: let Δ_{ABCD} be a quadrilateral whose vertices lie on a common circle. Then

$$|AC||BD| = |AB||CD| + |BC||AD|$$