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Preface 
This third edition is an introduction to partial differential equations for students 
who have finished calculus through ordinary differential equations. The book 
provides physical motivation, mathematical method, and physical application. 
Although the first and last are the raison d'etre for the mathematics, I have 
chosen to stress the systematic solution algorithms, based on the methods of 
separation of variables and Fourier series and integrals. My goal is to achieve a 
lucid and mathematically correct approach without becoming excessively involved 
in analysis per se. For example, I have stressed the interpretation of various 
solutions in terms of asymptotic behavior (for the heat equation) and geometry 
(for the wave equation). 

This new edition builds upon the solid strengths of the previous editions and 
provides a more patient development of the core concepts. Chapters 0 and 1 have 
been reorganized and refined to provide more complete examples that will help 
students master the content. For example, the Sturm-Liouville theory has been 
rewritten and placed at the end of Chapter 1 just before it is used in Chapter 2. 
The coverage of infinite series and ordinary differential equations, formerly in 
Chapter 0, has been moved to appendixes. In addition, we have integrated the 
applications of Mathematica into the text because computer-assisted methods 
have become increasingly important in recent years. The previous edition of this 
text made Mathematica applications available for the first time in a book at this 
level, and this edition continues this coverage. Each section of the book contains 
numerous worked examples and a set of exercises. These exercises have been kept 
to a uniform level of difficulty, and solutions to nearly 450 of the 700 exercises in 
the text have been provided. 

Chapter 0 is a brief introduction to the entire subject of partial differen-
tial equations and some technical material that is used frequently throughout 
the book. Chapters 1 to 4 contain the basic material on Fourier series and 
boundary-value problems in rectangular, cylindrical, and spherical coordinates. 
Bessel and Legendre functions are developed in Chapters 3 and 4 for those in-
structors who want a self-contained development of this material. Instructors 
who do not wish to use the material on boundary-value problems should cover 
only Sees. 3.1 and 4.1 in Chapters 3 and 4. These sections contain several inter-
esting boundary-value problems that can be solved without the use of Bessel or 
Legendre functions. 

Chapter 5 develops Fourier transforms and applies them to solve problems in 
unbounded regions. This material, which may be treated immediately following 
Chapter 2 if desired, uses real-variable methods. The student is referred to a 
subsequent course for complex-variable methods. 

The student who has finished all the material through Chapter 5 will have 
a good working knowledge of the classical methods of solution. To complement 
these basic techniques, I have added chapters on asymptotic analysis (Chapter 6), 
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numerical analysis (Chapter 7), and Green's functions (Chapter 8) for instructors 
who may have additional time or wish to omit some of the earlier material. The 
accompanying flowchart plots various paths through the book. 

Logical Dependence or Cbapters 

Chapters 1 and 2 form the heart of the book. They begin with the theory 
of Fourier series, including a complete discussion of convergence, Parseval's the-
orem, and the Gibbs phenomenon. We work with the class of piecewise smooth 
functions, which are infinitely differentiable except at a finite number of points, 
where all derivatives have left and right limits. Despite the generous dose of the-
ory, it is expected that the student will learn to compute Fourier coefficients and 
to use Parseval's theorem to estimate the mean square error in approximating a 
function by the partial sum of its Fourier series. Chapter 1 concludes with Sturm-
Liouville theory, which will be used in Chapter 2 and repeatedly throughout the 
book. 

Chapter 2 takes up the systematic study of the wave equation and the heat 
equation. It begins with steady-state and time-periodic solutions of the heat 
equation in Sec. 2.1, including applications to heat transfer and to geophysics, 
and follows with the study of initial-value problems in Sees. 2.2 and 2.3, which 
are treated by a five-stage method. This systematic breakdown allows the student 
to separate the steady-state solution from the transient solution (found by the 
separation-of-variables algorithm) and to verify the uniqueness and asymptotic 
behavior of the solution as well as to compute the relaxation time. I have found 
that students can easily appreciate and understand this method, which combines 
mathematical precision and clear physical interpretation. The five-stage method 
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is used throughout the book, in Sees. 2.5, 3.4, and 4.1. Chapter 2 also in-
cludes the wave equation for the vibrating string (Sec. 2.4), solved both by the 
Fourier series and by the d' Alembert formula. Both methods have advantages 
and disadvantages, which are discussed in detail. My derivations of both the wave 
equation and the heat equation are from a three-dimensional viewpoint, which I 
feel is less artificial and more elegant than many treatments that begin with a 
one-dimensional formulation. 

Following Chapter 2, there is a wide choice in the direction of the course. 
Those instructors who wish to give a complete treatment of boundary-value prob-
lems in cylindrical and spherical coordinates, including Bessel and Legendre func-
tions, will want to cover all of Chapters 3 and 4. Other instructors may ignore 
this material completely and proceed directly to Chapter 5, on Fourier trans-
forms. An intermediate path might be to cover Secs. 3.1 and/or 4.1, which treat 
(respectively) Laplace's equation in polar coordinates and spherically symmetric 
solutions of the heat equation in three dimensions. Neither topic requires any 
special functions beyond those encountered in trigonometric Fourier series. 

Chapter 5 treats Fourier transforms using the complex exponential notation. 
This is a natural extension of the complex form of the Fourier series, which is 
covered in Sec. 1.5. Using the Fourier transform, I reduce the heat, Laplace, 
wave, and telegraph equations to ordinary differential equations with constant 
coefficients, which can be solved by elementary methods. In many cases, these 
Fourier representations of the solutions can be rewritten as explicit representa-
tions (by what is usually known as the Green function method). The method of 
images for solving problems on a semi-infinite axis is naturally developed here. 
The Green functions methods are developed more systematically in Chapter B. 
After preparing the one-dimensional case, I give a self-contained treatment of the 
explicit representation of the solution of Poisson's equation in two and three di-
mensions. In addition to the traditional physical applications, the Black-Scholes 
model of option pricing from financial mathematics is included. 

Throughout the book I emphasize the asymptotic analysis of series solutions 
of boundary-value problems. Chapter 6 gives an elementary account of asymp-
totic analysis of integrals, in particular the Fourier integral representations of 
the solutions obtained in Chapter 5. The methods include integration by parts, 
Laplace's method, and the method of stationary phase. These culminate in an 
asymptotic analysis of the telegraph equation, which illustrates the group velocity 
of a wave packet. 

No introduction to partial differential equations would be complete without 
some discussion of approximate solutions and numerical methods. Chapter 7 
gives the student some working knowledge of the finite difference solution of the 
heat equation and Laplace's equation in one and two space dimensions. The 
material on variational methods first relates differential equations to variational 
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problems and then outlines some direct methods that may be used to arrive at 
approximate solutions, including the finite method. 

This book was developed from course notes for Mathematics C91-1 in the 
Integrated Science Program at Northwestern University. The course has been 
taught to college juniors since 1977; Chapters 1 to 5 are covered in a IO-week 
quarter. I am indebted to my colleagues Leonard Evens, Robert Speed, Paul 
Auvil, Gene Birchfield, and Mark Ratner for providing valuable suggestions on 
the mathematics and its applications. The first draft was written in collaboration 
with Michael Hopkins. The typing was done by Vicki Davis and Julie Mendel-
son. The solutions were compiled with the assistance of Mark Scherer. Valuable 
technical advice was further provided by Edward Reiss and Stuart Antman. 

In preparation of this new edition, I received valuable comments and sugges-
tions from Andrew Bernoff, Joseph B. Keller, Thaddeus Ladd, Jeff Miller, Carl 
Prather, Robert Seeley, and Marshall Slemrod. I also acknowledge the reviewing 
services of the following individuals: David Bao, University of Houston; William 
O. Bray, University of Maine; Peter Colwell, Iowa State University; Kenneth A. 
Heimes, Iowa State University; Yinxi Huang, University of Memphis; Mohammad 
Kozemi, University of North Carolina-Charlotte; and William Mays, Gloucester 
Community College (NJ). 

In preparation of the past edition, I received valuable comments and sugges-
tions from James W. Brown, Charles Holland, Robert Pego, Mei-Chang Shen, 
Clark Robinson, Nancy Stanton, Athanassios Tzavaras, David Kapov, and Den-
nis Kosterman. For the second edition, I also acknowledge the reviewing services 
of the following individuals: William O. Bray, University of Maine; William E. 
Fitzgibbon, University of Houston; Peter J. Gingo, University of Akron; Moham-
mad Kozemi, University of North Carolina-Charlotte; Gilbert N. Lewis, Michi-
gan Technical University; Geoffrey Martin, University of Toledo; Norman Mey-
ers, University of Minnesota-Minneapolis; Allen C. Pipkin, Brown University; R. 
E. Showalter, University of Texas-Austin; and Grant V. WeIland, University of 
Missouri-St. Louis. 

In the preparation of the first edition I was encouraged by John Corrigan 
of the McGraw-Hill College Division. Preparing the second edition of this text, 
I benefited from the editorial services of Karen M. Hughes and Richard Wallis. 
Most recently, for this new edition with Waveland Press, it has been a pleasure to 
work with Jan Fisher and the staff of Publication Services. The current printing 
was completed with the editorial assistance of Miron Bekker, Harry R. Hughes, 
Monica Sharpnack, Nancy Stanton, and Alphonse Sterling. 

Mark A. Pinsky 
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CHAPTER 0 

PRELIMINARIES 

INTRODUCTION 

This chapter serves as an overview, with some motivation of the origins of 
partial differential equations and some of the mathematical methods that will be 
used repeatedly throughout the book. In particular, the technique of separation 
0/ variables is introduced in Sec. 0.2, and the concept of orthogonal junctions is 
introduced in Sec. 0.3 and illustrated through relevant examples. Previous work 
in vector calculus, infinite series, and ordinary differential equations is reviewed 
in the appendixes. 

0.1. Partial Differential Equations 
In this section we introduce the notion of a partial differential equation and 
illustrate it with various examples. 

0.1.1. What is a partial differential equation? From the purely math-
ematical point of view, a partial differential equation (PDE) is an equation that 
relates a function u of several variables Xl,"" xn and its partial derivatives. 
This is distinguished from an ordinary differential equation, which pertains to 
functions of one variable. For example, if a function of two variables is denoted 
u(x, y), then one may consider the following as examples of partial differential 
equations: 

82u 82u 
8x2 + 8y2 = 0 (Laplace's equation) 

8
2
u _ [flu = 0 (the wave equation) 8x2 ay2 

a2u _ au = 0 (the heat equation) 
ox2 8y 

82u 82u 
ox2 + 8y2 = g(x, y) (Poisson's equation) 
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In order to simplify the notation, we will often use subscripts to denote the 
various partial derivatives, so that Ux = au/ax, Uxx = a2u/ax2 , and so forth. In 
this notation, the above four examples are written, respectively, 

uxx +u1l1l = 0, u xx - U yy = 0, uxx - uy = 0, u xx + U yy = 9 
The order of a PDE is indicated by the highest-order derivative that appears. 

All of the above four examples are PDEs of second order. 
In the case of a function of several variables u(xt, .. . , xn ), the most general 

second-order partial differential equation can be written 

where the dots imply the other partial derivatives that may occur. In case n = 1 
we obtain the second-order ordinary differential equation F(x, '1.£, '1.£', '1.£11) = 0. The 
necessary information on ordinary differential equations is reviewed in Appen-
dix A.I. 

Another important concept pertaining to a PDE is that of linearity. This 
is most easily described in the context of a differential operator £ applied to 
a function u. Examples of differential operators are £'1.£ = au/ax, £'1.£ = 3u + 
siny8u/8x, and £'1.£ = '1.£ {)2u/8x2 • The operator is said to be linear if for any two 
functions u, v and any constant c, 

£('1.£ + v) = £'1.£+ £v, £(cu) = c£u 
A PDE is said to be linear if it can be written in the form 

(0.1.1) £u=g 
where £ is a linear differential operator and 9 is a given function. In case 9 = 0, 
(0.1.1) is said to be homogeneo'U..'J. For example, three of the above examples 
(Laplace's equation, the wave equation, and the heat equation) are linear homo-
geneous PDEs. The most general linear second-order PDE in two variables is 
written 

a(x, y)uxx + b(x, Y)UXy + c(x, y)uyy + d(x, y)ux + e(x, y)uy + f(x, y)u = g(x, y) 

where the functions a, b, c, d, e, I, 9 are given. 

EXERCISES 0.1.1 
1. Write down the most general linear first-order PDE in two variables. How 

many given functions are necessary to specify the PDE? 
2. Write down the most general linear first-order PDE in three variables. How 

many given functions are necessary to specify the PDE? 
3. Write down the most general linear first-order homogeneous PDE in two 

variables. How many given functions are necessary to specify the PDE? 
4. Write down the most general linear first-order homogeneous PDE in three 

variables. How many given functions are necessary to specify the PDE? 
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5. Define the operator £, by the formula £'u(x, y) = d(x, y)ux + e(x, y)uy + 
J(x, y)u. Show that £, is a linear differential operator. 

6. Define the operator £, by the formula £'u(x, y) = a(x, y)uxx + b(x, y)uxy + 
c(x, y)uyy. Show that £, is a linear differential operator. 

7. Suppose that £'1 and £'2 are linear differential operators. Show that £'1 +£2 
is also a linear differential operator. 

0.1.2. Superposition principle and subtraction principle. In the study 
of ordinary differential equations, it is often possible to write the general solution 
in a closed form, in terms of arbitrary constants and a set of particular solutions. 
This is not possible in the case of partial differential equations. To see this in more 
detail, we cite the example of the second-order equation Uxx = 0 for the unknown 
function u(x, y). Integrating once reveals that ux(x, y) = C(y), while a second 
integration reveals that u(x, y) = xC(y) + D(y), where C and D are arbitrary 
functions. Clearly, there are infinitely many different choices for each of C and D, 
so that this solution cannot be specified in terms of a finite number of arbitrary 
constants. Stated otherwise, the space of solutions is infinite-dimensional. 

In order to work effectively with a linear PDE, we must develop rules for 
combining known solutions. The following principle is basic to all of our future 
work. 

PROPOSITION 0.1.1. (Superposition principle for homogeneous equa-
tions). [Jut, ... , UN are solutions of the same linear homogeneous PDE £'u = 0, 
and Cl, ... ,CN are constants (real or complex), then Cl Ul + ... + CNUN is also a 
solution of the PDE. 

Proof. The proof of this depends on the property of linearity. Indeed, we 
have C(uz) = 0 for i = 1, ... , n. Hence 

£'(CIUl + ... + CNUN) = Cl£'(Ul) + .•. + CN£'(UN) = 0 • 

For example, one may verify that for any constant k, the function u(x, y) = 
ekx cos ky is a solution of Laplace's equation Uxx + uyy = O. Therefore, by the su-
perposition principle, the function u(x, y) = e-X cos y+ 2e-3x cos 3y-5e-1rX cos 7ry 
is also a solution of Laplace's equation. 

The superposition principle does not apply to nonhomogeneous equations. For 
example, if Ut and U2 are solutions of the Poisson equation Uxx + uyy = 1, then 
the function Ul + U2 is the solution of a different equation, namely, Uxx + uyy = 2. 
Nevertheless, we have the following important general principle that allows one 
to relate nonhomogeneous equations to homogeneous equations. 

PROPOSITION 0.1.2. (Subtraction principle for nonhomogeneous equa-
tions). If Ul and U2 are solutions of the same linear nonhomogeneous equation 
£'u = g, then the Junction Ul - U2 is a solution of the associated homogeneous 
equation £'u = O. 
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Proof. We have 
.c(Ul - U2) = .cUI - .cU2 = 0 • 

For example, if Ul and U2 are both solutions of the Poisson equation uxx+uyy = 
1, then Ul - U2 is a solution of Laplace's equation Uxx + u yy = O. 

The subtraction principle allows us to find the general solution of a nonhomo-
geneous equation .cu = 9 once we know a particular solution of the equation and 
the general solution of the related homogeneous equation Cu = O. The result is 
expressed as follows. 

Corollary. The general solution of the linear partial differential equation 
.cu = 9 can be written in the form 

u=U+v 

where U is a particular solution of the equation £,U = 9 and v is the general 
solution of the related homogeneous equation .cv = O. 

We illustrate with an example. 

EXAMPLE 0.1.1. Find the general solution u(x, y) of the equation Uxx = 2. 

Solution. It is immediately verified that the function u = x2 is a solution 
of the given equation. The general solution of the associated homogeneous equa-
tion Uxx = 0 is u(x, y) = xg(y) + h(y). Therefore the general solution of the 
nonhomogeneous equation is u(x, y) = x2 + xg(y) + h(y) .• 

EXERCISES 0.1.2 
1. Show that for any constant k, the function u(x, y) = ekx cos ky is a solution 

of Laplace's equation Uxx + Uyy = O. 
2. Show that for any constant k, the function u(x, y) = ekxek2y is a solution 

of the heat equation Uxx - u y = O. 
3. Show that for any constant k, the function u(x, y) = ekxe-ky is a solution 

of the wave equation Uxx - u yy = O. 
4. Show that for any constant k, the function u(x, y) = (k/2)x2 + (1- k)y2/2 

is a solution of Poisson's equation Uxx + u yy = 1. 

0.1.3. Sources of PDEs in classical physics. Many laws of physics are 
expressed mathematically as differential equations. The student of elementary 
mechanics is familiar with Newton's second law of motion, which expresses the 
acceleration of a system in terms of the forces on the system. In the case of 
one or more point particles, this translates into a system of ordinary differential 
equations when the force law is known. 

For example, a single spring with Hooke's law of elastic restoration and no 
frictional forces gives rise to the linear equation of the harmonic oscillator, which 
is well studied in elementary courses. A system of particles that interact through 
several springs gives rise to a second-order system of differential equations, which 
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may be resolved into its normal modes- each of which undergoes simple har-
monic motion. Newton's law of gravitational attraction gives rise to a more com-
plicated system of nonlinear ordinary differential equations. Generally speaking, 
whenever we have a finite number of point particles, the mathematical model is a 
system of ordinary differential equations, where time Viays the role of independent 
variable and the positions/velocities of the particles are the dependent variables. 
In Chapter 2, we will give the complete derivation of the wave equation, which 
governs the motion of a tightly streched vibrating string. 

For time-dependent systems in one spatial dimension, we will use the notation 
u(x; t) to denote the unknown function that is a solution of the PDE. In the case 
of two or three spatial dimensions we will use the repective notations u(x, Yi t) 
and u(x, y, z; t) to denote the solution of the PDE. 

In the following subsection we will give a simplified derivation of the one-
dimensional heat equation. The complete derivation of the heat equation as it 
applies to three-dimensional systems is found in Chapter 2. 

0.1.4. The one-dimensional heat equation. Consider a one-dimensional 
rod that is capable of conducting heat, and for which we can measure the temper-
ature u(x; t) at the position x at time instant t. We assume that this function has 
continuous partial derivatives of orders 1 and 2. In order to motivate the discus-
sion, we first consider a finite system of equally spaced points Xl < X2 < ... < XN. 

We expect that the temperature will remain constant as a function of time if there 
is a local equilibrium, meaning that the temperature u(x,; t) is equal to the average 
of its neighbors; in symbols, 

au 
at (x,; t) = 0 if 

For example, if the point Xl is at 50 degrees and the neighbor to the left is at 
40 degrees while the neighbor to the right is at 60 degrees, then we expect no 
change in temperature. 

On the other hand, if this condition of local equilibrium is not satisfied, then 
we may expect that the temperature will change, in relation to the amount of 
disequilibrium. Certainly one expects the temperature to increase if both neigh-
bors are warmer, but also if the average is warmer; for example, if the point x, 
is at 50 degrees while the left neighbor is at 45 degrees and the right neighbor is 
at 65 degrees, then the average is 55 degrees-5 degrees warmer than the home 
temperature. 

In order to quantify this, we postulate the following dynamical law. 

The time rate of change of temperature at the point Xi is proportional to the 
difference between the temperature at X, and the average of the temperatures at 
the two neighboring points Xt-l, XHI 
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FIGURE 0.1.1 Three different configurations of heat flow dynamics 

To translate this into a mathematical statement, we must introduce a constant 
of proportionality k, which will depend on the properties of the medium. If 
we have a "good conductor," then k will be large, whereas if we have a "bad 
conductor," then k will be small. The desired mathematical statement then 
reads 

(0.1.2) 

'::: (Xi; t) = k Glu(Xi+1 ; t) + U(X,_l; t)]- U(X,; t)) , i = 2, ... ,N-1 

Figure 0.1.1 presents three different configurations of heat flow dynamics, 
corresponding to local equilibrium (also called steady state), temperature increase, 
and temperature decrease. 

The above mathematical model of heat flow can be expected to be rigorously 
valid for a finite system of equally spaced points Xl < X2 < ... < X N. Equa-
tion (0.1.2) is a system of ordinary differential equations that can be solved by 
algebraic methods, if necessary. If we now consider these points as an approxi-
mation to a continuum of points, then we can expect this model to be valid as a 
first approximation when the spacing tends to zero. In order to obtain a partial 
differential equation we apply Taylor's theorem with remainder: 

1 
U(X,+I; t) - u{x,; t) = (X,+l - Xi)Ux{X,; t) + 2"(XHl - x,)2 t) 

1 U{X,-l; t) - u(xs; t) = (X,-l - xs)ux{x,; t) + 2"(XS-l - x,)2 t) 

where the points satisfy X,-l :5 x, :5 XHI. Recalling that 
the points are equally spaced, let L).x = X,+l - Xs be the common spacing, and 
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substitute into (0.1.2) to obtain 

(0.1.3) (x,; t) = (uxx(x:; t) + uxx(X:/; t)) 

The final simplification is to assert that, if the spacing is very small, then the 
values of the second partial derivative will vary very little from the nearby points 
Xl) , and thus we can replace the two values of the second partial derivatives 
by the value at the point x,. Defining K = /2, we obtain the heat equation 

(0.1.4) I = Ku" I 
The constant K is called the diffusivity. 

With no further information, the heat equation (0.1.4) will have infinitely 
many solutions. In order to specify a solution of the heat equation, we consider 
various boundary conditions and initial conditions. Assuming that the rod occu-
pies the interval 0 < x < L of the x-axis, we consider three types of boundary 
conditions at the endpoint x = 0: 

I u(O;t) = To 
II : U x (0; t) = 0 

III : -ux(O; t) = h(Te - u(O; t)) whereh> 0 
Boundary condition I signifies that the temperature at the end x = 0 is held 
constant. In practice this could occur as the result of heating the end by means 
of some device. Boundary condition II signifies that there is no heat flow at the 
end x = O. In practice this could occur by means of insulation, which prohibits 
the flow of heat at this end. Boundary condition III is sometimes called Newton's 
law of cooling: the negative of the partial derivative is interpreted as the heat flux, 
i.e., the rate of heat flow out of the end x = 0, and is required to be proportional to 
the difference between the outside temperature Te and the endpoint temperature 
u(O; t). If this difference is large, then we may expect heat to flow out of the rod 
at a rapid rate. If Te is less than the endpoint temperature, then u(O; t) > Te and 
the rate will be negative, so that we may expect heat to flow into the rod from 
the exterior. The concept of flux will be discussed in more detail in Chapter 2, 
when we derive the three-dimensional heat equation. 

Similarly, we can have each of the three boundary conditions present at the 
end x = L; in detail, 

I : u(L;t) = 70 
II : U x (L; t) = 0 

III : ux(L; t) = h(Te - u(Lj t» whereh > 0 
The constants To, h, and Te may be the same as for the endpoint x = 0 or may 
have different values. The interpretations are exactly the same as for the endpoint 
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x = 0, with one small exception: in the third boundary condition (III), the heat 
flux at the end x = L is written without the minus sign, since this measures the 
rate of heat flow out of the end x = L. As before, we expect that if the external 
temperature Te is much greater than the endpoint temperature u(Lj t), then the 
rate of heat flow out of the end will be large, whereas if the external temperature 
is less than the endpoint temperature, then the heat flow out will be negative. 

A typical boundary-value problem for the heat equation will have one bound-
ary condition for each end x = 0 and x = L. Considering all possible cases, we 
have nine different combinations, of which we list the first three below: 

u(O; t) = To, 
u(O; t) = To, 
u(O; t) = To, 

u(L;t) = TL 
ux(L; t) = 0 
ux(L; t) = h(Te - u(L; t)) 

The final piece of information used to specify the solution is the inital data. 
This is simply written 

u(x; 0) = f(x), O<x<L 
This signifies that the temperature is known at time t = 0 and is given by the 
function f(x),O < x < L. Note that we do not insist that this agree with the 
values of the solution at the endpoints x = 0, x = L. Specification of boundary 
conditions and initial conditions is known as the initial-boundary-value problem. 
In Chapter 2 we will make a detailed study of this for the one-dimensional heat 
equation. 

In the remainder of this subsection we will determine the steady-state solutions 
of the heat equation corresponding to the various boundary conditions. u is said 
to be a steady-state solution if au/at = O. Referring to the heat equation (0.1.4), 
this is equivalent to the statement that Uxx = O. 

EXAMPLE 0.1.2. Find the steady-state solution of the heat equation with the 
boundary conditions u(Oj t) = Ttl u(L; t) = T2. 

Solution. Since the solution is independent of time, we can write u = U(x), 
with U"(x) = O. The general solution of this is a linear function: U(x) = Ax+ B. 
The boundary condition at x = 0 gives B = Tt , whereas the boundary condition 
at x = L gives AL + B = T2, A = (T2 - Td/ L. The steady-state solution is 

U (x) = Tl + T2 Tl X = T2 I + Tl (1 - I) . 
EXAMPLE 0.1.3. Find the steady-state solution of the heat equation with the 

boundary conditions u(Oj t) = TIl ux(L; t) = h(Te - u(Lj t). 

Solution. Since the solution is independent of time, we can write u = U(x), 
with U"(x) = O. The general solution of this is a linear function: U(x) = Ax+ B. 
The boundary condition at x = 0 gives B = T1 , whereas the boundary condition 
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at x = L gives A = h(Te-AL-B), A = -h(T1-Te)/(1+hL) and the steady-state 
solution 

hx hx 1 + h(L - x) 
U(x) = Tl - 1 + hL (Tl - Te) = Te 1 + hL + Tl 1 + hL • 

EXERCISES 0.1.4 
1. Find the steady-state solution of the heat equation with the boundary 

conditions u(O; t) = T1, u:r;(L; t) = O. 
2. Find the steady-state solution of the heat equation with the boundary 

conditions u:r;(O; t) = h(To - u(O; t», u:r;(L; t) = <I>, where h, To, <I> are 
positive constants. 

3. Find the steady-state solution of the heat equation with the boundary 
conditions -u:r;(O; t) = h(To - u(O; t», u:r;(L; t) = h(TI - u(L; t» where 
To, TI , h are constants with h > O. 

0.1.5. Classification of second-order PDEs. It is impossible to formu-
late a general existence theorem that applies to all linear partial differential equa-
tions, even if we restrict attention to the important case of second-order equations. 
Instead, it is more natural to specify a solution through a set of boundary con-
ditions or initial conditions related to the equation. For example, the solution 
of the heat equation Ut = K U:r;:r; in the region 0 < x < L, 0 < t < 00 may be 
specified uniquely in terms of the initial conditions at t = 0 and the boundary 
conditions at x = 0 and x = L. On the other hand, the solution of the wave 
equation Utt - t?u:r;:r; = 0 in the region 0 < x < L, 0 < t < 00 is uniquely obtained 
in terms of the boundary conditions at x = 0, x = L and two initial conditions, 
pertaining to the solution u(x; 0) and its time derivative fJujfJt(x; 0). In order 
to put this in a more general context, one may classify the second-order linear 
partial differential equation as follows: 
(0.1.5) 
a(x, y)uxx + b(x, y)u:r;y + c(x, y)uyy + d(x, y)ux + e(x, y)uy + I(x, y)u = g(x, y) 

If 4ac - 1Jl > 0, the PDE (0.1.5) is called elliptic. 
If 4ac - b2 = 0, the PDE (0.1.5) is called parabolic. 
If 4ac - b2 < 0, the PDE (0.1.5) is called hyperbolic. 

For example, Laplace's equation and Poisson's equation are both elliptic, while 
the wave equation is hyperbolic. The heat equation is parabolic. General the-
orems about these classes of equations are stated and proved in more advanced 
texts and reference books. Here we indicate the types of boundary conditions 
that are natural for each of the three types of equations. 

If the equation is elliptic, we may solve the Dirichlet problem, namely, in 
a region D to find a solution of Cu = 9 that further satisfies the boundary 
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condition that U = l/>(x, y) on the boundary of D. For example, the physical 
problem of determining the electrostatic potential function u(x, y) in the interior 
of the cylindrical region x2 + y2 < R2 when the charge density p(x, y) is specified 
and the boundary is required to be an equipotential surface leads to the elliptic 
boundary-value problem 

U xx + U yy = -p(x, y) 
u(x,y) = C 

x2 + y2 < R2 
x2 + y2 = R2 

If the equation is parabolic or hyperbolic, it is natural to solve the Cauchy 
problem, which amounts to specifying the solution and its time derivative on 
the line t = 0 as well as specifying the relevant boundary conditions. Here we 
indicate the Cauchy problem for the equation of the vibrating string, which will 
be derived in complete detail in Chapter 2: 

Utt - c2uxx = 0 
u(x; 0) = Il(X) 

Ut(x; 0) = h(x) 
u(O; t) = 0, u(L; t) = 0 

t > 0, 0 < x < L 
O<x<L 

O<x<L 
t>O 

The initial conditions Ib h represent the initial position and velocity of the 
vibrating string. The boundary conditions at x = 0 and x = L signify that ends 
of the string are fixed for all time at the position u = O. 

EXERCISES 0.1.5 

Classify each of the following second-order equations as elliptic, parabolic, or 
hyperbolic. 

1. Uxx + 3uxy + Uyy + 2ux - uy = 0 
2. U xx + 3uxy + Buyy + 2ux - uy = 0 
3. U xx - 2uxy + U yy + 2ux - uy = 0 
4. U xx +xuyy = 0 

0.2. Separation of Variables 
0.2.1. What is a separated solution? A fundamental technique for ob-

taining solutions of linear partial differential equations is the method of separa-
tion of variables. This means that we look for particular solutions in the form 
u{x, y) = X{x)Y(y) and try to obtain ordinary differential equations for X{x) 
and Y (y). These equations will contain a parameter called the separation con-
stant. The function u(x, y) is called a separated solution. Then we can use the 
superposition principle to obtain more general solutions of a linear homogeneous 
PDE as sums of separated solutions. 
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0.2.2. ·Separated solutions of Laplace's equation. It is especially simple 
to obtain separated solu tions for Laplace's equation, U:c:c + u yy = o. 

If we let u(x, y) = X(x)Y(y) and substitute in Laplace's equation, we obtain 

X"(x)Y(y) + X(x)Y"(y) = 0 
Dividing by X(x)Y(y) (assumed to be nonzero), we obtain 

X" (x) yll(y) 
X(x) + Y(y) = 0 

The first term depends only on x, while the second term depends only on y. The 
sum can equal zero only if both terms are constants that sum to zero. In order 
to express this in terms of a single parameter, we introduce the constant ,,\ and 
obtain the system of two ordinary differential equations 

XI/(x) Y"(y) 
X(x) =,,\, Y(y) =-,,\ 

,,\ is the separation constant. These equations may be written in the more standard 
form 

(0.2.1) 
(0.2.2) 

XI/(x) - "\X(x) = 0 
yl/(y) + "\Y(y) = 0 

Both of these are second-order homogeneous linear ordinary differential equations, 
which may be solved in terms of exponential functions, trigonometric functions, 
or linear functions, depending on the sign of ,,\.1 To proceed further, we consider 
separately the three cases ,,\ > 0, ,,\ = 0, and ,,\ < 0. 

Case 1. If,,\ > 0, we write ,,\ = k2, where k > 0. The general solutions to 
(0.2.1) and (0.2.2) are 

X(x) = A1ek:c + A2e-k:c 
Y(y) = A3 cos ky + A4 sin ky 

where AI, A2, A3 , A4 are arbitrary constants. These cannot be determined until 
we have imposed further conditions, which will be done later. 

Case 2. If,,\ = 0, we have the equations X" = 0, Y" = 0, for which the 
general solutions to (0.2.1) and (0.2.2) are linear functions: 

X(x) = A1x + A2 
Y(y) = A3y + A4 

where AI, A2 , A31 A4 are arbitrary constants. 

1 For a review of ordinary differential equations, consult Appendix A.I. 
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Case 3. If A < 0, we write A = _12, where I > 0; the general solutions of 
(0.2.1) and (0.2.2) are 

X(x) = Al cos Ix + A2 sin lx 
Y(y) = A3ely + A4e-ly 

To summarize, we have found the following separated solutions of Laplace's 
equation: 

{ 

(Alekx + A2e-kx )(A3 cos ky + A4 sin ky) k > 0 
u(x, y) = (AIX + A2)(A3y + A4) 

(AI cos Ix + A2 sin Ix)(Aaely + A4e-ly ) I > 0 
We can also write the separated solutions of Laplace's equation in terms of 

hyperbolic functions. These are defined by the formulas 
1 cosh a = _(ell + e-Il) 
2 

From this it follows immediately that 
ell = cosh a + sinh a, e-a = cosh a - sinh a 

Using this notation, we can write the separated solutions of Laplace's equation 
in the equivalent form 

{

(AI sinh kx + A2 cosh kX)(Aa cos ky + A4 sin ky) k > 0 
u(x, y) = (AIX + A2 )(A3y + A4) 

(At cos Ix + A2 sin lx)(Aa sinh ly + A4 cosh Iy) l > 0 

We emphasize that the constants At, A2, A3, A4 will change when we make this 
change of notation. But the form of the solution remains unchanged; put other-
wise, the classes of separated solutions defined by the two sets of notations are 
identical. 

To derive these, we assumed that u(x, y) =p O. Having now obtained the 
explicit forms, we can verify independently that in each case u(x, y) satisfies 
Laplace's equation. 

EXAMPLE 0.2.1. Verify that the preceding separated solutions satisfy Laplace's 
equation. 

Solution. In case A > 0, we have 

so that 
u(x, y) = (Alekx + A2e-kx )(Aa cos ky + A4 sin ky) 

ux = (kAlekx - kA2e-kx )(A3 cos ky + A4 sin ky) 
uxx = (k2 A1ekx + k2 A2e-kx )(A3 cos ky + A4 sin ky) 
uy = (AlekX + A2e-kx )( -kA3 sin ky + kA4 cos ky) 

Uyy = (Atekx + A2e-kx )( _k2 A3 cos ky - k2 A4 sin ky) 
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The second and fourth terms are negatives of one another. Therefore U xx + U yy = 
0, and we have verified Laplace's equation in case A > O. 

In case A = 0 we have 
U x = Al(Aay + A4), 
u y = (AlX + A2)Aa , 

U xx = 0 
uyy = 0 

so that both of the partial derivatives Uxx and U yy are zero and Laplace's equation 
is immediate in this case. The verification for A < 0 is left to the exercises. • 

EXERCISES 0.2.2 
1. Verify that u(x, y) = (AI cos Lx +A2 sin lx)(Aae'Y+A4e-ly) satisfies Laplace's 

equation, for any 1 > O. 
2. Suppose that u(x, y) is a solution of Laplace's equation. If 0 is a fixed real 

number, define the function v(x,y) = u(xcosO - ysinO,xsin9 + ycos9). 
Show that vex, y) is a solution of Laplace's equation. 

3. Apply the result of the previous exercise to the separated solutions of 
Laplace's equation of the form u(x, y) = (Aleb + A2e-b )(Aa cos ky + 
A4 sin ky), to obtain additional solutions of Laplace's equation. Are these 
new solutions separated? 

4. From the definitions of the hyperbolic functions, prove the following prop-
erties: 

(a) sinh 0 = 0, cosh 0 = 1 
(b) (djdx)(sinhx) = cosh x, (d/dx)(coshx) = sinh x 
( c) cosh x 2: 1 for all x 
(d) cosh x 2: sinh x for allx 
(e) sinh(x + y) = sinh x cosh y + cosh x sinh y 
(f) cosh(x + y) = cosh x cosh y + sinh x sinh y 

0.2.3. Real and complex separated solutions. In the previous subsec-
tion we found all of the separated solutions of Laplace's equation, in terms of 
trigonometric functions, exponential functions, and linear functions using a real 
separation constant. 

In looking for separated solutions of a PDE, it is often convenient to allow 
the functions X(x) and Y(y) to be complex-valued, corresponding to a complex 
separation constant. The following proposition shows that the real and imaginary 
parts of any complex-valued solution will again satisfy the PDE. 

PROPOSITION 0.2.1. Let u(x, y) = VI (x, y) + iV2(X, y) be a complex-valued 
solution of the linear PDE 

£u = auxx + buxy + CUyy + dux + euy + fu = 9 
where a, b, c, d, e, f, 9 are real-valued functions of (x,y). Then Vt(x,y) = 
Reu(x,y) satisfies the PDE £u = g, and V2(X,y) = Imu(x,y) satisfies the asso-
ciated homogeneous PDE £u = O. 
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Proof. The operation of partial differentiation is linear; thus 
u x = (vt}x + i(V2)x 

uxx = (vdxx + i( V2)xx 

with similar expressions for uy, U yy , and uxy ' Substituting these into the par-
tial differentia,l equation and separating the real and imaginary parts yields the 
result .• 

We illustrate this technique with the example of Laplace's equation. Letting 
u(x, y) = X(x)Y(y), consider a purely imaginary separation constant in the form 
A = 2ik2, where k > O. This leads to the two ordinary differential equations 
(0.2.3) X"(x) - 2ik2 X(x) = 0 
(0.2.4) yll(y) + 2ik2y(y) = 0 

These can be solved in terms of the complex exponential function, using the 
observation that [k(l + i)]2 = 2ik2, [k(l - i)]2 = -2ik2. Thus 

Multiplying these, we obtain the complex separated solutions 

{ 

ek(x+Y)e,k(x-y) 
ek(x-y)e,k(x+y) 

u(x, y) = ek(y-x)e-ik(x+y) 

e-k(x+y) eik(y-x) 

When we take the real and imaginary parts, we obtain the following real-valued 
solutions of Laplace's equation: 

{ 

ek(x+y) cos k(x - y), 
ek(x-y) cos k(x + y) 

u x = ' ( ,y) ek(y-x) cos k(x + y), 
e-k (X+lI) cos k(y - x), 

ek(x+y) sin k(x - y) 
ek (X-lI) sin k(x + y) 
ek(y-x) sin k(x + y) 
e-k(x+y) sin k(y - x) 

When we consider more general linear PDEs, complex-valued separated so-
lutions may always be found if the functions a, b, c, d, e, f that occur in the 
equation are independent of (x, y); in this case we speak of a PDE with constant 
coefficients, whose solutions may be written as exponential functions. 

PROPOSITION 0.2.2. Consider the linear homogeneous PDE 
auxx + buxy + cuyy + dux + euy + fu = 0 

Suppose that a, b, c, d, e, f are real constants. Then there exist complex separated 
solutions of the form 

u(x, y) = eQxe!y 

for appropriate choices of the complex numbers Q, {l. 
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Proof. We first note that the ordinary rules for differentiating eOx are valid 
for complex-valued functions. For example, if a = a + ib, 

! (eOX ) = [ellX ( cos bx + i sin bx)] 
= aeax cos bx - beax sin bx 

+ i (aeax sin bx + beax cos bx) 
= ellX(a + ib)(cosbx + isinbx) 
= (a + ib)e(a+ib)x 
= aeox 

Similarly, (cP /dx2)(eOx ) = a2eox , with similar expressions for (d/dy) and (d2/dy2). 
Applying this to u(x, y) = eoxefJy , we have Ux = au, Uxx = a 2u, uy = {ju, 
Uyy = {j2U, uxy = a/3u. Substituting these into the PDE, we must have 

(aa2 + ba/3 + c(32 + do + e(3 + J)eOxefJY = 0 
But eoxefJy =fi 0; therefore we obtain a solution if and only if a, (3 satisfy the 
quadratic equation 

(0.2.5) I aa2 + ba(3 + c(32 +·da + e/3 + J = 0 I 
For a given value of (3, we may solve this equation for a to obtain in general two 
roots aI, a2. Alternatively, we may fix a and solve for /3 to obtain in general two 
roots (31, (32' This proves the proposition .• 

In the case of Laplace's equation, the quadratic equation (0.2.5) is 0 2+(32 = O. 
If a is real, then (3 must be purely imaginary; conversely if f3 is real, then a is 
purely imaginary. These two cases correspond to the separated solutions found in 
the previous subsection by solving (0.2.1) and (0.2.2). The solutions originating 
from (0.2.3) correspond to values of a for which 0 2 is purely imaginary. 

We now turn to some examples involving the heat equation, where complex 
separated solutions are useful. 

EXAMPLE 0.2.2. Find separated solutions oj the PDE U XX - Ut = 0 in the 
form u(x, t) = e'l'Xe{Jt, with p, real. 

Solution. Substituting u(x, t) = ell'XefJt in the PDE yields the quadratic 
equation _p,2 - f3 = O. Thus (j = _p,2, and we have the separated solutions 

u(x, t) = e'jJXe-JJ2t 

= cos J1.x e-JJ2t + i(sin J1.X e-JJ2t ) 

Taking the real and imaginary parts, we obtain the real-valued separated solutions 
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By taking linear combinations, we may write the general real-valued separated 
solution as 

U{x; t) = (Ai sin /-LX + A2 cos Jlx)e- lI.2t 

where A., A2 are arbitrary constants .• 
In the above example the solutions tend to zero when the time t tends to 

infinity. In some problems we may wish to obtain a solution that oscillates in 
time, to represent a periodic disturbance. 

EXAMPLE 0.2.3. Find separated solutions of the PDE U XX - Ut = 0 in the 
form u{x, t) = eQXeIWt , where w is real and positive. 

Solution. Substituting u(x, t) = eQXeIWt in the PDE Ut - UXX = 0 yields the 
quadratic equation 0.2 - iw = O. This equation has two solutions, which may be 
obtained as follows. Writing the complex number i in the polar form i = ei7r/ 2 , we 
have the two square roots il/2 = ±eitr/ 4 = ±(l + i)/V2. Therefore the solutions 
of the quadratic equation are a. = ±{l + i) JW/2. The separated solutions are 

{ 

exp[x(l + i)v'w/2] exp(iwt) 
( t) = = exp(xv'w/2} exp[i(wt + xv'w/2)] 

U x, exp[-x(l + i)y'w/2] exp(iwt) 
= exp[-xv'w/2) exp[i(wt - xy'w/2)] 

Taking the real and imaginary parts, we have the real-valued solutions 

eXVwii cos(wt + xv'w/2} 
eXVwii sin(wt + x Jw/2} 

u(x, t) = . CM 
e-x yw/2 cos(wt - xJw/2) 
e-x.;;;i2 sin(wt - xv'w/2} 

These real-valued solutions are no longer in the separated form X(x)T(t). But 
because they arise as the real and imaginary parts of complex separated solutions, 
we refer to them as quasi-separated solutions .• 

If some of the coefficients a, b, c, d, e, f are not constant, we will no longer have 
separated solutions in the form of exponential functions. Even worse, the equation 
may not admit any nonconstant separated solutions, for example, ux +(x+y)ull = 
o (see the exercises). Nevertheless, various classes of equations can still be solved 
by the separation of variables. For example, for any equation of the form 

a(x)uxx + c(Y)Uyy + d(x)ux + e(y)ulI = 0 
if we divide by X(x)Y{y), we have 

[ 
X" (x) X1(x)] [y,,(y) YI(y)] 

a(x) X(x) + d(x) X(x) + c(y) Y(y) + e(y) Y(y) = 0 
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The term in the first set of brackets depends only on x, while the term in the 
second set depends only on y; therefore both are constant and we have reduced the 
problem to ordinary differential equations. Introducing the separation constant 
A, we have in detail 

a(x)X" (x) + d(x)X'(x) + A X(x) = 0 
C(y)yll(y) + e(y)yl(y) - A Y(y) = 0 

The following example gives a concrete illustration. 

EXAMPLE 0.2.4. Find all of the real-valued separated solu.tions of the PDE 
Uxx + y2uyy + yUy = 0 valid for y > o. 

Solution. We let u(x, y) = X(x)Y(y) and obtain the separated equations 
(0.2.6) X"(x) + AX(X) = 0 
(0.2.7) y2 ylI(y) + y Y'(y) - AY(Y) = 0 
Equation (0.2.6) has constant coefficients and was solved previously; equation 
(0.2.7) is a form of Euler's equidimensional equation, which can also be solved 
explicitly. We consider separately the cases A > 0, A = 0, and A < O. 

If A = k2 > 0, then the general solution of (0.2.6) is X(x) = Al cos kx + 
A2 sin kx. Meanwhile (0.2.7) can be solved by a power Y(y) = yr, where r(r -
1) + r - k2 = 0; thus r = ± k and the general solution Y (y) = A3yk + A4y-k. 

If A = 0, then the general solution of (0.2.6) is X(x) = AJ +A2X, while (0.2.7) 
becomes y2 Y" + Y y' = 0, which has the general solution Y(y) = A3 + A4logy 
valid for y > O. 

If A = -l2 < 0, then the general solution of (0.2.6) is X(x) = AIe'x + A2e-lx , 
while (0.2.7) becomes y2 y" + Y yl + l2y = 0, which has the general solution 
Y(y) = A3 cos(llogy) + A4 sin(llogy). 

Putting these together, we have the most general real-valued separated solu-
tion: 

{

(AI cos kx + A2 sin 'kx) (A3yk + A4 y-k) k > 0 
u(x,y)= (AI +A2X)(A3 + A410gy) • 

(Ale1x + A2e-IX )(Aa cos(llogy) + A4 sin(llogy» 1 > 0 

EXERCISES 0.2.3 
1. Find the separated equations satisfied by X(x), Y(y) for the following 

partial differential equations: 
(a) U xx - 2uyy = 0 (b) Uxx + U yy + 2ux = 0 
(c) x2uxx - 2yuy = 0 (d) Uxx + Ux + u y - u = 0 

2. Which of the following are solutions of Laplace's equation? 
(a) u{x,y) = eXcos2y (b) u(x,y) = eXcosy+eYcosx 
(c) u(x, y) = eXeY (d) u(x, y) = (3x + 2)eY 
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In Exercises 3-7, find the separated solutions of the indicated equations. 
3. uxx + 2ux + ullll = 0 
4. Uxx + u llll + 3u = 0 
5. x 2u xx + xUx + U yy = 0 
6. U xx - uyy + u = 0 
7. Uxx + yUy + u = 0 
8. This exercise provides an example of a homogeneous linear partial differ-

ential equation with no separated solutions other than u(x, y) = constant. 
Suppose that u(x, y) = X(x)Y(y) is a solution of the equation Ux + 
(x + y)uy = O. Show that X(x) and Y(y) are both constant. [Hint: 
Show first that X'(x)/X(x) + (x + y)(Y'(y)/Y(y)) = 0 and deduce that 
X'(x)/ X (x) = cx+d, Y'(y)/Y(y) = -c for suitable constants c, d. By solv-
ing these ordinary differential equations, show that the PDE is satisfied if 
and only if c = 0, d = 0.] 

0.2.4. Separated solutions with boundary conditions. In many prob-
lems we need separated solutions that satisfy certain additional conditions, which 
are suggested by the physics of the problem. They may be in the form of bound-
ary conditions or conditions of boundedness. We shall now illustrate these by 
means of examples. 

EXAMPLE 0.2.5. Find the separated solutions of Laplace's equation U xx + 
uyy = 0 in the region 0 < x < L, y > 0 that satisfy the boundary conditions 
u(O, y) = 0, u(L, y) = 0, u(x, 0) = o. 

Solution. From the discussion in subsection 0.2.2 we have the separated 
solutions of three types, depending on the separation constant. 

{

(At sinh kx + A2 cosh kx)(A3 cos ky + A4 sin ky) k > 0 
u(x, y) = (AIX + A2)(AaY + A4) 

(Al coslx + A2sinlx)(A3sinhly + A4 cosh1y) I> 0 

In the first case, we must have 0 = u(O, y) = A2(A3 cos ky + A4 sin ky), so 
A2 = 0, while 0 = u(L, y) = Al sinh kL(A3 cos ky+A4 sin ky) implies that Al = 0, 
so this case does not produce any separated solutions that satisfy the boundary 
conditions. 

In the second case, we must have 0 = u(O, y) = A2(A3y + A4), so A2 = 0, and 
o = u(L, y) = AIL(AaY + A4), so Al = O. Therefore this case does not produce 
any separated solutions that satisfy the boundary conditions. 

In the third case, we must have 0 = u(O,y) = A1(A3sinhly + A4 coshly), so 
that Al = 0; and 0 = u( L, y) = A2 sin L1 (A3 sinh ly + A4 cosh 1y) has a nonzero 
solution if and only if sin Ll = 0, which is satisfied if and only if Ll = nll' for some 
n = 1,2,3, .... To satisfy the boundary condition u(x,O) = 0, we must have 
A4 = O. Writing A = A2A3 , we have obtained the following separated solutions 
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of Laplace's equation satisfying the boundary conditions: 

( ) A · n1f'X . h n1f'Y 2 uX,Y = smLsm L' n=l, , ... • 

The following example occurs repeatedly in the solution of the heat equation 
in Chapter 2. 

EXAMPLE 0.2.6. Find the separated solutions u(x; t) of the heat equation Uxx -
Ut = 0 in the region 0 < x < L, t > 0 that satisfy the boundary conditions 
u(O; t) = 0, u(L; t) = O. 

Solution. In Example 0.2.2 we found the real-valued separated solutions 

u(x; t) = (AI sin /Lx + A2 cos j.lx)e-1'2 t 

In order to satisfy the boundary condition at x = 0 we must have 0 = u(O; t) = 
A2e-1'2 t , which is satisfied if and only if A2 = O. In order to satisfy the boundary 
condition at x = L, we must have 0 = u(L; t) = Al (sin j.lL) e-1'2t. This is satisfied 
if and only if JLL = n1f' for some n = 1,2, .... Therefore the separated solutions 
satisfying the boundary conditions are of the form 

u(x; t) = Al sin e-(mrI L)2 t , n = 1,2,... • 

The next example occurs repeatedly in the discussion of the vibrating string 
in Chapter 2, Sec. 2.4. 

EXAMPLE 0.2.7. Find the separated solutions of the wave equation Utt -c2uxx = 
o that satisfy the boundary conditions u(O; t) = 0, u(L; t) = O. 

Solution. Assuming the separated form u(x; t) = X(x)T(t), it follows that 
X(x)T"(t)-c2 X" (x)T(t) = O. Thus X"(X)+AX(X) = 0, T"(t)+Ac2T(t) = O. The 
boundary conditions require X(O) = 0, X(L) = 0; thus X(x) = A3 sin(n1f'x/L), 
T(t) = Al cos (n1f'ct/ L) + A2 sin (n1f'ct/ L) for constants At, A2, A3 . The required 
separated solutions are 

u(x; t) = (AI cos (n1f'ct/ L) + A2 sin(n1f'ct/ L» sin (n1f'x/ L) n = 1,2,... • 
In all of the preceding examples we used one or more boundary conditions 

to pick out certain values of the separation constant that satisfy the boundary 
conditions. This can also be carried out through conditions of boundedness as 
indicated in the following examples. Physically these represent a stationary solu-
tion, corresponding to a system that has been in existence over a very long period 
of time. 

EXAMPLE 0.2.8. Find the complex separated solutions u(x; t) of the wave 
equation Utt - c2uxx = 0, which are bounded in the form !u(x; t)! M for some 
constant M and all t, -00 < t < 00. 
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Solution. Taking u(x; t) = eax+bt and substituting in the wave equation, 
we have b2 - c'la2 = 0; thus b = ±ca. The separated solutions are of the form 
u(x; t) = e4Xecat , eaxe-cat• This solution is bounded for all t if and only if a is pure 
imaginary, a = ik for k real. Thus the solutions are u(x; t) = eik(x+ct), eik(x-ct). 
The real (quasi-separated) solutions are cos k(x + ct), cos k(x - ct), sin k(x + ct), 
sin k(x - ct) .• 

The final example, concerning stationary solutions of the heat equation, will 
be developed in more detail in Chapter 2, Sec. 2.1, in connection with heat flow 
in the earth. 

EXAMPLE 0.2.9. Find the complex separated solutions u(x; t) o/the heat equa-
tion Ut - U xx = 0, which are bounded in the form lu(x; t)1 M for some constant 
M and all t, -00 < t < 00. 

Solution. Taking u(x; t) = eax+bt and substituting in the heat equation, we 
have b - a2 = O. In order that this solution be bounded for all t, -00 < t < 00, 
it is necessary that the constant b be purely imaginary; otherwise the solution 
would tend to +00 for large It I if b had a nonzero real part. Hence we set b = iw, 
where w is real. Assuming w > 0, the equation a2 = iw has two solutions, 

a = Vi(1 + i), a = -Vi(1 +i) 

leading to the separated solution 

u(x; t) = eiwt (A l eVw/2(l+t}X + A2e-Vw/2{1+i}X) 

If w < 0, then the equation a2 = iw has two solutions, 

a = /¥(I- i), a = -/¥(I- i) 

leading to the separated solution 

u(x; t) = eiwt (A1ev'IWI/2(1-t)X + A2e-v'lwI/2(1-I)X) • 

The alert reader will note that these separated solutions are closely related 
to those found in Example 0.2.3, where we stipulated in advance that w be real 
and positive. Now we have shown that the reality of w can be deduced from the 
qualitative condition of boundedness of the solution for all time. 

EXERCISES 0.2.4 

1. Find the separated solutions u(x, y) of Laplace's equation Uxx + Uyy = 0 
in the region 0 < x < L, y > 0 that satisfy the boundary conditions 
ux(O, y) = 0, ux(L, y) = 0, u(x,O) = O. 
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2. Find the separated solutions u(x, y) of Laplace's equation U:z::z: + uyy = 0 
in the region 0 < x < L, y > 0, that satisfy the boundary conditions 
u(O, y) = 0, u(L, y) = 0 and the bounded ness condition lu(x, y)1 M for 
y > 0, where M is a constant independent of (x, y). 

3. Find the separated solutions u(x; t) of the heat equation Ut - U:z::z: = 0 in the 
region 0 < x < L, t > 0, that satisfy the boundary conditions u(O; t) = 0, 
u(L; t) = O. 

4. Find the separated solutions u(x; t) of the heat equation Ut -U:z::z: = 0 in the 
region 0 < x < L, t > 0, that satisfy the boundary conditions u:z:(O; t) = 0, 
u:z:(L; t) = O. 

5. Find the separated solutions u(x; t) of the heat equation Ut -U:z::z: = 0 in the 
region 0 < x < L, t > 0 that satisfy the boundary conditions u(O; t) = 0, 
u:z:(L;t) = O. 

0.3. Orthogonal Functions 

Separated solutions of linear partial differential equations with suitable bound-
ary conditions lead to systems of orthogonal junctions, which are introduced in 
this section. The most important system of orthogonal functions gives rise to 
the trigonometric Fourier series, which will be discussed in Chapter 1, including 
the more general Sturm-Liouville eigenvalue problem. In order to formulate the 
property of orthogonality, we first introduce the general notion of inner product. 

0.3.1. Inner product space of functions. The notions of dot product, 
distance, orthogonality, and projection, which are familiar for vectors in three 
dimensions, can also be formulated for real-valued functions on an interval a 
x b. The basic notion is the inner product of two functions cp(x), 7f;(x) on the 
interval a x b. This is defined by the integral 

(0.3.1) I (<p, 7f;) = f: cp(x)7f;(x) dx I 
For example, on the interval 0 x 1, we have (x,e:Z:') = fol xe:z:'dx = = 
0.86, to two decimal places. 

The inner product defined by (0.3.1) has many properties in common with 
the ordinary dot product of two vectors in three-dimensional space, defined by 
v . W = Vl Wl + V2W2 + V3W3. The analogy between the inner product and the 
three-dimensional dot product is intuitive if we think of the integral as a "con-
tinuous sum" of the pointwise products cp(x)7f;(x), a generalization of the three-
dimensional dot product formula. 
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The inner product is linear and homogeneous in both arguments. This means 
that, for any functions <PI, <P2, 'l/Jl, 'l/J2 and any real number a, 

(<pI, 'l/JI + 7fJ2) = (<pI, 'l/Jl) + (<PlJ'l/J2) 
(<PI + <P2, tPl) = (<pI, tPl) + (<P2, 'l/Jl) 

(a<Pl,'l/Jl) = a(<pt,'l/JI) 
(<pI, a'l/Jl) = a(<pI, tPl) 

The proofs of these properties are left as exercises. 

Definition Two functions <p, 'l/J are orthogonal on the interval a x b if and 
only if (<p, 'l/J) = o. 

This definition requires some comment. It is formulated as a generalization 
of the notion of perpendicularity for vectors in three-dimensional space, which 
is expressed as the equation v . w = O. In working with functions, it is difficult 
to visualize the notion of orthogonality, as we are accustomed to for vectors in 
two- and three-dimensional space. In particular, there is no suggestion that the 
graphs of the two orthogonal functions intersect at 90 degrees. 

A few examples may help to illustrate these concepts. 

EXAMPLE 0.3.1. Show that the functions c/>{x) = sinx, 'l/J{x) = cosx are 
orthogonal on the interval 0 x 'Tr but are not orthogonal on the interval 

Solution. The inner product on the interval 0 x 1r is computed as the 
integral 

/." sin x cosxdx = = 0 

If we do the same computation on the interval 0 x 1r /2, we obtain 

/.

71'/2 • 1. 71' /2 1 
o smx cosxdx = 2(smx)2Io = 2 

Therefore we have orthogonality in the first case but not in the second case .• 

For more than two functions, we say that (<PI,"" <P N) are orthogonal if 
(<PI' <PJ) = 0 for i "I j. This is illustrated by the next example. 

EXAMPLE 0.3.2. Show that the set of functions sin x, sin 2x, ... ,sin N x is or-
thogonal on the interval 0 x ::; 1r for any N 2. 
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Solution. The inner product on the interval 0 x 1f' is computed as the 
integral 

f." sin mx sin nx dx 

We use the trigonometric identity 

sin mxsin nx = - n)x - cos(m + n)xJ 

If m # n, the integral of each cosine function is a sine function, which vanishes 
at the endpoints x = 0, x = 1f'. Therefore each of the integrals is zero, and we 
have proved orthogonality .• 

The nonn of a function is the nonnegative number 1I<p1I that satisfies 

For example, on the interval 0 x 7r, 

1 1 II sin xW = 0 sin2 x dx = 0 2(1 - cos 2x)dx = 211" 

The distance between <P and 7/J is defined by d(<p,7/J) = 11<p - 7/J1!. For example, 
the distance between sin x and cos x on the interval 0 x 11" is obtained from 

[d(sin x, cos x)]' = [(Sin x - cosx)' dx = f." (sin' x + cos' x) dx = 1f 

so that the distance is given by d = Vi f'V 1.77 to two decimals. Since these 
two functions are orthogonal, one may think of a "right triangle" in the space of 
functions, for which we have computed the hypotenuse. 

In order to formulate the notion of angle for functions on an interval, we 
recall that for vectors in three-dimensional space we have the dot product formula 
v . w = IIvllllwll cosO, where 0 is the angle between the vectors v and w and 
llvll, IIwll are the lengths of the respective vectors. Hence the cosine of the angle 
between the two vectors may be computed as the ratio of the dot product to the 
product of the lengths. In order to extend this to functions on an interval, we 
need to know that the corresponding ratio is not greater than 1 in absolute value. 
This is known as the Schwarz inequality. 

PROPOSITION 0.3.1. Suppose that <p(x), 7/J(x) are nonzero functions defined 
on an interval a ::; x ::; b. Then 

(0.3.2) 
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Proof. By the linearity and homogeneity of the inner product, we have, for 
any real number t, 

D(t) := IIcp - t?jJW = IlcpW - 2t(cp,?jJ) + t211?jJ1I2 
= 1I?jJ1I2 (t2 _ 2t (cp, ?jJ) + (cp,1/J)2) 

1I?jJ112 111/J114 

(II 112 (cp,1/J)2) + cp -ww-
= 11"1'112 ( (cp,?jJ}) 2 (II 112 (cp,?jJ}2) 

Cj/ t - 11?jJ112 + cp --ww 
From these transformations we see that this quadratic function of t is nonnegative 
and has a global minimum at t = to, where to = (cp,?jJ) 111?jJ1I2; at this point the 
value of the function is nonnegative and given explicitly by 

D(to) = (11'1'112 _ 0 
which completes the proof of the Schwarz inequality .• 

In case the equality sign holds in equation (0.3.2), we expect that the func-
tions cp(x), ?jJ(x) will be proportional to one another, analogous to the case of 
three-dimensional vectors that are colinear. This is rigorously true if both func-
tions cp(x), ?jJ(x) are continuous: from the above computations, the integral of the 
nonnegative continuous function Icp(x) -to?jJ(X)12 is equal to zero. But this means 
that the function must be identically zero, so that we conclude cp(x) -to1/J(x) = 0 
for all x, a x bj thus we have established the desired proportionality, with the 
proportionality constant to. If one of the functions fails to be continuous, we can-
not conclude that the integrand is zero everywhere, but only almost everywhere 
(for example, a finite set). 

0.3.2. Projection of a function onto an orthogonal set. We now discuss 
minimizing properties of orthogonal functions. This will motivate the definition 
of Fourier coefficients in a general setting. Let (CPI, ••• , cP N) be a set of orthogonal 
functions with Ilcp,1I =F 0 for 1 i N. If I is an arbitrary function, we compute 
the minimum of 

D(Cl," "CN) = III - (CICPI + ... + CNCPN) 112 

where (CI,"" eN) range over all real values. In other words, we are trying to find 
the best "mean square approximation" of the given function I(x), a x b, by 
means of linear combinations of the members of the orthogonal set. 

2This means that the set of exceptional values can be included in a union of intervals whose 
total length is arbitrarily small. 
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PROPOSITION 0.3.2. The minimization problem has the following properties: 
• The minimum is attained uniquely when 

(f, tp,) 
c; = c.:= IItpi112' 

• The minimum distance is given by 

d2 . = 11/112 _ (/, tpi)2 
min IItpill2 

• The Fourier coefficients Cb"" CN satisfy Bessel's inequality 

+ ... + IIfll2 
The function Cl tpl + ... + CNtpN is called the projection of f onto the or-

thogonal set (tpl, ... ,tpN); c. is called the ith Fourier coefficient of 1. 
Proof. The proof of these facts can be done by rewriting the formula for D. 

We use the linearity and homogeneity of the inner product to write 
N N 

D(ct, ... ,CN) = IIfll2 - 2 L c;(f, tp,) + L 
II 112 (2 2 (/, tp,) (f, tpi)2) 

= tp, Cz - c; IItp,1I2 + IItpill4 

+111112 - t (f, 
,=1 IItpzll 

= t IItp,1I2 (c. - (f, + IIfl12 _ t (f, 
z= 1 . II tp, II i= 1 II tp,1I 
IIfll2 - t (f, 

i=l Iltp,1I 
Clearly, the minimum is achieved when Ci = := (f, tpi)/litpiIl2, as required. The 
value of the minimum is 

D(c!, ... ,eN) = 11/112 -t = 11/112 - t&.lIlOill2 
as required. Since this is nonnegative, Bessel's inequality is merely the statement 
that D(Cl'''' ,CN) o .• 
As a first example, we consider the orthogonal set consisting of the three functions 
{sinx,sin2x,sin3x} on the interval 0 x 7r. 
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EXAMPLE 0.3.3. Find the projection of the junction f{x) = 1 onto the or-
thogonal set {sin x, sin 2x, sin 3x} on the interval 0 x 1r and compute dmin. 

Solution. We first note that the norms are given by 

II 'Pm 112 = f.w sin' mx ax = f.w (1 - cos 2mx) ax = 
From Proposition 0.3.2, the Fourier coefficients are 

Iolr sin x dx cos x 4 
Cl = folrsin2xdx = 1r/2 =-; 

I; sin 2x dx 1 cos 
C2 = folr sin2 2x dx = 2 1r /2 = 0 

f; sin 3x dx 1 cos 4 
I01l' sin2 3x dx = 3 1r /2 = 31r 

The projection is the function 

() 4. 4 
s x = -smx+ -3 sin3x 1r 1r 

The minimum distance is obtained from 
3 

= IIfll2 - L CiIl<piIl 2 

.=1 

to two decimal places. • 

In the next example we consider an orthogonal set of three polynomial func-
tions on the interval -1 x 1. This is closely related to the Legendre polyno-
mial expansion, which will be considered in Chapter 4. 

EXAMPLE 0.3.4. Find the projection of the function f(x) = cos(1rx/2) on the 
orthogonal set (1, x, x2 - l) on the internal -1 x 1, and compute dmin. 

Solution. The solution may be written in the form 

s(x) = Co +C,x+C. (x' - D 
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where the Fourier coefficients Co, C}, C2 are computed from the equations 

11 11 1rX Co dx = cos Tdx 
-1 -1 

11 11 1rX CI x2 dx = xcos 2 dx 
-1 -1 

11 ( 1)2 11 ( ) h 2 2 1 1rX 
C2 X -- dx = x -- cos-dx 

-1 3 -1 3 2 

The first of these is straightforward since 

11 1rX 2 . 1rX I
X

=1 4 cos-dx=-sm- =, 
-1 2 1r 2 x=-1 1r 

h h 2 t us Co = -1r 

27 

The next is also easy since the function x cos 1rX /2 is odd; thus Cl = O. To perform 
the final integral, we write 

11 X2 cos 1rX dx = 11 x2d (sin 1r2X) 
-1 2 1r -1 

= -sin- -- xsin-dx 2X2 7rX 11 411 1rX 

1r 2 -I 7r -I 2 

= + 8211 
xd (cos 7rX) 

7r 7r -I 2 

4 8 ( 7rX 11 11 1rX ) = -+2 xcos- - cos-dx 
1r 1r 2 -1 -1 2 
4 32 

Combining this with the previous integral, we have 

11 (X2 _ !) cos 1rX dx = i _ 32 _ 
-1 3 2 7r?f3 31r 

81r2 - 96 = 3?f3 

But (x2 - = (x4 - iX2 + = - (i) 2 + i = !.s. Therefore 
C2 = = 15(1r2-12)/1r3. Thus the required orthogonal projection 
is 
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To compute dmin, we have, to four decimals, 

= Gr = 0.4053 

111112 = L dx=2 

= [15(":; 12)f = 1.0622 

II 
1112 11 ( 1)2 2 4 2 x2 

- 3 = -1 x2 
- 3 dx = 5' - 9' + 9' = 0.1778 

licos ";r = L cos2 "2
x 

dx = £ (1 +cos "x)dx = 1 

Thus, to four decimals, 
d!tin = 1 - (0.4053)(2) - (1.0622)(0.1778) = 0.0004 

and, to two decimals, dmin = 0.02 .• 
It is instructive to compare the orthogonal projection with the corresponding 

values of cos(7rx/2) at some representative points. For example, to four decimal 
places of accuracy, we have 

8(0) = (0.6366) + H1.0306) = 0.9801 
s(l) = (0.6366) - = 0.0505 

s G) = (0.6366) + i.(1.0306) = 0.7225 

s G) = (0.6366) + W·0306) = 0.8656 

s G) = (0.6366) - = 0.5221 

On the other hand, the corresponding values of cos(7rx/2) are 1, 0, 0.7071, 0.8667, 
0.5000. 

0.3.3. Orthonormal sets of functions. The formulas for the Fourier co-
efficients and the minimum distance become especially simple when the fUDc-
tions (CPI, ... , CPN) are orthonormal. This means that (CPi, CPJ) = 0 for i i= j and 
(CPi, cp,) = 1, 1 :5 i :5 N. Thus we have for orthonormal functions 

(0.3.3) = (I, CPa) 1 :5 i N 
(0.3.4) = D(ClJ ... , CN) = 11/112 - + ... + 
If (CPI, ... , cP N) is an orthogonal set of functions, we obtain an orthonormal set 
by replacing CPa by cp,/lIcpill, 1 :5 i N. 
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EXAMPLE 0.3.5. Let f{)1 = 1, f{)2 = sinx, f{)3 = cos x for -7r < X < 1r. Verify 
that this is an orthogonal set and find the corresponding orthonormal set. 

Solution. Direct computation reveals that each of the inner products (f{)i, f{)3) 
is zero for i =1= j. To find the orthonormal set, we compute 

1If{)1]]2 = I: dx = 21T 

1I'Po1l2 = 1:SiDO xdx = 1f 

IIIP311" = 1: cos" x dx = 1f 

The orthonormal set is (1/.../2i, (sinx)/v'7f, (cosx)/Vi) .• 

In many problems we are given an infinite orthonormal set 
= (f{)), f{)2, •.• ) 

To study such a set, we apply the above procedure to the finite orthonormal set 
(f{)t, ... ,f{)n)' The Fourier coefficients are 

which don't depend on N. Furthermore we have Bessel's inequality: for each N 
N 

S IIfll2 N= 1,2, ... 

This is valid for every N = 1,2, ... ; hence the infinite series I::l Cf converges 
and we have 

00 

(0.3.5) S IIfll2 
i=l 

This is formulated as follows. 

PROPOSITION 0.3.3. Suppose that (f{)n)n>l = (f{)1, f{)2,"') is an infinite or-
thonormal set of functions and that f is a for which f: If(x)12 dx < 00. 
Then the series of sums of squares of Fourier coefficients converges and satisfies 
the Bessel inequality (0.9.5). 

0.3.4. Parseval's equality, completeness, and mean square conver-
gence. If we have an infinite orthonormal set, it may happen that Bessel's in-
equality (0.3.5) is an equality, namely 

00 

(0.3.6) = 111112 
1=1 
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This is called Parseval's equality. We will show that Parseval's equality is equiv-
alent to the mean square convergence of the series E:l c,cp" which is defined by 
the limiting statement 

(0.3.7) 

The formal statement of equivalence follows. 
PROPOSITION 0.3.4. Let (CPn)n>l be an orthonormal set and f a function with f: f(X)2 dx < 00. Parseval's equaiity is true if and only if we have mean square 

convergence oj the series 2::1 C,CPi. 
Proof. Let = (f, <Pi) be the ith Fourier coefficient of f. Then by expanding 

the inner product and using orthonormality on the left side, we have 
N 2 N N 

1 - = 111112 - 2 Lc.(f,cp,) + 
i=l i=1 

Letting N 00, we see that the right side tends to zero if and only if Parseval's 
equality is valid. The left side tends to zero (by definition) if and only if we have 
mean square convergence. Therefore the proposition is proved .• 

One may note that Parseval's equality is not true for an arbitrary function. 
For example, the set of functions 11'-1/2 (sin nx, cos nX)n>l is an orthonormal set 
for -11' X 11'. The function I(x) = 1 has all Fourier coefficients zero; indeed, 

sin nx dx = 0 = f;1f cosnx dx, n 1. Yet 111112 = 1 dx = 211'. In this case 
Bessel's inequality is the statement that 0 = 2::1 < IIfll2 = 211". 

If Parseval's equality holds for all functions f with f: I(X)2 dx < 00, then 
we say that the orthonormal set is complete on the interval a x b. For 
example, in Chapter 1 it will be shown that the trigonometric system consisting of 
{II $, (sin nx}/...ji, (cos nx)1 is complete on the interval -11' X 11'. 

0.3.5. Weighted inner product. In many problems we are required to 
deal with a weighted inner product with respect to a positive weight Junction 
p(x), a x b. This is defined by the integral 

(cp, .p). = t cp(x).p(x)p(x) d:c 

This has the same properties of linearity and homogeneity as the ordinary inner 
product. We say that two functions <p, 1/J are orthogonal with respect to the weight 
function p(x}, a x b, if (cp,1/J)p = o. 
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Weighted orthogonality arises when we make a change of variable by means 
of an increasing differentiable function x = h(y). The ordinary inner product is 
transformed as follows: 

l cp(x)1/>(x) dx = t cp(h(Y»1/> (h(y)) h'(y) dy 

Therefore we see that if qJ( x), ¢( x) are orthogonal on the interval a x b, then 
the functions <,0 (h(y)) , ¢(h(y)) are orthogonal with respect to the weight function 
h'(y) on the interval c y d, where a = h(c), b = h(d). 

EXAMPLE 0.3.6. Given the orthogonal functions PI (x) = x, P2(x) = 3x2 - 1 
on the internal -1 x 1, find the weighted orthogonality relation on the 
internal 0 y 1r under the transformation x = - cos y. 

Solution. We have the transformed functions PI (h(y)) = - cos y, P2(y) = 
3 cos2 Y - 1, with the weight function p(y) = h'(y) = sin y .• 

0.3.6. Gram-Schmidt orthogonalization. When we deal with separated 
solutions of boundary-value problems in PDEs, the property of orthogonality is 
often immediately verified. This will be discussed in more detail in the follow-
ing chapters. Nevertheless, it is interesting to know how we may manufacture 
orthogonal sets of functions from arbitrary sets of functions, by the so-called 
Gram-Schmidt procedure.3 Suppose that (<,01, • •• ,<,On) is a given set of functions, 
not necessarily orthogonal. Instead we suppose linear independence, i.e., that 
there are no relations of the form CI<'ol + ... + Cn<'on = 0 among the (qJl,'." qJn), 
other than the trivial relation where Cl = 0, ... , Cn = O. In particular, IIqJtlll- 0 
for 1 i n. Then we define 

¢l = <,01 

,,/._ _ _ (<,02, ¢I) ,./. 
'rl - qJ2 (¢h'l/Jl) 0/1 

¢3 = <,03 - (<,03, 'l/J2) ¢2 _ (<,03, 'l/JI) ¢I 
(¢2, ¢2) ('fIJI, ¢I) 

n-I ( ) ,,/. <'on, ¢i ,,/. 
'l-'n = qJn - L...J (",.. "I.) 'l-'i 

i=l '1-'11 '1-'& 

The functions (1/;t, ... , 1/;n) are orthogonal. These formulas may seem less myste-
rious if we note that in the ith formula we are subtracting from <'os its projection 
onto the orthogonal set 1/;1, ... , 'l/Ji-I· 

3This material is not used in the subsequent chapters. 
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The sets (<Pb"" <Pn) and ('l/;b"" 'l/;n) have the same linear span; Le., any 
function of the form f = CI <PI + ... + Cn<Pn can be written in the form d1 'l/;1 + 
... + dn'l/;n for appropriate (d1, •.. , dn), and the converse is also true. 

EXAMPLE 0.3.7. Let <PI = 1, <P2 = X, <pa = x2 for 0 ::; x ::; 1. Apply the 
Gram-Schmidt procedure to find the orthogonal functions 'l/;I, 'l/;2, 1{;a. 

Solution. We have 1{;1 = <PI = 1, (<P2,1{;1) = fol xdx ('l/lt,1{;I) = 1. Thus 
'l/;2 = x - The remaining inner products are 

(<P3 1{;2) = fl x2 (x - dx = - = 2-, Jo 2 4 2 3 12 

(1{;2 'l/;2) = f I (x _ 2 dx = _ ! + = 2-, Jo 2 3 2 4 12 

(CP3,IM = 11 x2dx = 

Thus'l/;3 = x2 - (x -l = x2 - X The orthogonal functions are 1, x -
x2 - X + 0 ::; x 1. • 

0.3.7. Complex inner product. In dealing with complex-valued functions, 
it is necessary to modify the definition of inner product and orthogonality. The 
guiding principle is that the norm of a function should be a nonnegative number. 
With this in mind, we define the complex inner product and norm on the interval 
a<x<bas 

(0.3.8) 

. (0.3.9) 

(cp, "') = t cp(x)ob(x) dx 

1I<p1I = v' (<p, <p) 0 

where the bar denotes the complex conjugate of a function, defined by ijJ(x) = 
f(x) -ig(x) when 1{;(x) = f(x)+ig(x). Orthogonality of complex-valued functions 
is defined by the requirement that the complex inner product be zero: (<p,1{;) = O. 

The properties of linearity and homogeneity of the complex inner product 
are almost identical to those of the real inner product, with the exception that 
we have ('P, a'l/;) = a(<p, 'l/;) for any complex constant. We record here the 
appropriate statement of Schwarz's inequality. 

PROPOSITION 0.3.5. Suppose that <p(x) and 1{;(x), a < x < b, are complex-
valued functions. Then I{<p, 1{;)1 1I<p1l1l1{;1I. If equality holds and both functions 
are continuous, then the functions are proportional: C1<P(x) = C21{;(x) for some 
complex constants C 1, C2· 

The proof is suggested as an optional exercise. 
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EXERCISES 0.3 

1. Let IPI = 1, IP2 = X, IPa = x2 on the interval 0 x 1. Find the following 
inner products: 

(a) (IPI, IP2) (b) (IPlJ IPa) 
(c) /lIPI - IP2112 (d) /I<PI + 31f'2112 

2. Which of the following pairs of functions are orthogonal on the interval 
o x $1? 

IPI = sin 21TX IP2 = X CPa = cos 21TX IP4 = 1 

3. Let 1 = CI IPI + ... + CnIPn be the projection of / on the orthogonal set 
(IPI, .. " IPn). Show that / - 1 is orthogonal to each of the functions 
(IPb ... , IPn). 

4. Find the projection of the function sin 1TX on the orthogonal set (1, x - !) 
on the interval 0 x 1 and compute the minimum distance dmin• 

5. Find the projection of the function f(x) = cos2 x on the orthogonal set 
(1, cosx, cos 2x) on the interval -1f X 1T. 

6. Let IPI (x) = 1, IP2(X) = xllxl, IPa(x) = x2 - k for -1 x 5 1. 
(a) Show that (IPlJ IP2, IP3) form an orthogonal set. 
(b) Find the projection of f(x) = x on this orthogonal set and compute 

the minimum distance dmin• 
7. Let (IPI, IP2, IPa) be an orthonormal set of functions on the interval -1 x 5 

1, and let / be any function of the form lex) = alCPI (x)+a2IP2(x)+aaIPa(x). 
(a) Show that 11/112 = + + 
(b) Show that (/, If'I) = all (/, IP2) = a21 (I, If'a) = aa· 

8. Let (IPI, <P2, IPa) be an orthonormal set of functions on the interval -1 5 
x 1, and let lex) = a)IPI(x) + a2CP2(x) + aalf'a(x), g(x) = bIIPl(X) + 
b2IP2(X) + b3IPa(x). 

(a) Show that (1, g) = alb l + + a3b3' 
(b) Discuss the relation with the three-dimensional dot product for-

mula. 
9. Define the angle between two nonzero functions IP, 1/J by the formula cos 8 = 

{IP, 1/J} IIIIPIIII1/JII, 0 8 1T. 
(a) If <P and 1/J are orthogonal, show that 8 = 1T 12. 
(b) If cp and 1jJ are proportional, show that 8 = 0 or 8 = 1T. 
(c) If 8 = 0 or 1f, does it follow that cp and 1/J are necessarily propor-

tional? (Hint: Compute IIIP - C1/JII2 and write it as a perfect square.) 
(d) Compute 8 if cp(x) = 1, 1jJ(x) = x for 0 x 5 1. 

10. (a) Apply the Gram-Schmidt procedure to obtain orthogonal functions 
beginning with the functions <PI = 1, CP2 = X, IPa = X2 for -1 x 1. 

(b) Find the orthonormal set corresponding to the orthogonal set found 
in part (a). 
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11. Prove that the inner product defined by (0.3.1) satisfies (cpl, 1/JI + 1/J2) 
= (CPl, 1/Jl) + (cpt, 1/J2). 

12. Prove that the inner product defined by (0.3.1) satisfies (CPI + CP2, "pI) 
= (cpt, "pI) + (CP2, "pI). 

13. Prove that the inner product defined by (0.3.1) satisfies (acpl' "pI) = a(cpl' "pI)' 
14. Prove that the inner product defined by (0.3.1) satisfies (cpt, a"pl) = a(cpl, "pI)' 
15. Prove the complex form of Schwarz's inequality. [Hint: Examine the non-

negative quadratic polynomial G(t,s) = IIt1/J - scpe-i6 11 2 , where the inner 
product has the polar form (cp,,,p) = Check that the discriminant 
= R2 = !lcp1l2111/J1I2 - (cp, "p}2 0.] 



CHAPTER 1 

FOURIER SERIES 

INTRODUCTION 

Many of the classical partial differential equations with boundary conditions 
have separated solutions that involve sums of trigonometric functions. This leads 
to the theory of Fourier series, which is developed here in its own right. This 
chapter explores the basic properties of Fourier series, including a discussion of 
convergence and the closely related Sturm-Liouville eigenvalue problem. Basic 
definitions and examples are given in Sec. 1.1; the next two sections treat more 
theoretical material and can be omitted without loss of continuity. The basic 
material resumes in Sec. 1.4 with Parseval's theorem and its applications. The 
complex Fourier series in Sec. 1.5 are not used until the discussion of Fourier 
transforms in Chapter 5, but the Sturm-Liouville theory of Sec. 1.6 is used im-
mediately in Chapter 2. 

1.1. Definitions and Examples 

A trigonometric series is a function of the form 

(1.1.1) 

where Ao, At, BI, ..• are constants. This is a series of sines and cosines whose 
frequencies are multiples of a basic angular frequency 1r / L and whose amplitudes 
are arbitrary. In this chapter we will explore the possibility of expanding a large 
class of functions f(x), -L < x < L, as trigonometric series. We first prove 
directly that this set of functions is orthogonal on the interval - L < x < L. 

1.1.1. Orthogonality relations. In the following discussion the indices 
m, n assume the values 0, 1, 2, .... 

PROPOSITION 1.1.1. We have the orthogonality relations 

(1.1.2) cos -- cos -- dx = l L n1rX m1rX { 

-L L L 

35 

o n:f:.m 
L n=m:f:.O 
2L n=m=O 
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(1.1.3) i L 
sin n1rX sin m1rX dx = 0 

-L L LOn = m = 0 

(1.1.4) i L . n1rX m1rX sm -cos --dx = 0 
-L L L 

all m,n 

Proof. We use the trigonometric identities 

(1.1.5) 1 
cos 0: cos f3 = 2 [cos (0: - f3) + cos(o: + f3)] 

sino:sintJ = - f3) - cos(o: + f3)] 

sin 0: cos f3 = - f3) + sin(o: + ,6)] 

Thus to prove (1.1.2), we have, for n m, 

IL n1rX m1rxdx _ IlL [ (n - m)1rx (n + m)1rx] d cosLcos L - 2 cos L + cos L X 
-L -L 

= .£ [sin(n - m)1rx/L) IL + sin(n + m)1rx/L) IL ] 
21r n - m -L n + m -L 

=0 

we have 

IL COS2 n1rX dx = ! IL (1 + cos 2n1rX) dx 
-L L 2 -L L 

= ! (2L+ 2n1rxl
L 

) 
2 2n1r L_L 

=L 
Finally, if n = m = 0, the integral is 2L. This completes the proof of (1.1.2). 
The proofs of (1.1.3) and (1.1.4) are left as exercises .• 

Having established the orthogonality and performed the computation of these 
integrals, we can now define the Fourier series of a function I(x), -L < x < L. 

1.1.2. Definition of Fourier coefficients. In order to define the Fourier 
series of a function, it suffices to define the Fourier coefficients An, En, which is 
done as follows. 
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De6nition Let I(x), -L < x < L, be a real-valued function. The Fourier series 
of I is the trigonometric series (1.1.1) where (An, Bn) are defined by 

1 lL Ao = 2L I(x)dx 
-L 

(1.1.6) 

(1.1.7) l/L n7rX An = L !(x)cosLdx 
-L 

n= 1,2, ... 

IlL . n1fX Bn = L f(x)sln-Y;-dx 
-L 

(1.1.8) n = 1,2, ... 

These definitions were suggested in Chapter 0, where we showed that for any 
orthogonal set (CPh"" CPN), the minimum of IIf - 2::=1 CnCPnll2 is determined by 
choosing (Cl, ... , CN) as the Fourier coefficients (f, CPn) / (CPn, <(In), 1 $ n $ N. 

1.1.3. Even functions and odd functions. In order to simplify the com-
putation of Fourier series of many functions encountered in practice, we of-
ten exploit symmetry arguments. A function f(x), -L < x < L, is even if 
f( -x) = f(x), -L < x < L. A function f(x), -L < x < L, is odd if 
I( -x) = - f(x), -L < x < L. For example, f(x) = x, f(x) = x3 , and 
f(x) = sin x are odd functions, whereas f(x) = X2, f(x) = X4, and f(x) = cosx 
are even functions. Of course, many functions are neither even nor odd, for ex-
ample, f(x) = x + x2 , The product of two even functions is an even function, 
the product of an odd function and an even function is an odd function, and the 
product of two odd functions is an even function. These properties result from 
the multiplication facts (+1)(+1) = +1, (-1)(+1) = -1, and (-1)(-1) = +1. 
If I(x), -L < x < L, is an odd function, the integral f(x)dx = O. This may 
be seen in detail by writing 

10 f(x)dx = -1° I( -t)dt (x = -t, dx = -dt) 
-L L 

= t f(-t)dt (t = - {) 

= - f.L f(t)dt (oddness) 

But t is a dummy variable of integration; thus 

l L f(x)dx = 10 

f(x)dx + rL 
I(x)dx = _ rL 

f(x)dx + rL 
f(x)dx = 0 

-L -L Jo Jo Jo 
In a similar fashion it may be shown that if I(x), -L < x < L is an even 

L L ' function, then f-L I(x)dx = 2 fo f(x)dx. 
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PROPOSITION 1.1.2. Iff(x), -L < x < L, is an even function, then Bn = 0, 
n = 1,2,.... If J(x), -L < x < L, is an odd function, then An = 0, n = 
0,1,2, .... 

Proof. To prove these facts, we first note that sin (n1rx / L) is an odd function 
and cos( n1rX / L) is an even function since sin( -6) = - sin 6, cos ( -6) = cos 6. 
Now, if J(x), -L < x < L, is an even function, the product J(x) sin (n1rx/ L) is 
an odd function and we have Bn = 0. If J (x), - L < x < L, is an odd function, 
the product J(x) cos (n1rx/ L) is an odd function and we have An = O •• 

EXAMPLE 1.1.1. Compute the Fourier series oj J(x) = x, -L < x < L. 

Solution. f(x), -L < x < L, is an odd function; therefore An = 0. To 
compute Bn, we note that f(x) sin (n1rx/ L) is an even function; thus 

IlL . n1rX Bn = - xsm-dx 
L -L L 
21L . n1rX = - xsm-dx L 0 L 

We integrate by parts with u = x, dv = sin (n1rx/ L) dx. Thus 

Bn = - -x- cos - + - cos - dx 2 ( L n1fxlL L 1L n1fX ) 
L n1f L 0 n1r 0 L 

The last integral is zero, and we have Bn = -(2L/n7r) cosn7r = (2L/n7r)( _1)n+l. 
Therefore the Fourier series of f(x) = x, -L < x < L, is 

2L (_l)n+l . n1fX 
sm- • 

1r n::::l n L 

EXAMPLE 1.1.2. Compute the Fourier series of f(x) = lxi, -L < x < L. 

Solution. J(x), -L < x < L, is an even function; therefore Bn = 0. To 
compute An, we note that the product f(x) cos (n1rx/ L) is an even function; 
thus, for n i= 0, 

IlL n1fX 
An = L Ixl cos r: dx 

-L 
(1.1.9) 

(1.1.10) 21L n1fX = - xcos-dx 
L 0 L 

We integrate by parts with u = x, dv = cos (n1fx/ L)dx. Thus 

An = - X-SlD- - - sm-dx 2 ( L . n7rX ILL 1L . n1fX ) 
L n1f L 0 n7r 0 L 
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The first term is zero at both endpoints x = 0, x = L, while the integral can 
be evaluated as JoL sin(n1f'x/L)dx = (L/n1f')(l - (-1)n]. Thus we have An = 
-(2L/n21f'2)[1- (_1)n] for n O. For n = 0, we have Ao = (I/L) JoL xdx = L/2. 
Therefore the Fourier series of f(x) = lxi, -L < x < L, is 

!: _ 2L 1 - (-l)n cos n1f'X 
2 1f'2 L....J n 2 L 

n=l 

This may also be written as 
00 

(L/2) - (4L/1f'2) L cos[(2m - 1)1f'x/L]/(2m - 1)2 
m=l 

by writing n = 2m-l and noting that 1-( -1)n = 0 if n is even and 1-( _1)n = 2 
if n is odd .• 

It will be shown in Sec. 1.2 that these Fourier series are convergent and that 
the equation 

00 

"( n1f'X . n1f'x) f(x)=Ao+L...J Ancos-y+BnslDL 
n=l 

is valid for - L < x < L. We illustrate this graphically for the preceding two 
examples. To do this, we define the partial sum of order N of a trigonometric 
series as the function 

In Figs. 1.1.1 and 1.1.2 we give the partial sums for the Fourier series of the 
preceding two examples. 

The method of these two examples may be extended to compute the Fourier 
series of any polynomial f (x) = Co + Cl X + ... + c"x". To do this, it is sufficient to 
handle each term separately and integrate by parts. Thus we have the reduction 
formulas 

x"sin-dx = 1L n1f'X 
-L L 

Lx" n1f'x l
L 

Lk 1L "1 n1f'x -- cos- +- x - cos--dx 
n1f' L -L n1f' -L L 

xlccos--dx = 1L n1f'X 
-L L 

Lxk . n1f'xlL Lk 1L " 1 . n1f'X -sm- -- x- sm--dx 
n1f' L -L n1f' -L L 

Proceeding inductively, we can compute the necessary integrals. 
If a function f (x), - L < x < L, can be written as a finite trigonometric 

sum, then its Fourier series is that trigonometric sum. For example, the Fourier 
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y 

(-n.O) _ = x 
(n.O) 

FIGURE 1.1.1 Graphs of the partial sums fN(X) for N = 1,2,3 of the Fourier 
series of f(x) = X, -'fr < X < 'fr. 

12 (x) 
II (x)' 

y 

(-n.O) (0,0) (n,O) 

FIGURE 1.1.2 Graphs of the partial sums fN(X) for N = 0,1,2 of the Fourier 
series of f(x) = lxi, -'fr < x < 'fr. 

series of f(x) = sin2 x, -'fr < X < 'fr, can be obtained by observing that sin2 x = 
- cos 2x); thus Bn = 0 for all n, while Ao = A2 = and An = 0 for 

n = 1,3,4, 5, . . .. It is not necessary to perform any integrations to find the 
Fourier series in this case. 
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1.1.4. Periodic functions. We now discuss Fourier series in the context of 
periodic functions. 

Definition A function f(x}, -00 < x < 00, is 2L-periodic if 
f (x + 2L) = f (x) - 00 < x < 00 

For example, sin(n7rx/L) and cos(n7rx/L) are 2L-periodic for n = 1,2, ... since 
. n7l' ( 2L) . (n7l'X 2) . n7l'X smT X+ = sm L+ n7l' =sm L 

n7l' (n7l'x) n7rX cosy(x+2L) = cos L+ 2n7l' =cos L 
The sum, difference, or product of any two 2L-periodic functions is again 2L-
periodic. Therefore any convergent trigonometric series defines a 2L-periodic 
function f(x}, -00 < x < 00. Conversely, we can speak of the Fourier series of 
a 2L-periodic function f(x}, -00 < x < 00, by restricting x to -L < x < L and 
computing the Fourier series as we have just done. 

EXAMPLE 1.1.3. Compute the Fourier series of the 2L-periodic function f(x) 
= -1 if (2n - l)L < x < 2nL, f(x) = 1 if 2nL < x < (2n + l)L, n = 0, ±1, 
±2, .... 

Solution. f is an odd function, and thus An = 0, Bn = (2/ L) JoL sin n1'(x/ L dx 
= (2/L)(L/n7r)[1 - (_l)n]. The Fourier series is (2/7l') E::l[l - (-l)nJ 
x sin(n7rx/L)/n .• 

1.1.5. Implementation with Mathematica. Let us redo Example 1.1.1 
using Mathematica. The Fourier series of f(x) = x, -1'( < X < 7l', was found to 
be 

2 f: (_l)k+l sin kx 
k=l k 

We first define a function of two variables, 
F[x_,n_]:=2 Sin[k x], {k,l,n}] 
and a plot-valued function by 
F[n_]:=Plot[F[x,n],{x,-Pi,Pi}] 
By typing Enter, we record the values of these functions. The correct input can 
be verified by typing ?F. To verify the first three terms of the series, move the 
cursor to a new cell and type F[x,a] followed by Enter. Mathematica should 
respond with 

Sin [2x] Sin [3x] 
Out[2] =2(Sin[x]- ------- + -------) 

2 3 
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FIGURE 1.1.3 A three-term Fourier series. 

To graph the function F[x,3], type F[3] instead of F[x,3], and the result is as 
shown in Fig. 1.1.3. 

Mathematica can also be used to compute the Fourier coefficients of a piece-
wise smooth function f (x), - L < x < L. To do this, we make the following 
commands: 
AO[L_,f_]:=(1/(2Pi» Integrate[f[x], {x,-L,L}] 
A[n_,L_,f_]:=(1/(Pi» Integrate[f[x] Cos[n x], {x,-L,L}] 
B[n_,L_,f_]:=(1/(Pi» Integrate[f[x] Sin[n x], {x,-L,L}] 
Then we can define a function f (x) in Mathematica and use the above definitions 
to compute the Fourier coefficients. For example, consider f(x) = eX, -L < x < 
L. To enter this, we type 
f[x_]:=E"'x 
and then type 
A [n,L,f] 
which produces the output 

n L 
(-1) E 

Out[2]= ----------
2 2 

Pi n 
L(1+ ------) 

2 
L 

1.1.6. Fourier sine and cosine series. Suppose we are given a function 
f(x), 0 < x < L, and we desire a Fourier series representation. To get this, we 
extend f to the interval - L < x < L and then compute the Fourier coefficients. 
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There are two natural ways of doing this, giving rise to the Fourier sine series 
and the Fourier cosine series. 

One way of extending f is to define a new function f 0 by 

{ 
f(x) 0 < x < L 

(1.1.11) fo(x) = - f( -x) -L < x < 0 
o x=O 

fo is called the odd extension of f to (-L, L). It is an odd function, and therefore 
its Fourier coefficients are given as follows: 

(1.1.12) 

(1.1.13) 

An = 0 n = 0,1, ... 
1 lL . n1f'X 2 J.L . n1rX Bn = L fO(X)SlllL dx = L f(X)SlDLdx 

-L 0 
Therefore we have the Fourier sine series 

where 

00 
. n1rX 

L..J nSlllL 
n=l 

2 J.L . n1f'X Bn = L 0 f(X)SlD-y-dx 

Another way of extending I to the interval (-L, L) is to define 

(1.1.14) fE(X) = I( -x) -L < x < 0 { 

f(x) 0 < x < L 

o x=O 
IE is called the even extension of I to (-L, L). It is an even function defined on 
the interval (-L, L) . [Of course, we could define IE (0) = liIllx-+o I (x), if this limit 
exists. The definition fE(O) = 0 is completely arbitrary.] The Fourier coefficients 
of f E are as follows: 
(1.1.15) Bn = 0 n = 1,2, ... 

(1.1.16) Ao = L: J,;;(x)dx = f f(x)dx 

(1.1.17) 1 lL n1rX 2 J.L n1rX 
An = L -L IE(X)cos-y-dx = L 0 l(x)cosLdx 

Therefore we have the Fourier cosine series 
00 

n1rX 
Ao + L..J An cos L 

n=l 

where 
1 J.L Ao = I 0 f(x)dx 
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and 
2 rL n1rX 

An = L 10 /(x)cosLdx n = 1,2, ... 

EXAMPLE 1.1.4. Compute the Fourier sine series 0/ /(x) = 1, 0 < x < L. 
Solution. We have 

21L . n1rX 2L n1rxlL 2 n Bn=- slD-dx=--cos- =-[1-(-1) 1 L 0 L Ln1r L 0 n1r 
The Fourier sine series is 

2 1- (-l)n . n1rX 
- L..J SIn- • 
1r n=1 n L 

We now give an alternative method for computing the Fourier sine series of 
certain functions that satisfy boundary conditions. Let J(x), 0 x L, be a 
function with J(O) = 0, J(L) = 0, and /"(X) continuous for 0 x L. Then 

(1.1.18) 2 rL . n1rX 
Bn = L 10 J(x)slDLdx 

2 n1rX 1
0 

2 lL I n1rX = -/(x)cos- +- J(x)cos-dx n1l" L L n1r 0 L 
The first term is zero, and the second term can be integrated again by parts, with 
the result 

( 
L ) 2 2 rL J"( ) . n1l"x Bn = - n1l" L 10 x sm L dx 

Therefore the Fourier sine series of /(x), 0 < x < L, is obtained from the Fourier 
sine series of J"(x) , 0 < x < L, by multiplication of the nth term of the series by 
-(L/n1r)2. 

EXAMPLE 1.1.5. Find the Fourier sine series oj J(x) = x3 - L2x, 0 < X < L. 
Solution. The function satisfies /(0) = 0, /(L) = 0 with J"(x) = 6x. The 

Fourier sine series of 6x is (12L/1I") _l)n+1 sin (n1l"x/ L)/n. Therefore the 
Fourier sine series of J(x) is (12L3/1I"3) .• 

EXERCISES 1.1 

In Exercises 1 to 10, compute the Fourier series of the indicated functions. 
1. J(x) = X2, -L < x < L 
2. J(x) = x3, -L < x < L 
3. J(x) = Ix13, -L < x < L 
4. J (x) = eX, - L < x < L 
5. J(x) = sin2 2x, -11" < X < 11" 
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6. I(x) = cos3 X, -7r < X < 7r 
7. I(x) = 0 if -L < x < 0 and I(x) = 1 if 0 x < L 
8. I(x) = 0 if -L < x < o and f(x) = x if 0 x < L 
9. I(x) = 0 if -7r < x < 0 and I(x) = sin x if 0 x < 7r 

10. I(x) = sinhx = - e-X), -'/r < X < '/r 

11. Prove the orthogonality relations (1.1.3). [Hint: Use the trigonometric 
identities (1.1.5).J 

12. Prove the orthogonality relations (1.1.4). [Hint: Use the trigonometric 
identities (1.1.5).] 

13. Prove the following facts about even and odd functions: 
(a) The product of two even functions is even. 
(b) The product of two odd functions is even. 
(c) The prod uet of an even function and an odd function is odd. 
(d) Which of statements (a), (b), (c) remains true if the word "product" 

is replaced by "sum"? 
14. Let I be an arbitrary function. Show that there is an odd function It and 

an even function h such that I = It + h· 
15. Which of the following functions are even, odd, or neither? 

(a) f(x) = x3 - 3x (b) I(x) = x2 + 4 
(c) I(x) = cos 3x (d) I(x) = x3 - 3x2 

(e) f(x) = sinx - 3x5 (f) I(x) = Ixl sin x 
(g) I(x) = x2 - cos x (h)f(x) = cos3 x 

16. Find the Fourier sine series for the following functions: 
(a) I(x) = x, 0 x L (b)/(x) = x2, 0 X L 
(c) f(x) = eX, 0 x L (d) I(x) = x3 , 0 X L 
(e) I(x) = sinx, 0 x L (f)/(x) = cos x, 0 x L 

17. Find the Fourier cosine series for the functions in Exercise 16. 
18. Let I(x), -L < x < L, be an odd function that satisfies the symmetry 

condition 
I(L - x) = I(x) 

Show that 

An = 0 for all n 
Bn = O' for all even n 

19. Let I(x), -L < x < L, be an odd function that satisfies the symmetry 
condition 

Show that 
I{L - x) = -/(x) 

An = 0 
Bn = 0 

for all n 
foralloddn 
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20. A function J(x), 0 < x < 7r /2, is to be expanded into a Fourier series 
00 

J (x) = Ao + L (An cos nx + Bn sin nx) 
n=l 

By extending I to -7r < X < 7r in four different ways, give four different 
prescriptions for finding the Fourier coefficients (Hint: 
There are two choices for extending I to 0 < x < 7r and two more choices 
for further extending I to -7r < X < 7r.) 

21. Illustrate the expansions of Exercise 20 with I(x) = 1, 0 < x < 7r/2. Find 
the four different Fourier series. 

For each of the functions in Exercises 22 to 29 state whether or not it is periodic 
and find the smallest period. 

22. I(x) = sin 7rX 
23. I(x) = sin2x + sin3x 
24. I(x) = sin4x + cos6x 
25. I(x) = sinx + sin 7rX 
26. I(x) = x - [x] ([x] = integer part of x) 
27. I(x) = tan x 
28. I(x) = I;:'J (_1)nx2n /(2n)! 
29. I(x) = sin x 
30. Compute the Fourier sine series of I(x) = x2 - Lx, 0 < x < L. 
31. Compute the Fourier sine series of I(x) = x4 - 2Lx3 + L3x, 0 < X < L. 
32. Let I (x), - L < x < L, be an even function. Show that 

jL I(x)dx = 2 J.L I(x)dx 
-L 0 

33. Show that the derivative of an even function is an odd function. 
34. Show that the derivative of an odd function is an even function. 

1.2. Convergence of Fourier Series! 
In this section we discuss the validity of the equation 

00 
( n7rX . n7rx) I(x) =Ao+ LJ AncOSL+BnSlDL 

n=l 

where (An, Bn) are the Fourier coefficients of the function I(x), -L < x < L. For 
simplicity in writing, we take L = 7r in the exposition; all results obtained can 
be transformed to the interval - L < x < L by the change of variable x' = 1f'X / L. 

IThis section treats theoretical material and can be omitted without loss of continuity. 
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1.2.1. Piecewise smooth functions. Recall that a function f is continuous 
at x if f(y) = f(x). Not all Fourier series converge, even if we impose 
the restriction that their functions are continuous. In fact, there exist continuous 
functions on [-7r,7r] whose Fourier series diverge at an infinite number of points! 
We therefore need to focus our attention on another class of functions, the so-
called piecewise smooth functions. We first define the concept of a piecewise 
continuous function. 

Definition A function f(x), a < x < b, is piecewise continuous if there is a finite 
set of points a = Xo < Xl < ... < Xl' < Xl'+l = b such that 

(1.2.1) 
(1.2.2) 

(1.2.3) 

f is continuous at X "I x" 
lim f(x, + €) exists 

lim j(Xi - €) exists 

i = 1, .. . ,p 
i = O, ... ,p 

i=I, ... ,p+l 

The limit (1.2.2) is denoted f(Xi + 0) and is called the right-hand limit. Likewise, 
the limit (1.2.3) is denoted f(Xi - 0) and is called the left-hand limit. These are 
supposed to be finite. 

Definition A function j (x), a < X < b, is said to be piecewise smooth if f and 
all of its derivatives are piecewise continuous. 

Of course, we assume that the subdivision points Xo < Xl < ... < XP+I are the 
same for f and all of its derivatives. With this definition, the derivative of a 
piecewise smooth function is again piecewise smooth. 

If f(x), a < x < b, is piecewise smooth, then f'(x) exists except for X = 
Xl, ••. , Xl" This is the piecewise derivative of f. Many of the usual operations 
with ordinary derivatives are valid for piecewise derivatives; the sum, difference, 
and product rules are valid except at the subdivision points (Xl,"" xl')' The 
quotient rule is also valid unless the denominator is zero. The fundamental 
theorem of calculus must be modified for piecewise smooth functions to the form 

!.b l' 
f(b - 0) - f(a + 0) = f'(x)dx + E[J(Xi + 0) - f(x, - 0)] 

a 1=1 

Indeed, on each interval (Xit X1+I) we may apply the ordinary fundamental theo-
rem of calculus in the form 

1X.+1 

f(x,+1 - 0) - f(Xi + 0) = f'(x)dx 
x. 

Adding these equations for i = 0, 1, ... ,p gives the result. 
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If the piecewise smooth function I (X), a < x < b, is also continuous, then the 
fundamental theorem of calculus may be applied in its usual form, 

feb - 0) - f(a + 0) = r. !,(x)dx 

With these rules in mind, we may operate freely with piecewise smooth functions. 

EXAMPLE 1.2.1. 
I(x) = Ixl 

We take Xo = -7r, Xl = 0, X2 = 7r. Here I is continuous on the entire interval. I' 
is piecewise continuous, with 1'(0+0) = 1,1'(0-0) = -1. All higher derivatives 
are zero; hence I(x), -7r < X < 7r, is piecewise smooth. 

EXAMPLE 1.2.2. 

{ 
X2 -'Tr < X < 0 

I (x) = x2 + 1 0:5 X < 'Tr 

In this example I is continuous, with the exception of the point X = 0, where 
we have 1(0 + 0) = 1 and 1(0 - 0) = O. All higher derivatives are piecewise 
continuous on (-'Tr, 7r), so I(x), -'Tr < X < 7r, is piecewise smooth. 

EXAMPLE 1.2.3. 

I(x) = xlxl 
In this case I and l' are continuous. I" is continuous everywhere except at x = 0, 
where we have J"(O+O) = 2 and 1"(0-0) = -2. All higher derivatives are zero; 
thus I(x), -'Tr < x < 'Tr, is piecewise smooth. 

EXAMPLE 1.2.4. 

I is continuous on (-'Tr, 'Tr). I' is continuous on (-'Tr, 'Tr) with the exception of the 
point x = O. However, 1'(0 + 0) and 1'(0 - 0) do not exist, so I(x), -'Tr < x < 'Tr, 
is piecewise continuous but is not piecewise smooth. 

EXAMPLE 1.2.5. 
1 

I(x) = x2 _ 11"2 -1('<x<1(' 

In this case I(x), -7r < X < 1(', is continuous, but it is not piecewise continuous 
since I( -'Tr + 0) and 1(1(' - 0) are not finite. In particular, I(x), -1(' < x < 'Tr, is 
not piecewise smooth. 

When working with piecewise smooth functions, we may omit the definition 
of I(x) at the subdivision points xo, x., ... , Xp+l. This causes no difficulty in 
the discussion of Fourier series, since the Fourier coefficients An, Bn are defined 
as integrals, which are insensitive to the value of I(x) at a finite number of 
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points. More precisely, if 11 (x) = 12(x), except for x = Xo, XI, . .. , Xp+b then f: It (x)dx = f: 12 (x)dx. Therefore we see that the Fourier coefficients do not 
depend on any 01 the numbers f(xo), . .. , I(xp+l)' 

Suppose I(x), -1r < X < 1r, is piecewise smooth. We define the 21r-periodic 
extension of I by setting 

f(x + 2n1r) = f(x) wherex E (-1r, 1r) 

and n is an integer (positive or negative). 
It is left as an exercise to show that the 21r-periodic extension of I is piecewise 

smooth on any open interval and that it is periodic with period 21r. It is also left 
as an exercise to show that 

t f(x)dx = [ f(x)dx if d - c = 21r = b - a 

where I is any 21r-periodic function. 
Let I(x), -1r < x < 1f, be a piecewise smooth function and let l(x), -00 < 

x < 00, be the 27r-periodic extension of f; I is a 21r-periodic function with 
lex) = I(x) for -7r < X < 1r. 

The following theorem relates the convergence of a Fourier series to the nor-
malized values of the function 

THEOREM 1.1. (Convergence theorem). Let I(x), -1f < X < 7r, be piecewise 
smooth. Then the Fourier series of I converges for all x to the value [lex + 0) + 
l(x - 0)1, where I is the 21r-periodic extension of I· 

From the periodicity, we see that the left-hand limit 1(7r - 0) is equal to the 
left-hand limit l( -7r - 0), with a corresponding statement for the right-hand 
limit. Therefore the average of the left- and right hand-limits at the endpoints 
agrees with the common average of the function at the endpoints; in symbols, 

1 - - 1 
'2[f( -1r - 0) + f( -1r + 0)] = '2[J( -1r + 0) + 1(7r - 0)1 

1 - - 1 
'2[f(1r - 0) + 1(1r + 0)] = '2[f( -1r + 0) + 1(7r - 0)1 

The restriction to the interval -7r < X < 1r is of no significance. It has been 
made here so that, instead of writing cos(m7rx/L) and sin(m1rx/L) , we may 
write cosmx and sinmx. 

Before proceeding with the proof, we need two lemmas. 

Lemma 1 (Riemann). If I and I' are piecewise continuous on (a, b), then 

lim 16 
f(x) sin AX dx = 0 

"\-"00 a 
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Proof. First we write 

l b 
p 1:1:1+1 

f(x) sin AX dx = L f(x) sin AX dx 
a 

It remains to show that 

1
:1:1+1 

lim f(x) sin AX dx = 0 
"'-+00 :1:, 

For this we integrate by parts, with u = f(x), dv = sin AX dx. Thus 

1
:1:1+1 - f(x) cos AX 1:1:1+1 11:1:1+1 

:1:, f(x) sin AX dx = A :1:1 +:\:1:, f'(x) cos AX dx 

Each of these tends to zero when A -4 00, completing the proof of Lemma 1. • 

We wish to examine the limit as N -4 00 of 
N 

fN(X)=Ao + L(Amcosmx+ Bm sin mx) 
m=l 

Using the definitions of Ao, Am, Em given in Sec. 1.1, formulas (1.1.6), (1.1.7), 
(1.1.8), we have 

1111' N1j1l' fN(X) = 27r -11' f(t)dt+ -11' f(t)(cosmtcosmx+sinmtsinmx}dt 

= ;" r f(t)dt + r f(t) cosm(t - x)dt 

= r f(t) - X)] dt 

Clearly, it would be useful to be able to write 
1 N 
2 + Lcosm(t - x) 

m=1 

in a more compact form. Therefore we formulate a second lemma. 

Lemma 2. For any 0 real, a =f=. 0, ±27r, ... , we have 
1 sin(N + - + cos 0 + ... + cos No = ----:--==-
2 2 sin 

Proof. Setting S = + cos a + ... + cos No, we have 

S · 1 .. + . N sm 0 = 2 sm a + sm 0 cos 0 + . . . sm a cos 0 
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From the addition formulas 

we have 

so that 

sin(a+b) = sinacosb+cosasinb 
sin(a - b) = sinacosb - cosasinb 

cos asin b = + b) - sin(a - b)] 

Ssina 1[. . 2 0 . 3 . = 2s111a+sm a- +sm a-sma 

+ ... + sin(N + l)a - sin(N - l)a] 

= Na + sin(N + l)a] 

To complete the proof, we average the addition formula as follows: 

+ b) + sin(a - b)] = sin acosb 

Setting a + b = (N + l)a, a - b = Na, we take a = (N + b = so that 

+ sin(N + 1)<>J = sin (N + D <> cos 

and 

S = sin(N + 
sina 

51 

Substituting the identity sin a = 2 sin cos completes the proof of Lemma 2. 
(For a shorter proof of Lemma 2, using complex numbers, see Exercise 13 at the 
end of this section.) • 

In view of Lemma 2, we can write 

f () 1 /11' f( )sin(N + - x) d 
N X =- t . 1 t 7r -11' 2sm 2(t - x) 

This form is preferable because it makes no mention of the Fourier coefficients 
{An}, {Bn}. 

1.2.2. Dirichlet kernel. To proceed further, we make the definition 

DN(U) = sin(N + 
2 . /2 U =F 0, ±27r, ±47r, ... 7rsmu 

and by continuity we define DN(U) = (2N + 1)/27r, U = 0, ±27r, ±47r, .... 
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FIGURE 1.2.1 The Dirichlet kernel DN(U) for N = 5. 

DN is the Dirichlet kernel, an even, 21l'-periodic function. From Lemma 2 we 
see that 

From Fig. 1.2.1 we see that DN(U) behaves roughly like a periodic function 
with period 21l'/N, except in the neighborhood of U = 0, ±21l', ... , where it is 
peaked. The most important property of the Dirichlet kernel is that it provides 
an explicit representation of the Fourier partial sum, through the formula 

(1.2.4) 

1.2.3. Proof of convergence. To complete the proof of Theorem 1.1, we 
extend f to f, a 21l'-periodic function. Therefore the product DN(t - x)f(t) is 
also a 27r-periodic function of t for each x. We now write 

fN(X) = I: /(t)DN(t - x)dt 

= f(x + U)DN(U)du t -x = u 

= I: /(x + U)DN(U)du periodicity 

= {I: + {}f(X+U)DN(U)dU 
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We will analyze the two integrals separately and show that 

(1.2.5) lim 111" f(x + U)DN(U)du = -2
1 f(x + 0) 

N-too 0 

(1.2.6) 10 - 1-
lim f(x + U)DN(U)du = - f(x - 0) 

N-too -11" 2 
from which the result will follow. We carry out the analysis of only the first 
integral in detail; the second is identical in every respect. Define 

g(u) == [l(x + u) - f(x + O)1/u 
Then 

1
11" - - 1 111" (1 ) [J(x + u) - f(x + O)]DN(U)du = - lim g(u)U(u) sin N + -2 udu 

o '/r 0 

where 
u 

U(u) = 2sin u/2 u tf 0 
U(O) = 1 

Using L'Hospital's rule, we see that the function U(u) is continuous and has a 
continuous derivative, -'/r U 'If. Similarly, we can use L'Hospital's rule to 
compute the limits 
(1.2.7) 

(1.2.8) 

limg(u) = j'(x + 0) 
u,J.O 

1 -limg'(u) = -2t '(x + 0) 
u,J.O 

Therefore g(u) is piecewise continuous with a piecewise continuous derivative. 
But U(u) has a continuous derivative, and therefore the product g(u)U(u) also 
has a piecewise continuous derivative. Applying Lemma 1, we have proved that 

g(u)U(u) sin (N + D udu= 0 

Writing this in terms of I, we have 

lim 111" f(x + U)DN(U)du = I(x + 0) lim 111" DN(U)du = -211(x + 0) 
0 0 

which was to be proved. • 
An examination of the graph of DN(U) (Fig. 1.2.1) helps to give an intuitive 

motivation of the proof. Since DN(U)du = 1, the graph suggests that, as N 
gets large, the area tends to concentrate around u = 0, so that f(u)DN(u)du 
tends to pick off the values of f(u) near u = O. Thus 

11r 1 
-11" f(u)DN(U)du = 2[1(0 + 0) + f(O - 0)] 

for functions f(x) that are piecewise smooth. 
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Having proved the convergence of the Fourier series, we can now obtain many 
useful conclusions. Referring to the first two examples in Sec. 1.1, we have the 
convergent Fourier series 

00 (_1)n+l 
2 L sin nx = x - 7r < X < 7r 

n=1 n 
7r 2 1 - (-1)n "2 - ;: L..J n2 cosnx = Ixl - 7r < X < 7r 

n=1 

Both of these examples are continuous functions, for which f(x+O) = f(x-O) = 
f(x) for all x, -7r < X < 7r. However, the periodic extension is not continuous in 
the first case, where f(x) = x, -7r < X < 'Tr. 

As an example of a discontinuous function, we have the convergent Fourier 
series 

-L sinnx= 0 
2 00 1 _ (-1)n { 1 

7r n=1 n -1 

O<x<'Tr 
x=O 
-7r < X < 0 

These can also be used to obtain various numerical series. Taking x = 0 in 
the Fourier series for lxi, we have 0 = 7r /2 - (2/,rr)(2 + + + ... ), 7r2/8 = 
1 + + fs + .. '. Similarly, taking x = 7r /2 in the third example, we obtain 

EXERCISES 1.2 

1. Determine whether or not the indicated function is piecewise smooth. 
(a) f(x) = IxI3/ 2 , -2 < x < 2 
(b) I(x) = [xl - x, 0 < x < 3 ([x] = integer part of x) 
(c) I(x) = X4 sin(l/x), -1 < x < 1 
(d) f(x) = e-(1/x2

), -1 < x < 1 
2. Let f(x) = x2 sin(l/x). 

(a) Show that f(x) = O. 
(b) Graph f(x), -7r < X < 7r. 
(c) Show that 1'(0 + 0) does not exist by considering I'(h) as h 0 

through the values 1/2n7r and 1/(2n + 1)7r, n = 1,2, .... 
3. Let f and 9 be piecewise smooth on ( a, b). 

(a) Show that f + 9 is piecewise smooth on (a, b). 
(b) Show that f . 9 is piecewise smooth on (a, b). 
(c) What restrictions must be made on 9 in order that f / 9 be piecewise 

smooth on (a, b)? 
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4. Let f be the 211"-periodic extension of the piecewise smooth function f(x), 
-11" < X < 11". 

(a) Show that f(x), -00 < x < 00, is piecewise smooth. 
(b) Show that f is 211"-periodic. 
( c) Show that 

1d /(x)dx = t J(x)dx if d - c = 211" = b - a 

5. Define U(O) = 1 and 
u 

U(u) = 2sin(u/2) 

Show that U(u) is continuous and has a continuous derivative for -11" 
U 11". (Hint: Use L'Hospital's rule.) 

6. Let f(x), a < x < b, be a piecewise smooth function. Let g(u) = [f(x+u)-
/(x+O)]/u for u =F O. Show that g(O+O) = f'(x+O}, g(O-O) = /'(x-O). 
(Hint: Use L'Hospital's rule.) 

7. Let g(u) be defined as in Exercise 6. Show that 9'(0 + 0) = !/"(x + 0), 
g'(O - 0) = !f"(x - 0). 

8. Prove that DN(U) is even and 211"-periodic. 
9. Use Lemma 1 and the properties of the Dirichlet kernel to compute the 

following limits: 
(a) DN(U)du (b) J07r/2 DN(U)du 
(c) limN-.oo DN(U)du (d) limN-.oo J:/2 DN(U)du 

10. What is the maximum value of DN(U), -11" U 11"? 
11. Find all solutions of the equation DN(U) = O. 
12. Find all solutions of the equation = O. 
13. There is another way of establishing Lemma 2. Recall that eU

: = cos x + 
i sinx. 

(a) Show that 

cos x = --2--
elZ _ e-ix 

sinx=---
2i 

(b) Prove Lemma 2 using part (a) and the fact that for any complex 
number r =F 1, 

rn+1 - 1 
1 + r + ... + rn = r =F 1 

r-l 
14. This exercise establishes the formula 

100 sinx dx = 
o x 2 
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(a) Let 1) 
I{u) = (2Si:U/2 - it u#o 1(0) = 0 

Show that I, I' are continuous on (0,11'). (The only trouble occurs at u = O. 
Use L'Hospital's rule to show that the appropriate limits are finite.) 

(b) Use Lemma 1 to conclude that 

lim /.7T [2 . 1 /2 - .!.] sin(N + -21 
)u du = 0 

0 smu u 
(c) Hence show that 

/.
7T /.7T sin(N + l)u lim DN(U)du = lim 2 du 

0 0 U 

(d) Make the appropriate substitution in the second definite integral 
and recall the appropriate facts about DN(U) to conclude that 

. /.(N+l/2)7T sin x 11' 
hm --dx=-

0 x 2 
(e) If (N - X (N + show that 

l x sin x l(N + 1/2}7T sin x 
--dx= --dx+€x 

o x 0 x 
where I€xl l/(N - Conclude that the improper integral converges to 
11'/2 when X 00. 

15. (a) Set x = 11'/2 in the Fourier series for I(x) = x, -11' < X < 71', to obtain 
the formula 

11' 111 -=1--+---+· .. 435 7 
(b) Set x = 7r/4 in the series part (a) to obtain 

= V2 (1+ - - + ... ) - (1- + - + ... ) 
(c) Conclude from part (b) that 

7r 1 1 1 1 1 1 1 
- = 1+ - - -- -+ - + -- - - -+ ... 2V2 3 5 7 9 11 13 15 

(d) If we set x = 7r in the series in (a), we find that the series sums to 
zero. Why doesn't this contradict I(x) = x? 

16. (a) Show that 

2 7r2 4 ( )m 4 x = - - 4 cos x + cos 2x - - cos 3x + ... + -1 - cos mx + ... 
39m2 

for -11' X $ 11'. 
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(b) Setting x = 0 in (a), find the sum 

1-!+! - + ... = 
4 9 16 L...J m2 

(c) What is 

[Hint: Set x = 1r in part (a).] 
(d) What is 

[Hint: Add (b) and (c).] 

00 1 
Lm2 
m=l 

1 Lm2 
modd 

m=l 
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17. Let f(x) = x, -1r < X < 1r. What is the sum of the Fourier series for 
x = -1r, X = 1r? 

18. Let f(x) = eX, -1r < X < 1r. What is the sum of the Fourier series for 
x = -1r, X = 1r? 

19. Let f(x), g(x) be piecewise smooth functions for a < x < b. Show that 

f.b f.b P 
a f(x)g'(x)dx + a f'(x)g(x)dx = - + O)g(Xi + 0) - f(x, - O)g(x, - 0)] 

+ f(b - O)g(b - 0) - f(a + O)g(a + 0) 

20. Use Exercise 19 to prove the following integration-by-parts formula for 
piecewise smooth functions: 

[ f(x)g'(x)dx = feb - O)g(b - 0) - f(a + O)g(a + 0) -[ f'(x)g(x)dx 
P -L g(xt - O)[f(xi + 0) - f(x, - 0)] 

,=1 
P -L f(Xi - O)lg(x, + 0) - g(x, - 0)] 

P 

- I)f(x, + 0) - I(xi - O)][g(x, + 0) - g(x, - 0)] 

21. By examining the proof of Theorem 1.1, show that the conclusion is valid 
if I, f', I" are piecewise continuous. 

22. On the basis of Exercise 21, for which n 1, can we assert that the Fourier 
series of xn sin l/x is convergent for all x, -1r < X < 1r? 
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23. Let f(x), -1T < X < 71", be a piecewise smooth function with Fourier 
coefficients An, Bn. Apply Exercise 20 with a = -1T, b = 1T, g'(x) = cosnx 
to find an asymptotic formula for An, Bn, n -+ 00. 

1.3. Uniform Convergence and the Gibbs Phenomenon2 

We have seen that the Fourier series of a piecewise smooth function converges to 
the function except at points of discontinuity, where it converges to the average 
of the function's left- and right-hand limits. Since we are interested in approx-
imating functions by partial sums of their Fourier series, it is of interest how 
the Fourier series converge near a discontinuity, that is, how the partial sums of 
Fourier series behave near discontinuities of their functions. We turn first to an 
example. 

1.3.1. Example of Gibbs overshoot. Consider the function 

f(x) = {-I -1T x < 0 
1 

The cosine coefficients are all zero (f is odd), and the sine coefficients are given 
by 

2111" 2 Bn = - sinnxdx = -[1- (-It] 
1T 0 nlT 

n = 1,2, ... 

The partial sum of the Fourier series is therefore 
4 [ . sin3x sin(2n - I)X] 

hn(x) = f2n-l(X) = -; smx + -3- + ... + 2n -1 

From the graph of Fig. 1.3.1 we see that, just before the discontinuity, the 
partial sums overshoot the right- and left-hand limits and then slope rapidly 
toward their mean. On the interval -1T X 1T, It has one maximum and one 
minimum, h has three maxima and three minima, 15 has five maxima and five 
minima, etc. We can actually calculate the overshoot by computing the derivative 

4 (1.3.1) = -[cos x + cos3x + cos5x + ... + cos(2n - l)xJ 
1T 

and solving the equation (x) = O. 
To solve this equation, we multiply (1.3.1) by sinx and use the identity 

sinxcoskx = + l)x - sin(k - l)xJ 

and get 

{ 

n-l } 
1T sinx (x) = 2 sin 2x + I,:[sin 2(k + l)x - sin 2kx] 

k=l 
= 2sin2nx 

2This section treats theoretical material and can be omitted without loss of continuity. 
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FIGURE 1.3.1 The Gibbs phenomenon for n = 10 and n = 50. 

Therefore, the extrema occur at the points 

2nx = ±7r I ±27r I ••• , ±2n7r 

These points are equally spaced in [-1r,7r]. It is the maximum closest to the 
discontinuity (Le., when x = 7r /2n) that is of interest, so we wish to compute 

f2n-l = i [sin +! sin 37r + ... + _1_ sin (2n - 1)7r] 
2n 7r 2n 3 2n 2n - 1 2n 

for large n. The technique we will use for evaluating this sum consists of rewriting 
the sum so that it looks like the approximating sum of a Riemann integral and 
then evaluating the integral. Our answer will be exact when n t 00 and so should 
give a good approximation for large n. 

The function whose integral we will approximate is g(x) = (sinx}/x. Consider 
the partition of [0, 7rJ, given by the points {Xk}, where 

7rk 
k = 1, ... ,n Xk = n 

7r 
= n 

If we choose the midpoints of each of these intervals as our sampling points, 
then we have 

( ') A sin 7r /2n 1r sin(2n - 1)7r /2n 7r l1t sin x 
L-, 9 xk UXk = - + ... + - -- dx 
k=l 1r /2n n (2n - 1)7r /2n n 0 x 
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If we rearrange our sum, we see that it equals 

2n 1r [. 1r sin 31r /2n sin(2n - 1)1r /2n] 1r r ( 1r ) - - sm - + + ... + = - J2 -1 -1r n 2n 3 2n - 1 2 n 2n 
Therefore the limit of the overshoot is given by 

lim hn-l = J.7r sin x dx 
ntoo 2n 1r 0 X 

We can approximate the integral numerically as follows: 

so 

and 

. x3 x5 x7 
smx = x - - + - - - ... 

3! 5! 7! 

sin x x2 X4 x6 

-=1--+---+··· x 3! 5! 7! 

J.7r sinx dx = 
1r 0 X 

= 1.18 to two decimal places 

This means that if we stand at anyone point, we will land on the graph of f (x) 
in the limit n t 00. However, if we ride the crest of the worst point possible 
for each n, then we will never reach the graph of f(x). When n t 00, we will 
be left dangling approximately 1.18 units above the origin. This behavior can 
be described by saying that the partial sums do not converge uniformly to f(x) 
(i.e., the entire curve is not arbitrarily close to the graph of f for sufficiently large 
n). Rather, they converge to the graph indicated in Fig. 1.3.2. This is known 
as the Gibbs phenomenon. Notice that the overshoot of 1.18 is 9 percent of the 
jump made at the discontinuity. This is characteristic of the overshoot due to any 
discontinuity in any piecewise smooth function f. In fact, we have the following 
general fact, whose proof is omitted. 
Let f be piecewise smooth on (-1r, 1r). Then the amount of overshoot near a 
discontinuity, due to the Gibbs phenomenon, is approximately equal to 

0.09If(xo + 0) - f(xo - 0)1 
for large n. 
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y 

(-n, 1.18) (0, 1.18) (n, 1.18) 

x 
(-n.O) (0.0) (n.O) 

(-n. -1) 
(-n; -1.18) (0, -1.18) (n, -1.18) 

FIGURE 1.3.2 Limiting graph in Gibbs' phenomenon. 

1.3.2. Implementation with Mathematica. The graphs of the Gibbs 
phenomenon can be easily produced using Mathematica. We will illustrate this 
with the function 

1 (x) = {-I -1r < x 0 
1 O<x<1r 

To implement this in Mathematica, we first define a step function by means of 
the "If' function: 

With this definition, the function 1 can be written 

f[x_]:=l - 2u[-Pi,x]+2u[O,x] 

To see this in more detail, note that the function If takes three arguments; 
the first argument is a condition, the second argument is the value of the function 
when the condition is satisfied, and the third argument is the value of the function 
if the condition is not satisfied. In the case at hand, we see that if -1r < x < 0, 
then the first condition is met but not the second, so that f (x) = 1 - 2 + 0 = -l. 
If 0 < x < 1r, then both conditions are satisfied, so that I(x) = 1 - 2 + 2 = 1, 
as required. In case x = 0 only the first condition is satisfied, so that 1(0) = 
1 - 2 + 0 = -1, as required. 

This function can be plotted in Mathematica by means of the commmand 

U[a_]:=Plot[u[a,x],{x,a-l,a+l}] 
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For example, the graph of u[2,x] can be obtained by typing U[2]: 

0.8 

0.6 

0.4 

0.2 

I I I I 

1.5 2 2.5 3 

If we want to graph the Fourier series of fusing Mathematica, we first recall 
the Fourier series representation for the partial sums: 

j () = sin((2k - l)x) 
2n-l X 1T' L....J 2k - 1 

k=l 

To implement this in Mathematica, we define a function of two variables as 
follows: 

f[n_,x_]:=(4/Pi) Sum[(1/(2 k -1» Sin[(2k-1) x],{k,l,n}] 

For example, if we now type f[3,x], we obtain the output 

sin [3x] Sin [5x] 
4(Sin[x] + -------+ --------) 

3 5 
Out [4]=---------------------------------

Pi 

To graph the partial sum, we define a function as follows: 

fgraph[n_]:=Plot[f[n,x],{x,-2Pi, 2Pi}] 
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If we type fgraph[3], we obtain 

0.5 

-6 -4 -2 2 

-0.5 

whereas if we type fgraph[101 we obtain 

0.5 

-6 -4 -2 2 4 6 

-0.5 

In order to display the two graphs simultaneously, we type 

Plot[{f[3,x], f[10,x]},{x,-2Pi,2Pi}] 
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to obtain 

0.5 

-6 -4 -2 2 4 6 

1.3.3. Uniform and nonuniform convergence. In many problems it is 
important to avoid the Gibbs phenomenon-in other words, to be sure that the 
function f(x) is well approximated by the partial sum fn(x) at all points of the 
interval -L x L. Recall that a sequence of functions fn(x), a x b, 
converges uniformly to a limit function f(x), a x b, if 

where 
Ifn(x) - f(x)1 fn a x b, n = 1,2, ... 

lim fn = 0 
n-.oo 

This is clearly violated in the Gibbs phenomenon, for in the previous example 
liIDn-.oo[hn-l (1r /2n) - f(1r /2n)] = 0.18 .... 

1.3.4. Two criteria for uniform convergence. We shall give two general 
criteria for uniform convergence. The first of these can be tested on the series, 
while the second can be tested on the function. 

PROPOSITION 1.3.1. (First criterion for uniform convergence). Let 
f(x), -L < x < L, be a piecewise smooth function. Suppose that the Fourier 
coefficients {An}, {Bn} satisfy 

n=l 

Then the Fourier series converges uniformly. 

For example, E:=1 (sin nx)/n2 is a uniformly convergent Fourier series. 

PROPOSITION 1.3.2. (Second criterion for uniform convergence). Let 
f(x), -L < x < L, be a piecewise smooth function. Suppose in addition that 

f is continuous - L < x < Land f(-L + 0) = f(L - 0) 
Then the Fourier series converges uniformly. 



l.3. UNIFORM CONVERGENCE AND THE GIBBS PHENOMENON 65 

For example, f(x) = Ixl has a uniformly convergent Fourier series. 
Within the class of piecewise smooth functions, these criteria are necessary 

and sufficient: If the Fourier series of a piecewise smooth function converges 
uniformly, then f is continuous, f( - L + 0) = f(L - 0), and r:::l (IAnl + IBnl) < 
00. Once we leave the domain of piecewise smooth functions, the theory becomes 
much more complicated; for example, the Fourier series nx)/(n logn) 
is known to be uniformly convergent,3 but it does not satisfy the first criterion. 
Of course the sum of this series must be a continuous function by the general 
properties of uniform convergence. 

1.3.5. Differentiation of Fourier series. We now give a general criterion 
for differentiating a Fourier series. 

PROPOSITION 1.3.3. Let f(x), -L < x < L, be a continuous piecewise 
smooth function with f(L - 0) = f( -L + 0). Then 

1 n7r ( n7rX . n7rx) 2[f'(x + 0) + f'(x - 0)] = L...J L Bncos L - An sm L 
n=l 

Proof. It suffices to apply the convergence theorem to the piecewise smooth 
function f'(x) , -L < x < L. Its Fourier coefficients are given by 

1 lL 1 = 2L -L f'(x) dx = 2L (f(L - 0) - f(-L + 0)) 

IlL = 2L -L f'(x) cos (n7rx/ L) dx = L -L f (x) sin (n7rx/ L) dx = yBn 

1 l L
• n7r lL n7r = 2L -L f'(x) sm(n7rx/ L) dx = -Y -L f (x) cos (n7rx/ L} dx = -TAn 

where we have integrated by parts and used the continuity of f(x}, -L < x < L. 
The result now follows from Theorem 1.1 .• 

For example, suppose that we want to compute the Fourier series of f(x) = x2 , 

- L < x < L. The Fourier series of this even function is of the form Ao + 
2::0=1 An cos nx, where {An} are to be determined. From Proposition 1.3.3 we 
may write 

00 

2x = - LnAnsinnx 
n=l 

But from Example 1.1.1, Sec. 1.1, we know that 

3 A. Zygmund, Trigonometrical Series, Dover Publications, New York, 1955, p. 108. 
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Therefore An = 4(-1)n/n2 for n = 1,2, .... To compute Ao we must return to 
the definition Ao = (1/21r) x2dx = 1r2 /3. Therefore we have the Fourier series 

00 

x2 = 1r2/3 + 42)(-1)n/n2]cosnx 
n=l 

1.3.6. Integration of Fourier series. The following proposition shows that 
a Fourier series may be integrated term by term under very general conditions. 

PROPOSITION 1.3.4. Let f(x), -1r < x < 1r, be a piecewise smooth function 
with Fourier series 

00 

Ao + E(An cos nx + Bn sin nx) 
n=l 

If -1r Xo < x 1r, then 

1x 
f(u)du = Ao(x - xo) 

xo 

+ - sinnxo) + - cosnx)] 

Proof. Let F(x) = - Ao]du. F is continuous and piecewise smooth 
with F(-1r) = F(1r). Therefore by the basic convergence theorem (Theorem 1.1) 
we have 

00 

F(x) = Ao + E(Ancosnx + Bn sin nx) 
n=l 

where (An' En) are the Fourier coefficients of F. To compute these, we have, for 
ntfO, 

An 1f = - F(x) cosnxdx 
1r -1r 

= t cosnx {{If(u) - AoldU} dx 

= 1:lf(u) - An] ([ cos nx dx ) du 
1 1" sinnu = -- [J(u) - Ao}--du 
1r -1r n 
Bn = n 
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In the same fashion, we have 

117r - F(x) sin nx dx 
7r -7r 
117r = - [f(u) - AoHcosnu - cosn7r]du 

n7r -7r 
= 

Recalling the definition of F(x), we have proved that 1: f(u)du = Ao(x + ,,) +;\0 

00 1 
+ L ;;(An sin nx - Bn cos nx) 

n=l 

If we replace x by Xo and subtract the result, then Ao cancels and we have proved 
the stated result .• 

1.3.7. A continuous function with a divergent Fourier series. This 
example is constructed by a particular grouping of the terms in a special trigono-
metric series. Explicitly, we define the finite trigonometric sums 

(1.3.2) C ( ) (N. 1) cos(Nn + 2)x cos(Nn + mn)x 
nX =cos n+ x+ + ... 2 ffln 

(1.3.3) D ( ) ( l\T 1) cos(Nn - 2)x cos(Nn - mn)x 
n X = cos Hn - X + 2 + ... + ffln 

and the function 

(1.3.4) 

The integers Nn , mn will be chosen so that 

(1.3.5) 

(1.3.6) 

(1.3.7) 

Cn(O) -- --+ 00 n2 

- 7r X 1r, n = 1,2, ... 

Nn + mn < Nn+l - mn+l n = 1,2, ... 
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To do this, we use the following two facts: 
n 1 L k > logn n = 1,2, ... 

k=l 
(1.3.8) 

(1.3.9) 4 n = 1, 2, ... , -1r X 1r 
k=l k 

To prove (1.3.5), we use the trigonometric identity 

b 2 · a+b. a-b cosa-cos =- Stn--Stn--
2 2 

to write 

C () D ( ) . ( ) ( . sin 2x sin mnX) n X - n X = -2sm Nnx smx + -2- + ... + mn 

From (1.3.9) the second factor is less than or equal to 4, and we have proved 
(1.3.5). 

To prove (1.3.6), we write 
1 Cn(O) = Dn(O) = 1 + 2 + ... + mn > log(mn) 

If we choose mn = 2n3 , then log(mn) = n3 10g2, and thus Cn(0)/n2 and Dn(0)/n2 

tend to 00, as required. 
To prove (1.3.7) we define NI = 3 and for n > 1, Nn+1 - Nn = 2mn+l' With 

this choice, it immediately follows that Nn+l - Nn > mn+l + mn, as required. 
Having defined Nn , ffin, it follows from (1.3.5) that the series (1.3.4) is uni-

formly convergent and therefore f(x), -1r < x < 1r, is a continuous function. It 
remains to compute the Fourier series of f. 

Since f(x), -1r < X < 1r, is an even function, the Fourier sine coefficients Bn == 
O. To compute the Fourier cosine coefficients, we may multiply the uniformly 
convergent series (1.3.4) by cos nx and integrate on -1r < X < 1r. From (1.3.7) 
there is exactly one nonzero term corresponding to each integer of the form n = 
Nk ± 1, ... ,Nk ± mk. These nonzero terms are of the form 

1 An = ±-; if n = Nk ± j 1 j mk 
J 

In particular, the partial sums at x = 0 satisfy 
Ck(O) - Dk(O) 

fNIc+m,,(O) = (C1(0) - D1(0)) + ... + k2 

f (O) = (C (0) - D (0)) + ... + Ck(O) - Dk(O) _ Dk+1(0) 
NIc+l 1 1 k2 (k+1)2 

Dk+l(O) 
fNIc+mlc(O) - fNIc+l (0) = (k + 1)2 
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If the sequence of partial sums fn(O) were convergent, it would follow that 
lim(fNk+mA: (0) - fNHl (0» = 0, which contradicts (1.3.6). Therefore the Fourier 
series diverges at x = 0, which was to be proved. 

EXERCISES 1.3 

1. Let 

hn-l(X) = [sin x +! sin3x + ... + -2 1 sin(2n -1)X] 
1f 3 n-l 

Show that 

J ( k1f) 2 J.k1r sin x d 
2n-l - - -- x 2n 1f 0 x 

k = 1,2, ... 

[Hint: Write the sum for hn-l(k1f/2n) as the approximating sum for an 
appropriate Riemannian integral.] 

2. Estimate the integral Jok1r (sinx)/xdx for k = 2,3,4. 
3. Let f(x), -L < x < L, be a piecewise smooth function. Show that the 

first criterion for uniform convergence follows from the Weierstrass M -test 
(Appendix A.2.). 

4. Let f(x}, -L < x < L, be a piecewise smooth function. Show that An = 
O(l/n}, Bn = O(I/n} when n t 00. 

5. Let f(x), -L < x < L, be a piecewise smooth function. Let be the 
Fourier coefficients of f'. IlL n1fX 

= L -L f'(x) cos L dx 

= .!.lL f'(x) sin n1fX dx 
L -L L 

If f is continuous and f( -L + 0) = f(L - 0), show that 

A' - n1f B B' = _ n1f A 
n- L n n L n 

6. Let f(x}, -L < x < L, be a continuous piecewise smooth function with 
f( -L + O} = f(L - 0). Use Exercises 4 and 5 to show that An = O(I/n2), 
Bn = O(I/n2 ) when n t 00. 

7. Let f(x), -L < x < L, be a continuous piecewise smooth function with 
f( -L + 0) = f(L - 0). Use Exercise 6 to prove the second criterion for 
uniform convergence (Proposition 1.3.2). 

8. Use Exercise 5 and the main convergence theorem (Theorem 1.1) to prove 
the proposition on differentiating a Fourier series. 
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9. Let f(x) = E::l e-(n
2
1r/L2} sin n1rx/ L be the Fourier series of a piecewise 

smooth function. Show that 
00 

f'(x) "n1r -(n21r/L2) n1rX = L...J-e cos-
n=l L L 

10. Consider the Fourier series of f(x) = x found in Example 1.1.1, Sec. 1.1. 
By formally differentiating the series at x = 0, show that it is not valid to 
differentiate a Fourier series term by term, even if the function is differen-
tiable. 

11. Consider the Fourier series of f(x) = x found in Example 1.1.1, Sec. 1.1. 
By integrating this series, find a series for x 2 • 

12. Integrate the series of Exercise 11 and compare the result with Example 
1.1.5. 

13. Among the series for x, X2, and x3 - L2x found in Exercises 10 to 12, which 
are uniformly convergent? 

14. Let f(x) = X, -1r < X < 1r. Find the maximum of the partial sum fN(X) 
and verify the presence of Gibb's phenomenon. 

15. This exercise provides the missing steps in the proof of (1.3.9). 
(i) If 0 x 1r, establish the identity 

. sin 2x sin nx rz: 
SlDX+-2-+"'+-n- = Jo (cost+···+cosnt)dt 

= {X sin(n + (1/2))t dt _ = 
Jo 2sin(t/2) 2 

(ii) Rewrite the integral in (i) as 

{X sin(n + {1/2))t ( . 1 _ dt + {X sin(n + (1/2))t dt Jo 2 sm{t/2) t Jo t 
(iii) Use the inequalities 1 sin 8 - 81 83/6, sin 8 2:: 28/1r for 0 8 1r to 
bound the first integral in the form 

If sin(n + (1/2))t (2 - D dtl :::; :s [ t dt = 
(iv) Make the change of variable u = {n + 1/2)t in the second integral to 
prove that If sio(n +t (1/2))t dtl :::; /." Si: u du = 1.852 

(v) Conclude that I sin x + ... + {sin nx}/nJ 3.75 for 0 x 1r. 
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1.4. Parseval's Theorem and Mean Square Error 
Having developed the convergence properties of Fourier series, we now turn to 
some concrete computations that show how Fourier series may be used in various 
problems. 

1.4.1. Statement and proof of Parseval's theorem. The key to these 
applications is Parseval's theorem, a form of the pythagorean theorem that is 
valid in the setting of Fourier series. 

THEOREM 1.2. (Parseval's theorem). Let f(x), -L < x < L, be a piecewise 
smooth function with Fourier series 

00 
( n1rX . n1rx) Ao+ L.. AncosL+Bnsm-y;-

n=1 

Then 

(1.4.1) 
L 00 1 f(X)2cJx = + E(A; + 

-L n=l 

The left side represents the mean square of the function f(x), -L < x < L. The 
right side represents the sum of the squares of the Fourier components in the 
various coordinate directions cos n7rx/ L, sin n7rx/ L. 

Proof. The proof of Parseval's theorem is especially simple if the piecewise 
smooth function is also continuous with f( -L + 0) = f(L - 0). In that case we 
multiply the uniformly convergent Fourier series by f(x) to obtain 

00 

[ n7rX . n1rx] f(X)2 = Aof(x) + L.. Anf(x) cos L + Bnf(x) sm-y;-
n=l 

This series is also uniformly convergent, ·and we may integrate term by term for 
- L < x < L, with the result 

1: f(X)2cJx = Ao 1: f(x)cJx 

+ [An 1: j(x) cos + Bn l>(X) sin 

On the right we recognize the integrals that define the Fourier coefficients Ao, 
An, Bn· Dividing both sides by 2L, we obtain equation (1.4.1), the desired form 
of Parseval's theorem in this case. The proof in the general case is outlined in 
the exercises. • 
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1.4.2. Application to mean square error. Our first application of Par-
seval's theorem is to the mean square error q'Pv, defined by 

(1.4.2) 

This number measures the average amount by which fN{X) differs from f(x). 
The Fourier series of f(x) - fN{X) is 

00 

'"" \ n1fX • n'lfX) L..-J An cos L + Bn sm L 
n=N+l 

and therefore, by Parseval's theorem, we have f: [f(x) - fN(X)]2dx = JV=H (A! + 

and the formula 

(1.4.3) 

The mean square error is half the sum of the squares of the remaining Fourier 
coefficients. This formula shows, in particular, that the mean square error tends 
to zero when N tends to infinity. 

EXAMPLE 1.4.1. Let f(x) = lxi, -'If < x < 'If. Find the mean square error 
and give an asymptotic estimate when N -4 00. 

Solution. We have Bn = 0, A2m = 0, A2m- 1 = -4/'If(2m -1)2, so that 

=! A2 2 L...J n 
n=2N+l 

_ 
V2N-l - V2N 

= 1 00 [ 4 ]2 
"2 E 'If(2m -1)2 

m=N+l 

8 00 1 
= 'lf2 E {2m-l)4 

m=N+l 

Although we cannot make a closed-form evaluation of this series, we can still 
make a useful asymptotic estimate. To do this, we compare the sum with the 
integral 

8 {(X) 1 4 1 
7r2 iN (2x - 1)4 dx = 37r2 {2N - 1)3 
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y 

y =rpl x) 

N 
------ x 

N+ 1 N+2 N+3 

FIGURE 1.4.1 Illustrating the relation L::.'=N+I <p(m) S; J: <p(x ) dx. 

Figure 1.4.1 shows the comparison of a sum with an integral. This gives us the 
useful asymptotic statement 

= O(N- 3) N --) 00 

EXAMPLE 1.4.2 . Let J( x) = X, -11' < X < 7r . Find the mean squam eTTor 
and give an asymptotic estimate when N --) 00 . 

Solution. We have Am = 0, Bm = (-J)m-I(2/m), and therefore 
1 00 4 00 1 

= 2" L rn2 = 2 L m2 
m=N+ l m=N+ l 

To obtain a useful asymptotic estimate of this sum, we compare it with the 
integral 

so that 

2 ---100 dx 2 
x' - N N 

N--)oo • 
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1.4.3. Application to the isoperimetric theorem. We now give an ap-
plication of Fourier series to geometry, the so-called isoperimetric theorem. 

THEOREM 1.3. Suppose that we have a smooth closed curve in the xy plane 
that encloses an area A and has perimeter P. Then 

p 2 47rA 

with equality if and only if the curve is a circle. 

Proof. Suppose that the curve is described by parametric equations x = x(t), 
y = y(t) where -7r t 7r. The functions x(t), y(t) are supposed smooth and 
satisfy the normalization x( -7r) = x(1r), y( -1r) = y{7r) because the curve is 
closed. From calculus, the perimeter and area are given by the formulas 

p = i: vi .xI(t)2 + y'(t)2 dt A = i: x(t)y'(t) dt 

where x' = dx / dt, y' = dy / dt. By reparametrizing the curve, we may suppose 
that X'(t)2 + y'(t)2 is constant (see Exercise 20); in fact, it must be 

Now we introduce the convergent Fourier series 

00 

x{t) = ao + L(an cosnt + bn sin nt) 
n=l 
00 

y(t) = Co + L(en cos nt + lin sin nt) 
n=l 

Since the functions x(t), y(t) are supposed smooth, we also have the convergent 
Fourier series 

00 

x'(t) = L n( -an sin nt + bn cosnt) 
n=l 
00 

y'(t) = Ln(-cnsinnt+dncosnt) 
n=l 
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Applying Parse val 's theorem, we have 

p2 17r 00 
27r = [X'(t)2 + y'(t)2]dt = 7r E n2(a; + b; + c; + d;) -7r n=l 

A = 1: x(t)y'(t)dt 

= - ([x(t) + y'(t)]2 - [x(t) - Y'(t)]2}dt 117r 
4 -7r 

00 

= 7r E n(andn - bnCn) 
n=l 

Performing the necessary algebraic steps, we have 
p2 00 

21r - 2A = 1f E[n(an - dn)2 + n(bn + en)2 + n(n - l)(a; + b; + c; + d!)] 
n=l 

75 

The right side is a sum of squares with nonnegative coefficients; thus P2/27r -
2A O. If the sum is zero, then all of the terms are zero; in particular, a! + b! + 

+ = 0 for n > 1 and al - d1 = 0, bI + Cl = O. This means that 

x(t) = ao + al cos t - Cl sin t - 7r t 7r 

yet) = Co + Cl cos t + al sin t - 7r t 1f 

which is the equation of a circle of radius + c'f with center at (ao, co). The 
proof is complete .• 

EXERCISES 1.4 
Find the mean square errors for the Fourier series of the functions in Exercises I 
to 3. 

1. f(x)=lforO<x<7r,j(O)=O, andj(x) =-1 for -1r<x<O. 
2. j(x) = x2 , -7r X :::; 7r 
3. f(x) = sin lOx, -1r < X < 1r 
4. Write out Parse val 's theorem for the Fourier series of Exercise 1. 
5. Write out Parseval's theorem for the Fourier series of Exercise 2. 
6. Show that, in Exercise 1, = O(N-l), Nt 00. 
7. Show that, in Exercise 2, = O(N-3), Nt 00. 
8. Let I(x) = x(7r - x), 0 x :::; 7r. 

(a) Compute the Fourier sine series of f. 
(b) Compute the Fourier cosine series of f. 
(c) Find the mean square error incurred by using N terms of each series 

and find asymptotic estimates when N 00. 

(d) Which series gives a better mean square approximation of I? 
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9. Let f(x), g(x), -L x L, be piecewise smooth functions with Fourier 
series 

00 

" ( n7rX . n7rx) f(x) = Ao+ L....J AncOSL+BnslnL 

00 

" ( n7rX . n7rx) g(x) = 0 0 + L....J CncosL+Dnsln L n=l 
Show that 

1 lL 1 00 2L f(x)g(x)dx = AoOo + 2 + BnDn) 
-L n=l 

Note that this formula corresponds to the dot product formula 

(ali + bd + clk) . (a2i + b2.i + c2k) = ala2 + + CIC2 

for vectors in the three-dimensional space R 3. 

10. Let f(x) = (cosax/sina7r), -7r X 7r, where 0 < a < 
(a) Find the Fourier series of f. 
(b) Give an asymptotic estimate for the mean square error incurred in 

approximating f by the first N terms of the Fourier series. 
(c) Apply Parseval's theorem to obtain the following integral formula: 

f: (a2 - n2 )-2 = cos2axdx 
n=-oo 2 -1r 

(d) Prove that n-4 = 7r4/90. [Hint: Make a three-term Taylor 
expansion of part (c) in powers of a and identify the coefficients.] 

11. Let <p(x) he defined for x > 0 with <p(x) > 0, <p'(x) < 0, and the integral 
floo <p(x)dx convergent. 

( a) Show that 

roo <p(x)dx f: <p(n) roo <p(x)dx 
iN+l iN 

(b) Ded uee from this that 

-<p(N) f: <p(n) - roo <p(x)dx 0 
n=N+1 iN 

12. Let <p(x) = l/xs where s > 1. 
(a) Use Exercise 11 to show that 

-1 00 1 1 1 -< "----<0 NS - L....J nS s - 1 Ns-l -
n=N+l 
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(b) Show that this may be written in the form 

1 L..J n S - (s - l)Ns-I N 
n=N+l 

N-+oo 

77 

13. Let be the mean square error in the Fourier series of f(x) = X, -1f < 
X < 1f. Use Exercise 12 to show that = (l/N)[l + O(l/N)], N -+ 00. 

14. Let l,O(x) = 1/ P{x) where P(x) is a polynomial of degree s, s > 1. Modify 
Exercise 11 (b) to show that 

= [' y>(x)dx [1 +0 N-+oo 

15. Let be the mean square error in the Fourier series of f{x) = lxi, -1r < 
x < 1r. Use Exercise 14 to find an asymptotic estimate of the form = 
(C/NS)[l + O(l/N)], N -+ 00 for appropriate constants C, s. 

16. Let l,O(x) = e-x , x > O. Discuss the validity of the asymptotic estimate 

t y>(n) = [X> y>(x)dx[1 + O(I/N)] 
n=N+l N 

N-+oo 

17. Compute the ratio p 2 / A for an equilateral triangle. 
18. Compute the ratio p 2 / A for a square. 
19. Compute the ratio P2/ A for a regular polygon of n sides and compare it 

with the isoperimetric theorem in the limit when n -+ 00. 
20. Let x{t), y(t) be smooth functions, -1r t 1r, with (x')2 + (y')2 =f:. O. 

Let s(t) = V(x')2 + (y')2, P = s(1r), l = -1r + (21rs/P), x(i) = x(t), 
y{t) = y{t). Show that -1r i 1r and (dx/di)2 + (dy/di)2 = p2/41r2 . 

The following exercises are designed to lead to a proof of Parseval's theorem for 
piecewise smooth functions. 

21. Let f(x), -L < x < L, be a piecewise smooth function. Show that for each 
E > 0, there is a continuous piecewise smooth function f*(x), -L < x < L, 
with f*( -L + 0) = I*(L - 0) such that (1/2L) - f*(x»)2 dx < E. 

[Hint: Across each subdivision point replace I by a linear function on the 
interval x, - h < x < X, + h, where h is chosen in terms of E, p and the 
maximum of If(x)l, -L < x < L.] 

22. Let I(x), -L < x < L, be a piecewise smooth function and let I*{x), -L < 
x < L, be the continuous function constructed in the previous exercise. Use 
Proposition 0.3.2 to show that IIf - fNII Ilf - IN II, where IN is the Nth 
partial sum of the Fourier series for the function I(x), -L < x < L, and IN 
is the Nth partial sum of the Fourier series for the function I*{x), -L < 
x < L. 
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23. Use the triangle inequality from Sec. 0.3 to prove the inequality Ilf - fN II 
IIf - f*1I + IIf· - fNII· 

24. Show that there is an integer No so that for N 2:: No we have IIf - IN II < f. 
[Hint: Combine Proposition 0.3.4 with the Parseval theorem already proved 
for the function f·(x), -L < x < L.] 

25. Conclude the validity of Parseval's theorem for the piecewise smooth func-
tion f(x), -L < x < L. 

1.5. Complex Form of Fourier Series 

1.5.1. Fourier series and Fourier coefficients. It is often useful to rewrite 
the formulas of Fourier series using complex numbers. To do this, we begin with 
Euler's formula 
(1.5.1) el6 = cosO + isinO 
and the immediate consequences 

cosO = + e-l9 ) sinO = ;i(e,9 - e-t9 ) 

We apply these to a Fourier series: 
00 

( n1rX . n1rx) f(x) = Ao+ L...J AncOSL+BnsIDT 
n=1 

= Ao + £:[(.4,. - + (An + iBn)e-Con .. /L)j 
n=1 

Therefore we let an = - iBn), n = 1,2, ... ; an = + iB_n), n = 
-1, -2, ... ; and ao = Ao. With this convention the Fourier series assumes the 
form 

00 

(1.5.2) lex) = L aneln1fz/L 
n=-oo 

To obtain integral formulas for the coefficients {an}, we use (1.1.7) and (1.1.8), 

IlL f() ( n1rX .. n1rx) d L -L X X cos L - Z SID L x 

= lL f(x)e-(lmrz/L)dx 
L -L 

with a corresponding formula for the plus sign. When n = 0, (1.1.6) shows that 
ao is given appropriately. Thus we have 

(1.5.3) an = lL !(x)e-(tmrz/L) dx n = 0, ±I, ±2, ... 
2L -L 
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1.5.2. Parseval's theorem in complex form. Finally, we retrieve the ap-
propriate form of Parseval's theorem. To do this, multiply (1.5.2) by f(x) and 
integrate on (-L, L). The result is 

(1.5.4) 

1.5.3. Applications and examples. The functions e(m1rx/L) satisfy an or-
thogonality relation, which may be written in the form 

l L e(in1rx/L)e-(im1rx/L)dx = {O n # m 
-L 2L n=m 

These may be proved by using Euler's formula and the orthogonality of the 
trigonometric functions cos (n1rx/ L), sin (n1rx/ L). Knowing these orthogonality 
relations, we can develop the complex form of Fourier series in its own right, 
without reference to the original formulas of Sec. 1.1. 

The theory of Fourier series may also be extended to complex-valued func-
tions f(x), -L < x < L. These are of the form f{x) = flex) + ih(x), where 
ib 12 are real-valued functions. The Fourier coefficients are defined by the 
same formulas an = (1/2L) f(x)e-(sn1rx/L)dx. If both It and h are piece-
wise smooth functions, then the complex Fourier series converges for all x to 
4 [1(x + 0) + l(x - 0)], where 1 is the periodic extension of the piecewise smooth 
function f(x), -L < x < L. This convergence is understood as the limit of the 
sum when N tends to infinity. 

The Fourier coefficients of a real-valued function are characterized by the 
relation 

where the bar indicates the complex conjugate of a complex number: if c = a+ib, 
then c = a - ib. 

To simplify the computation of complex Fourier series, we indicate some for-
mulas that are of frequent use. If c = a + ib is a complex number, the exponential 
function eCX = eaxeWx = eax(cosbx + isinbx). From this we have (d/dx)eCX = 
aeax cos bx - beax sin bx + i( aeQX sin bx + beClX cos bx) = (a+ ib )eClX (cos bx +i sin bx) = 
cecx. Hence the differentiation formula 

d _ecx = ceCX 
dx 

is valid for any complex number c. 

EXAMPLE 1.5.1. Compute the complex Fourier series of f(x) = eClX, -1r < 
X < 7r, where a is a real number. 
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Solution. The Fourier coefficients are given by the formula 

an = - eo:r:e-mxdx = - e(a-m)xdx 1 111' . 1 111' 
-11' 2n -11' 

Noting that (d/dx)e(a-m)x = (a - in)e(a-m)x, we have 

an = _1_._ (e(a-m)lr _ e(a-m)(-lr») 
a -

= 2- _1_._ (_1)n(ea1l' _ e-alr) 
a -

1 . h (-l)n(a+in) 
= ;;: sm a2 + n2 

The complex Fourier series of f(x) = eo:r:, < x < is 

1 . h (-l)n(a+in) mx 
;; SID an L..J a2 + n2 e • 

n=-oo 

As our next application of complex Fourier series, we compute the Fourier 
series of 

If we were to use the real form of Fourier series, we would encounter many cum-
bersome trigonometric identities. With the complex approach, we avoid these. 
We begin with the identity 

1 . 
cos x = 2(eIX + e-IX

) 

We expand the mth power, using the binomial theorem: 

Therefore 

(eIX + e-ix)m = f: 
1=0 J 

cosm X = f: ei(21-m }X 
3=0 J 

This is the complex form of the Fourier series for cosm x. As a by-product, we 
can obtain some useful integrals. To do this, we multiply the previous equation 
by e-mx and integrate for < x < By orthogonality all the integrals are 
zero except when 2j - m - n = 0, in which case the integral is In particular, 
m + n must be even. Therefore we have 

1 111' ( )m -inx d {O m + n odd 
-11' cos x e x = (j) 0 m + n = 2j 2m 

The Fourier series for cosm x can also be written in a real form, to obtain 
familiar trigonometric identities. It is simpler to consider separately the cases m 
even and m odd. Thus, if m = 2k + 1, we can group the terms of the Fourier 
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series in pairs: j = 0 with j = m and j = 1 with j = m - 1, etc. To each pair, 
we apply Euler's formula, with the result 

(I)2k [ (2k + 1) 1 COS2k+ 1 X = 2 cos(2k + l)x + ... + k cos x 

In particular, this gives the identities 
1 

cos3 x = 4(cOS 3x + 3 cos x) 
1 

cos5 X = I6(cos5x + 5 cos 3x + 10 cos x) 

If m is even, we group the term j = 0 with j = m, etc., as before and finish 
with one ungrouped term in the middle. Applying Euler's theorem again, we 
have, with m = 2k, 

cos" x = G r [2 cos 2kx + ... + 2 1) cos 2x + e:) 1 
In particular, we retrieve the identities 

1 
cos2 x = 2{cos2x + 1) 

1 
cos4 X = g(cos4x + 4cos2x + 3) 

1.5.4. Fourier series of mass distributions. The theory of Fourier series 
is especially natural in the case of a mass distribution. This is defined by a mass 
distribution function F(x), -L < x < L, which can be any increasing function. 
The left and right limits are denoted by F{x - 0) and F(x + 0), respectively. The 
mass oj the interval a < x < b is defined by m(a, b) = F{b - 0) - F{a + 0). The 
mass of a point is defined by m({a}) = F(a + 0) - F(a - 0). 

For example, the Dirac 8 distribution of mass m at the point Xo is defined by 
setting F(x) = 0 for x < Xo and F{x) = m for x > Xo. At the other extreme, 
a mass distribution with density f(x), -L < x < L, is defined by the mass 
distribution function F(x) = f{y) dy. 

The Fourier coefficients of a mass distribution function are defined by the 
integrals 

n = 0, ±I, ±2, ... 

For n = 0 this is the total mass per unit length: (to = [F(L-O)-F( -L+0)]/(2L). 
The precise meaning for n =1= 0 can be defined by partial integration. If the mass 
distribution consists of several point masses plus a density, then each of the terms 
can be done separately. 
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EXAMPLE 1.5.2. Find the Fourier coefficients oj the mass distribution that 
consists oj a uniJorm distribution oj mass M on the interval -L < x < L, 
together with a Dirac 6 distribution oj mass m situated at the point x = o. 

Solution. The mass distribution function is linear with a jump at the point 
x = O. In detail, we have 

{ 
(M/2L)(x + L) if -L < x < 0 

F(x) = m+ (M/2L)(x + L) if 0 < x < L 
The Fourier coefficients are obtained as 

ao = (1/2L)(m + M), an = (m/2L) + (M/2L) I: e-inrz/Lax = (m/2L) 

since the last integral is zero for n =1= O •• 
The following theorem shows that the theory of Fourier inversion of mass 

distributions is especially simple. 

THEOREM 1.4. (Convergence theorem). Suppose that F(x), -L < x < L, 
defines a mass distribution m with Fourier coefficients an. Define the Fourier 
partial sum by 

N 
fN(x) = L ane,mfxjL - L < x < L, N = 1,2, ... 

n=-N 

Then if a < b, we have 

l b 1 1 
lim fN(x) dx = m(a, b) + -2m( {a}) + -2m( {b}) 

a 

Proof. We can repeat the steps of the proof of Fourier convergence, noting 
that 

fN(X) = I: DN(X - y)dF(y) 

[ fN(X) dx = I: ([ DN(X - y) ax ) dF(y) 

where DN is the Dirichlet kernel introduced in Sec. 1.2. From the properties of 
the Dirichlet kernel proved there, it follows that 

lim lb DN(X - y) dx = 1 a < y < b 
a 

lim lb DN(X - y) dx = 1/2 y = a,b 
a 

lim lb DN(X - y) dx = 0 otherwise 
a 



1.5. COMPLEX FORM OF FOURIER SERIES 83 

and that the integral is uniformly bounded by a constant. Therefore one may 
take the limit inside the sign of integration to obtain the result .• 

EXERCISES 1.5 
1. Verify that the orthogonality relations hold, in the form 

l L tn1rx/L -lm7rx/Ld,x _ {O if n f; m 
e e - 2L'f -L 1 n = m 

2. Use the formulas in Exercise 1 to prove (1.5.3) from (1.5.2). You may 
assume that the series (1.5.2) converges uniformly for -L < x < L. 

3. Use the complex form to find the Fourier series of f(x) = eX, -L < x < L. 
4. Let 0 < r < 1, f(x) = 1/(1 - re'X), -7r < X < 1r. Find the Fourier series 

of f. (Hint: First expand f as a power series in r.) 
5. Use Exercise 4 to derive the real formulas 

l-rcosx n 
2 2 = 1 + L.J r cos nx, 

1 + r - r cos X n= 1 

• 00 

rSlllX L' ------ = rnslnnx, 
1 + r2 - 2r cos x 

n=l 

6. Show that the convergence theorem from Sec. 1.2 can be written in complex 
form as 

N 

+ 0) + J{x - 0)] = lim L Cinelmrx/L 
2 

n=-N 

7. Show that the unrestricted double limit 

does not exist in general. (Hint: Try Example 1.1.4 at x = 0.) 

In the following exercises, find the Fourier coefficients of the indicated mass dis-
tributions. 

8. A mass m at the point Xo. 
9. A row of three equally spaced masses of mass m/3 at the points x = 

-L/2,x = O,X = L/2. 
10. A uniform distribution of mass M on the interval -L/2 < x < L/2. 
11. A triangular mass distribution described by the density function f(x) = 

M(L -lxl)/L2, -L < x < L. 



84 1. FOURIER SERIES 

12. Theorem 1.4 in the text gives no information in case a = b. Show that in 
this case 

} . fN(a) 
m( {a ) = hm 2N 1 

N-+oo + 
[Hint: Examine the behavior of DN(X)/(2N + 1) when N is large.] 

13. Show that the following analogue of Parse val's identity is valid: 

I· E:=-N lan l2 = L ({ })2 1m 2N 1 m a N-+oo + a 
where the sum is over all of the point masses of the mass distribution. 

14. A sequence of functions fn(x), -7r < X < 7r, is said to converge weakly 
to the function f(x), -7r < x < 7r, if for every piecewise smooth function 
g(x), -7r < X < 7r, we have 

fn(x)g(x)dx = L f(x)g(x)dx 

Suppose that f(x), -7r < x < 7r, is an arbitrary continuous function with 
Fourier partial sum fn(x), -7r < X < 7r. Prove that fn(x), -7r < X < 7r, 
converges weakly to f(x), -7r < x < 7r. [Hint: First establish the identity 

fn(x)g(x) dx = gn(x)f(x) where gn(x), -7r < X < 7r, is the Fourier 
partial sum of g(x), -7r < X < 7r.] 

1.6. Sturm-Liouville Eigenvalue Problems 

Fourier series may be formulated as the orthogonal expansion in terms of functions 
¢(x) that are solutions of the differential equation 
(1.6.1) ¢"(x) + A ¢(x) = 0 
on the interval - L < x < L and that satisfy the periodic boundary conditions 

¢(-L) = ¢(L) ¢'(-L) = ¢'(L) 
Indeed, the functions ¢(x) = sin (n7rx/ L) and ¢(x) = cos(n7rx/ L) satisfy these 
conditions with the value A = (n7r/L)2. 

More generally, we can study the solutions of the differential equation (1.6.1) 
that satisfy other sets of boundary conditions arising in problems of heat con-
duction and wave propagation. The general two-point boundary condition on the 
interval a x b is written 
(1.6.2) 

(1.6.3) 

cos a ¢(a) - Lsina¢'(a) = 0 

cos fj ¢(b) + Lsinfj¢'(b) = 0 
where L = b - a and a, fj are dimensionless parameters that may be assumed 
to satisfy 0 a < 7r, 0 {3 < 7r. The number A is caIled an eigenvalue and 
¢(x) is called an eigenfunction of the Sturm-Liouville (S-L) eigenvalue problem 
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defined by (1.6.1), (1.6.2), and (1.6.3). Clearly, ¢(x) == 0 is always a solution of 
the Sturm-Liouville eigenvalue problem, the so-called trivial solution. A solution 
¢(x) of (1.6.1), (1.6.2), and (1.6.3) that is not identically zero is called a nontrivial 
solution. 

1.6.1. Examples of Sturm-Liouville eigenvalue problems. Fourier sine 
series and Fourier cosine series both arise from Sturm-Liouville problems with a 
two-point boundary condition on the interval 0 < x < L. In the first case we 
use a = 0, f3 = 0, corresponding to the boundary conditions ¢>(O) = 0, ¢>(L) = 0; 
in the second case we use a = 1r /2, f3 = 7f /2 corresponding to the boundary 
conditions ¢>'(O) = 0, ¢>'(L) = O. 

The following worked examples demonstrate that no other solutions exist. In 
order to simplify the writing, we ignore arbitrary constants that may occur in 
the nontrivial solutions. 

EXAMPLE 1.6.1. (a = 0, f3 = 0) Find all nontrivial solutions of {1.6.1} on 
the interval 0 < x < L satisfying the boundary conditions ¢>(O) = 0, ¢>(L) = O. 

Solution. We consider separately the cases A = 0, A < 0, and A > O. 
In case A = 0, the general solution of (1.6.1) is ¢>(x) = Ax+B. The boundary 

conditions further require that 0 = ¢(O) = B, 0 = ¢>(L) = AL + B, which is 
satisfied if and only if (A, B) = (0,0). 

In case A = _J.L2 < 0, the general solution of (1.6.1) is ¢>(x) = Aesa + Be-sa. 
The boundary conditions further require that 0 = A + B, 0 = AepL + Be-pL , 
which is satisfied if and only if (A, B) = (0,0). 

In case A > 0, the general solution is ¢>(x) = A cos(xv'X) + B sin(xv'X). The 
boundary conditions further require that 0 = A, 0 = A cos (Lv'X) + Bsin(Lv'X). 
A nontrivial solution is obtained by taking B =I 0, Lv'X = n7f, where n = 1,2, .... 
Therefore we have found all of the eigenvalues and eigenfunctions, in the form 

( n1r)2 
An= L ' n = 1,2,... • 

EXAMPLE 1.6.2. (a = 7f /2, (3 = 7f /2) Find all nontrivial solutions of {1.6.1} 
on the interval 0 < x < L satisfying the boundary conditions ¢>'(O) = 0, ¢>'(L) = O. 

Solution. We consider separately the cases A = 0, A < 0, and A > O. 
In case A = 0, the general solution of (1.6.1) is ¢>(x) = Ax+B. The boundary 

conditions further require that 0 = ¢>'(O) = A, 0 = ¢>'(L) = A, which gives a 
nontrivial solution if and only if A = 0 and B is nonzero. 

In case A = _j.L2 < 0, the general solution of (1.6.1) is t/J(x) = Aesa + Be-sa. 
The boundary conditions further require that 0 = j.LA-J.LB, 0 = Aj.LePL-Bj.Le-pL , 
which is satisfied if and only if (A, B) = (0,0). 

In case A > 0, the general solution is t/J(x) = A cos(xv'X) + B sin(xv'X). 
The boundary conditions further require that 0 = t/J'(O) = B,f5.., 0 = t/J'(L) = 
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-Av'AsinLv'A + Bv'Acos(Lv'A). A nontrivial solution is obtained by taking 
B = 0, LV). = n7r, where n = 1,2, .... Therefore we have found all of the 
eigenvalues and eigenfunctions, in the form 

( n7r)2 (n7rx) Ao = 0, 4>o(x) = 1 An = L ,4>n(x) = cos L n = 1,2,... • 

1.6.2. Some general properties of S-L eigenvalue problems. The solu-
tions of Sturm-Liouville eigenvalue problems with two-point boundary conditions 
have some general properties, which are summarized in the following theorem. 

THEOREM 1.5. Consider the Sturm-Liouville eigenvalue problem represented 
by (1.6.1), (1.6.2), and (1.6.3). 

1. Suppose that 4>(x), 1/J(x) are nontrivial solutions of (1.6. 1}-(1. 6.3} with the 
same eigenvalue A. Then there is a constant C;/;O such that 

4>(x) = C1/J(x) 
2. Suppose that 4>1 (x), ¢2 (x) are nontrivial solutions of (1. 6.1 ) - (1. 6. 3) with 

different eigenvalues Al ;/; A2' Then the eigenfunctions are orthogonal: 

[.pI (x) ¢2(x) <Ix = 0 

Proof. 
1. First consider the case Q = 0, where the boundary condition at the left end 

requires ¢(a) = 0, 1/J(a) = O. Both 4>(x) and 1/J(x) satisfy the same second-order 
linear homogeneous differential equation, and so does any linear combination. 
We set 

f(x) = 'l/J'(a)¢(x) - 4>'(a)1/J(x) 
The function f(x), a < x < b, also satisfies (1.6.1) and the initial conditions 
f(a) = 0, f'(a) = O. This requires that f(x) == O. But if 1/J'(a) = 0 (resp. 
¢'(a) = 0), then 1/J(x) == 0 (resp. ¢(x) == 0), a contradiction, so that we have 
proved (1) with the value C = ¢'(a)/1/J'(a). 

In the general case a ;/; 0, we set 

f(x) = 1/J(a)4>(x) - ¢(a)1/J(x) 
The function f(x), a < x < b, also satisfies (1.6.1) and the initial conditions 
f(a) = 0, f'(a) = O. This requires that f(x) == O. But if 'ljJ(a) = 0 (resp. 
¢(a) = 0), then from (1.6.2) it follows that 1/J'(a) = 0 (resp. ¢'(a) = 0), so that 
¢(x) == 0 (resp. 1/J(x) == 0), a contradiction. We have proved the theorem with 
the value C = ¢(a)/1/J(a). 

2. To prove the orthogonality, we write (1.6.1) for ¢1 (x): 
(1.6.4) + AI4>1 (x) = 0 
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Multiply (1.6.4) by 4>2(x) and integrate on the interval a < x < b: 

[q,.(X)<I>7(x)dx+ AI [<I>I(X)q,.(X)dx = 0 

The first integral can be integrated by parts, to obtain 

<1>2 (X) <1>; -[ <1>; (X) <1>; (X) dx + AI [ <1>1 (x)q,. (X) dx = 0 

Now we interchange the roles of (4)., AI) and (4)2, A2) to obtain 

-[ <1>; (x) <1>; (x) dx + A2[ q,.(X)<I>I(X) dx = 0 
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When we subtract these two equations, the first integrals cancel, and we are left 
with 

(<1>2 (X) <1>; (x) - <1>1 (X) <1>; (X») + (At - A2) [ <l>t (x)q,. (x) dx = 0 

From the boundary conditions, we conclude that the endpoint terms contribute 
zero, so we are left with the statement 

(At - A2) [ <l>t(x)q,.(x) dx = 0 

But we have assumed that A} - A2 :/: OJ hence we conclude the required orthogo-
nality .• 

1.6.3. Example of transcendental eigenvalues. The next example illus-
trates the possibility of numerical/graphical determination of the eigenvalues. 

EXAMPLE 1.6.3. (a = 0, 0 < f3 < tr/2) Find all nontrivial solutions of {1.6.1} 
on the interval 0 < x < L satisfying the boundary conditions 4>(0) = 0, h 4>(L) + 
4>'(L) = 0, where h > O. 

Solution. In case A = 0, the general solution of (1.6.1) is 4>(x) = Ax + B. 
The boundary conditions further require that 0 = 4>(0) = B, 0 = h4>(L)+4>'(L) = 
h(AL + B) + A = A(l + hL), which requires that A = 0, B = O-hence a trivial 
solution. 

In case A = _p.2 < 0, the general solution of (1.6.1) is 4>(x) = AeJ4X + Be-/'&x. 
The boundary conditions further require that 0 = A+B, 0 = h(Ae/.&L + Be-/.&L) + 
(Ap.e/.&L - Bp,e-/.&L), which is satisfied if and only if (A, B) = (0,0). 

In case A > 0, the general solution is 4>(x) = A cos(x-viX) + B sin(xv'X). The 
boundary conditions further require that 0 = 4>(0) = A, 0 = h 4>( L) + 4>' (L) = 
hB sin(L-viX) + B-viX cos(L-viX). Clearly, neither term can be zero, so we can 
divide and obtain a nontrivial solution if and only if A satisfies the equation 

h hL 
(1.6.5) cot(Lv':.\) = - -IX = - L-IX 
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y 

(0, 

FIGURE 1.6.1 Graphical solution of cot{Lv'X) = -h/...!X. 

Therefore we have found all eigenfunctions in the form 

n = 1,2, ... 

where the eigenvalues An are determined by solving (1.6.5) .• 
From the graph of the cotangent function (Fig. 1.6.1), it is seen that the 

eigenvalues satisfy the inequalities 

i < LA < 11", 3; < LV>:; < 211", LA - (n -D 11" -t 0, n -t 00 

It is possible to make a more refined asymptotic analysis of the eigenvalues as 
follows. Writing L...!X = {n - {1/2))7r + En, we invoke the Taylor expansion of the 
cotangent function about the point {n - {1/2))7r: 

cot {{n - (1/2))7r + £) = -£ + 0{£3) £ -+ 0 

Substituting in (1.6.5), we find that 

hL 

from which we conclude that fn = -hL/n7r+0{1/n2 ) and we get the asymptotic 
formula 

hL LA = {n - (1/2))7r - - + 0(I/n2) n7r n -+ 00 
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1.6.4. Further properties: completeness and positivity. By analogy 
with Fourier series, we may expect to be able to expand a piecewise smooth 
function in a series of Sturm-Liouville eigenfunctions in the form 

00 

(1.6.6) 
n=l 

where the Fourier coefficients are defined by 

(1.6.7) An = I: tPn(X) dx 
14 4>n(x)2 dx 

n=1,2, ... 

The following theorem shows that we may always expect a complete set of 
eigenfunctions for the Sturm-Liouville eigenvalue problem. 

THEOREM 1.6. There exist an infinite sequence of solutions An,4>n{X) of the 
Sturm-Liouville eigenvalue problem defined by (1.6.1)-{1.6.3) that possess the 
following properties. 

• v' An+! - ,;>::;. 'If / L, n 00 
• If f(x), a < x < b, is a piecewise smooth function, the series (1.6.6) con-

verges to f(x + 0)/2 + f{x - 0)/2, a < x < b. 
• Parseval's relation holds, in the form 

00 1b b I>! q,n(x)2 dx = 1 l(x)2 dx 
n=l 4 a 

The proof will not be given here, but can be found in more advanced texts of 
analysis.4 

A final point of detail regarding Sturm-Liouville eigenvalue problems is the 
question of positivity of the eigenvalues. From the previous theorem, we see that 
we must have An > 0 for all large n, but it may happen that in some cases 
Al :=; O-for example, AI = 0 in case 0 = 'If /2, {3 = 7r /2. The following sufficient 
condition is easily proved. 

THEOREM 1.7. Suppose that the parameters 0, {3 satisfy the inequalities 0 ::; 
o < 7r /2, 0 ::; (3 < 7r /2. Then all eigenvalues of the Sturm-Liouville eigenvalue 
problem (1.6.1) with the boundary conditions (1.6.2),(1.6.3) satisfy An > O. 

Proof. Suppose that 4>{x) is a nontrivial solution of the Sturm-Liouville 
problem (1.6.1)-(1.6.3). We mUltiply (1.6.1) by 4>(x) and integrate on the interval 
a:=;x:=;b: 

16 
q,(X)q,"(X) dx + A l q,(X)2 dx = 0 

4See, e.g., G. Birkhoft' and G. C. Rota, Ordinary Differential Equations, Ginn, Lexington, 
MA,1962. 
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L--- a 

FIGURE 1.6.2 Regions of positive and negative eigenvalues. 

T he first in tegral can be integrated by parts, which leads to t he identity 

A t ¢(:cf dx = t ¢'(x)' dec + ¢(a)¢'(a) - ¢(b)¢'(b) 

The new integra l on t he right-hand side is stri ctly positive, since otherwise ¢(.?;) 
would be a constant functi on, which is possible if and only if a = ,,/2, /3 = 7r / 2, 
which is excl uded. On the other hand , we can rewri te the boundary conditions 
in the form ¢ (a) = L tan a¢' (a) , ¢(b) = - L tan /3¢' (b), which leads to 

A 1b ¢(x)'dx > L¢'(a)'tana + L¢'(bftan /3 0 

since a and /3 both lie in the first quadrant 0 :'0 a, /3 < 11'/2 .• 
We emphasize that the previous theorem only provides a sufficient condi tion 

for the positivity of the eigenvalues. In order to obtain more precise resul ts , 
we can plot the set of points (a, (3) for which Al > O. Figure 1.6.2 shows that 
t his region contains the square 0 :'0 a, /3 < ,,/2 and is bounded by a curve whose 
equation is sin (a+/3)+cos a cos /3 = O. T his cu rve passes t hrough the t hree points 
(a,/3) = (3"/4 , 0) , (,,/2,7r/2), and (0, 3,,/4). The complete analysis of negative 
eigenvalues is described next. Further details are described in t he exercises. 

We now present the complete analysis of the existence of negative eigenvalues 
for the Sturm-Liouville eigenvalue problem (1.6.1)- (1.6.3). If A = - J.l' < 0 is a 
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negative eigenvalue, then the corresponding eigenfunction must be of the form 

4J( x) = A sinh J.LX + B cosh J1.X 
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We may assume, without loss of generality, that J.L > O. Applying the boundary 
conditions (1.6.2), (1.6.3) yields the two simultaneous linear equations 

cos a (A sinh J.La + B cosh J.La) - L sin a (AI-' cosh J.La + B I-' sinh p,a) = 0 
cosfi (AsinhJ1.b + B cosh J1.b) + Lsin/1 (AJ1.coshJLb + BJ.L sinh J.Lb) = 0 

For a nontrivial solution we must have (A, B) =f:. (0,0), which can happen if and 
only if the determinant of the coefficients is zero. After some algebra, this is 
written 

tanhJ.LL sin(a + /1) 
(1.6.8) = 

J.LL cos a cos /1 + (LJ.L)2 sin a sin fi 
We consider four separate cases: 
(i) 0 < a < 1r /2, 0 < {3 < 1r /2 
(ii) 0 < a < 1r /2 < fi < 1r 
(iii) 0 < {3 < 1r /2 < a < 1r 
(iv) 1r/2 < a < 1r, 1r/2 < {3 < 1r 

In case (i), the left side of (1.6.8) is positive, while the right side is negative 
for J.L > 0; hence there are no solutions-in accord with Theorem 1.7. 

In case (ii), the denominator of the right side of (1.6.8) is zero when J.LL = vi cot a cot {31, yielding a vertical asymptote, to the right of which the right side 
of (1.6.8) is negative. The number of solutions to (1.6.8) depends on the initial 
value of the right side at J.L = 0, which is seen to be 

(1.6.9) 

We consider two subcases: 

sin(a + {3) 
cosacos/1 

(iia) sin(a + {3) + cosacos{3 > 0 
(iib) sin (a + {3) + cos a cos fi < 0 

In sub case (iia) the initial value (1.6.9) is greater than 1 and the right side 
of (1.6.8) increases to infinity, whereas the left side remains less than 1 and 
tends to zero. Hence the graphs do not intersect, and we have no solution. In 
subcase (iib) the initial value (1.6.9) is less than 1 and the right side of (1.6.8) 
increases to infinity, so that the graphs must intersect at some point to the left of 
the vertical asymptote. Hence there exists exactly one solution J.Ll that satisfies 
0< J.L1L < vi cotacot{3l· 

Case (iii) is identical to (ii) with the roles of a and /1 interchanged; hence the 
analysis is identical. 
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For case (iv) we rewrite (1.6.8) in the form 

(1.6.10) 
Av 

tanh v = B + Cv2 v=Ljt 

Note that the function v --7 Av/(B+Cv2) begins from the origin; it rises steadily 
to a maximum value, strictly larger than 1, at v = VB/C = vi cotacot,8l, and 
then steadily decreases to zero. The number of solutions depends on the slope at 
v = 0, leading again to the consideration of su bcases: 

(iva) sin(a + (3) + cos acos {3 < 0 
(ivb) sin(a + ,8) +cosacos,8 > 0 

In subcase (iva) the slope of the right side of (1.6.10) at v = 0 is greater than 
1, the slope of the hyperbolic tangent; hence we have no intersection to the left 
of the maximum. To the right of the maximum the right side of (1.6.10) tends 
to zero; hence there is exactly one intersection with the graph of the hyperbolic 
tangent. 

In subcase (ivb) the slope of the right side of (1.6.10) at v = 0 is less than 
the slope of the hyperbolic tangent; therefore initially it lies below the hyperbolic 
tangent. But at the maximum the order is reversed; hence there is precisely one 
solution to the of the maximum. To the right of the maximum the right 
side of (1.6.10) tends steadily to zero, whereas the hyperbolic tangent tends to 1; 
hence there is another solution to the right. 

Summarizing the preceding analysis, we have the following breakdown: 
• There are no negative eigenvalues if either 0 < a < 7r /2 and 

sin(a+,8)+cosacos,8 > 0 orO < f3 < 7r/2 and sin(a+f3) + cos a cos {3 > O. 
• There is precisely one negative eigenvalue if sin(a +,8) + cos a cos,8 < O. 

This is in the interval 0 < LA < vi cot a cot ,81. 
• There are precisely two negative eigenvalues if 7r /2 < a < 7r, 7r /2 < f3 < 7r, 

and sin(a + (3) + cosacos{3 > O. The first one satisfies 0 < < vi cot a cot{31 while the second one satisfies L-I-)..2 > vi cot a cot f31. 
In other words, the equation sin (a + f3) + cos a cos f3 = 0 defines two curves that 
divide the square 0 < a < 7r, 0 < (3 < 7r into three regions, corresponding to 
two, one, or zero negative eigenvalues. This is depicted in Fig. 1.6.2, where the 
unshaded region corresponds to no negative eigenvalues, the darker shaded region 
corresponds to one negative eigenvalue, and the lighter shaded region corresponds 
to two negative eigenvalues. 

1.6.5. General Sturm-Liouville problems. Many of the properties of the 
eigenfunctions of the simple differential equation </>"(x) + )..</>(x) = 0 are shared 
by the eigenfunctions of the more general equation 

(1.6.11) [s(x)</>'(x)]' + [)..p(x) - q(x)]¢(x) = 0 a<x<b 
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where s(x), p(x), q(x) are given functions on the interval a < x < b with p(x) > O. 
We have already studied the special case s(x) == 1, p(x) == 1, q(x) = O. The 
new feature here is that the eigenfunctions will satisfy a property of weighted 
orthogonality with respect to the weight function p(x), a < x < b. .. 

As before, we also need to consider boundary conditions at the endpoints 
x = a, x = b. These are written in the form (1.6.2)-(1.6.3), exactly as in the 
previous cases. We state and prove the corresponding orthogonality properties 
of the Sturm-Liouville eigenfunctions. 

THEOREM 1.8. Consider the Sturm-Liouville problem (1.6.11),(1.6.2)-(1.6.9). 
Suppose that f/JI (x), f/J2(X) are nontrivial solutions with different eigenvalues Al :j:. 
A2' Then the eigenfunctions are orthogonal with respect to the weight function 
p(x),a < x < b: t 4>,(x) q,.(x)p(x) dx = 0 

If the two eigenfunctions belong to the same eigenvalue Al = A2, then the eigen-
functions must be proportional: f/J2(X) = Cf/Jl (x) for some constant C. 

Proof. Write the Sturm-Liouville equation satisfied by f/Jl: 
[sf/J;]' + (AlP - q)f/Jl = 0 

Multiply this equation by 4J2 and integrate the resulting equation on the interval 
a < x < b: t 4>2 (x)(s4>; (x))' dx + t q,.(X)(A,p(X) - q(x»4>, (X) dx = 0 

The first integral can be integrated by parts to yield 
(1.6.12) 

q,.(x)s(x)4>; (x)l: - t (x) dx + t 4>2 (X)(A,p(X) - q(x»4>, (x) dx = 0 

Now we interchange the roles of f/Jl (x) and f/J2(X) to yield 
(1.6.13) 

4>, - t dx + t 4>, (X)(A2P(X) - q(x))q,.(x) dx = 0 

When we subtract (1.6.12) and (1.6.13) and apply the boundary conditions, all 
of the terms cancel except for the final integrals. This yields the statement that 
(AI - A2) J: f/JI (x)4J2(x)p(x) dx = 0; if Al - A2 :j:. 0, it follows that f/JI and f/J2 must 
be orthogonal with respect to the weight function p, which was to be proved .• 

EXAMPLE 1.6.4. Find the orthogonality relation for eigenfunctions of the Bessel 
equation of order zero: (xf/J')' + AXf/J = o. 
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Solution. In this case we have sex) = x, p(x) = x, q(x) = O. If ¢>1 (x) 
and ¢>2(x) both satisfy the same two-point boundary conditions with differ-
ent eigenvalues Al =f. A2, then we must have the orthogonality in the form J: ¢>1(X)4>2(X)xdx = O. • 

EXAMPLE 1.6.5. Find the orthogonality relation for eigenfunctions of the Bessel 
equation of order m: (x4>')' + (AX - m2/x)4> = O. 

Solution. In this case we have s(x) = x, p(x) = x, q(x) = m 2 Ix. If 
4>1 (x) and 4>2(X) both satisfy the same two-point boundary conditions with dif-
ferent eigenvalues Al =f. A2, then we must have the orthogonality in the form J: ¢>1 (X)¢>2(X) x dx = o .• 

The orthogonality asserted in Theorem 1.8 also applies in the case of other 
types of boundary conditions, specifically 

Periodic boundary conditions: sea) = s(b), 4>(a) = 4>(b), ¢>'(a) = ¢>'(b) 

Singular Sturm-Liouville problems: sea) = 0, s(b) = 0 

In each of these cases we simply need to verify that the boundary term is zero. 
In detail, 

sex) - I: = 0 

EXAMPLE 1.6.6. Verify the orthogonality of eigenfunctions for the Legendre 
equation [(1 - X2)¢>'l' + A4> = 0, where -1 < x < 1. 

Solution. This is a singular Sturm-Liouville problem with sex) = (1 - X2), 
p(x) = 1, q(x) = 0, since s(l) = 0, s( -1) = O. The weight function is p(x) = 1, 
so that the orthogonality relation is ¢>1 (X)¢>2(X) dx = O .• 

In some cases we may have a singular Sturm-Liouville problem with respect 
to one end. In that case we require only that the boundary condition be satisfied 
at the nonsingular end, where sex) =f. O. The Bessel equation on the interval 
o < x < b provides an example of this type. 

EXAMPLE 1.6.7. Find the orthogonality relation/or eigenfunctions o/the Bessel 
equation 0/ order m: (x4>')' + (AX - m2/x)¢ = 0 on the interval 0 < x < b. 

Solution. In this case we have sex) = x, p(x) = x, q(x) = m2/x. If 4>1 (x) 
and ¢2(x) both satisfy the same separable boundary conditions at x = b with 
different eigenvalues Al =1= A2, then we must have the orthogonality in the form f: 4>1 (x)¢2(x) x dx = o .• 

The case of periodic boundary conditions can be applied to give a new proof 
of the orthogonality of sin (n7rx/ L), cos (n7fx/ L) as follows. 
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EXAMPLE 1.6.8. Consider the Sturm-Liouville eigenvalue problem for the equa-
tion </>" + ArP = 0 on the internal - L < x < L with the periodic boundary condi-
tions rP( - L) = </>( L ), rP' ( - L) = til (L ). Find the eigenfunctions and the associated 
orthogonality relation for A > O. . 

Solution. The general solution of the equation t/>" + At/> = 0 with A > 0 is 
</>(x) = Acosxv'X + Bsinxv'X. The periodic boundary conditions translate into 
the following system of two simultaneous linear equations: 

AcosL-IX - = + BsinL.J5.. 
- VABsinLv'A = + BsinLv'A 

This system has a nontrivial solution if and only if sin LVX = 0, namely, LVX = 
n1T'. The eigenfunctions are of the form rPn(x) = A cos (n1T'x/ L) + Bsin(n1T'x/ L), 
and the orthogonality relation is t/>m (x)rPn (x) dx = 0 if m i= n .• 

1.6.6. Complex-valued eigenfunctions and eigenvalues. In the above 
discussion of Sturm-Liouville eigenvalue problems, it has been tacitly assumed 
that both the eigenvalue and eigenfunction are real-valued. We now demonstrate 
that this leads to no loss of generality. 

PROPOSITION 1.6.1. Suppose that t/>(x) is a complex-valued function and A is 
a (possibly) complex number that satisfies the Sturm-Liouville equation (1.6.11) 
where s(x), p{x), q(x) are real-valued/unctions. Suppose/urther that t/>{x) satisfies 
one of the above boundary conditions. Then A is a real number, and both the real 
and imaginary parts of fjJ(x) are eigenfunctions of the Sturm-Liouville eigenvalue 
problem. 

Proof. We multiply the Sturm-Liouville equation (1.6.11) by the complex 
conjugate of t/>(x) and integrate over the basic interval: 

[ ¢(x)[s(x)4>'(x)]' dx + [[AP(X) - q(x)]¢(x)4>(x) dx = 0 

Similarly, 

[ 4>(x)[s(x)¢'(x)]' dx + [[J..p(X) - q(x)]4>(x)¢(x) dx = 0 

We subtract these and apply integration by parts on each of the first terms as 
follows: 

[ (¢(x)[s(x)4>'(x)]' - 4>(x)[s(x)cP'(x)]') dx = s(x)[¢(x)4>'(x) - ¢'(x)4>(x)l: 

But the boundary conditions imply that this term is zero. When we subtract the 
second terms, the result is 

(A - J..) [ p(x) 14>(x)12 dx = 0 
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which proves that the imaginary part of A is zero; in other words, A must be a 
real number. Writing 4>(x) = u(x) +iv(x), we see that both u(x) and v(x) satisfy 
the same Sturm-Liouville equation that was satisfied by the complex function 
<fJ(x), which was to be proved .• 

EXAMPLE 1.6.9. Consider the Stunn-Liouville eigenvalue problem for the equa-
tion 4>"(x) + A4>(X) = O. Find the complex-valued eigenfunctions satisfying the 
periodic boundary conditions 4>( - L) = 4>( L), 4>' ( - L) = 4>' (L ). 

Solution. From the previous work, all of the real-valued solutions are written 
sin(n7rx/L), cos(n7rx/L) with the eigenvalue A = (n1r/L)2, where n = 0,1,2 .... 
The corresponding complex-valued functions may be written 

4>(x) = eimrz/L 4>(x) = e-imfZ/L • 

By contrast, it should be noted that in the case of two-point boundary con-
ditions, Theorem 1.5 implies that the real and imaginary parts of a complex 
eigenfunction must be proportional to one another; put differently, any complex 
eigenfunction is a complex multiple of a real-valued eigenfunction. 

EXERCISES 1.6 

In Exercises 1-6, find the eigenvalues and eigenfunctions of the Sturm-Liouville 
eigenvalue problem (1.6.1). 

1. 4>(0) = O,4>'(L) = 0 
2. 4>'(0) - h4>(O) = 0, 4>'(L) + h4>(L) = 0, h > 0 
3. 4>'(0) = 0, 4>(L) = 0 
4. 4>(0) = 4>(L), 4>'(0) = 4>'(L) 
5. 4>(0) = O,4>'(L) - 4>(L) = 0 
6. 4>'(0) - 4>(0) = O,4>'(L) = 0 
7. Show that A = 0 is an eigenvalue of the Sturm-Liouville problem defined 

by (1.6.1)-(1.6.3) if and only if the parameters a, (3 satisfy the relation 
sin(a+,B)+cos a cos,B = 0, which can be written in the form tan a+tan,B = 
-1 when a :F 1r /2, ,B :/= 1r /2. 

8. Suppose the boundary conditions (1.6.2), (1.6.3) are written in the form 
hl 4>(O) - 4>'(0) = 0, h24>(L) + 4>'(L) = O. Show that A = 0 is an eigenvalue 
of the Sturm-Liouville problem if and only if the parameters hI, h2 satisfy 
the equation of the two-sheeted hyperbola: hI + h2 + Lhl h2 = O. 

9. On the basis of the results in this section, how many negative eigenvalues 
exist for the Sturm-Liouville problem (1.6.1)-(1.6.3) in the following cases? 

(a) a = 1r/4,,B = 1r/2 
(b) a = 1r/4,,B = 31r/4 
(c) a = 71r /8, {3 = 71r /8 
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10. Suppose a = 0 and 0 13 < 37f /4. Show directly that all eigenvalues of 
the Sturm-Liouville eigenvalue problem (1.6.1)-(1.6.3) satisfy An > 0, n = 
1,2, .... [Hint: If ljJ(x) = Asinh(JL(x - a)) is an eigenfunction satisfying 
the boundary condition at x = a, find a transcendental equation for J.L and 
show that it has no solution. Also check A = 0 separately.] 

11. Suppose that /3 = 0 and 0 $ O! < 37r /4. Show directly that all eigenvalues of 
the Sturm-Liouville eigenvalue problem (1.6.1)-(1.6.3) satisfy An > 0, n = 
1,2, .... [Hint: Use instead cjJ(x) = A sinh(J.L(x-b)) to find the appropriate 
transcendental equation.] 

12. Show that the Sturm-Liouville eigenvalue problem (1.6.1)-(1.6.3) has a neg-
ative eigenvalue if and only if the the parameters a, /3 satisfy the inequality 
sin(a + {3) + cos a cos {3 < O. [Hint: If cjJ(x) = Asinh(JLx) + Bcosh(J.Lx) is 
an eigenfunction, show that J.L must be a solution of the transcendental 
equation 

t h( L) - -L sin(a + 13) 
an JL - JL cos a cos {3 + (LJ.L)2 sin a sin {3 

and that this equation will have a nonzero solution if and only if the slope 
at J.L = 0 is larger than 1.] 

13. With reference to the generalized Sturm-Liouville problem, let L be the 
linear differential operator defined by L<p = (s<p')' - q<p. Prove the Lagrange 
identity <P2 L<PI - <Pl L<P2 = - where <pI, <P2 are twice-
differentiable functions. 

14. Use the Lagrange identity to give an alternative proof of Theorem 1.8. 
15. Show that if sex) 0, q(x) 0, then all eigenvalues of the generalized 

Sturm-Liouville problem with the two-point boundary conditions <pea) = 0, 
<p(b) = 0 satisfy An O. [Hint: Apply the Lagrange identity with <P2 = 1.] 





CHAPTER 2 

BOUNDARY-VALUE PROBLEMS IN 
RECTANGULAR COORDINATES 

INTRODUCTION 

In this chapter we will derive the general form of the heat equation and the 
wave equation for the vibrating string. These PDEs will eventually be solved in 
regions with rectangular, cylindrical, and spherical boundaries. In this chapter we 
focus attention on the case of rectangular boundaries, where we can use the usual 
cartesian coordinates (x, y, z), coupled with trigonometric Fourier series, which 
were introduced in Chapter 1. Regions with cylindrical or spherical boundaries 
will be treated in Chapter 3 and Chapter 4, respectively. 

2.1. The Heat Equation 
In this and the next two sections we will apply Fourier series to some typical prob-
lems of heat conduction. These are concerned with the flow of heat-specifically, 
with representing changes in temperature as a function of space and time. We 
denote by u(x, y, z; t) the temperature measured at the point (x, y, z) at the time 
instant t. We suppose that u is a smooth function of (x, y, z; t) and will proceed 
to determine a partial differential equation for u. 

2.1.1. Fourier's law of heat conduction. We consider a solid material 
that occupies a portion of three-dimensional space. A basic quantity of impor-
tance is the heat current density q(x; t). This vector quantity represents the rate 
of heat flow at the point x = (x, y, z). If n is any unit vector, the scalar quantity 
q . n is called the heat flux in the direction n. It measures the rate of heat flow 
per unit time per unit area across a plane with normal vector n. Fourier's law 
states that 

q = -k gradu 
where k is the thermal conductivity of the material. From calculus we know 
that grad u points in the direction of the maximum increase of u. Since heat 
is expected to flow from warmer to cooler regions, we insert the minus sign in 
Fourier's law. Thus q points in the direction of maximum decrease of u and Iql 
is the rate of heat flow in that direction. 

99 
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2.1.2. Derivation of the heat equation. During a small time interval 
(t, t + heat flows through the material and may also be generated by internal 
sources, at a rate s(x, t). Therefore the amount of heat that enters any region R 
of the material within the time interval (t, t + is, to first order in given 
by 

Q = (- liaR q - ndS + !fin SdV) Llt + OOLltl') 

where n is the outward-pointing normal vector, oR denotes the boundary of R, 
and the minus sign is in front of the surface integral because q. n dB is the density 
of heat flowing out of the surface element dB per unit time. 

On the other hand, this heat Q has the effect of raising the temperature by 
the amount Ut to first order in Therefore we can write 

Q = I I In cpu,dV Llt + OOLltI2) 

where c is the heat capacity per unit mass and p is the mass density of the 
material. Equating these, dividing by and letting -+ 0, we have the 
continuity equation 

This equation is valid for any region, no matter how large or small. In particular, 
we take a small spherical region R about the point (x, y, z), divide by the volume, 
and take the limit when the diameter of the sphere tends to zero. The surface 
integral can be handled using the divergence theorem, 

IL q-ndS= !fIn{diVq)dV 
and we obtain the differential form of the continuity equation: 

CPUt = div(k grad u) + s 
This is the general form of the heat equation. 

In most problems k is independent of X, and we can bring it outside and thus 
obtain the heat equation in the form 

(2.1.1) I Ut = K div(grad u) + r = KV2u + r I 
where K = k/cp and r = s/cp are the renormalized conductivity and source 
terms, respectively. K is called the thermal diffusivity of the material. The 
Laplacian of a function u is defined by 

V 2u = div(grad u) = U:z::z: + u1l1l + Un 

Remark. We can derive the heat equation without using the divergence theorem, 
by the following direct argument. Let R be the rectangular box defined by the 
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We must show that 

1 If. q ·ndS 
(X2 - Xd(Y2 - Yl)(Z2 - Zt} 8R 

tends to div q = + q: + q;)(x{, Yb Zl) when X2 Xb Y2 Yb Z2 -+ Zl. To 
do this, we consider each of the three integrals separately. For the first integral 
we have to examine 

1 1%21112 qX(X2' y, z) - qX(Xb y, z) dydz 
(Y2 - Yl)(Z2 - Zl) %1 111 X2 - Xl 

When X2 --+ XI, the integrand tends to q;(XI, y, z), a continuous function. When 
Y2 --+ Yl, Z2 --+ Zl, the resulting integral tends to q; (Xl, Yl, Zl). The same result is 
obtained if we first let Y2 Yl, Z2 -+ Zl. The second integral, where qX is replaced 
by qll, tends to q:(xt, Yt, zt} when X2 -+ Xl, Y2 4 Yh Z2 Zl in any order, and 
similarly for the third integral. This proves that J JR q . n dS, divided by the 
volume of the box R, tends to div q when the sides tend to zero, in any order. 
Referring to the continuity equation and letting X2 -+ Xl, Y2 --+ Yl, Z2 --+ Zl, we 
have proved that CptLt(Xl, Yt, zd = -div q(Xl' Yb zt} + S(XI' Yb Zl), which was to 
be shown. 

2.1.3. Boundary conditions. The heat equation describes the flow of heat 
within the solid material. To completely determine the time evolution of temper-
ature, we must also consider boundary conditions of various forms. For example, 
if the material is in contact with an ice-water bath, it is natural to suppose that 
u = 32°F on the boundary. Alternatively, we can imagine that the heat flux 
across the boundary is given; therefore by Fourier's law the appropriate bound-
ary condition is of the type V'u· n = a, a given function on the boundary. For 
example, an insulated surface would necessitate V'u· n = 0 on the boundary. A 
third type of boundary condition results from Newton's law of cooling, written 
in the form 

q·n = h(u-T) 
The heat flux across the boundary is proportional to the difference between the 
temperature u of the body and the temperature T of the surrounding medium. 
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2.1.4. Steady-state solutions in a slab. An important class of solutions 
of the heat equation are the steady-state solutions. This means that au/at = 0 or 
that u is a function of (x, y, z), independent oft. Thus we must have KV2u+r = 
0, a form of Poisson's equation. If in addition there are no internal sources of 
heat, then we have r = 0 and u satisfies Laplace's equation V2u = O. We restate 
this as follows. 

PROPOSITION 2.1.1. Steady-state solutions of the heat equation, with no in-
ternal heat sources, are solutions of Laplace's equation. 

Thus, Laplace's equation is a special case of the heat equation. 
In the next three sections we will make a detailed study of the heat equation 

in a slab, defined by the inequalities 0 < z < L, -00 < x < 00, -00 < y < 00. 
This mathematical model is appropriate for a wall of thickness L, where we ignore 
the variations of temperature in the x, y directions. The boundary conditions at 
the surfaces z = 0 and z = L reflect the thermal properties of the inside (resp. 
outside) of the wall. 

EXAMPLE 2.1.1. Find the steady-state solution of the heat equation Ut = 
KV2u in the slab 0 < z < L satisfying the boundary conditions u(x, y, 0) = T1, 

(8u/8z + hu)(x, y, L) = 0, where Tl and h are positive constants. 

Solution. Steady-state solutions of the heat equation are solutions of Laplace's 
equation, U xx + u yy + U zz = O. Since the boundary conditions are independent 
of (x, y), we look for the solution in the form u(x, y, z) = U(z), independent of 
(x, y). Thus U must satisfy U"(z) = 0, whose general solution is U(z) = A + Bz. 
The boundary condition at z = 0 requires Tl = A, while the boundary condition 
at z = L requires B + h(A + BL) = O. Thus B(l + hL) = -hA = -hTr, and the 
solution is U(z) = Tl - hTlz/(l + hL). • . 

In many problems it is important to compute the flux through the faces of the 
slab. From our earlier discussion, the flux is given by -kVu· nj here n = (0,0,1) 
for the upper face and n = (0,0, -1) for the lower face. Thus in Example 2.1.1, 
the flux from the upper face is -k8U /8z = khTt/(l + hL), while the flux from 
the lower face is k8U /8z = -khTt/(1 + hL) .• 

We now consider an example with internal heat sources. 

EXAMPLE 2.1.2. Find the steady-state solution of the heat equation Ut = 
KV2u+r in the slab 0 < z < L satisfying the boundary conditions u(x, y, 0) = T J , 

(8u/8z + hu)(x, y, L) = 0, where r, K, h, and Tl are positive constants. Find 
the flux through the upper and lower faces. 

Solution. The boundary conditions arc independent of (x, y); hence we look 
for the solution in the form u(x, y, z) = U(z), independent of (x, y). Thus U must 
satisfy KU"(z) + r = 0, whose general solution is U(z) = -rz2/2K + A + Bz. 
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The boundary condition at z = 0 requires Tl = A, while the boundary condition 
at z = L requires -rL/ K + B + h( -rL2 /2K + A + BL) = O. Thus B(hL + 1) = 
rL/K + hrL2/2K - hTl . The solution is U(z) = -rz2/2K + Tl + Bz, where 
B(l + b) = (r L/ K)(l + - hTl and the Biot modulus b is defined as b = hL. 
The flux through the upper face is -kU'(L) = krL/K - kB. The flux through 
the lower face is kU'(O) = kB .• 

In some cases the steady-state solution is not uniquely determined by the 
boundary conditions. For example, the heat equation Ut = KV2u with the 
boundary conditions uz(x, y, 0) = 0, uz(x, y, L) = 0 has the solution U(z) = A 
for any constant A. This phenomenon of nonuniqueness is equivalent to the 
statement that .A = 0 is an eigenvalue of the Sturm-Liouville problem with the 
associated homogeneous boundary conditions. Indeed, if we have two different 
steady-state solutions U1(z), U2 (z) with the same nonhomogeneous boundary 
conditions, then the difference U(z) = U1 (z) - U2 (z) is a nonzero solution of 
the homogeneous equation U"(z) = 0, satisfying the homogeneous boundary 
conditions. This is exactly the statement that .A = 0 is an eigenvalue of the 
Sturm-Liouville problem with these homogeneous boundary conditions. We will 
come back to this point in Sec. 2.3. 

2.1.5. Time-periodic solutions. Another important class of solutions of 
the heat equation are the periodic solutions. These correspond to a stationary 
regime, where the solution exists for all time, -00 < t < 00. Typically the 
solution is specified by a boundary condition of boundedness. We illustrate with 
the following problem from geophysics. 

The temperature at the surface of the earth is a given periodic function of 
time, and we seek the temperature z units below the surface. We assume that 
there are no internal heat sources and the thermal diffusivity is constant through-
out the earth. 

To formulate this problem, we suppose that the earth is Bat and that the 
surface is given by the equation z = O. (In Chapter 4 we show that the flat earth 
is a valid approximation for shallow depths.) The temperature on the surface is 
independent of location and depends only on time. Therefore we must solve the 
problem 

Ut = Kuzz 
u(O; t) = uo(t) 

z > 0, -00 < t < 00 

-oo<t<oo 
where uo(t) is periodic with period T. In addition we require that the temperature 
be bounded, 

lu(z; t)1 M 
since we do not expect that the temperature variations within the earth will 
exceed the variations on the surface. 



104 2. BOUNDARY-VALUE PROBLEMS IN RECTANGULAR COORDINATES 

To solve this problem, we first look for complex separated solutions, of the 
form 

u(z; t) = Z(z)T(t) 
Since the heat equation has real coefficients, the real and imaginary parts of a 
complex-valued solution are again solutions. Thus we may allow Z(z), T(t) to 
be complex-valued. Substituting into the heat equation, we have 

KZ"(z) T'(t) 
Z(z) = T(t) 

Both sides must be a constant, which we call -"\. Thus we have the ordinary 
differential equations 

T'(t) + "\T(t) = 0 
.,\ 

Z"(z) + K Z(z) = 0 

The first equation has the solution T(t) = e-'\t. Since we require bounded solu-
tions for -00 < t < 00, .,\ must be pure imaginary, .,\ = i/3 with /3 real. To solve 
the second equation, we try Z(z) = e'YZ. Thus we must have "(2e'Yz+("\1 K)e'Yz = 0, 
yielding the quadratic equation 

2 if3 0 "(+-= K 
In the case where /3 > 0, this has two solutions: 

'Y = ±( -1+ i)V /3 2K 
Since we require bounded solutions for z > 0, we must take the solution with 
Re"( < 0, that is, the plus sign. Therefore we have the complex separated solutions 

e-i/Jte( -1+,)z-I P/2K 

Taking the real and imaginary parts, we have the real solutions 
e-cz cos({3t - cz), e-cz sin(/3t - cz), c = J /312K 

(If /3 < 0, it can be shown that no new solutions are obtained.) We refer to these 
as the quasi-separated solutions. 

To solve the original problem, we suppose that the boundary temperature has 
been expanded as a Fourier series. 

( 2n1rt . 2n7rt) Ancos-r-+Bnsm-r -

We take (3n = 2n7r Ir, en = Jn1r I K r in the quasi-separated solutions just devel-
oped to obtain the solution in the form 

00 

u(z; t) = Ao + 2: e-CnZ[An cos(/3nt - Cnz) + Bn sin(/3nt - Cnz)] 
n=l 
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To verify that this is indeed a rigorous solution to the original problem, we may 
suppose that An, Bn are bounded by some constant. Then it may be shown that 
the formal series for U Z , U zz , Ut converge uniformly, and hence u indeed satisfies 
the heat equation. 

EXAMPLE 2.1.3. Solve the heat equation Ut = K U zz for z > 0, -00 < t < 00, 
with the boundary condition 

27rt 
u(O; t) = Ao + A 1 COS -

T 

where Ao, AI, and T are positive constants. Graph the solution as a function of 
t for zV7r/KT = 0, 7r/2, 7r, 37r/2, 27r and 0 t T. 

Solution. Referring to the general solution just obtained, we let Bn = 0 for 
n 1 and An = 0 for n 2. The solution is 

u{z; t) = Ao + A,e-e" cos C;t -ZV;T) 
In Fig. 2.1.1 we plot the temperature as a function of time for the depths indi-
cated. 

2.1.6. Applications to geophysics. This theory can be used to study the 
seasonal variations of temperature within the earth. For z = 0, the maximum 
ofu(z;t) is attained at t = O,± r,± 2r, .... For z = V7rKT, u(z;t) attains its 
minimum value for the same times, t = 0, ± T, ±2T, . . .. Stated differently, when 
it is summer on the earth's surface, it is winter at a depth of z = V7r K r. 

EXAMPLE 2.1.4. Suppose that K = 2 x 10-3cm2/s, T = 3.15 X 107 s. Find the 
depth necessary for a change from summer to winter. 

Solution. We have V7rKr = 4.45 x 102 cm. Therefore when it is summer on 
the earth's surface, it is winter at a depth of 4.4 meters. -

This theory can also be used to estimate the thermal diffusivity of the earth. 
To do this, we define the amplitude variation of the solution u(z; t) as 

A(z) = max u(z; t) - min u(z; t) 
-oo<t<oo -oo<t<oo 

By measuring A(z) at different depths, we may determine the diffusivity K. 
Indeed, using the solution obtained in Example 2.1.3, we have max u(z; t) = 
Ao+Ate-ClZ, min u(z; t) = Ao-Ate-CIZ, and thus A(z) = 2A1e-C1 \ A(z)/A(O) = 
e-C1Z . Let Zl be the depth for which e-C1Z = Since Ct = V7r / K T, we have 
V7r/KTZl = In2, K = 

EXAMPLE 2.1.5. Estimate the thermal diffusivity of the earth if the summer-
winter amplitude variation decreases by a factor of 2 at a depth of 1.3 meters. 
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FIGURE 2.1.1 Temperature as a function of time at different depths. 

Solution. We take T = (365)(24)(3600) = 3.15 x 107 S, Zl = 1.3 m. Thus 
7r(1.3)2 -7 2 

K = (3.15 X 107)(0.69)2 = 3.5 x 10 m /s • 

2.1. 7. Implementation with Mathematica. We can use Mathematica to 
do a three-dimensional plot of the bounded function u(z; t) that satisfies the heat 
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equat ion 

Ut = J( U ZZl 

with the boundary condition 

z > 0, -00 < t < 00 

27it 
u(O; t) = cos T 

From Example 2.1.3, t he solution is 

u(z· t) = cos - - c " (
21ft ) 

l T 1- l 

This function ca n be defined in Mathemati ca using the command 

107 

rn the follow ing graph we have chosen the parameter values T = ] ( = 2; the 
independent variables range over the in tervals 0 :'0 z :'0 2, 0 :'0 t :'0 5. T he plot is 
realized by typing 

Plot3D[u[z,t,2,2] ,{t ,O,5}, {z, O,2},PlotPoints->40,PlotRange->{-1,1}] 

to yield 
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At the front of this graph, moving from left to right, we see the change of 
seasons at the surface of the earth, while at the back of the graph, moving from 
left to right, we see the change of seasons at a depth of 2 feet. 

EXERCISES 2.1 

1. Find the steady-state solution of the heat equation Ut = KV2 U in the slab 
0< z < L, satisfying the boundary conditions u(x,y,O) = T1 , u(x,y,L) = 
T2, where TI and T2 are positive constants. 

2. For the solution found in Exercise 1, find the flux through the upper face 
z=L. 

3. Find the steady-state solution of the heat equation Ut = KV2u in the 
slab 0 < z < L, satisfying the boundary conditions (8u/8z)(x, y, 0) = <P, 
u(x, y, L) = To, where <P and To are positive constants. 

4. Find the steady-state solution of the heat equation Ut = KV2u in the slab 
o < z < L, satisfying the following boundary conditions: [k(8u/8z) -h(u-
To)](x, y, 0) = 0, [k(8u/8z) + h(u - T1)](x, y, L) = O. 

5. Find the steady-state solution of the heat equation Ut = KV2u - f3( u - T3) 
in the slab 0 < z < L, satisfying the boundary conditions u(x, y, 0) = T., 
u(x, y, L) = T2 where T., T2 , T3 , and f3 are positive constants. 

6. Find the steady-state solution of the heat equation Ut = KV2u + T in the 
slab 0 < z < L, satisfying the boundary conditions (8u/8z) (x, y, 0) = 0, 
u(x, y, L) = Tl where K, T, and T1 are positive constants. Find the flux 
through the face z = L. 

7. Find the steady-state solution of the heat equation Ut = KV2u + T in 
the slab 0 < z < L, satisfying the boundary conditions u(x, y, 0) = Tll 
u(x, y, L) = T2 , where K, T, TI, and T2 are positive constants. If Tl = T2 , 

show that the flux across the plane z = is zero. 
8. Find the steady-state solution of the heat equation Ut = KV2u + T(Z) 

in the slab 0 < z < L, satisfying the boundary condition u(x, y, 0) = 0, 
u(x, y, L) = 0, where T(Z) = TO for L/3 < z < 2L/3, T(Z) = 0 for 0 < 
Z < L/3 and 2L/3 < Z < L, and TO and K are positive constants. (Hint: 
Although U is not smooth, it may be supposed that u and U z are both 
continuous. ) 

9. A wall of thickness 25 cm has outside temperature -10°C and inside tem-
perature 18°C. The conductivity is k = 0.0016 cal/s-cm-oC and there are 
no internal heat sources. Find the steady-state heat flux through the outer 
wall, per unit area. 

10. Find the solution of the heat equation Ut = KV2u in the half-space z > 0 
for -00 < t < 00 satisfying the conditions lu(z; t)1 M, u(O; t) = Ao + 
Al cos 21rt/Tl + A2 cos 21rt/T2, where Ao, AI, A2, T1, and T2 are positive 
constants. 
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11. Let u(z; t) = e-CZ cos({jt - cz), where (j and c are constants. Show that u 
satisfies the heat equation Ut = Kuzz if and only if c2 = /3/2K. 

Exercises 12 to 14 require the solution of the heat equation in the slab 0 < z < L, 
where one face is maintained at temperature zero. Thus we have the boundary-
value problem 

Ut = Kuzz 
u(O; t) = Ao + Al coS(27rt/7) 
u(L;t) = 0 

o < z < L, -00 < t < 00 
-00 < t < 00 
-00 < t < 00 

12. Find all complex separated solutions satisfying the heat equation that are 
of the form u(z; t) = e1ze,{3t, where /3 is positive. 

13. By taking the real and imaginary parts of the complex-valued solutions 
found in Exercise 12, show that we have the quasi-separated solutions 

u(z; t) = eCz cos«(3t + cz) u(z; t) = e-cz cos(/3t - cz) 
u(Zj t) = eez sin«(3t + cz) u(Zj t) = e-cz sin«(3t - cz) 

where c = V/3/2K. 
14. By taking suitable linear combinations of the quasi-separated solutions 

found in Exercise 12 and steady-state solutions, solve the boundary-
value problem in the slab 0 < z < L. 

15. Suppose that the daily temperature variation at the earth's surface is a 
periodic function cp(t) = Ao + Al coS{27rt/7). Find the depth necessary 
for a change from maximum to minimum daily temperature if K = 2 X 
10-3 cm2/s and 1" = 24 x 3600 s. 

16. Find the bounded solution of the heat equation Ut = K U zz for z > 0, 
-00 < t < 00, satisfying the boundary conditions u(O; t) = 1 for 0 < t < 47, u(O; t) = -1 for 47 < t < 7, where u(O; t) is periodic with period 7. 

17. Find the bounded solution of the heat equation Ut = Kuzz for z > 0, 
-00 < t < 00, satisfying the boundary condition uz(O; t) = Al cos {jt, 
where (3 and Al are positive constants. 

18. Find the bounded solution of the heat equation Ut = K Uzz for z > 0, -00 < 
t < 00, satisfying the boundary condition uz(Oj t) - hu(O; t) = Al cos {jt, 
where h, (j, and Al are positive constants. 

19. For the solution found in Exercise 14, find the limit of u(z; t) when L 00 
and compare it with the solution for Example 2.1.3. 

20. Find the steady-state solution of the heat equation Ut = KV2u + r in the 
slab 0 < z < L satisfying the boundary conditions uz(O; t) = hfu(O; t) - TIl, 
uz(Lj t) = -h[u(L; t) - T2], where r, h, TI , and T2 are positive constants. 

21. For which values of the constants K, r, <Ph and <P2 does there exist a steady-
state solution of the equation Ut = KV2u + r satisfying the boundary 
conditions uz(x,y,O;t) = <PI, uz(x,y,L;t) = <P2? 
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2.2. Homogeneous Boundary Conditions on a Slab 

Many problems in mathematical physics and engineering involve a partial differ-
ential equation with initial conditions and boundary conditions. In this section 
we consider the case of homogeneous boundary conditions for the heat equation 
in the slab 0 < z < L. In Sec. 2.3 we will consider the general nonhomogeneous 
boundary condition. 

A homogeneous boundary condition at z = 0 has one of the following forms: 
u(O; t) = 0 or uz(O; t) = 0 or uz(O; t) = hu(O; t) 

where h is a nonzero constant that has the dimension of length-to All three of 
these may be included in the following succinct form: 

(2.2.1) cos a u(O; t) - L sin Q uz(O; t) = 0 

where the dimensionless parameter Q satisfies 0 ::; Q < 7r. When a = 0 we have 
the first boundary condition, u(O; t) = 0; when a = 7r /2 we have the second 
boundary condition, uz(O; t) = 0; and when cot a = hL we have the third bound-
ary condition, uz(O; t) = hu(O; t). Similarly, the general homogeneous boundary 
condition at z = L is written in the form 
(2.2.2) cos/3u(L; t) + L sin/3uz(L; t) = 0 
where 0 :::; /3 < 7r. The constant /3 is not related to a, in general. 

2.2.1. Separated solutions with boundary conditions. We now discuss 
separated solutions of the heat equation Ut = K U zz with the homogeneous bound-
ary conditions (2.2.1) and (2.2.2). A separated solution of the heat equation is 
written 

u(z; t) = t/>(z)T(t) 
Substituting in the heat equation Ut = Kuzz , we obtain 

t/>(z)T'(t) = K4>"(Z)T(t) 
Dividing by K 4>(z)T(t), we obtain T'(t)/ KT(t) = t/>"(Z)/4>(z). The left side 
depends on t alone, and the right side depends on z alone; therefore each is a 
constant, which we call -A. Thus we have the ordinary differential equations 
(2.2.3) 
(2.2.4) 

T'(t) + AKT(t) = 0 
4>"(z) + At/>(Z) = 0 

Equation (2.2.3) has the solution T(t) = e-)"Kt, which is never zero. To the 
second equation, (2.2.4), we must add the boundary conditions (2.2.1) and (2.2.2). 
The product u(z; t) = 4>(z)T(t) satisfies (2.2.1) if and only if 4>(z) satisfies the 
boundary condition cos a4>(O) - L sin 0.4>'(0) = O. Similarly, u(z; t) satisfies (2.2.2) 
if and only if t/>(z) satisfies the boundary condition cos Pt/>(L) + L sin P4>'(L) = O. 
This leads us to the following proposition. 
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PROPOSITION 2.2.1. The separated solutions of the heat equation Ut = Kuzz 
with the boundary conditions (2.2.1) and (2.2.2) are of the form un(z; t) = 
e-AnKt¢n(z) where An is an eigenvalue and ¢n(z) is an eigenfunction of the 
Sturm-Liouville eigenvalue problem ¢" (z) + A¢( z) = 0 with the boundary con-
ditions cosa¢(O) - L sin a ¢'(O) = 0, cos{3¢(L) + L sin {3¢'(L) = O. These 
eigenfunctions satisfy the orthogonality relation JoL <Pn (z)<Pm (z)dz = 0 for m =I n. 

Our first example corresponds to a slab with both faces maintained at tem-
perature zero. 

EXAMPLE 2.2.1. Find all the separated solutions of the heat equation Ut = 
Kuzz for 0 < Z < L satisfying the boundary conditions u(O; t) = 0, u(L; t) = O. 

Solution. The associated Sturm-Liouville problem is ¢"(Z) + A¢(Z) = 0 with 
the boundary conditions ¢(O) = 0, 4>(L) = O. In Sec. 1.6, we found that the 
solutions are ¢n(z) = sin (n7rz/ L), An = (n7r / L)2. Thus we have the separated 
solutions 

n = 1,2,... • 

The next example corresponds to a slab with one face insulated and the other 
face maintained at temperature zero. 

EXAMPLE 2.2.2. Find all the separated solutions of the heat equation Ut = 
Kuzz for 0 < Z < L satisfying the boundary conditions u(O; t) = 0, uz(L; t) = O. 

Solution. The associated Sturm-Liouville problem is ¢"(Z) + A¢(Z) = 0 with 
the boundary conditions ¢(O) = 0, 4>'(L) = O. For A = 0 the general solution of 
the differential equation is ¢(z) = Az + B. The first boundary condition requires 
B = 0, while the second boundary condition requires A = O. Hence A = 0 is not 
an eigenvalue. For A = _J-L2 < 0 the general solution satisfying the first boundary 
condition is ¢( z) = A sinh (J-Lz), but this satisfies the second boundary condition if 
and only if A = 0; hence A < 0 is not a possible eigenvalue. For A > 0 the general 
solution of the differential equation is ¢(z) = A sin zv'X + B cos zv'X. The first 
boundary condition requires that B = 0, while the second boundary condition 
requires that A cos Lv'X = O. For a nonzero solution we must take Lv'X = 
(n - n = 1,2,.... Therefore the solutions are 4>n(z) = sin(n - L, 
An = (n - 4)27r2 / L2. The separated solutions of the heat equation are 
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2.2.2. Solution of the initial-value problem in a slab. Having obtained 
the separated solutions of the heat equation with homogeneous boundary condi-
tions, we can solve the following initial-value problem: 

Ut = Kuzz 
cosau(O;t)-Lsinauz(O;t) = 0 

cosfju(Ljt)+Lsinfjuz(Ljt) = 0 
u(z; 0) = J(z) 

t > 0,0 < z < L 
t>O 
t>O 
O<z<L 

where f(z), 0 < z < L, is a piecewise smooth function. 
To solve this initial-value problem, we first expand J(z) in a series of eigen-

functions of the Sturm-Liouville problem, in the form 
00 

J(z) = L An4>n(Z) O<z<L 
n=l 

[If J is discontinuous at z, the series converges to + 0) + - 0).] The 
formal solution of the initial-value problem is given by the series 

00 

(2.2.5) u(z; t) = L An4>n(z)e-AnKt 

n=l 

The solution has been written as a superposition of separated solutions of the heat 
equation satisfying the indicated homogeneous boundary conditions. The Fourier 
coefficients An are obtained from the orthogonality relations by the formulas 

lL f(z)<Pn(z)dz = An lL <Pn(z)2dz n = 1,2, ... 

To prove that the formal solution (2.2.5) is a rigorous solution of the heat equa-
tion, we must check that, for each t > 0, the series for u, uz , U zz , and Ut are 
uniformly convergent for 0 ::; z ::; L. This can be shown for each type of bound-
ary condition we consider. 

EXAMPLE 2.2.3. Solve the initial-value problem Ut = K U zz for t > 0, 0 < z < 
L, with the boundary conditions u(O; t) = 0, u(L; t) = 0 and the initial condition 
u(z; 0) = 1. 

Solution. The separated solutions of the heat equation satisfying the bound-
ary conditions are sin(n7rz/L)e-(n1r/L)2Kt , n = 1,2, .... To satisfy the initial 
condition, we must expand the function J(z) = 1 in a Fourier sine series. The 
Fourier coefficients are given by 

i L n7rZ iL n7rZ L 
An 0 sin2

L dz= 0 sinydz= n7r[l-(-l)n] 
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Thus An = (2/n7r)[1 - (-l)nJ and the solution is 

( t) 2 1 - (-l)n . n7rZ -(mr/L)2Kt 
U Zj = - L-, sm - e 

1f 1 n L 

For t > 0 and 0 z L, this series converges uniformly, owing to the exponential 
factor. Likewise, the series for uz , u zz , and Ut converge uniformly for 0 z ::5 L 
and each t > O. Thus u is a rigorous solution of the heat equation .• 

2.2.3. Asymptotic behavior and relaxation time. In Example 2.2.3 we 
obtained a transient solution of the heat equation, meaning that u(z; t) tends to 
zero when t tends to infinity. To analyze this more generally, we assume that 
the boundary conditions are u(Oj t) = 0, u{Lj t) = 0 and the initial condition is 
u(z; 0) = f(z), a piecewise smooth function. The solution is 

00 

u(z; t) = L An sin e-(n1r/L)2Kt 

n=l 

where An are the Fourier sine coefficients of the piecewise smooth function f(z), 
0< z < L. Thus 

An = LL fez) sin(mrz/L) dz and IAnl::; 2M 

where M is the maximum of If(z)l, 0 < z < L. Writing a = 1f2K/L2 and noting 
that 1 sin n7rz/ LI 1, we have 

00 

lu(z; t) 1 2M L e-n2at 

n=l 

00 

IU(Zj t)1 2M L(e-att 
n=l 

-at = 2M_e __ 
1 - e-at 

where we have used the formula for the sum of a geometric series E:=l "Yn = 
"Y/(1 - 1'), 0 "Y < 1. When t --7 00, e-at --70, and we have shown that 

u(z; t) = O(e-at ) t --7 00 

In particular u(z; t) --7 0 when t --7 00, which means that u(z; t) is a transient 
solution. 

We define the relaxation time T by the formula 
1 . 1 - = - hm - In /u(z; t)1 
T t--.oo t 
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provided that the limit exists and is independent of z, 0 < z < L. For transient 
solutions of the heat equation, the relaxation time can be computed explicitly 
from the first nonzero term of the series solution. The following theorem extends 
the previous example to the general set of homogeneous boundary conditions. 

THEOREM 2.1. For the heat equation Ut = K U zz with the boundary condi-
tions (2.2.1) and (2.2.2), suppose that all eigenvalues An are positive. Then 
u(z; t) = An¢n{z)e-AnKt is a transient solution of the heat equation, and 
the relaxation time is given by T = 1/ AIK iJ Al =f. O. 

EXAMPLE 2.2.4. Compute the relaxation time Jor the solution 
00 

u(z; t) = LAn sin (n7rz/ L) e-(n1r/L)2Kt 
n=1 

Solution. We write 
00 

u(z, t) = A sin 7rZ e-(7r/L)2Kt + A sin n7rZ e-(n7r/L)2Kt 
, I L L..Jn L 

n=2 

From the preceding analysis the last series is O(e-(47r2Kt/L2» when t -+ 00. If 
Al '# 0, we may write 

u(z; t) = Al sin 7rZ e-(7r/L)2 Kt [1 + O(e-(37r2Kt/L2»} 
L 

Inlu{z;t)1 = In/All + In sin '7 - (7r/L)2Kt+O(e-(37r2 Kt/L2») 

Thus limt-.oot-IJnlu{z;t)1 = -1C2K/L2. We have proved that T = L2/1C2K 
provided that Al #- O .• 

This analysis of relaxation time shows that, for large t, the solution u{z; t) is 
well approximated by the first term of the series. This can also be seen graphically, 
by plotting the function z -+ u{z; t) for various values of t. When t is small, the 
solution is close to the initial function J{z). As t increases, the solution tends 
to zero and assumes the shape of a sine curve, corresponding to the first term of 
the series solution. The graphs in Fig. 2.2.1 plot the solution of the initial-value 
problem Ut = 2uzz for 0 < z < 1C, with the boundary conditions u{z; 0) = 0, 
U(1C; 0) = 0 and the initial conditions u(z; 0) = 2z for the times t = 0, 0.005, 0.01, 
0.05, 0.1, 0.2, 0.3, 0.5, 0.7, and O.B. 

2.2.4. Uniqueness of solutions. We now discuss the uniqueness of the 
solution of the initial-value problem. We have found a solution as a series of 
separated solutions, but it is conceivable that by another method we might pro-
duce a distinct solution of the heat equation with the same initial conditions and 
boundary conditions. We shall prove that this is impossible. To be specific, we 
take the boundary conditions u(O; t) = 0, u(L; t) = O. 
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u(z;t) 

t=O 

l 
1 2 3 1 2 3 

z 
1 2 3 2 3 

z 
2 3 2 3 

b z 
2 3 2 3 

I . ....-:=:::t:::,........ =&z z 
t =0.8 

1 2 3 1 2 3 
FIGURE 2.2.1 Solution of the heat equation at 10 different times. 

For this purpose, suppose that Ul and U2 are two solutions with the same 
initial and boundary conditions, and set U = Ul - U2. Then U satisfies the heat 
equation with zero boundary conditions and zero initial conditions. Let 

1 J.L w(t) = 2 0 u(z; t)2dz 
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Then 

(2.2.6) w'{t) = lL U{Z; t)u,{z; t)dz 

(2.2.7) = K lL U{Z; t)u,,{z; t)dz 

(2.2.8) = Ku{z; - K lL U.{z;t)2dz 

where we have used the heat equation to obtain (2.2.7) and integration by parts 
to obtain (2.2.8). Using the boundary conditions, we see that the first term in 
(2.2.8) is zero. Therefore we must have 

w'{t) = -K lL u.{z; t)2dz 

But K is a positive constant and uz(z; t)2 0, since squares of real numbers are 
greater than or equal to zero. Thus we have both 

w'(t) 0 and w(t) 0 
But u(z; 0) = 0, which means that w(O) = O. To complete the proof, we use the 
fundamental theorem of calculus: 

w{t) = w(O) + l' w'(s)ds :5 0 

Since w(t) 0, we are forced to conclude that w(t) = 0, which means that 
u(z; t) = 0 for each t, that is, UI (z; t) = U2(Z; t). Hence we have proved uniqueness 
of the solution. 

The careful reader will notice that we have used the boundary conditions 
only to show that uUz It = O. Hence our proof applies also to other boundary 
conditions, for example, uz(O) = 0, uz(L) = O. 

2.2.5. Examples of transcendental eigenvalues. In certain cases we must 
solve the heat equation with the homogeneous boundary conditions 

(2.2.9) u(O; t) = 0, uz{L, t) + hu(L; t) = 0 

where h is a positive constant. We will see that the eigenvalues are obtained by 
solving a transcendental equation. The separated solutions of the problem are 
of the form u(z; t) = </>(z)T(t), where T(t) = e->'Kt, A is an eigenvalue, and </>(z) 
is an eigenfunction of the Sturm-Liouville problem </>"(z) + A</>(Z) = 0 with the 
boundary conditions </>(0) = 0, </>'(L) + h </>(L) = O. This was solved as Example 
1.6.3 in Sec. 1.6, where we found the solutions </>(z) = B sin(zVA), where A is 
determined as a solution of the transcendental equation 

(2.2.10) Y'A cos(LY'A) + h sin(Lv'X) = 0 
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