MAT313 Fall 2017
Practice Final

The actual final will consist of ten problems

Exam will cover sections 1-19 and 24

Problem 1. Consider a strip of equally spaced letters
o2 0=-0-0-0-="---
Describe the symmetry group of the strip. Is the group abelian?

Solution. The group is an infinite Dihedral group < s, r|s*> = 1, srs = r~! >(group
generated by elements r, s that are subject to relations s> = 1,srs = r~!). The

element r corresponds to the shift symmetry. s is the reflection symmetry. O

Problem 2. Give four non isomorphic examples of groups of order eight. You

must explain why the groups are mutually non isomorphic.

Solution. Zy X Zp X Zy(all elements have order two), Z4 X Z,(the group contains
an element of order four),Zg(the group contains an element of order eight). The
last group is the non-commutative dihedral group Dg of symmetries of a square.
Isomorphisms preserve order of elements and commutativity property of groups.

O

Problem 3. Find a group that contains elements a, b such that |a| = |b| = 2 and

(1) labl =3
(2) lab| = 4
(3) lab| = 30

Solution. The group Dy, =< r, s|r'* =1, s2=1,srs=r"!

> satisfies these require-
ments. The elements are a = sr,b = s (geometrically realized as reflection with

respect to symmetry axes ) in groups Dg, Dg and Dgy. |

Problem 4. Suppose H is a proper subgroup of Z under addition and H is generated
by 18,30 and 40. Determine H.
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Solution. The group is generated by the greatest common divisor of 18 = 32 x 2,

30 =2 x 3 x5and 40 = 23 x 5, which is 2 O
Problem 5. List all the subgroups of U(5)

Solution. The multiplicative group of a finite field is cyclic. We conclude that

U(5) = Zy4. The subgroups are {1}, Z, and Zy. O

Problem 6. List all elements of Z4g that have order ten.

n

Solution. Let x be a generator of Z,. Recall that |x| = ((n,a) stands for

(n.,a)
greatest common divisor). In our case n = 40 and |x*| = 10. Thus (40,a) =
40/10 = 4. and (10,a/4) = 1. Thena/4 =1,3,7,9 and a = 4, 12, 28, 36. O

Problem 7. Suppose |x| = n. Find a necessary and sufficient condition on s and ¢

such that (x) c (x*).

Solution. This condition is (s,n)|l. Indeed if (x') c (x°) then Ja, (x*)* = x! =

! = sa=Imodn = 3b,sa+nb=1= (s,n)|l.

X% =x

Conversely if d = (s,n)|l = da,b,k,kd = k(as + bn) = [ = [ = (ka)smodn =

X = Ok = () c (x%). O

Problem 8. Determine whether the following permutations are even or odd.
e (135)
e (1356)
e (13567)
e (12)(134)(152)
e (1243)(3521)

Solution. Recall that the sign (o) satisfies e(o102) = €(01)e(0o). If o is a cycle
of length n, then e(o) = (=1)**1.

e €(135) =1

e €(1356) = -1

o €(13567) =1



o €(12)(134)(152) = () x I x 1 = 1
o €(1243)(3521) = (=) x (=1) = 1

Problem 9. What is the order of

o (124)(357)
o (124)(35)
o (345)(245)

Solution. Let x; be generators of Z,,. We know that (x1,...xy) € Zy, X -+ X Zy,

has the order equal to lcm(ny, ..., n;). From this we conclude that

e |(124)(357)| = lem(3,3) because (124) and (357) commute and generate
Z3 X723 CS7.

e |(124)(35)| = lem(3,2) = 6 because (124) and (35) commute and generate
Z3XZp CSs

e |(345)(245)| = |(25)(34)| = lem(2,2) = 2 because (25) and (34) commute
and generate Z, X Z, C Ss.Notice that we first rewrote (345)(245) as a

product of commuting cycles.

O
Problem 10. Compute the centralizer of (12)(34) in S 4.
Solution. The following elements, besides 1 and (12)(34), commute with o =
(12)(34): (13)(24), (14)(23). You have to finish this.

O

Problem 11. Prove that the group of nonzero complex number under multiplica-

tion is not isomorphic to the group of complex numbers under addition.

Solution. Elements of the form e’s have finite order in the multiplicative group

(C*, x). The group (C, +) contains no such elements. O

Problem 12. Prove that the factor group of abelian group is abelian.
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Solution. Let H be a (normal) subgroup of Abelian group G. By definition the

product of two classes xHyHis equal to xyH = yxH. O

Problem 13. Let H be a normal subgroup of G and a be an element of G. If the
element aH has order 3 in G/H and |H| = 10 what is the possibilities for the order

of a.

Solution. Lety : G — G/H be the canonical homomorphism. Let < ¥(a) > be a
cyclic subgroup in G/H generated by ¢(a) and K be the preimage of < y¥/(a) > in
G. We have a homomorphism K —< y(a) > with a kernel H. We have | < y/(a) >
| =3 and |K| = | < ¥(a) > ||H| = 3 x 10 = 30. The element a generates a cyclic
subgroup < a > in K and its order should divide |K| = 30. Since we have an onto
map < a >—< y(a) >3 = [¥(a)||lal. Thus |a| = 3k, 3k|30 = k|10 = k=1,2,5,10
and |a| = 3,6, 15, 30. O

Problem 14. Suppose Z;o and Z;5 are homomorphic images of the group G. What

can we say about |G|.
Solution. We conclude that 10]|G| and 15||G| and 2 X 3 X 5||G|. O

Problem 15. Determine all the homomorphisms of Z onto S3. Determine all the

homomorphisms of Z to S 3.

Problem 16. Exhibit all Sylow 2-subgroups and Sylow 3-subgroups of D, and
S3X%x83.

Solution. (1) The case Dip =< s,rls*> = 1% = Lsrs = r™! >. |Dyp| = 2?3,
By Sylow theorem the number n3 of Sylow’s 3-subgroups satisfies n3 =
3k + IIZZT3 = 22, Sonz = 1 or4. The cyclic group < r > is normal.
It contains a normal subgroup of order 3 generated by r>. Thus n3 = 1.
ny, = 2k + 1|222—23 = 3 and np = 1 or 3.There is a commutative subgroup
P, generated by s and 3. Its all element have order two and |P;| = 4.The
subgroup is isomorphic to Z, X Z, =< s,7° >. It is one of the Sylow 2-

3

subgroups. Subgroup < r° > is invariant under conjugations, but < s >
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3 24 3

is not. The conjugated subgroups {g‘leg} are (< 5,17 >, <r °s,r >,<

r~*s,r* >}. We already found 3 distinct conjugated subgroup. Now we
know that no subgroups were missed.

(2) The group S 3 contains one normal subgroup Z3 generated by (1,2,3). It
also contains 3 subgroups of order two < (12) >, < (13) >, < (23) >. We
can use them to construct subgroups Pz = Z3 X Z3z C S3 X S3 of order 9
and Py =Zp XZy C S3XS3.

232

1S3 X 83| = 2232 ny = 3k + 1|1

=2 =4 n3=1lord |Ps|=3= P;

is Sylow. It is normal because it is a product of two normal subgroups.
Thus n3 = 1.

ny, = 2k + II% =32=9.nm =130r9. |P] =4 = P, are Sylow
subgroup. Combining different Z, C §3 we obtain 9 subgroups in S3 X S3

of order 4. Thus n; = 9 and our list is complete.

Problem 17. Prove that a group of order 56 has a normal Sylow p-subgroup for

some prime p dividing its order.

Solution. The order of the group 56 factors into %xT.m=2k+17T=>n=1or
7.n7=Tk+ 1|18 = ny =1o0r8.

If P = Z7 is normal, then we are done.

Suppose that P = Z7 is not normal, that is n; = 8. The group P has no nontrivial
subgroups. This is why gPg~'\{1} do not intersect. The union X = Ugec gPg™! of
these subgroup consists of one element of order 1 and 6 X 8 elements of order 7.
Note that Sylow two-subgroup contains no elements of order 7. It must be a subset
of Y = {1} UG\X. Note that |Y| = 56 — 6 X 8 = 8. It has a room for only one Sylow

2-subgroup. From this we conclude that n, = 1. O

Problem 18. (Chinese Remainder Theorem for Rings) If R is a commutative ring
and A and B are two proper ideals with A+ B = R, prove that R/(AB) is isomorphic
to R/A X R/B.
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Solution. Consider the map ¢ : R — R/AXR/B defined by y/(r) = (rmod A, rmod B),
where mod A means the class in R/A containing r (that is, r + A). This map is a
ring homomorphism because i is the natural projection of R into R/A and R/B for
the two components. The kernel of i consists of all the elements r € R that are in
A and in B, i.e. A N B. To complete the proof it remains to show that if A + B = R,
the map v is surjective and AN B = AB := {abla € A,b € B}. Since A+ B =R,
there are elements x € A and y € B such that x + y = 1. This equation shows
that ¥(x) = (0,1) and y¥(y) = (1,0) since, for example, x is an element of A and
x=1-ye1l+B. If now (rymod A, rmmod B) is an arbitrary element in R/A X R/B,

then the element r,x + r;y maps to this element since
Y(rax +riy) = Yy (x) + g(r)g(y) =
= (r,mod A, rnmod B)(0, 1) + (rymod A, rymod B)(1,0)
= (0, »mod B) + (rymod A, 0)
= (rymod A, r,mod B).

This shows that ¢ is indeed surjective. Finally, the ideal AB is always contained
inANB. IfA+ B = R and x and y are as above, then for any ¢ € A N B,

¢ =cl = cx + cy € AB. This establishes the reverse inclusion A N B C AB. O

Problem 19.

Find x € Zs5 such that

x =2mod3
x=4mod>5
x=6mod7.

Solution. Suppose N = n, ... n; the product of relatively prime numbers n;. We are
given a; € Z,,. By Chinese Remainder Theorem there is x such that x = ¢;mod n;.

We can recover x by the formula
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Here how you should understand it: nﬂ is relatively prime with n;. It is invertible
-1
element in Z, . [(nﬂ) ] is the integer mod n; equal to the inverse. Note that by
i n;
-1
NI|(N
Onl
e

n;

. -1
construction a; = a;mod n; (the product nﬂ [(f}’) ] cancel out). On
i i n:

1 1
the other hand njla,-nﬁ_ [(n—) ] for j # i. This is why x = ¢;mod n;
i n;

(Qﬂ)‘lL _ 2, [(‘Sﬁ)_l]s 1 [(#)_1]7 1 andx=2x(5x7)X

244X BxT)x1+6x(Bx5)x1=314 O

In our case

Problem 20. Determine whether the following polynomials are irreducible in the

rings indicated.

(D) x*+10x% + 1 € Z[x].
(2) x* +1 € Zs[x]
(3) x* —4x> +6 € Z[x].

Solution. (1) Possible rational roots are +1. By inspections these are not roots.
Remaining option is that x* + 10x* + 1 = (ax? + bx +c)(ex® + fx+g). After
expansion we immediately see that a = 1,e = 1 and ¢ = g = +1. Thus
1072 +1 = (2 +bx+ D2+ fx+ D) =30+ )+ x2(bf +2) + x(b +
f)+x*+1=b=—fand 10 = 2 — b. The last equation has no integral
solutions. The case (x* + bx — 1)(x* + fx — 1) is treated the same way.

(2) x* = -1= x* =4 = x> =2 or x> = =2 = 3. The polynomials x> — 2 and
x% — 3 have no roots in Zs. Therefore they are irreducible. We conclude
that x* + 1 = (x> = 2)(x? = 3) = (x? + 3)(x¥* +2)

(3) Irreducible. Use Eisenstein’s criterion.

Problem 21. Prove that U(20) and U(24) are not isomorphic.

Solution. The isomorphisms of rings Zyg — Za X Z4, Zos — Z3 X Zg defines an
isomorphism of groups of invertible elements U(20) — U(5) x U4), U(24) —
U(3) x U(8). The groups of invertible elements in the fields Z3 and Zs are cyclic.
So U(3) = Z and U(5) = Z4. The group U(4) contains two elements and must be
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isomorphic to Z,. In the group U(8) all it elements satisfy x> = 1. It is generated
by 3 and 5. Thus U(8) = Z; X Z,.

We conclude that
URO)=2UBO)XxUM@) =74 X7y

and

URA) =URB)XUB) =Zy XZyXZn

We see that U(20) contains an element of order 4, whereas in U(24) all elements

have order two. m]

Problem 22. Use the fact that R = Z[ \/5] is a Unique Factorization Domain to

prove that x% — V2 is irreducible in R[x].

Solution. We have a norm N : R — Z. For @ = a + V2b defined by the formula
N(a) = aa@, where @ = a — V2b. The norm satisfies N(aB) = N(@)N(B). Suppose
2 -V2= (x—a)(x—p). Then -2 = N(— \/5) = N(a)N(B). We infer that N(a) or
N(B) is equal to +1. This means that one of them is a unit u and V2 is irreducible.
We now want to use UFD property of the ring, which to us means that @« = —u and
B=u! V2. Thus x> — V2 = (x+u)(x—u! \5) =2+ u—-u! \/i)x— V2. The
middle term vanishes if «> = V2, which is impossible because u is a unit but V2

1S not. =

Problem 23. Prove that the quotient ring Z[i]/! is finite for any nonzero ideal / of

Z[i].

Solution. 7Z[i] is an Euclidean Domain with a norm N(a + ib) = a*> + b>. We proved
that it is automatically a PID and every ideal has a form < a > for some a € Z][i].
Let b be an arbitrary element in Z[i]. Then b = aq + r, where N(r) < N(a). This
means that any class b+ < a > has a representative b+ < a >= aq + r+ < a >=
r+ < a >, whose norm is less then the norm N(a). Notice that there is a finite
number of elements of the lattice {x + iy|x,y € Z in the circle of radius R* = N(a).

Thus the number of r is finite. O
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Problem 24. Let R be an integral domain. Prove that if the following two condi-

tions hold then R is a Principal Ideal Domain:

(1) any two nonzero elements a and b in R have a greatest common divisor
which can be written in the form ra + sb for some r, s € R, and
2) if a1,ay,as, ... are nonzero elements of R such that a;,1|a; for all i, then

there is a positive integer N such that an is a unit times ay for all n > N.

Solution. Let I be an ideal of R. We want to show that da such that < a >= 1. Let
a; be some element in /. Then < a >C I. If < a >= I we stop. Otherwise we
choose b € I,b ¢< a; >. The first condition allows us to choose ar = raj; + sb
which is a generator of < a;,b >. We continue this way and get a sequence of
ideals < a; >C< ap >C --- C< a, >C I. Then we must have as|ay,...,aic1la;. ...
By the second assumption AN such that ay,; = u;ay, where u; are units. Thus

<any >=<ans; >=1. |

Problem 25. Let V be a vector space over an infinite field k. Prove that V is not

the union of finitely many proper subspaces of V.

Solution. Let us suppose that V = Ul’.’:1 W;suchthat W; c Vand W; # Vandn > 1
is minimal.

Pick a non-zero vector x € W,,. Pick y € V\W,,, and note that there are infinitely
many vectors of the form x + ay, with @ € k*. x(a) := x + ay is never in W,,,
and so there is some Wjq), j < n, x(«) € Wj). The set k* is infinite. There is an
infinite set {ay} C kK such that x(a;) € Wi, = Wi, We conclude that not only
x +asy € Wj, but also x,y € Wj,. Since x was arbitrary, we see W, is contained in

! W; and n is not minimal. o

Problem 26. If V is a vector space over F of dimension n, prove that V is isomor-

phic as a vectorspace to F" = {(ay,ay,...,ay)la; € F}



