MAT313 Fall 2013
Practice Final

The actual final will consist of ten problems
Problem 1. Consider a strip of equally spaced letters
.2 0-0-0-0-="---

Describe the symmetry group of the strip. Is the group abelian?

Solution. The group is an infinite Dihedral group < s,r|s> = 1, srs = r~! >. The

element r corresponds to the shift symmetry. s is the reflection symmetry. O

Problem 2. Give four non isomorphic examples of groups of order eight. You

must explain why the groups are mutually non isomorphic.

Solution. Zy X Zy X Zy(all elements have order two), Z4 X Z,(the group contains an
element of order four),Zg(the group contains an element of order eight). Isomor-

phisms preserve order of elements. O

Problem 3. Find a group that contains elements a, b such that |a| = |b| = 2 and

(1) labl =3
(2) labl = 4
3) labl =30

1

Solution. The group Dy, =< r, s|r' =1, s2 =1,srs = r~! > satisfies these require-

ments. The elements are a = sr, b = s in groups Dg, Dg and Dgy. O

Problem 4. Suppose H is a proper subgroup of Z under addition and H is generated
by 18,30 and 40. Determine H.

Solution. The group is generated by the greatest common divisor of 18 = 32 x 2,

30 = 2 x3 x5 and 40 = 23 x 5, which is 2 o

Problem 5. List all the subgroups of U(5)
1
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Solution. The multiplicative group of a finite field is cyclic. We conclude that

U(5) = Z4. The subgroups are {1}, Z, and Z4. O

Problem 6. List all elements of Z4( that have order ten.

n
(na)°

and [x“| = 10. Thus (40,a) = 40/10 = 4. and (10,a/4) = 1. Thena/4 = 1,3,7,9
and a = 4,12, 28, 36. O

In our case n = 40

Solution. Let x be a generator of Z,,. Recall that |x?| =

Problem 7. Suppose |x| = n. Find a necessary and sufficient condition on s and ¢

such that (x) c (x%).

Solution. This condition is (s,n)|l. Indeed if (x') ¢ (x*) then Ja, (x*)* = ¥ =

X =xl = sa=Imodn = 3Ab,sa+nb=1= (s,n)ll.
Conversely if d = (s,n)|l = da,b,k,kd = k(as + bn) = [ = [ = (ka)smodn =
K= (xR = (1) € (). O

Problem 8. Determine the sign of the following permutations.
o (135)
o (1356)
e (13567)
o (12)(134)(152)
o (1243)(3521)

Solution. Recall that the sign of the permutation e(o) satisfies e(o102) = €(o1)e(02).

If o is a cycle of length 7, then (o) = (=11,

o ¢(135) =1
e (1356) = -1
e ¢(13567) =1

€(12)(134)(152) = (<) x I x 1 = 1
€(1243)(3521) = (=) x (=1) = 1

Problem 9. What is the order of



o (124)(357)
o (124)(35)
o (345)(245)

Solution. Let x; be generators of Z,,. We know that (x1,...xx) € Z,, X -+ X Z,,

has the order equal to lcm(ny, ..., n;). From this we conclude that

e |(124)(357)| = lem(3,3) because (124) and (357) commute and generate
Z3 X Z3 C S7.

e |(124)(35)| = lcm(3,2) = 6 because (124) and (35) commute and generate
Z3XZp CSs5

e |(345)(245)| = |(25)(34)| = lem(2,2) = 2 because (25) and (34) commute
and generate Z; X Zp C Ss.Notice that we first rewrote (345)(245) as a

product of commuting cycles.

O
Problem 10. Compute the centralizer of (12)(34) in S 4.
Solution. The following elements, besides 1 and (12)(34), commute with o =
(12)(34): (13)(24), (14)(23). You have to finish this.

O

Problem 11. Prove that the group of nonzero complex number under multiplica-

tion is not isomorphic to the group of complex numbers under addition.

2nik . . ST .
Solution. Elements of the form e » have finite order in the multiplicative group

(C*, X). The group (C, +) contains no such elements. O
Problem 12. Prove that the factor group of abelian group is abelian.

Solution. Let H be a (normal) subgroup of Abelian group G. By definition the

product of two classes xHyHis equal to xyH = yxH. O

Problem 13. Let H be a normal subgroup of G and a be an element of G. If the
element aH has order 3 in G/H and |H| = 10 what is the possibilities for the order

of a.
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Solution. Lety : G — G/H be the canonical homomorphism. Let < (a) > be a
cyclic subgroup in G/H generated by /(a) and K be the preimage of < ¥(a) > in
G. We have a homomorphism K —< y(a) > with a kernel H. We have | < y(a) >
| =3 and |K| = | < ¥(a) > ||H| = 3 x 10 = 30. The element a generates a cyclic
subgroup < a > in K and its order should divide |K| = 30. Since we have an onto
map < a >—< y(a) >3 = [¥(a)||lal. Thus |a| = 3k, 3k|30 = k|10 = k=1,2,5,10
and |a| = 3,6, 15, 30. O

Problem 14. Suppose Zg and Z;5 are homomorphic images of the group G. What

can we say about |G|.
Solution. We conclude that 10]|G| and 15||G| and 2 X 3 X 5||G|. O

Problem 15. Determine all the homomorphisms of Z onto S3. Determine all the

homomorphisms of Z to S 3.

Solution. A homomorphisms ¢ : Z — G is completely determined by its value on
the generator x € Z. If we know that ¥(x) = a then :,l/(xk) = a*. Thus there is
one-to-one correspondence between homomorphisms of Z to G and elements of G.
In our case |G| = |S3| = 6 and we have 6 different homomorphism. However non
of them are onto because G is noncommutative, but a factor-group of commutative

Z must be commutative. O

Problem 16. Exhibit all Sylow 2-subgroups and Sylow 3-subgroups of Dj; and
S3X%xS83.

Solution. (1) The case D =< s,rls*> = r® = 1,srs = r’' >. |Dja| = 223.

The cyclic group < r > is normal. It contains a normal subgroup of order

2

3 generated by r°. Thus n3 = 1. There is a commutative subgroup P,

generated by s and 3. Tts all element have order two and |P,| = 4.The

subgroup is isomorphic to Z, X Z, =< s,7° >. It is one of the Sylow 2-

3

subgroups. Subgroup < r° > is invariant under conjugations, but < s >

2 3

is not. The conjugated subgroups {g~'Psg} are {< s5,7° >, < r72s, 7 >
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,< r~*s,r >}. Additional consistency check: ny = 1 + 2k ny||D12| = 12
and ny < |D;2|/|P,| = 3. Possible values for n, are 1 and 3. We already
found 3 distinct conjugated subgroup. Now we know that no subgroups
were missed.

(2) The group S3 contains one normal subgroup Z3 generated by (1,2,3). It
also contains 3 subgroups of order two < (12) >, < (13) >, < (23) >. We
can use them to construct subgroups P3 = Z3 X Z3 C S3 X §3 of oder 9
and P, = Zp X Zr C S3 x S3. The order of S3 x S5 is 2* x 3%. Thus
P, P3 are Sylow subgroups. The group P3 is normal, therefore it is the
only 3-subgroup. ny = 1 + 2k, np < 36/4 = 9 and n>|9. Thus n, = 1,3,9.
Combining different Z, C §3 we obtain 9 subgroups in S'3 X S5 of order 4.

Thus np; = 9 and our list is complete.

Problem 17. Prove that a group of order 56 has a normal Sylow p-subgroup for

some prime p dividing its order.

Solution. The order of the group 56 factors into 2° x 7. Recall that the number
n, of Sylow p-subgroups satisfy n, = Imod p and n, = %, where N(P) is the

normalizer of a Sylow p-subgroup P. In particular n, < % and n,||G|. With this
information we get n; € {1,8} and n; € {1, 3,5,7}. Divisibility constraint reduces
the last set to ny € {1,7}. Suppose that P = Z; is not normal. Then n; = 8.
The group P has no subgroups. This is why g~! Pg do not intersect. The union
X = Uges g~ ! Pgof these subgroup consists of one element of order 1 and 6 x 8
element of order 7. Note that Sylow two-subgroup contains no elements of order

7. It must be a subset of Y = {1} U G\ X. Note that |Y| = 56 — 6 x 8 = 8. From this

we conclude that n, = 1. O

Problem 18. (Chinese Remainder Theorem for Rings) If R is a commutative ring
and A and B are two proper ideals with A+ B = R, prove that R/(ANB) is isomorphic
to R/A X R/B.
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Solution. Consider the map ¢ : R — R/AXR/B defined by y/(r) = (rmod A, rmod B),
where mod A means the class in R/A containing r (that is, r+A). This map is a ring
homomorphism because ¥ is just the natural projection of R into R/A and R/B for
the two components. The kernel of ¢ consists of all the elements r € R that are in A
and in B, i.e. AN B. To complete the proof in this case it remains to show that when
A+ B = R, { is surjective and A N B = AB. Since A + B = R, there are elements
x € Aand y € B such that x + y = 1. This equation shows that ¥/(x) = (0, 1) and
¥(y) = (1,0) since, for example, x is an element of A and x = 1y € 1 + B. If now
(rymod A, r,mod B) is an arbitrary element in R/A X R/ B, then the element rpx+ry

maps to this element since
Y(rax + riy) = Y(r)p(x) + g(r)y(y) =
= (r,mod A, r,mod B)(0, 1) + (rymod A, rymod B)(1,0)
= (0, ,mod B) + (rymod A, 0)
= (rymod A, romod B).

This shows that ¢ is indeed surjective. Finally, the ideal AB is always contained
inANB. IfA+ B = R and x and y are as above, then for any ¢ € A N B,

¢ =cl = cx + cy € AB. This establishes the reverse inclusion A N B C AB. O

Problem 19.

Find x € Z5 such that

x =2mod3
x=4mod>5
X =6mod7.

Solution. Suppose N = n; ... n; the product of relatively prime numbers n;. We are
given a; € Z,,. By Chinese Remainder Theorem there is x such that x = g;mod n;.

We can recover x by the formula
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Here how you should understand it: nﬂ is relatively prime with n;. It is invertible

-1
element in Z, . [(ﬂ) ] is the integer mod n; equal to the inverse. Note that by
n;

ni
(2—:)_1] » for

i

N

construction a;:"
1

(4)| = amod n;. On the other hand nla;¥
o = g;mod n;. On the other han njlalni
n;

j # 1. This is why x = g;mod n;
-1 -1 -1
Inourcase[@ :2,[@ ]:1[@ ]zl.andx:2>< 5x7)x
(%) ], =2|(%) =) |, (5x7)
244xBxT)x1+6x(Bx5)x1=314 O

Problem 20. Determine whether the following polynomials are irreducible in the
rings indicated.

(1) x* +10x* + 1 € Z[x].

(2) x*+ 1 € Zs[x]

(3) x*—4x* + 6 € Z[x].

Solution. (1) Possible rational roots (divisibility test r = p/q is a root of a,x" +
-+ +ay, then plag and gla,) are £1. By inspections these are not the actual
roots. Remaining option is that x* + 10x? + 1 = (ax®> + bx+c)(ex’ + fx+g).
After expansion we immediately see thata = 1l,e = l and ¢ = g = %1.
Thus x* + 10x2 + 1 = (& + bx + D2 + fx+ 1) = (b + f) + xX(bf +
D) +x(b+f)+x*+1=b=—fand 10 = 2 — b%. The last equation has no
integral solutions. The case (x% + bx — D)(x? + fx — 1) is treated the same
way.

(2) x* = -1= x* =4 = x> =2 or x> = =2 = 3. The polynomials x*> — 2 and
x? — 3 have no roots in Zs. Therefore they are irreducible. We conclude
that x* + 1 = (22 - 2)(x* = 3) = (x* + 3)(x* +2)

(3) Irreducible. Use Eisenstein’s criterion.

Problem 21. Prove that U(20) and U(24) are not isomorphic.

Solution. The isomorphisms of rings Zyy — Z4 X Z4, Zpa — Z3 X Zg defines an
isomorphism of groups of invertible elements U(20) — U(5) x U4), U(24) —
U(3) x U(8). The groups of invertible elements in the fields Z3 and Zs are cyclic.
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So U(3) = Z, and U(5) = Z4. The group U(4) contains two elements and must be
isomorphic to Z,. In the group U(8) all it elements satisfy x> = 1. It is generated
by 3 and 5. Thus U(8) = Z; X Z,.

We conclude that
URO) =2 U)X U@4) =Z4 X2y

and

URA)=UQB)XUQ®) =Zy XZyXZy

We see that U(20) contains an element of order 4, whereas in U(24) all elements

have order two. O

Problem 22. Use the fact that R = Z| \/5] is a Unique Factorization Domain to

prove that x% — V2 is irreducible in R[x].

Solution. We have a norm N : R — Z. For @ = a + V2b defined by the formula
N(a) = aa, where @ = a — V2b. The norm satisfies N(af) = N(@)N(B). Suppose
x2 = V2 = (x — @)(x = B). Then =2 = N(- V2) = N(a)N(B). We infer that N(a) or
N(B) is equal to +1. This means that one of them is a unit u and V2 is irreducible.
We now want to use UFD property of the ring, which to us means that @ = —u« and
B=u"! V2. Thus x> — V2 = (x + u)(x —u! \5) = x2+(u—u_1\/§)x— V2. The
middle term vanishes if #> = V2, which is impossible because u is a unit but V2

18 not. O

Problem 23. Prove that the quotient ring Z[i]// is finite for any nonzero ideal I of

Z[i].

Solution. Z[i] is an Euclidean Domain with a norm N(a + ib) = a* + b*. Then it
is automatically a PID and every ideal has a form < a > for some a € Z[i]. Let b
be an arbitrary element in Z[i]. Then b = aq + r, where N(r) < N(a). This means
that any class b+ < a > has a representative b+ < a >=aq+r+ <a>=r+<a >,
whose norm is less then the norm N(a). Notice that there is a finite number of
elements of the lattice {x + iy|x,y € Z in the circle of radius R? = N(a). Thus the

number of r is finite. |



Problem 24. Let R be an integral domain. Prove that if the following two condi-

tions hold then R is a Principal Ideal Domain:

(1) any two nonzero elements a and b in R have a greatest common divisor
which can be written in the form ra + sb for some r, s € R, and
2) if a1,ay,as, ... are nonzero elements of R such that a;,1|a; for all i, then

there is a positive integer N such that an is a unit times ay for all n > N.

Solution. Let I be an ideal of R. We want to show that da such that < a >= 1. Let
a; be some element in /. Then < a >C I. If < a >= I we stop. Otherwise we
choose b € I,b ¢< a; >. The first condition allows us to choose ar = raj; + sb
which is a generator of < a;,b >. We continue this way and get a sequence of
ideals < a; >C< ap >C --- C< a, >C I. Then we must have as|ay,...,aic1la;. ...
By the second assumption AN such that ay,; = u;ay, where u; are units. Thus

<any >=<ans; >=1. |



