
MAT313 Fall 2013

Practice Final
The actual final will consist of ten problems

Problem 1. Consider a strip of equally spaced letters

· · · − O − O − O − O − · · ·

Describe the symmetry group of the strip. Is the group abelian?

Solution. The group is an infinite Dihedral group < s, r|s2 = 1, srs = r−1 >. The

element r corresponds to the shift symmetry. s is the reflection symmetry. �

Problem 2. Give four non isomorphic examples of groups of order eight. You

must explain why the groups are mutually non isomorphic.

Solution. Z2 ×Z2 ×Z2(all elements have order two), Z4 ×Z2(the group contains an

element of order four),Z8(the group contains an element of order eight). Isomor-

phisms preserve order of elements. �

Problem 3. Find a group that contains elements a, b such that |a| = |b| = 2 and

(1) |ab| = 3

(2) |ab| = 4

(3) |ab| = 30

Solution. The group D2n =< r, s|rn = 1, s2 = 1, srs = r−1 > satisfies these require-

ments. The elements are a = sr, b = s in groups D6,D8 and D60. �

Problem 4. Suppose H is a proper subgroup of Z under addition and H is generated

by 18, 30 and 40. Determine H.

Solution. The group is generated by the greatest common divisor of 18 = 32 × 2,

30 = 2 × 3 × 5 and 40 = 23 × 5, which is 2 �

Problem 5. List all the subgroups of U(5)
1
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Solution. The multiplicative group of a finite field is cyclic. We conclude that

U(5) � Z4. The subgroups are {1}, Z2 and Z4. �

Problem 6. List all elements of Z40 that have order ten.

Solution. Let x be a generator of Zn. Recall that |xa| = n
(n,a) . In our case n = 40

and |xa| = 10. Thus (40, a) = 40/10 = 4. and (10, a/4) = 1. Then a/4 = 1, 3, 7, 9

and a = 4, 12, 28, 36. �

Problem 7. Suppose |x| = n. Find a necessary and sufficient condition on s and t

such that (xt) ⊂ (xs).

Solution. This condition is (s, n)|l. Indeed if (xt) ⊂ (xs) then ∃a, (xs)a = xl ⇒

xsa = xl ⇒ sa ≡ lmod n⇒ ∃b, sa + nb = l⇒ (s, n)|l.

Conversely if d = (s, n)|l ⇒ ∃a, b, k, kd = k(as + bn) = l ⇒ l ≡ (ka)smodn ⇒

xl = (xs)ka ⇒ (xt) ⊂ (xs). �

Problem 8. Determine the sign of the following permutations.

• (135)

• (1356)

• (13567)

• (12)(134)(152)

• (1243)(3521)

Solution. Recall that the sign of the permutation ε(σ) satisfies ε(σ1σ2) = ε(σ1)ε(σ2).

If σ is a cycle of length n, then ε(σ) = (−1)n+1.

• ε(135) = 1

• ε(1356) = −1

• ε(13567) = 1

• ε(12)(134)(152) = (−1) × 1 × 1 = 1

• ε(1243)(3521) = (−1) × (−1) = 1

�

Problem 9. What is the order of
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• (124)(357)

• (124)(35)

• (345)(245)

Solution. Let xi be generators of Zni . We know that (x1, . . . xk) ∈ Zn1 × · · · × Znk

has the order equal to lcm(n1, . . . , nk). From this we conclude that

• |(124)(357)| = lcm(3, 3) because (124) and (357) commute and generate

Z3 × Z3 ⊂ S 7.

• |(124)(35)| = lcm(3, 2) = 6 because (124) and (35) commute and generate

Z3 × Z2 ⊂ S 5

• |(345)(245)| = |(25)(34)| = lcm(2, 2) = 2 because (25) and (34) commute

and generate Z2 × Z2 ⊂ S 5.Notice that we first rewrote (345)(245) as a

product of commuting cycles.

�

Problem 10. Compute the centralizer of (12)(34) in S 4.

Solution. The following elements, besides 1 and (12)(34), commute with σ =

(12)(34): (13)(24), (14)(23). You have to finish this.

�

Problem 11. Prove that the group of nonzero complex number under multiplica-

tion is not isomorphic to the group of complex numbers under addition.

Solution. Elements of the form e
2πik

n have finite order in the multiplicative group

(C∗,×). The group (C,+) contains no such elements. �

Problem 12. Prove that the factor group of abelian group is abelian.

Solution. Let H be a (normal) subgroup of Abelian group G. By definition the

product of two classes xHyHis equal to xyH = yxH. �

Problem 13. Let H be a normal subgroup of G and a be an element of G. If the

element aH has order 3 in G/H and |H| = 10 what is the possibilities for the order

of a.
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Solution. Let ψ : G → G/H be the canonical homomorphism. Let < ψ(a) > be a

cyclic subgroup in G/H generated by ψ(a) and K be the preimage of < ψ(a) > in

G. We have a homomorphism K →< ψ(a) > with a kernel H. We have | < ψ(a) >

| = 3 and |K| = | < ψ(a) > ||H| = 3 × 10 = 30. The element a generates a cyclic

subgroup < a > in K and its order should divide |K| = 30. Since we have an onto

map < a >→< ψ(a) > 3 = |ψ(a)| | |a|. Thus |a| = 3k, 3k|30⇒ k|10⇒ k = 1, 2, 5, 10

and |a| = 3, 6, 15, 30. �

Problem 14. Suppose Z10 and Z15 are homomorphic images of the group G. What

can we say about |G|.

Solution. We conclude that 10||G| and 15||G| and 2 × 3 × 5||G|. �

Problem 15. Determine all the homomorphisms of Z onto S 3. Determine all the

homomorphisms of Z to S 3.

Solution. A homomorphisms ψ : Z → G is completely determined by its value on

the generator x ∈ Z. If we know that ψ(x) = a then ψ(xk) = ak. Thus there is

one-to-one correspondence between homomorphisms of Z to G and elements of G.

In our case |G| = |S 3| = 6 and we have 6 different homomorphism. However non

of them are onto because G is noncommutative, but a factor-group of commutative

Z must be commutative. �

Problem 16. Exhibit all Sylow 2-subgroups and Sylow 3-subgroups of D12 and

S 3 × S 3.

Solution. (1) The case D12 =< s, r|s2 = r6 = 1, srs = r−1 >. |D12| = 223.

The cyclic group < r > is normal. It contains a normal subgroup of order

3 generated by r2. Thus n3 = 1. There is a commutative subgroup P2

generated by s and r3. Its all element have order two and |P2| = 4.The

subgroup is isomorphic to Z2 × Z2 =< s, r3 >. It is one of the Sylow 2-

subgroups. Subgroup < r3 > is invariant under conjugations, but < s >

is not. The conjugated subgroups {g−1P2g} are {< s, r3 >, < r−2s, r3 >
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, < r−4s, r3 >}. Additional consistency check: n2 = 1 + 2k n2||D12| = 12

and n2 ≤ |D12|/|P2| = 3. Possible values for n2 are 1 and 3. We already

found 3 distinct conjugated subgroup. Now we know that no subgroups

were missed.

(2) The group S 3 contains one normal subgroup Z3 generated by (1, 2, 3). It

also contains 3 subgroups of order two < (12) >, < (13) >, < (23) >. We

can use them to construct subgroups P3 = Z3 × Z3 ⊂ S 3 × S 3 of oder 9

and P2 = Z2 × Z2 ⊂ S 3 × S 3. The order of S 3 × S 3 is 22 × 32. Thus

P2, P3 are Sylow subgroups. The group P3 is normal, therefore it is the

only 3-subgroup. n2 = 1 + 2k, n2 ≤ 36/4 = 9 and n2|9. Thus n2 = 1, 3, 9.

Combining different Z2 ⊂ S 3 we obtain 9 subgroups in S 3 × S 3 of order 4.

Thus n2 = 9 and our list is complete.

�

Problem 17. Prove that a group of order 56 has a normal Sylow p-subgroup for

some prime p dividing its order.

Solution. The order of the group 56 factors into 23 × 7. Recall that the number

np of Sylow p-subgroups satisfy np ≡ 1mod p and np =
|G|
|N(P)| , where N(P) is the

normalizer of a Sylow p-subgroup P. In particular np ≤
|G|
|P| and np||G|. With this

information we get n7 ∈ {1, 8} and n2 ∈ {1, 3, 5, 7}. Divisibility constraint reduces

the last set to n2 ∈ {1, 7}. Suppose that P � Z7 is not normal. Then n7 = 8.

The group P has no subgroups. This is why g−1Pg do not intersect. The union

X =
⋃

g∈G g−1Pgof these subgroup consists of one element of order 1 and 6 × 8

element of order 7. Note that Sylow two-subgroup contains no elements of order

7. It must be a subset of Y = {1} ∪G\X. Note that |Y | = 56 − 6 × 8 = 8. From this

we conclude that n2 = 1. �

Problem 18. (Chinese Remainder Theorem for Rings) If R is a commutative ring

and A and B are two proper ideals with A+B = R, prove that R/(A∩B) is isomorphic

to R/A × R/B.
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Solution. Consider the map ψ : R→ R/A×R/B defined by ψ(r) = (rmod A, rmod B),

where mod A means the class in R/A containing r (that is, r+A). This map is a ring

homomorphism because ψ is just the natural projection of R into R/A and R/B for

the two components. The kernel of ψ consists of all the elements r ∈ R that are in A

and in B, i.e. A∩B. To complete the proof in this case it remains to show that when

A + B = R, ψ is surjective and A ∩ B = AB. Since A + B = R, there are elements

x ∈ A and y ∈ B such that x + y = 1. This equation shows that ψ(x) = (0, 1) and

ψ(y) = (1, 0) since, for example, x is an element of A and x = 1y ∈ 1 + B. If now

(r1mod A, r2mod B) is an arbitrary element in R/A×R/B, then the element r2x+r1y

maps to this element since

ψ(r2x + r1y) = ψ(r2)ψ(x) + ψ(r1)ψ(y) =

= (r2mod A, r2mod B)(0, 1) + (r1mod A, r1mod B)(1, 0)

= (0, r2mod B) + (r1mod A, 0)

= (r1mod A, r2mod B).

This shows that ψ is indeed surjective. Finally, the ideal AB is always contained

in A ∩ B. If A + B = R and x and y are as above, then for any c ∈ A ∩ B,

c = c1 = cx + cy ∈ AB. This establishes the reverse inclusion A ∩ B ⊂ AB. �

Problem 19.

Find x ∈ Z105 such that

x ≡ 2 mod 3

x ≡ 4 mod 5

x ≡ 6 mod 7.

Solution. Suppose N = n1 . . . nk the product of relatively prime numbers ni. We are

given ai ∈ Zni . By Chinese Remainder Theorem there is x such that x ≡ aimod ni.

We can recover x by the formula

x =
∑

i

ai
N
ni

(N
ni

)−1
ni
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Here how you should understand it: N
ni

is relatively prime with ni. It is invertible

element in Z∗ni
.
[(

N
ni

)−1
]
ni

is the integer mod ni equal to the inverse. Note that by

construction ai
N
ni

[(
N
ni

)−1
]
ni

≡ aimod ni. On the other hand n j|ai
N
ni

[(
N
ni

)−1
]
ni

for

j , i. This is why x ≡ aimod ni

In our case
[(

105
3

)−1
]
3

= 2,
[(

105
5

)−1
]
5

= 1
[(

105
7

)−1
]
7

= 1. and x = 2 × (5 × 7) ×

2 + 4 × (3 × 7) × 1 + 6 × (3 × 5) × 1 = 314 �

Problem 20. Determine whether the following polynomials are irreducible in the

rings indicated.

(1) x4 + 10x2 + 1 ∈ Z[x].

(2) x4 + 1 ∈ Z5[x]

(3) x4 − 4x3 + 6 ∈ Z[x].

Solution. (1) Possible rational roots (divisibility test r = p/q is a root of anxn+

· · ·+ a0, then p|a0 and q|an) are ±1. By inspections these are not the actual

roots. Remaining option is that x4 +10x2 +1 = (ax2 +bx+c)(ex2 + f x+g).

After expansion we immediately see that a = 1, e = 1 and c = g = ±1.

Thus x4 + 10x2 + 1 = (x2 + bx + 1)(x2 + f x + 1) = x3(b + f ) + x2(b f +

2) + x(b + f ) + x4 + 1⇒ b = − f and 10 = 2− b2. The last equation has no

integral solutions. The case (x2 + bx − 1)(x2 + f x − 1) is treated the same

way.

(2) x4 = −1⇒ x4 = 4⇒ x2 = 2 or x2 = −2 = 3. The polynomials x2 − 2 and

x2 − 3 have no roots in Z5. Therefore they are irreducible. We conclude

that x4 + 1 = (x2 − 2)(x2 − 3) = (x2 + 3)(x2 + 2)

(3) Irreducible. Use Eisenstein’s criterion.

�

Problem 21. Prove that U(20) and U(24) are not isomorphic.

Solution. The isomorphisms of rings Z20 → Z4 × Z4, Z24 → Z3 × Z8 defines an

isomorphism of groups of invertible elements U(20) → U(5) × U(4), U(24) →

U(3) × U(8). The groups of invertible elements in the fields Z3 and Z5 are cyclic.
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So U(3) � Z2 and U(5) � Z4. The group U(4) contains two elements and must be

isomorphic to Z2. In the group U(8) all it elements satisfy x2 = 1. It is generated

by 3 and 5. Thus U(8) � Z2 × Z2.

We conclude that

U(20) � U(5) × U(4) � Z4 × Z2

and

U(24) � U(3) × U(8) � Z2 × Z2 × Z2

We see that U(20) contains an element of order 4, whereas in U(24) all elements

have order two. �

Problem 22. Use the fact that R = Z[
√

2] is a Unique Factorization Domain to

prove that x2 −
√

2 is irreducible in R[x].

Solution. We have a norm N : R → Z. For α = a +
√

2b defined by the formula

N(α) = αᾱ, where ᾱ = a −
√

2b. The norm satisfies N(αβ) = N(α)N(β). Suppose

x2 −
√

2 = (x − α)(x − β). Then −2 = N(−
√

2) = N(α)N(β). We infer that N(α) or

N(β) is equal to ±1. This means that one of them is a unit u and
√

2 is irreducible.

We now want to use UFD property of the ring, which to us means that α = −u and

β = u−1
√

2. Thus x2 −
√

2 = (x + u)(x − u−1
√

2) = x2 + (u − u−1
√

2)x −
√

2. The

middle term vanishes if u2 =
√

2, which is impossible because u is a unit but
√

2

is not. �

Problem 23. Prove that the quotient ring Z[i]/I is finite for any nonzero ideal I of

Z[i].

Solution. Z[i] is an Euclidean Domain with a norm N(a + ib) = a2 + b2. Then it

is automatically a PID and every ideal has a form < a > for some a ∈ Z[i]. Let b

be an arbitrary element in Z[i]. Then b = aq + r, where N(r) < N(a). This means

that any class b+ < a > has a representative b+ < a >= aq + r+ < a >= r+ < a >,

whose norm is less then the norm N(a). Notice that there is a finite number of

elements of the lattice {x + iy|x, y ∈ Z in the circle of radius R2 = N(a). Thus the

number of r is finite. �
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Problem 24. Let R be an integral domain. Prove that if the following two condi-

tions hold then R is a Principal Ideal Domain:

(1) any two nonzero elements a and b in R have a greatest common divisor

which can be written in the form ra + sb for some r, s ∈ R, and

(2) if a1, a2, a3, . . . are nonzero elements of R such that ai+1|ai for all i, then

there is a positive integer N such that an is a unit times aN for all n > N.

Solution. Let I be an ideal of R. We want to show that ∃a such that < a >= I. Let

a1 be some element in I. Then < a >⊂ I. If < a >= I we stop. Otherwise we

choose b ∈ I, b << a1 >. The first condition allows us to choose a2 = ra1 + sb

which is a generator of < a1, b >. We continue this way and get a sequence of

ideals < a1 >⊂< a2 >⊂ · · · ⊂< an >⊂ I. Then we must have a2|a1, . . . , ai+1|ai . . . .

By the second assumption ∃N such that aN+i = uiaN , where ui are units. Thus

< aN >=< aN+i >= I. �


