MAT313 Fall 2013 ## **Practice Final** ## The actual final will consist of ten problems **Problem 1.** Consider a strip of equally spaced letters $$\cdots - 0 - 0 - 0 - 0 - \cdots$$ Describe the symmetry group of the strip. Is the group abelian? Solution. The group is an infinite Dihedral group $\langle s, r | s^2 = 1, srs = r^{-1} \rangle$. The element r corresponds to the shift symmetry. s is the reflection symmetry. **Problem 2.** Give four non isomorphic examples of groups of order eight. You must explain why the groups are mutually non isomorphic. Solution. $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$ (all elements have order two), $\mathbb{Z}_4 \times \mathbb{Z}_2$ (the group contains an element of order four), \mathbb{Z}_8 (the group contains an element of order eight). Isomorphisms preserve order of elements. **Problem 3.** Find a group that contains elements a, b such that |a| = |b| = 2 and - (1) |ab| = 3 - (2) |ab| = 4 - (3) |ab| = 30 Solution. The group $D_{2n} = \langle r, s | r^n = 1, s^2 = 1, srs = r^{-1} \rangle$ satisfies these requirements. The elements are a = sr, b = s in groups D_6, D_8 and D_{60} . **Problem 4.** Suppose H is a proper subgroup of \mathbb{Z} under addition and H is generated by 18, 30 and 40. Determine H. Solution. The group is generated by the greatest common divisor of $18 = 3^2 \times 2$, $30 = 2 \times 3 \times 5$ and $40 = 2^3 \times 5$, which is 2 **Problem 5.** List all the subgroups of U(5) Solution. The multiplicative group of a finite field is cyclic. We conclude that $U(5) \cong \mathbb{Z}_4$. The subgroups are $\{1\}$, \mathbb{Z}_2 and \mathbb{Z}_4 . **Problem 6.** List all elements of \mathbb{Z}_{40} that have order ten. Solution. Let x be a generator of \mathbb{Z}_n . Recall that $|x^a| = \frac{n}{(n,a)}$. In our case n = 40 and $|x^a| = 10$. Thus (40, a) = 40/10 = 4. and (10, a/4) = 1. Then a/4 = 1, 3, 7, 9 and a = 4, 12, 28, 36. **Problem 7.** Suppose |x| = n. Find a necessary and sufficient condition on s and t such that $(x^t) \subset (x^s)$. Solution. This condition is (s, n)|l. Indeed if $(x^t) \subset (x^s)$ then $\exists a, (x^s)^a = x^l \Rightarrow x^{sa} = x^l \Rightarrow sa \equiv l \mod n \Rightarrow \exists b, sa + nb = l \Rightarrow (s, n)|l$. Conversely if $$d = (s, n)|l \Rightarrow \exists a, b, k, kd = k(as + bn) = l \Rightarrow l \equiv (ka) \operatorname{smod} n \Rightarrow x^l = (x^s)^{ka} \Rightarrow (x^t) \subset (x^s).$$ **Problem 8.** Determine the sign of the following permutations. - (135) - (1356) - (13567) - (12)(134)(152) - (1243)(3521) Solution. Recall that the sign of the permutation $\epsilon(\sigma)$ satisfies $\epsilon(\sigma_1\sigma_2) = \epsilon(\sigma_1)\epsilon(\sigma_2)$. If σ is a cycle of length n, then $\epsilon(\sigma) = (-1)^{n+1}$. - $\epsilon(135) = 1$ - $\epsilon(1356) = -1$ - $\epsilon(13567) = 1$ - $\epsilon(12)(134)(152) = (-1) \times 1 \times 1 = 1$ - $\epsilon(1243)(3521) = (-1) \times (-1) = 1$ **Problem 9.** What is the order of - (124)(357) - (124)(35) - (345)(245) Solution. Let x_i be generators of \mathbb{Z}_{n_i} . We know that $(x_1, \dots x_k) \in \mathbb{Z}_{n_1} \times \dots \times \mathbb{Z}_{n_k}$ has the order equal to $lcm(n_1, \dots, n_k)$. From this we conclude that - |(124)(357)| = lcm(3,3) because (124) and (357) commute and generate $\mathbb{Z}_3 \times \mathbb{Z}_3 \subset S_7$. - |(124)(35)| = lcm(3, 2) = 6 because (124) and (35) commute and generate $\mathbb{Z}_3 \times \mathbb{Z}_2 \subset S_5$ - |(345)(245)| = |(25)(34)| = lcm(2, 2) = 2 because (25) and (34) commute and generate $\mathbb{Z}_2 \times \mathbb{Z}_2 \subset S_5$. Notice that we first rewrote (345)(245) as a product of commuting cycles. **Problem 10.** Compute the centralizer of (12)(34) in S_4 . Solution. The following elements, besides 1 and (12)(34), commute with $\sigma = (12)(34)$: (13)(24), (14)(23). You have to finish this. **Problem 11.** Prove that the group of nonzero complex number under multiplication is not isomorphic to the group of complex numbers under addition. *Solution.* Elements of the form $e^{\frac{2\pi ik}{n}}$ have finite order in the multiplicative group (\mathbb{C}^*, \times) . The group $(\mathbb{C}, +)$ contains no such elements. **Problem 12.** Prove that the factor group of abelian group is abelian. Solution. Let H be a (normal) subgroup of Abelian group G. By definition the product of two classes xHyH is equal to xyH = yxH. **Problem 13.** Let H be a normal subgroup of G and a be an element of G. If the element aH has order 3 in G/H and |H| = 10 what is the possibilities for the order of a. **Problem 14.** Suppose \mathbb{Z}_{10} and \mathbb{Z}_{15} are homomorphic images of the group G. What can we say about |G|. Solution. We conclude that 10||G| and 15||G| and $2 \times 3 \times 5||G|$. **Problem 15.** Determine all the homomorphisms of \mathbb{Z} onto S_3 . Determine all the homomorphisms of \mathbb{Z} to S_3 . Solution. A homomorphisms $\psi: \mathbb{Z} \to G$ is completely determined by its value on the generator $x \in \mathbb{Z}$. If we know that $\psi(x) = a$ then $\psi(x^k) = a^k$. Thus there is one-to-one correspondence between homomorphisms of \mathbb{Z} to G and elements of G. In our case $|G| = |S_3| = 6$ and we have 6 different homomorphism. However non of them are onto because G is noncommutative, but a factor-group of commutative \mathbb{Z} must be commutative. **Problem 16.** Exhibit all Sylow 2-subgroups and Sylow 3-subgroups of D_{12} and $S_3 \times S_3$. Solution. (1) The case $D_{12} = \langle s, r | s^2 = r^6 = 1, srs = r^{-1} \rangle$. $|D_{12}| = 2^2 3$. The cyclic group $\langle r \rangle$ is normal. It contains a normal subgroup of order 3 generated by r^2 . Thus $n_3 = 1$. There is a commutative subgroup P_2 generated by s and r^3 . Its all element have order two and $|P_2| = 4$. The subgroup is isomorphic to $\mathbb{Z}_2 \times \mathbb{Z}_2 = \langle s, r^3 \rangle$. It is one of the Sylow 2-subgroups. Subgroup $\langle r^3 \rangle$ is invariant under conjugations, but $\langle s \rangle$ is not. The conjugated subgroups $\{g^{-1}P_2g\}$ are $\{\langle s, r^3 \rangle, \langle r^{-2}s, r^3 \rangle$, $\langle r^{-4}s, r^3 \rangle$. Additional consistency check: $n_2 = 1 + 2k n_2 ||D_1 2| = 12$ and $n_2 \leq |D_1 2|/|P_2| = 3$. Possible values for n_2 are 1 and 3. We already found 3 distinct conjugated subgroup. Now we know that no subgroups were missed. (2) The group S_3 contains one normal subgroup \mathbb{Z}_3 generated by (1,2,3). It also contains 3 subgroups of order two < (12) >, < (13) >, < (23) >. We can use them to construct subgroups $P_3 = \mathbb{Z}_3 \times \mathbb{Z}_3 \subset S_3 \times S_3$ of oder 9 and $P_2 = \mathbb{Z}_2 \times \mathbb{Z}_2 \subset S_3 \times S_3$. The order of $S_3 \times S_3$ is $2^2 \times 3^2$. Thus P_2, P_3 are Sylow subgroups. The group P_3 is normal, therefore it is the only 3-subgroup. $n_2 = 1 + 2k$, $n_2 \le 36/4 = 9$ and $n_2|9$. Thus $n_2 = 1,3,9$. Combining different $\mathbb{Z}_2 \subset S_3$ we obtain 9 subgroups in $S_3 \times S_3$ of order 4. Thus $n_2 = 9$ and our list is complete. **Problem 17.** Prove that a group of order 56 has a normal Sylow p-subgroup for some prime p dividing its order. Solution. The order of the group 56 factors into $2^3 \times 7$. Recall that the number n_p of Sylow p-subgroups satisfy $n_p \equiv 1 \mod p$ and $n_p = \frac{|G|}{|N(P)|}$, where N(P) is the normalizer of a Sylow p-subgroup P. In particular $n_p \leq \frac{|G|}{|P|}$ and $n_p||G|$. With this information we get $n_7 \in \{1, 8\}$ and $n_2 \in \{1, 3, 5, 7\}$. Divisibility constraint reduces the last set to $n_2 \in \{1, 7\}$. Suppose that $P \cong \mathbb{Z}_7$ is not normal. Then $n_7 = 8$. The group P has no subgroups. This is why $g^{-1}Pg$ do not intersect. The union $X = \bigcup_{g \in G} g^{-1}Pg$ of these subgroup consists of one element of order 1 and 6×8 element of order 7. Note that Sylow two-subgroup contains no elements of order 7. It must be a subset of $Y = \{1\} \cup G \setminus X$. Note that $|Y| = 56 - 6 \times 8 = 8$. From this we conclude that $n_2 = 1$. **Problem 18.** (Chinese Remainder Theorem for Rings) If R is a commutative ring and A and B are two proper ideals with A+B=R, prove that $R/(A\cap B)$ is isomorphic to $R/A \times R/B$. Solution. Consider the map $\psi: R \to R/A \times R/B$ defined by $\psi(r) = (r \mod A, r \mod B)$, where mod A means the class in R/A containing r (that is, r+A). This map is a ring homomorphism because ψ is just the natural projection of R into R/A and R/B for the two components. The kernel of ψ consists of all the elements $r \in R$ that are in A and in B, i.e. $A \cap B$. To complete the proof in this case it remains to show that when A + B = R, ψ is surjective and $A \cap B = AB$. Since A + B = R, there are elements $x \in A$ and $y \in B$ such that x + y = 1. This equation shows that $\psi(x) = (0, 1)$ and $\psi(y) = (1, 0)$ since, for example, x is an element of A and $x = 1y \in 1 + B$. If now $(r_1 \mod A, r_2 \mod B)$ is an arbitrary element in $R/A \times R/B$, then the element $r_2x + r_1y$ maps to this element since $$\psi(r_2x + r_1y) = \psi(r_2)\psi(x) + \psi(r_1)\psi(y) =$$ $$= (r_2 \mod A, r_2 \mod B)(0, 1) + (r_1 \mod A, r_1 \mod B)(1, 0)$$ $$= (0, r_2 \mod B) + (r_1 \mod A, 0)$$ $$= (r_1 \mod A, r_2 \mod B).$$ This shows that ψ is indeed surjective. Finally, the ideal AB is always contained in $A \cap B$. If A + B = R and x and y are as above, then for any $c \in A \cap B$, $c = c1 = cx + cy \in AB$. This establishes the reverse inclusion $A \cap B \subset AB$. ## Problem 19. Find $x \in \mathbb{Z}_{105}$ such that $$x \equiv 2 \bmod 3$$ $$x \equiv 4 \mod 5$$ $$x \equiv 6 \mod 7$$. Solution. Suppose $N = n_1 \dots n_k$ the product of relatively prime numbers n_i . We are given $a_i \in \mathbb{Z}_{n_i}$. By Chinese Remainder Theorem there is x such that $x \equiv a_i \mod n_i$. We can recover x by the formula $$x = \sum_{i} a_{i} \frac{N}{n_{i}} \left[\left(\frac{N}{n_{i}} \right)^{-1} \right]_{n_{i}}$$ Here how you should understand it: $\frac{N}{n_i}$ is relatively prime with n_i . It is invertible element in $\mathbb{Z}_{n_i}^*$. $\left[\left(\frac{N}{n_i}\right)^{-1}\right]_{n_i}$ is the integer mod n_i equal to the inverse. Note that by construction $a_i \frac{N}{n_i} \left[\left(\frac{N}{n_i}\right)^{-1}\right]_{n_i} \equiv a_i \text{mod } n_i$. On the other hand $n_j |a_i|_{n_i}^N \left[\left(\frac{N}{n_i}\right)^{-1}\right]_{n_i}$ for $j \neq i$. This is why $x \equiv a_i \text{mod } n_i$ In our case $$\left[\left(\frac{105}{3} \right)^{-1} \right]_3 = 2$$, $\left[\left(\frac{105}{5} \right)^{-1} \right]_5 = 1 \left[\left(\frac{105}{7} \right)^{-1} \right]_7 = 1$. and $x = 2 \times (5 \times 7) \times 2 + 4 \times (3 \times 7) \times 1 + 6 \times (3 \times 5) \times 1 = 314$ **Problem 20.** Determine whether the following polynomials are irreducible in the rings indicated. - (1) $x^4 + 10x^2 + 1 \in \mathbb{Z}[x]$. - (2) $x^4 + 1 \in \mathbb{Z}_5[x]$ - (3) $x^4 4x^3 + 6 \in \mathbb{Z}[x]$. Solution. (1) Possible rational roots (divisibility test r = p/q is a root of $a_n x^n + \cdots + a_0$, then $p|a_0$ and $q|a_n$) are ± 1 . By inspections these are not the actual roots. Remaining option is that $x^4 + 10x^2 + 1 = (ax^2 + bx + c)(ex^2 + fx + g)$. After expansion we immediately see that a = 1, e = 1 and $c = g = \pm 1$. Thus $x^4 + 10x^2 + 1 = (x^2 + bx + 1)(x^2 + fx + 1) = x^3(b + f) + x^2(bf + 2) + x(b + f) + x^4 + 1 \Rightarrow b = -f$ and $10 = 2 - b^2$. The last equation has no integral solutions. The case $(x^2 + bx - 1)(x^2 + fx - 1)$ is treated the same way. - (2) $x^4 = -1 \Rightarrow x^4 = 4 \Rightarrow x^2 = 2$ or $x^2 = -2 = 3$. The polynomials $x^2 2$ and $x^2 3$ have no roots in \mathbb{Z}_5 . Therefore they are irreducible. We conclude that $x^4 + 1 = (x^2 2)(x^2 3) = (x^2 + 3)(x^2 + 2)$ - (3) Irreducible. Use Eisenstein's criterion. **Problem 21.** Prove that U(20) and U(24) are not isomorphic. Solution. The isomorphisms of rings $\mathbb{Z}_{20} \to \mathbb{Z}_4 \times \mathbb{Z}_4$, $\mathbb{Z}_{24} \to \mathbb{Z}_3 \times \mathbb{Z}_8$ defines an isomorphism of groups of invertible elements $U(20) \to U(5) \times U(4)$, $U(24) \to U(3) \times U(8)$. The groups of invertible elements in the fields \mathbb{Z}_3 and \mathbb{Z}_5 are cyclic. So $U(3) \cong \mathbb{Z}_2$ and $U(5) \cong \mathbb{Z}_4$. The group U(4) contains two elements and must be isomorphic to \mathbb{Z}_2 . In the group U(8) all it elements satisfy $x^2 = 1$. It is generated by 3 and 5. Thus $U(8) \cong \mathbb{Z}_2 \times \mathbb{Z}_2$. We conclude that $$U(20) \cong U(5) \times U(4) \cong \mathbb{Z}_4 \times \mathbb{Z}_2$$ and $$U(24) \cong U(3) \times U(8) \cong \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$$ We see that U(20) contains an element of order 4, whereas in U(24) all elements have order two. **Problem 22.** Use the fact that $R = \mathbb{Z}[\sqrt{2}]$ is a Unique Factorization Domain to prove that $x^2 - \sqrt{2}$ is irreducible in R[x]. Solution. We have a norm $N: R \to \mathbb{Z}$. For $\alpha = a + \sqrt{2}b$ defined by the formula $N(\alpha) = \alpha \bar{\alpha}$, where $\bar{\alpha} = a - \sqrt{2}b$. The norm satisfies $N(\alpha\beta) = N(\alpha)N(\beta)$. Suppose $x^2 - \sqrt{2} = (x - \alpha)(x - \beta)$. Then $-2 = N(-\sqrt{2}) = N(\alpha)N(\beta)$. We infer that $N(\alpha)$ or $N(\beta)$ is equal to ± 1 . This means that one of them is a unit u and $\sqrt{2}$ is irreducible. We now want to use UFD property of the ring, which to us means that $\alpha = -u$ and $\beta = u^{-1}\sqrt{2}$. Thus $x^2 - \sqrt{2} = (x + u)(x - u^{-1}\sqrt{2}) = x^2 + (u - u^{-1}\sqrt{2})x - \sqrt{2}$. The middle term vanishes if $u^2 = \sqrt{2}$, which is impossible because u is a unit but $\sqrt{2}$ is not. **Problem 23.** Prove that the quotient ring $\mathbb{Z}[i]/I$ is finite for any nonzero ideal I of $\mathbb{Z}[i]$. Solution. $\mathbb{Z}[i]$ is an Euclidean Domain with a norm $N(a+ib)=a^2+b^2$. Then it is automatically a PID and every ideal has a form < a > for some $a \in \mathbb{Z}[i]$. Let b be an arbitrary element in $\mathbb{Z}[i]$. Then b=aq+r, where N(r) < N(a). This means that any class b+<a> has a representative b+<a> = aq+r+<a> = r+<a>, whose norm is less then the norm N(a). Notice that there is a finite number of elements of the lattice $\{x+iy|x,y\in\mathbb{Z} \text{ in the circle of radius } R^2=N(a)$. Thus the number of r is finite. **Problem 24.** Let *R* be an integral domain. Prove that if the following two conditions hold then *R* is a Principal Ideal Domain: - (1) any two nonzero elements a and b in R have a greatest common divisor which can be written in the form ra + sb for some $r, s \in R$, and - (2) if $a_1, a_2, a_3, ...$ are nonzero elements of R such that $a_{i+1}|a_i$ for all i, then there is a positive integer N such that an is a unit times a_N for all n > N. Solution. Let I be an ideal of R. We want to show that $\exists a$ such that $\langle a \rangle = I$. Let a_1 be some element in I. Then $\langle a \rangle \subset I$. If $\langle a \rangle = I$ we stop. Otherwise we choose $b \in I, b \notin \langle a_1 \rangle$. The first condition allows us to choose $a_2 = ra_1 + sb$ which is a generator of $\langle a_1, b \rangle$. We continue this way and get a sequence of ideals $\langle a_1 \rangle \subset \langle a_2 \rangle \subset \cdots \subset \langle a_n \rangle \subset I$. Then we must have $a_2 | a_1, \ldots, a_{i+1} | a_i \ldots$ By the second assumption $\exists N$ such that $a_{N+i} = u_i a_N$, where u_i are units. Thus $\langle a_N \rangle = \langle a_{N+i} \rangle = I$.