MAT313 Fall 2013

Practice Final

The actual final will consist of ten problems

Problem 1. Consider a strip of equally spaced letters

$$\cdots - 0 - 0 - 0 - 0 - \cdots$$

Describe the symmetry group of the strip. Is the group abelian?

Solution. The group is an infinite Dihedral group $\langle s, r | s^2 = 1, srs = r^{-1} \rangle$. The element r corresponds to the shift symmetry. s is the reflection symmetry.

Problem 2. Give four non isomorphic examples of groups of order eight. You must explain why the groups are mutually non isomorphic.

Solution. $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$ (all elements have order two), $\mathbb{Z}_4 \times \mathbb{Z}_2$ (the group contains an element of order four), \mathbb{Z}_8 (the group contains an element of order eight). Isomorphisms preserve order of elements.

Problem 3. Find a group that contains elements a, b such that |a| = |b| = 2 and

- (1) |ab| = 3
- (2) |ab| = 4
- (3) |ab| = 30

Solution. The group $D_{2n} = \langle r, s | r^n = 1, s^2 = 1, srs = r^{-1} \rangle$ satisfies these requirements. The elements are a = sr, b = s in groups D_6, D_8 and D_{60} .

Problem 4. Suppose H is a proper subgroup of \mathbb{Z} under addition and H is generated by 18, 30 and 40. Determine H.

Solution. The group is generated by the greatest common divisor of $18 = 3^2 \times 2$, $30 = 2 \times 3 \times 5$ and $40 = 2^3 \times 5$, which is 2

Problem 5. List all the subgroups of U(5)

Solution. The multiplicative group of a finite field is cyclic. We conclude that $U(5) \cong \mathbb{Z}_4$. The subgroups are $\{1\}$, \mathbb{Z}_2 and \mathbb{Z}_4 .

Problem 6. List all elements of \mathbb{Z}_{40} that have order ten.

Solution. Let x be a generator of \mathbb{Z}_n . Recall that $|x^a| = \frac{n}{(n,a)}$. In our case n = 40 and $|x^a| = 10$. Thus (40, a) = 40/10 = 4. and (10, a/4) = 1. Then a/4 = 1, 3, 7, 9 and a = 4, 12, 28, 36.

Problem 7. Suppose |x| = n. Find a necessary and sufficient condition on s and t such that $(x^t) \subset (x^s)$.

Solution. This condition is (s, n)|l. Indeed if $(x^t) \subset (x^s)$ then $\exists a, (x^s)^a = x^l \Rightarrow x^{sa} = x^l \Rightarrow sa \equiv l \mod n \Rightarrow \exists b, sa + nb = l \Rightarrow (s, n)|l$.

Conversely if
$$d = (s, n)|l \Rightarrow \exists a, b, k, kd = k(as + bn) = l \Rightarrow l \equiv (ka) \operatorname{smod} n \Rightarrow x^l = (x^s)^{ka} \Rightarrow (x^t) \subset (x^s).$$

Problem 8. Determine the sign of the following permutations.

- (135)
- (1356)
- (13567)
- (12)(134)(152)
- (1243)(3521)

Solution. Recall that the sign of the permutation $\epsilon(\sigma)$ satisfies $\epsilon(\sigma_1\sigma_2) = \epsilon(\sigma_1)\epsilon(\sigma_2)$. If σ is a cycle of length n, then $\epsilon(\sigma) = (-1)^{n+1}$.

- $\epsilon(135) = 1$
- $\epsilon(1356) = -1$
- $\epsilon(13567) = 1$
- $\epsilon(12)(134)(152) = (-1) \times 1 \times 1 = 1$
- $\epsilon(1243)(3521) = (-1) \times (-1) = 1$

Problem 9. What is the order of

- (124)(357)
- (124)(35)
- (345)(245)

Solution. Let x_i be generators of \mathbb{Z}_{n_i} . We know that $(x_1, \dots x_k) \in \mathbb{Z}_{n_1} \times \dots \times \mathbb{Z}_{n_k}$ has the order equal to $lcm(n_1, \dots, n_k)$. From this we conclude that

- |(124)(357)| = lcm(3,3) because (124) and (357) commute and generate $\mathbb{Z}_3 \times \mathbb{Z}_3 \subset S_7$.
- |(124)(35)| = lcm(3, 2) = 6 because (124) and (35) commute and generate $\mathbb{Z}_3 \times \mathbb{Z}_2 \subset S_5$
- |(345)(245)| = |(25)(34)| = lcm(2, 2) = 2 because (25) and (34) commute and generate $\mathbb{Z}_2 \times \mathbb{Z}_2 \subset S_5$. Notice that we first rewrote (345)(245) as a product of commuting cycles.

Problem 10. Compute the centralizer of (12)(34) in S_4 .

Solution. The following elements, besides 1 and (12)(34), commute with $\sigma = (12)(34)$: (13)(24), (14)(23). You have to finish this.

Problem 11. Prove that the group of nonzero complex number under multiplication is not isomorphic to the group of complex numbers under addition.

Solution. Elements of the form $e^{\frac{2\pi ik}{n}}$ have finite order in the multiplicative group (\mathbb{C}^*, \times) . The group $(\mathbb{C}, +)$ contains no such elements.

Problem 12. Prove that the factor group of abelian group is abelian.

Solution. Let H be a (normal) subgroup of Abelian group G. By definition the product of two classes xHyH is equal to xyH = yxH.

Problem 13. Let H be a normal subgroup of G and a be an element of G. If the element aH has order 3 in G/H and |H| = 10 what is the possibilities for the order of a.

Problem 14. Suppose \mathbb{Z}_{10} and \mathbb{Z}_{15} are homomorphic images of the group G. What can we say about |G|.

Solution. We conclude that 10||G| and 15||G| and $2 \times 3 \times 5||G|$.

Problem 15. Determine all the homomorphisms of \mathbb{Z} onto S_3 . Determine all the homomorphisms of \mathbb{Z} to S_3 .

Solution. A homomorphisms $\psi: \mathbb{Z} \to G$ is completely determined by its value on the generator $x \in \mathbb{Z}$. If we know that $\psi(x) = a$ then $\psi(x^k) = a^k$. Thus there is one-to-one correspondence between homomorphisms of \mathbb{Z} to G and elements of G. In our case $|G| = |S_3| = 6$ and we have 6 different homomorphism. However non of them are onto because G is noncommutative, but a factor-group of commutative \mathbb{Z} must be commutative.

Problem 16. Exhibit all Sylow 2-subgroups and Sylow 3-subgroups of D_{12} and $S_3 \times S_3$.

Solution. (1) The case $D_{12} = \langle s, r | s^2 = r^6 = 1, srs = r^{-1} \rangle$. $|D_{12}| = 2^2 3$. The cyclic group $\langle r \rangle$ is normal. It contains a normal subgroup of order 3 generated by r^2 . Thus $n_3 = 1$. There is a commutative subgroup P_2 generated by s and r^3 . Its all element have order two and $|P_2| = 4$. The subgroup is isomorphic to $\mathbb{Z}_2 \times \mathbb{Z}_2 = \langle s, r^3 \rangle$. It is one of the Sylow 2-subgroups. Subgroup $\langle r^3 \rangle$ is invariant under conjugations, but $\langle s \rangle$ is not. The conjugated subgroups $\{g^{-1}P_2g\}$ are $\{\langle s, r^3 \rangle, \langle r^{-2}s, r^3 \rangle$

, $\langle r^{-4}s, r^3 \rangle$. Additional consistency check: $n_2 = 1 + 2k n_2 ||D_1 2| = 12$ and $n_2 \leq |D_1 2|/|P_2| = 3$. Possible values for n_2 are 1 and 3. We already found 3 distinct conjugated subgroup. Now we know that no subgroups were missed.

(2) The group S_3 contains one normal subgroup \mathbb{Z}_3 generated by (1,2,3). It also contains 3 subgroups of order two < (12) >, < (13) >, < (23) >. We can use them to construct subgroups $P_3 = \mathbb{Z}_3 \times \mathbb{Z}_3 \subset S_3 \times S_3$ of oder 9 and $P_2 = \mathbb{Z}_2 \times \mathbb{Z}_2 \subset S_3 \times S_3$. The order of $S_3 \times S_3$ is $2^2 \times 3^2$. Thus P_2, P_3 are Sylow subgroups. The group P_3 is normal, therefore it is the only 3-subgroup. $n_2 = 1 + 2k$, $n_2 \le 36/4 = 9$ and $n_2|9$. Thus $n_2 = 1,3,9$. Combining different $\mathbb{Z}_2 \subset S_3$ we obtain 9 subgroups in $S_3 \times S_3$ of order 4. Thus $n_2 = 9$ and our list is complete.

Problem 17. Prove that a group of order 56 has a normal Sylow p-subgroup for some prime p dividing its order.

Solution. The order of the group 56 factors into $2^3 \times 7$. Recall that the number n_p of Sylow p-subgroups satisfy $n_p \equiv 1 \mod p$ and $n_p = \frac{|G|}{|N(P)|}$, where N(P) is the normalizer of a Sylow p-subgroup P. In particular $n_p \leq \frac{|G|}{|P|}$ and $n_p||G|$. With this information we get $n_7 \in \{1, 8\}$ and $n_2 \in \{1, 3, 5, 7\}$. Divisibility constraint reduces the last set to $n_2 \in \{1, 7\}$. Suppose that $P \cong \mathbb{Z}_7$ is not normal. Then $n_7 = 8$. The group P has no subgroups. This is why $g^{-1}Pg$ do not intersect. The union $X = \bigcup_{g \in G} g^{-1}Pg$ of these subgroup consists of one element of order 1 and 6×8 element of order 7. Note that Sylow two-subgroup contains no elements of order 7. It must be a subset of $Y = \{1\} \cup G \setminus X$. Note that $|Y| = 56 - 6 \times 8 = 8$. From this we conclude that $n_2 = 1$.

Problem 18. (Chinese Remainder Theorem for Rings) If R is a commutative ring and A and B are two proper ideals with A+B=R, prove that $R/(A\cap B)$ is isomorphic to $R/A \times R/B$.

Solution. Consider the map $\psi: R \to R/A \times R/B$ defined by $\psi(r) = (r \mod A, r \mod B)$, where mod A means the class in R/A containing r (that is, r+A). This map is a ring homomorphism because ψ is just the natural projection of R into R/A and R/B for the two components. The kernel of ψ consists of all the elements $r \in R$ that are in A and in B, i.e. $A \cap B$. To complete the proof in this case it remains to show that when A + B = R, ψ is surjective and $A \cap B = AB$. Since A + B = R, there are elements $x \in A$ and $y \in B$ such that x + y = 1. This equation shows that $\psi(x) = (0, 1)$ and $\psi(y) = (1, 0)$ since, for example, x is an element of A and $x = 1y \in 1 + B$. If now $(r_1 \mod A, r_2 \mod B)$ is an arbitrary element in $R/A \times R/B$, then the element $r_2x + r_1y$ maps to this element since

$$\psi(r_2x + r_1y) = \psi(r_2)\psi(x) + \psi(r_1)\psi(y) =$$

$$= (r_2 \mod A, r_2 \mod B)(0, 1) + (r_1 \mod A, r_1 \mod B)(1, 0)$$

$$= (0, r_2 \mod B) + (r_1 \mod A, 0)$$

$$= (r_1 \mod A, r_2 \mod B).$$

This shows that ψ is indeed surjective. Finally, the ideal AB is always contained in $A \cap B$. If A + B = R and x and y are as above, then for any $c \in A \cap B$, $c = c1 = cx + cy \in AB$. This establishes the reverse inclusion $A \cap B \subset AB$.

Problem 19.

Find $x \in \mathbb{Z}_{105}$ such that

$$x \equiv 2 \bmod 3$$

$$x \equiv 4 \mod 5$$

$$x \equiv 6 \mod 7$$
.

Solution. Suppose $N = n_1 \dots n_k$ the product of relatively prime numbers n_i . We are given $a_i \in \mathbb{Z}_{n_i}$. By Chinese Remainder Theorem there is x such that $x \equiv a_i \mod n_i$. We can recover x by the formula

$$x = \sum_{i} a_{i} \frac{N}{n_{i}} \left[\left(\frac{N}{n_{i}} \right)^{-1} \right]_{n_{i}}$$

Here how you should understand it: $\frac{N}{n_i}$ is relatively prime with n_i . It is invertible element in $\mathbb{Z}_{n_i}^*$. $\left[\left(\frac{N}{n_i}\right)^{-1}\right]_{n_i}$ is the integer mod n_i equal to the inverse. Note that by construction $a_i \frac{N}{n_i} \left[\left(\frac{N}{n_i}\right)^{-1}\right]_{n_i} \equiv a_i \text{mod } n_i$. On the other hand $n_j |a_i|_{n_i}^N \left[\left(\frac{N}{n_i}\right)^{-1}\right]_{n_i}$ for $j \neq i$. This is why $x \equiv a_i \text{mod } n_i$

In our case
$$\left[\left(\frac{105}{3} \right)^{-1} \right]_3 = 2$$
, $\left[\left(\frac{105}{5} \right)^{-1} \right]_5 = 1 \left[\left(\frac{105}{7} \right)^{-1} \right]_7 = 1$. and $x = 2 \times (5 \times 7) \times 2 + 4 \times (3 \times 7) \times 1 + 6 \times (3 \times 5) \times 1 = 314$

Problem 20. Determine whether the following polynomials are irreducible in the rings indicated.

- (1) $x^4 + 10x^2 + 1 \in \mathbb{Z}[x]$.
- (2) $x^4 + 1 \in \mathbb{Z}_5[x]$
- (3) $x^4 4x^3 + 6 \in \mathbb{Z}[x]$.

Solution. (1) Possible rational roots (divisibility test r = p/q is a root of $a_n x^n + \cdots + a_0$, then $p|a_0$ and $q|a_n$) are ± 1 . By inspections these are not the actual roots. Remaining option is that $x^4 + 10x^2 + 1 = (ax^2 + bx + c)(ex^2 + fx + g)$. After expansion we immediately see that a = 1, e = 1 and $c = g = \pm 1$. Thus $x^4 + 10x^2 + 1 = (x^2 + bx + 1)(x^2 + fx + 1) = x^3(b + f) + x^2(bf + 2) + x(b + f) + x^4 + 1 \Rightarrow b = -f$ and $10 = 2 - b^2$. The last equation has no integral solutions. The case $(x^2 + bx - 1)(x^2 + fx - 1)$ is treated the same way.

- (2) $x^4 = -1 \Rightarrow x^4 = 4 \Rightarrow x^2 = 2$ or $x^2 = -2 = 3$. The polynomials $x^2 2$ and $x^2 3$ have no roots in \mathbb{Z}_5 . Therefore they are irreducible. We conclude that $x^4 + 1 = (x^2 2)(x^2 3) = (x^2 + 3)(x^2 + 2)$
- (3) Irreducible. Use Eisenstein's criterion.

Problem 21. Prove that U(20) and U(24) are not isomorphic.

Solution. The isomorphisms of rings $\mathbb{Z}_{20} \to \mathbb{Z}_4 \times \mathbb{Z}_4$, $\mathbb{Z}_{24} \to \mathbb{Z}_3 \times \mathbb{Z}_8$ defines an isomorphism of groups of invertible elements $U(20) \to U(5) \times U(4)$, $U(24) \to U(3) \times U(8)$. The groups of invertible elements in the fields \mathbb{Z}_3 and \mathbb{Z}_5 are cyclic.

So $U(3) \cong \mathbb{Z}_2$ and $U(5) \cong \mathbb{Z}_4$. The group U(4) contains two elements and must be isomorphic to \mathbb{Z}_2 . In the group U(8) all it elements satisfy $x^2 = 1$. It is generated by 3 and 5. Thus $U(8) \cong \mathbb{Z}_2 \times \mathbb{Z}_2$.

We conclude that

$$U(20) \cong U(5) \times U(4) \cong \mathbb{Z}_4 \times \mathbb{Z}_2$$

and

$$U(24) \cong U(3) \times U(8) \cong \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$$

We see that U(20) contains an element of order 4, whereas in U(24) all elements have order two.

Problem 22. Use the fact that $R = \mathbb{Z}[\sqrt{2}]$ is a Unique Factorization Domain to prove that $x^2 - \sqrt{2}$ is irreducible in R[x].

Solution. We have a norm $N: R \to \mathbb{Z}$. For $\alpha = a + \sqrt{2}b$ defined by the formula $N(\alpha) = \alpha \bar{\alpha}$, where $\bar{\alpha} = a - \sqrt{2}b$. The norm satisfies $N(\alpha\beta) = N(\alpha)N(\beta)$. Suppose $x^2 - \sqrt{2} = (x - \alpha)(x - \beta)$. Then $-2 = N(-\sqrt{2}) = N(\alpha)N(\beta)$. We infer that $N(\alpha)$ or $N(\beta)$ is equal to ± 1 . This means that one of them is a unit u and $\sqrt{2}$ is irreducible. We now want to use UFD property of the ring, which to us means that $\alpha = -u$ and $\beta = u^{-1}\sqrt{2}$. Thus $x^2 - \sqrt{2} = (x + u)(x - u^{-1}\sqrt{2}) = x^2 + (u - u^{-1}\sqrt{2})x - \sqrt{2}$. The middle term vanishes if $u^2 = \sqrt{2}$, which is impossible because u is a unit but $\sqrt{2}$ is not.

Problem 23. Prove that the quotient ring $\mathbb{Z}[i]/I$ is finite for any nonzero ideal I of $\mathbb{Z}[i]$.

Solution. $\mathbb{Z}[i]$ is an Euclidean Domain with a norm $N(a+ib)=a^2+b^2$. Then it is automatically a PID and every ideal has a form < a > for some $a \in \mathbb{Z}[i]$. Let b be an arbitrary element in $\mathbb{Z}[i]$. Then b=aq+r, where N(r) < N(a). This means that any class b+<a> has a representative b+<a> = aq+r+<a> = r+<a>, whose norm is less then the norm N(a). Notice that there is a finite number of elements of the lattice $\{x+iy|x,y\in\mathbb{Z} \text{ in the circle of radius } R^2=N(a)$. Thus the number of r is finite.

Problem 24. Let *R* be an integral domain. Prove that if the following two conditions hold then *R* is a Principal Ideal Domain:

- (1) any two nonzero elements a and b in R have a greatest common divisor which can be written in the form ra + sb for some $r, s \in R$, and
- (2) if $a_1, a_2, a_3, ...$ are nonzero elements of R such that $a_{i+1}|a_i$ for all i, then there is a positive integer N such that an is a unit times a_N for all n > N.

Solution. Let I be an ideal of R. We want to show that $\exists a$ such that $\langle a \rangle = I$. Let a_1 be some element in I. Then $\langle a \rangle \subset I$. If $\langle a \rangle = I$ we stop. Otherwise we choose $b \in I, b \notin \langle a_1 \rangle$. The first condition allows us to choose $a_2 = ra_1 + sb$ which is a generator of $\langle a_1, b \rangle$. We continue this way and get a sequence of ideals $\langle a_1 \rangle \subset \langle a_2 \rangle \subset \cdots \subset \langle a_n \rangle \subset I$. Then we must have $a_2 | a_1, \ldots, a_{i+1} | a_i \ldots$ By the second assumption $\exists N$ such that $a_{N+i} = u_i a_N$, where u_i are units. Thus $\langle a_N \rangle = \langle a_{N+i} \rangle = I$.