MAT313 Fall 2013

Practice Midterm II

The actual midterm will contain five problems

Problem 1. Do noninvertible elements form an ideal in

- (1) \mathbb{Z}_n
- (2) Z

Solution. (1) Yes. if $a \in \mathbb{Z}_n$ isn't invertible $\Rightarrow (a, n) > 1 \Rightarrow (ka, n) > 1$

(2) No. Among noninvertible elements we have relatively prime elements a, b.
∃s, t as + bt = 1. The unit is invertible ⇒ noninvertible elements is not an ideal.

Problem 2. Prove that the number of units in $\mathbb{Z}[\sqrt{3}]$ is infinite

Solution. We have a unit $2 + \sqrt{3}$. It is a unit because $(2 + \sqrt{3})(2 - \sqrt{3}) = 4 - 3 = 1$. A product of units is a unit $\Rightarrow (2 + \sqrt{3})^n$ is a unit. Equality $(2 + \sqrt{3})^n = 1$ is impossible because $2 + \sqrt{3} > 1$.

Problem 3.

Prove that the ring $R = \{a + b\sqrt[3]{7} + c\sqrt[3]{49}|a, b, c \in \mathbb{Q}\}$ is a field.

Solution. There is an onto map $\phi : \mathbb{Q}[x] \to R$, $\phi(p(x)) = p(\sqrt[3]{7}), p(x) \in \mathbb{Q}[x]$. The ring *R* is a field iff Ker ϕ is maximal. Since all ideals in $\mathbb{Q}[x]$ are principal \Rightarrow Ker $\phi = \langle g \rangle$, for $g \in \mathbb{Q}[x]$. It is clear that $x^3 - 7 \in \text{Ker}\phi \Rightarrow g|x^3 - 7$. $7 \in \mathbb{Q}$ not a cube $\Rightarrow g = a(x^3 - 7), a \in \mathbb{Q}$. Ideal $\langle x^3 - 7 \rangle$ is maximal because as we know if $\langle x^3 - 7 \rangle \subset I = \langle h \rangle \Rightarrow h|x^3 - 7 \Rightarrow h = a(x^3 - 7) a \in \mathbb{Q} \Rightarrow R$ is a field.

Problem 4.

Find all solutions of $x^2 - x + 2 = 0$ in $\mathbb{Z}_7[i]$.

Solution. With a help of the quadratic formula $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ for solutions of $ax^2 + bx + c = 0$ we get

$$x = \frac{1 \pm 3i}{2} = 4 \pm 5i$$

Problem 5.

2

Show that $\mathbb{R}[x]/(x^2-2)$ is not a field, but $\mathbb{Q}[x]/(x^2-2)$ is.

- Solution. (1) Ideal $\langle x^2 2 \rangle \subset \mathbb{R}[x]$ is not maximal because $\langle x^2 2 \rangle \subset \langle x \sqrt{2} \rangle \subset \mathbb{R}[x] \Rightarrow \mathbb{R}[x]/(x^2 2)$ is not a field
 - (2) $x^2 2$ is irreducible in $\mathbb{Q}[x]$ because $2 \in \mathbb{Q}$ is not a square. $\Rightarrow \langle x^2 2 \rangle \subset \mathbb{Q}[x]$ is maximal $\Rightarrow \mathbb{Q}[x]/(x^2 2)$ is a field.

Problem 6.

Find all the ring homomorphisms $\psi : \mathbb{R} \to Mat_2(\mathbb{R})$ and $\phi : Mat_2(\mathbb{R}) \to \mathbb{R}$. ψ and ϕ are homomorphisms of rings with units, i.e. $\psi(1) = 1$ and $\phi(1) = 1$, which are \mathbb{R} -linear maps.

- Solution. (1) ψ is completely determined by the condition $\psi(1) = 1 = \text{Id}$, where Id is the identity matrix. The homomorphism condition $\psi(a)\psi(b) = a\text{Id}ba\text{Id} = ab\text{Id}$ trivially holds.
 - (2) Let \$\phi\$: Mat₂(\$\mathbb{R}\$) \$\Rightarrow\$ \$\mathbb{R}\$ be some homomorphism of algebras. If \$\phi\$ \$\neq\$ 0, then it is onto. The ring Mat₂(\$\mathbb{R}\$) as a vector space over \$\mathbb{R}\$ has dimension 4. \$\Rightarrow\$ dim Ker\$\phi\$ = 3. I claim that Mat₂(\$\mathbb{R}\$) contains no nontrivial ideals. Indeed let \$e_{ij}\$ be a matrix with a unit on \$(i, j)\$ slot. in if \$a \text{Ker}\$\phi\$ \$\Rightarrow\$ \$e_{ii}ae_{jj}\$ \$\infty\$ Ker\$\phi\$. If we choose \$i, j\$ in such a way that \$a_{ij}\$ \$\neq\$ 0 \$\Rightarrow\$ \$e_{ii}ae_{jj}\$ \$/a_{ij}\$ \$= \$e_{ij}\$. We can use elementary matrix transformations to transform \$e_{ij}\$ into any \$e_{i'j'}\$. We know from linear algebra that elementary matrix transformations are obtained by left and right multiplication on elementary matrices. \$\Rightarrow\$ \$e_{i'j'}\$ \$\int \$\mathbf{K}\$ \$\mathbf{K}\$ \$\mathbf{K}\$ \$\mathbf{K}\$ \$\mathbf{K}\$ \$\mathbf{E}\$ \$\mathbf{K}\$ \$\mathbf{E}\$ \$\mathbf{L}\$ \$\math

Problem 7. Do homomorphisms of a ring form a group with respect to addition. Explain.

Solution. No. In general if ϕ_1, ϕ_2 are homomorphisms then $\phi = \phi_1 + \phi_2$ doesn't satisfy $\phi(xy) = \phi(x)\phi(y)$:

 $\phi(xy) = \phi_1(xy) + \phi_2(xy) \neq (\phi_1 + \phi_2)(x)(\phi_1 + \phi_2)(y) \neq \phi_1(x)\phi_1(y)\phi_2(x)\phi_2(y) + \phi_2(x)\phi_1(y) + \phi_1(x)\phi_2(y)$

3