Math 312/ AMS 351 (Fall '17) Sample Questions for Final

Part A - Midterm 2 (Number Theory) (about 30%). Key concepts: congruence classes, division with remainder, Euclid's Algorithm, gcd as linear combination, Euler/Fermat Theorems, Chinese Remainder Theorem, congruence equations. Practice: Sample Midterm 1, Midterm 1.

1. Solve the system of equations

$$2x \equiv 1 \mod 3$$
$$x \equiv 2 \mod 7$$
$$x \equiv 7 \mod 8$$

- 2. Can we write 12 as a linear combination of 24 and 114. If yes, find a and b such that 12 = 24a + 114b.
- 3. Compute $6^{76} \mod 13$
 - Suppose $a \equiv 4 \mod 10$. What are the possible last 2 digits of a^n .

Part B - Midterm 2 (groups, rings, fields) (about 30%). Key concepts: notion of group, examples of groups (permutation, cyclic, dihedral groups), orders, Lagrange's Theorem, isomorphism, groups of small order, other algebraic structures (esp. rings, fields). Practice: Sample Midterm 2, Midterm 2.

- 4. We define the quaternion group Q to be the group with 8 elements $\{\pm 1, \pm i, \pm j, \pm k\}$ such that $i^2 = j^2 = k^2 = -1$, and ij = k, jk = i, and ki = j. Show that Q is not isomorphic to
 - \mathbb{Z}_8
 - $\mathbb{Z}_4 \times \mathbb{Z}_2$
 - Σ_4
 - D(4)

- 5. Give an example of
 - a field with finitely many elements
 - two different examples of integral domains, which are not fields
 - a ring (commutative and with unit) which is not an integral domain
 - a ring which doesn't have a unit
 - a ring which is not commutative

Part C - Polynomials (about 40%). Key concepts: division with remainder, Euclid's Algorithm, gcd, irreducible polynomials, factorization into irreducible factors, congruence classes modulo polynomials

- 6. Find the decomposition into irreducible factors for
 - i) $x^3 3x^2 + 3x 2$ over \mathbb{Z}_7
 - ii) $x^4 x^2 6$ over \mathbb{R}
 - iii) same as (ii), but over \mathbb{C}
- 7. Find the gcd and lcm of the following polynomials x^4+x+1 and x^3+x+1 over \mathbb{Z}_3 . Use both methods: factorization and Euclid's Algorithm.
- 8. Find all irreducible cubic polynomials over \mathbb{Z}_2 .
- 9. Let $f = x^2 + x + 2$ over \mathbb{Z}_3
 - i) Show that f is irreducible.
 - ii) Write down the 9 representatives for the congruence classes mod f.
 - iii) Compute $(x+1)^3 \mod f$.
 - iv) Find the inverse of $[x+1]_f$.
- 10. Give example of a field with 9 elements.