
MAT310 Fall 2012
Practice Midterm I

The actual midterm will consist of six problems
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Problem 1 If U and W are subspaces of a linear space:F, show that U ∪W need not

be a subspace. However, if U ∪W is a subspace, show that either U ⊂ W or W ⊂ U.
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Problem 2

• Show that the set {1, (t − 1), (t − 1)2, (t − 1)3} generates P3(R).

• Can two disjoint subsets of R2, each containing two vectors, have the same span?

Explain.
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Problem 3 Let V
φ
→ W

ψ
→ V be linear maps such that ψφ : V → V is an isomorphism.

Show that φ is one-to-one (injective) and ψ is onto (surjective).
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Problem 4 Let V
φ
→ W be a linear map of finite-dimensional linear spaces and let

L ⊂ V be a linear subspace.

• Show that dimension of φ(L) = {w ∈ W |w = φ(v), v ∈ V} is not greater then

dimension of L.

• What is the relation between dim φ(L) and dim L when φ is one-to-one.
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Problem 5 A linear map ρ : V → V is idempotent if ρρ = ρ. Show that if ρ is idempo-

tent then ρ acts as the identity on range(V). (Such linear maps are called projections: ρ

projects V onto range(V).)
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Problem 6 Determine whether or not {(1, 1, 0), (2, 0,−1), (−3, 1, 1)} is a basis for R3.
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Problem 7 ψ : V → V is nilpotent of order 2 if ψ2 is the zero endomorphism. Now

composition of two such endomorphisms need not be nilpotent of order 2. Find ψ, φ :

R2 → R2 , each nilpotent of order 2, whose composition is idempotent.
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Problem 8 If x and y are vectors and M is a subspace of V such that x < M but x ∈

span{M, y}, does it follow that

span{M, y} = span{M, x}
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Problem 9 Is it true that if L, M, and N are subspaces of a vector space, then

L ∩ (M + (L ∩ N)) = (L ∩ M) + (L ∩ N)?
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Problem 10

1. Under what conditions on the scalars α, β ∈ C are the vectors (1, α) and (1, β) in

C2 linearly independent?

2. Is there a set of three linearly independent vectors in C2 considered as a vector

space over

(a) Real numbers

(b) Complex numbers.

3. Under what conditions on the scalar x ∈ C do the vectors (1, 1, 1) and (1, x, x2)

form a basis of a two-dimensional subspace in C3?

4. Under what conditions on the scalar x do the vectors (0, 1, x), (x, 0, 1), and

(x, 1, 1 + x) form a basis C3?
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Problem 11 1. Which of the following three definitions of transformations on R2

give linear transformations? (The equations are intended to hold for arbitrary

real scalars α, β, γ, δ)

T (x, y) = (αx + βy, γx + δy)

T (x, y) = (αx2 + βy2, γx2 + δy2)

T (x, y) = (α2x + β2y, γ2x + δ2y)

(1)

2. Which of the following three definitions of transformations on the space of poly-

nomials P give linear transformations? (The equations are intended to hold for

arbitrary polynomials p.)

T p(x) = p(x2)

T p(x) = (p(x))2

T p(x) = x2 p(x)

(2)
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Problem 12 What are the null-spaces of the linear transformations named below?

1. The linear transformation T defined by integration:

T p(x) =

∫ x+9

−3
p(t)dt,

from P6 to P7.

2. The linear transformation D of differentiation on P5.

3. The linear transformation T on R2 defined by

T (x, y) = (2x + 3y, 7x − 5y)

4. The transformation T from P5 to P20 defined by the change of variables

T p(x) = p(x4);

5. The linear transformation T on R2 defined by

T (x, y) = (x, 0).

6. The linear transformation F from R6 to R1 defined by

F(x1, . . . , x6) =

6∑
i=1

xi.

Construct bases of the null spaces and extend them to bases of the ambient space.
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Problem 13 1. If S is a linear transformation on R[x] defined by

S p(x) = p(x2),

and T is the multiplication transformation defined by

T p(x) = x2 p(x),

do S and T commute?

2. If S isa linear transformation on P3(R) by

S p(x) = p(x + 2),

and T is the transformation defined by

T (α + βx + γx2 + δx3) = α + γx2,

(for all α, β, γ, δ) do S and T commute?
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Problem 14 1. Is the linear transformation defined by

T (x, y) = (2y + x, 2y + x)

invertible?

2. What about

T (x, y) = (y, x)

3. Is the differentiation transformation D on the vector space P5 invertible?
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Problem 15 A linear map T : P3 → R
2 is defined by the formula T ( f ) = ( f (0), f (1)).

Define an isomorphism N(T ) → Rk for a suitable k. You have to determine k first.

Extend a basis in N(T ) to a basis in P3.
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Problem 16 Find the matrices of a linear transformation T (a, b) = (2x − 3y, 5x + 7y)

in the bases β = {(1, 3), (1, 4)} and β′ = {(3, 2), (7, 5)}. Find Q = [I]ββ′ . Verify Q[T ]β′ =

[T ]βQ.
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