MAT203 Fall 2011

Practice Midterm II

The second midterm will contain 7 problems. You will not be allowed to use notes or calculators.

Problem 1 Determine which of the following equations define a cylinder and sketch its graph:

1. $x^2 + y^2 = 1 + z^2$.
2. $\ln(x) = y$.
3. $\cos(z) = y$.

Problem 2 Classify the surface defined by the following equations

1. $x^2 - 2x - 4 - y^2 - 4y - z = 0$
2. $3x^2 - 6x + 8 + 2y^2 + 8y - z^2 + 2z = 0$
3. $x^2 + 2x + 1 - 2y^2 + 4y - z^2 + 2z = 0$

Problem 3 Find equation of a surface of revolution obtained by rotation the curve given by equation $y = \ln(x)$ about

1. x-axis.
2. y-axis.

Problem 4 1. A surface in orthogonal coordinates is defined by equation

$$ x^2 - y^2 = 1. $$

Find its equation in cylindrical and spherical coordinates.
2. A surface in spherical coordinates is given by
\[\rho \sin \phi \cos \theta + \rho \sin \phi \sin \theta - \rho \cos \phi = 1. \]
Find its equation in orthogonal system.

Problem 5 Sketch the curve represented by vector-valued function
\[r(t) = (2 - t)i + (\sqrt{t} + 1)j \]

Problem 6 An acceleration function of an object satisfies
\[a(t) = \sin ti + \cos 2t j + \cos(t + \pi/4)k \]
Find the position function \(r(t) \) if the initial velocity at time \(t = 0 \) is \(i - 2j + \sqrt{2}k \) and the initial position is \(2i - 2j + 3k \).

Problem 7 Find the unit tangent vector and the principal normal vector to the curve \(r(t) = ti - 2t^2 j - t^2 k \) at a point \(r(1) \).

Problem 8 Find the arc length of the curve \(x = t^2, y = t^3 \) between (1, 1) and (4, 8).

Problem 9 Sketch the level curves of the function
\[f(x, y) = \begin{cases}
 x + y^2 & \text{if } x > 0 \text{ and } y > 0 \\
 0 & \text{otherwise}
\end{cases} \]

Problem 10 Identify limits that exist and evaluate them

1. \[\lim_{(x,y)\rightarrow(0,0)} \frac{x + y}{x - y} \]
2. \[\lim_{(x,y)\rightarrow(0,0)} \frac{xy}{x^2 + y^2} \]
3. \[\lim_{(x,y)\rightarrow(0,0)} \frac{x^2y^2}{x^2 + y^2} \]

Problem 11 Find the gradients of functions
1. \[f(x, y) = \sin(\ln(x + y) \cos(xy)) \]

2. \[g(x, y) = \frac{\sqrt{x + y + z}}{1 + x^2 + y^2 + z^2} \]

Problem 12 Find \(\frac{\partial z}{\partial t} \) and \(\frac{\partial z}{\partial s} \) for \(z = e^{2r \sin(3\theta)}, r = st - t^2, \theta = \sqrt{s^2 + t^2} \)

Problem 13 A function \(z = g(x, y) \) satisfies equation \(F(x, y, g(x, y)) = 0 \), where
\[F(x, y, z) = x^2 + zy + y^2 + zx^2 + z^3 \]
find partial derivatives \(g_x, g_y \) as functions of \(x, y, z \).

Problem 14
1. Find formula for a normal vector to level curves of the function \(f(x, y) = x^2 + 3x + y - y^3 \).
2. Find critical (extreme) points of this function, determine their type.

Problem 15 Find the equation of the tangent plane to the surface \(z = 3 + \cos(\pi xy) \) at the point \((1, 1) \).

Problem 16 Find the absolute maximum of the function
\[f(x, y) = x^2 - 3xy + y^2 \]
in the region \(x^2 + y^2 \leq 1 \)

Problem 17 Sketch the region of integration \(R \) and switch the order of integration in the following integrals
1. \[\int_{0}^{4} \int_{0}^{\ln(x)} f(x, y) dy dx \]
2. \[\int_{1}^{4} \int_{-\ln(x)}^{\ln(x)} f(x, y) dy dx \]
3. \[\int_{2}^{3} \int_{2-y}^{1} f(x,y) \, dx \, dy \]

Problem 18

1. Evaluate \[\int \int_{R} e^{-x-y} \, dx \, dy \]

where R is the region in the first quadrant in which \(x + y \leq 1 \)

2. Evaluate \[\int_{0}^{1} \int_{x^{3}}^{2} \frac{dy}{1+y^{4}} \]

(Hint: change the order of integration first.)

Problem 19
The integral
\[\int_{0}^{2} \int_{0}^{\sqrt{2x-x^{3}}} \sqrt{x^{2}+y^{2}} \, dy \, dx \]
is given in orthogonal coordinates. Change it to polar coordinates.

Problem 20

1. Find the volume of the solid that is below the surface \(z = 3x + 2y \) over the region \(R \) on the plane \(z = 0 \) bounded by the lines \(x = 0, y = 0 \) and \(x + 2y = 4 \) by evaluate a double integral.

2. Use polar coordinates to set up the integral for the volume of the solid inside the sphere \(x^{2} + y^{2} + z^{2} = 16 \) and outside the cylinder \(x^{2} + y^{2} = 4 \).

Problem 21
Find the area of the part of hyperbolic paraboloid \(z = y^{2} - x^{2} \) that lies between the cylinders \(x^{2} + y^{2} = 1 \) and \(x^{2} + y^{2} = 4 \).

Problem 22
Evaluate \[\int \int_{V} 3xy \, dx \, dy \, dz \], where \(V \) is the solid between the \(xy \)-plane and the hyperbolic paraboloid \(z = xy \) for \(0 \leq y \leq x, 0 \leq x \leq 1 \).