HW6

This is due Monday, March 31

1. (a) Let $m = 1111$. Show that m is composite using Fermat theorem.

 (b) Do the same for $m = 11111111111$.

2. Show that 2047 is composite by applying the strong pseudoprime test.

3. Show that if m is pseudoprime but not strong pseudoprime, then the strong pseudoprime test in conjunction with the Euclidean algorithm provide an efficient means of locating a proper divisor d of m.

4. Use the Pollard rho method to locate proper divisors of the following numbers: 8131, 10277 and 199934971.

5. Show that if $(a, m) = 1$ and m has a prime factor p such that $(p - 1)|Q$, then $(a^Q - 1, m) > 1$.