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Preface

During the last decade the methods of algebraic topology have invaded

extensively the domain of pure algebra, and initiated a number of internal

revolutions. The purpose of this book is to present a unified account of

these developments and to lay the foundations of a full-fledged theory.
The invasion of algebra has occurred on three fronts through the

construction of cohomology theories for groups, Lie algebras, and

associative algebras. The three subjects have been given independent
but parallel developments. We present herein a single cohomology (and
also a homology) theory which etnbodies all three; each is obtained

from it by a suitable specialization.

This unification possesses all the usual advantages. One proof

replaces three. In addition an interplay takes place among the three

specializations; each enriches the other two.

The unified theory also enjoys a broader sweep. It applies to situa-

tions not covered by the specializations. An important example is

Hilbert's theorem concerning chains of syzygies in a polynomial ring of

n variables. We obtain his result (and various analogous new theorems)

as a theorem of homology theory.

The initial impetus which, in part, led us to these investigations was

provided by a problem of topology. Nearly thirty years ago, Kiinneth

studied the relations of the homology groups of a product space to those

of the two factors. He obtained results in the form of numerical relations

among the Betti numbers and torsion coefficients. The problem was to

strengthen these results by stating them in a group-invariant form. The

first step is to convert this problem into a purely algebraic one concerning
the homology groups of the tensor product of two (algebraic) complexes.
The solution we shall give involves not only the tensor product of the

homology groups of the two complexes, but also a second product called

their torsion product. The torsion product is a new operation derived

from the tensor product. The point of departure was the discovery that

the process of deriving the torsion product from the tensor product
could be generalized so as to apply to a wide class of functors. In par-

ticular, the process could be iterated and thus a sequence of functors

could be obtained from a single functor. It was then observed that the

resulting sequence possessed the formal properties usually encountered

in homology theory.



vi PREFACE

In greater detail, let A be a ring, A a A-module with operators on the

right (i.e. a right A-module) and C a left A-module. A basic operation
is the formation of the tensor product A A C. This is the group

generated by pairs a c with the relations consisting of the two dis-

tributive laws and the condition ah c = a Ac. It is important to

consider the behavior of this construction in relation to the usual concepts
of algebra: homomorphisms, submodules, quotient modules, etc.

To facilitate the discussion of this behavior we adopt diagrammatic
methods. A sequence of A-modules and A-homomorphisms

4m - A m+l -> ----> A n m + 1 < n

is said to be exact if, for each consecutive two homomorphisms, the

image of the first is the kernel of the following one. In particular we
shall consider exact sequences

(1) 0->/4'->X->/r->0.

In such an exact sequence A 9

may be regarded as a submodule of A with

A" as the quotient module.

If an exact sequence of right A-modules is tensored with a fixed left

A-module C, the resulting sequence of groups and homomorphisms is,

in general, no longer exact. However, some measure of exactness is

preserved. In particular, if the sequence (1) is tensored with C, the

following portion is always exact:

(2) X' A C->^ A C->/T A C->0.

We describe this property by saying that the tensor product is a right

exact functor.

The kernel K of the homomorphism on the left in the sequence (2)

is in general not zero. In case A is a free module, it can be shown that

(up to natural isomorphisms) K depends only on A" and C. We define

the torsion product Torf (A",C) to be the kernel in this case. In the

general case there is a natural homomorphism

with image K. Continuing in this way we obtain an infinite exact

sequence

(3)
- - - -> Tor +1 (A",C) -> Tor (A',Q

(A,C) -> Tor (A\C)
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which terminates on the right with the sequence (2) above, provided that

we set

(4) Totf04,C)=^ A C.

The homomorphisms in (3) which pass from index n + 1 to n are

called connecting homomorphisms.
The condition that A be free in the definition of Tor(/4",C) is un-

necessarily restrictive. It suffices that A be projectile, i.e. that every

homomorphism of A into a quotient BjB' admit a factorization

A-> B->B1B'.

The inductive definition of the sequence (3) as described above is

cumbersome, and does not exhibit clearly the connection with homology

theory. This is remedied by a direct construction as follows. If A is a

module, then an exact sequence

-> A n -> A n l
->--'->A

l -*'AQ-+A->Q

is called a projective resolution of A if each A
,,

/ = 0,1,2, . . . is projective.

Tensoring with C gives a sequence

(5)
---->A n

~
A C -> ----> ,I A C

which may not be exact but which is a complex (the composition of two

consecutive homomorphisms is zero). The w-th homology group of the

complex (5) is precisely Tor;^ (A,C). Using the second definition of Tor,

the sequence (3) is constructed in the usual manner as the homology

sequence of an exact sequence of complexes

0-> X' A C-> X >A C-> X" A

where A", X, X" are appropriate projective resolutions of A'< A, A".

A basic property of Tor is

(6) Tor;^ (/4,C) --- if n > and A is projective.

In fact, this property, the exactness of (3), property (4) and the usual formal

properties of functors suffice as an axiomatic description of the functors

Tor*.

The 'description of Tor(/4,C) given above favored the variable A
and treated C as a constant. If the reversed procedure is adopted, the

same functors Tor(^4,C) are obtained. This "symmetry" of the two

variables in A A C is emphasized by adopting a definition of Tor

which uses simultaneously projective resolutions of both A and C. This

symmetry should not be confused with the symmetry resulting from the

natural isomorphism A A C ^ C A A which is valid only when A
is commutative.
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Another functor of at least as great importance as the tensor product
is given by the group HomA 04,C) of all A-homomorphisms of the left

A-module A into the left A-module C. This functor is contravariant in

the variable A, covariant in the variable C and is left exact in that when

applied to an exact sequence (1), it yields an exact sequence

(2') -> HomA (A\C) -* HomA (A,C) -> HomA (A',C).

A similar discussion to that above leads to an exact sequence

(3')
----> Exil (A\C) -> Ext (A,C)

-
Exft (A',Q -> Ext +1

(A',Q ->

which is a continuation of (2'), provided that we set

(4') ExtSU^C)=HomA M,C).

These properties together with the property

(6') Extn 04,C) = if n > and A is projective

and the usual formal properties of functors suffice as an axiomatic descrip-

tion of the functors ExtA (A,C).

The description above favored A as a variable while keeping C constant.

Again symmetry prevails, and identical results are obtained by treating

A as a constant and varying C. In this case however, instead of projective
modules and projective resolutions, we employ the dual notions of

injective modules and injective resolutions. A module C is infective if

every homomorphism B' -> C admits an extension B -> C for each module
B containing B' as a submodule. An injective resolution of C is an

exact sequence

with C1

injective for i = 0,1,2, ____

With the functors Tor and Ext introduced we can now show how
the cohomology theories of groups, Lie algebras and associative algebras
fit into a uniform pattern.

Let II be a multiplicative group and C an (additive) abelian group
with II as a group of left operators. The integral group ring Z(U)
is defined and C may be regarded as a left Z(ri)-module. The group
Z of rational integers also may be regarded as a Z(ri)-module with

each element of II acting as the identity on Z. The cohomology groups of
II with coefficients in C are then
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These cohomology groups were first introduced by Eilenberg-MacLane
(Proc. Nat. Acad. ScL U.S.A. 29 (1943), 155-158) in connection with a

topological application. Subsequently they found a number of topo-

logical and algebraic applications; some of these will be considered in

Ch. xiv and xvi. Quite recently, the theory for finite groups has been

greatly enriched by the efforts of Artin and Tate; Ch. XH deals with

these new developments. This theory has had its most striking appli-
cation in the subject of Galois theory and class field theory. As this is

a large and quite separate topic we shall not attempt an exposition here,

although we do prove nearly all the results of the cohomology theory of

groups needed for this application.
Let g be a Lie algebra over a commutative ring K and let C be a (left)

representation space for g. The enveloping (associative) algebra g
e

is

then defined and C is regarded as a left g
e
-module. The ground ring K

with the trivial representation of g also is a left g'-module. The cohomo-

logy groups of g with coefficients in C are then

//"(g,C) - ExtJ. (AT.C).

This theory, implicit in the work of Elie Cartan, was first explicitly

formulated by Chevalley-Eilenberg (Trans. Am. Math. Soc. 63 (1948),

85-124). We shall give an account of this theory in Ch. xm; however
we do not enter into its main applications to semi-simple Lie algebras
and compact Lie groups.

Let A be an associative algebra (with a unit element) over a com-
mutative ring K, and let A be a two-sided A-module. We define the

enveloping algebra Ae = A K A* where A* is the "opposite" algebra
of A. A may now be regarded as a left A'-module. The algebra A
itself also is a two-sided A-module and thus a left A'-module. The

cohomology groups are

H*(A,A) = ExtA, (A,/*).

This theory, closely patterned after the cohomology theory of groups, was

initiated by Hochschild (Ann. of Math. 46 (1945), 58-67). A fairly

complete account of existing results is given in Ch. ix.

In all three cases above, homology groups also are defined using the

functors Tor.

So far we have mentioned only the functors A A C and HomA 04,C)
and their derived functors Tor and Ext. It has been found useful to

consider other functors besides these two; Ch. ii-v develop such a theory
for arbitrary additive functors. Both procedures that led to the definition

of Tor are considered. The slow but elementary iterative procedure
leads to the notion of satellitefunctors (Ch. in). The faster, homological
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method using resolutions leads to the derivedfunctors (Ch. v). In most

important cases (including the functors and Horn) both procedures

yield identical results.

Beginning with Ch. vi we abandon general functors and confine our

attention to the special functors Tor and Ext and their composites.

The main developments concerning homology theory are grouped in

Ch. viii-xm.

The last three chapters (xv-xvn) are devoted to the method of spectral

sequences, which has been a major tool in recent developments in algebraic

topology. In Ch. xv we give the general theory of spectral sequences,

while the subsequent two chapters give applications to questions studied

earlier in the book.

There is an appendix by David A. Buchsbaum outlining a more

abstract method of treating the subject of satellites and derived functors.

Each chapter is preceded by a short introduction and is followed by a

list of exercises of varied difficulty. There is no general bibliography;

references are made in the text, whenever needed. Crossreferences

are made as follows: Theorem 2.1 (or Proposition 2.1 or Lemma 2.1) of

Chapter x is referred to as 2.1 if the reference is in Chapter x, and as

x,2.1 if the reference is outside of that chapter. Similarly vm,3,(8)

refers to formula (8) of 3 of Chapter vm.

We owe expressions of gratitude to the John Simon Guggenheim
Memorial Foundation who made this work possible by a fellowship

grant to one of the authors. We received help from several colleagues:

D. A. Buchsbaum and R. L. Taylor read the manuscript carefully and

contributed many useful suggestions; G. P. Hochschild and J. Tate

helped with Chapter XH; J. P. Serre and N. E. Steenrod offered valuable

criticism and suggestions. Special thanks are due to Miss Alice Krikorian

for her patience shown in typing the manuscript.
H. CARTAN

University of Paris S. EILENBERG

Columbia University

September, 1953
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CHAPTER I

Rings and Modules

Introduction. After some preliminaries concerning rings, modules,

homomorphisms, direct sums, direct products, and exact sequences, the

notions of projective and injective modules are introduced. These

notions are fundamental for this book. The basic results here are that

each module may be represented as a quotient of a projective module and

also as a submodule of an injective one.

In 4-7 we consider special classes of rings, namely: semi-simple

rings, hereditary rings, semi-hereditary rings, and Noetherian rings. It

will be seen later (Ch. vn) that for integral domains the hereditary (semi-

hereditary) rings are precisely the Dedekind (Priifer) rings.

1. PRELIMINARIES

Let A be a ring with a unit element 1 7^ 0. We shall consider (left)

modules over A, i.e. abelian groups A with an operation Aa e A, for

A c A, a A such that

(W (a) = ^(Jtfl), la=a.

We shall denote by the module containing the zero element alone.

In the special case A = Z is the ring of rational integers, the modules

over Z are simply abelian groups. If A is a (commutative) field, they
are the vector spaces over A.

Given two modules A and B (over the same ring A), a homomorphism
(or linear transformation, or mapping) of A into B is a function/defined
on A with values in B, such that f(x + y) fx +/v; /(Ax) = A(/x);

x,y A, A c A. We then write/: A -* B, or A -> B if there is no ambi-

guity as to the definition of/. The kernel of/ is the submodule of A

consisting of all x A such that/* = 0; it will be denoted by Ker (/) or

Ker (A -> B). The image of/ is the submodule of B consisting of all

elements of the form/*, jc A ; it will be denoted by Im (/) or Im (A -> B).

We also define the coimage and cokernel of/as follows:

Coim (/)
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Of course, /induces an isomorphism Coim (/) ^ Im (/) and because of

this isomorphism the coimage is very seldom employed.
A homomorphism/: A -> B as is called a monomorphism if Ker/= 0;

/ is called an epimorphism if Coker /= or equivalently if Im/= B.

Iff is both an epimorphism and a monomorphism then / is an isomorphism

(notation: /: A & B).

Let A be a module and {A^} a (finite or infinite) family of modules

(all over the same ring A) with homomorphisms

oc POL

A^A+A*
such that /ya

=
identity, /ya

= if /? ^ a. We shall say that {/a,/>a}

is a directfamily ofhomomorphisms.
If we assume that each x A can be written as a finite sum x = 2/a*a ,

*a c AV it follows readily that A is isomorphic with the direct sum 2/4a .

We therefore say that the family {ja,/>a} yields a representation of A as

a direct sum of the modules /4a . In this case the mappings {/>a} can be

defined using the {/J alone.

If we assume that for each family {xa}, xa >4 a , there is a unique
x A with

/?ax = xa , it follows readily that A is isomorphic with the

direct product JJ A^. We therefore say that the family {/a,/?a } yields a

representation of A as a direct product of the modules Xa . In this case

the homomorphisms {/a} can be defined using the
{/?a} alone.

If the family {Aa} is finite, the notions of direct sum and direct product
coincide. A finite direct family yields a direct sum (or direct product)

representation if and only if 2/a/>a = identity.

A sequence of homomorphisms

Am -> A m+l -* ----> A n , m + 1 < n

is said to be exact if for each m < q < n we have Im (A q_^ -> A Q)

= Ker (A g -* AQ+l). Thus A -+ B is a monomorphism if and only if

-> A -> B is exact and an epimorphism if and only if A -> B -> is

exact. We shall also allow sequences which extend to infinity to the left

or to the right or in both directions.

In particular, we shall consider exact sequences

Since A' -> A is a monomorphism we may regard A' as a submodule of A.

Since A -+ A" is an epimorphism with A' as kernel, we may regard A 9

as the quotient module A IA'. Thus (*) may be replaced by
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We shall say that the exact sequence (*) splits if Im (A
1

-* A) is a direct

summand of A. In this case, there exist homomorphisms A" -> A -+ A'

which together with the homomorphisms A'-+A-+A" yield a direct

sum representation of A.

Let F be a module and X a subset of F. We shall say that F is /ree
with X as fcose if every x F can be written uniquely as a finite sum

2A t
x

t , A t A, x
t
e A". If X is any set we may define Fx as the set of all

formal finite sums 2A tx,. If we identify x X with \x Fx , then Fx is

free with base X.

In particular, if A is a module we may consider FA . The identity

mapping of the base of FA onto A extends then to a homomorphism
FA -> A. If RA denotes the kernel of this homomorphism, we obtain

an exact sequence
-> RA -+ FA -* A -> 0.

A diagram
A->B

i i
C->D

of modules and homomorphisms, is said to be commutative if the com-

positions A -> B -> D and A -> C -> coincide. Similarly the diagram

is commutative, if A -+ B -> C coincides with A -+ C.

We shall have occasion to consider larger diagrams involving several

squares and triangles. We shall say that such a diagram is commutative,

if each component square and triangle is commutative.

PROPOSITION 1.1. ( The "5 lemma"). Consider a commutative diagram

A I^A 1^ A 1^ A L^A^2 ^1 ^0 '* 1 ^2

rowj. 7

(1) Coker A2 = 0, Ker Ax
= 0, Ker A^ = 0,

Ker h = 0. T/*

(2) Coker ^ = 0, Coker h^ = 0, Ker A_2
= 0,

then Coker A = 0.
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PROOF. Assume (1) and let acKer/z . Then g^ a=^0 so that

A_x/ fl = 0. It follows that f a = and therefore a = f^a' for some

a' Av Then gj^/af
= A /i' = h^a = so that ha =

g%b for some

b B2 . Then * = A2a" for some a" e ^2 . We have

*i/i" = g*V =
g*l>
= M'

which implies a' ==/2^- It follows that a =/!#' = fif^a
ff = 0.

The other half is proved similarly.

2. PROJECTIVE MODULES

A module P will be called projective if given any homomorphism
/: P-> A" and any epimorphism g: A -> X" there is a homomorphism
h: P-+A with #A= /. In the language of diagrams this means that every

diagram

in which the row is exact, can be imbedded in a commutative diagram

P

/\

PROPOSITION 2.1. A direct sum of modules is projective if and only if

each summand is projective.

PROOF. Let {ia9pa} be a representation of P as a direct sum of modules

{Pa}. Let g: A-+A" be an epimorphism. Assume P projective and

let/: P^-+A". Then^a : P -> A\ so that there is an A: P->A with

gh=fp^ It follows that gA/a
= fpj^ = /, so that Pa is projective.

Suppose now that all the Pa are projective, and let /: P -> /I". Then

//a : Pa ->,4", so that there is an Aa : Pa ->^ with ^Aa =//a . The

homomorphisms Aa yield a single homomorphism h: P ~-> A with A/a
= Aa

for each index a. Then ^/a =//a , which implies gh=f. Thus P is

projective.

THEOREM 2.2. In order that P be projective it is necessary and sufficient

that P be a direct summand of afree module.

PROOF. Let 0-> RP ~> FP ->P->0 be the exact sequence of 1.

If P is projective then there is a map P-> FP such that the composed

map P -> FP -> P is the identity. Thus the sequence splits and P is a
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direct summand of the free module FP . It remains to be proved that

each direct summand of a free module is projective. By 2.1 it suffices

to prove that every free module is projective. Let then F be free

with base {xa}, let/: F-> A" and let g: A -> A" be an epimorphism.
For each jca select ya A with g)'a /*a . Then the homomorphism
h: F'-> A such that hxa ya satisfies gh f. Thus F is projective.

THEOREM 2,3. Each module A can be imbedded in an exact sequence
-> M -> P-* A->Q with P projective (i.e. each module is a quotient

of a projective module).

Indeed - > RA -> FA -+ A -+ is such an exact sequence.
PROPOSITION 2.4. In order that P be projective it is necessary and

sufficient that all exact sequences Q->A'->A-+P->0 split.

PROOF. If P is projective, then, since A -> P is an epimorphism, there

is a homomorphism P -> A such that P -> A -> P is the identity. Thus

the sequence splits. Conversely if each sequence splits, then in particular

the sequence > Rr -> /> -> P -> splits. Thus P is a direct sum-

mand of FI> and therefore, by 2.2, P is projective.

PROPOSITION 2.5. Every exact sequence Q-+A'->A->A"-+Q can

be imbedded in a commutative diagram000
1 I I

> A/' > M > M" >

> P' > P > P"

v A' > A >. A" >

I I I000
in which all rows and columns are exact, the middle row splits and consists

ofprojective modules. In fact, the exact sequences

Q.+ M'->P'-+A'-+0, -> AT ->/>"-> .4"->0,

with P' and P" projectire, may be given in advance.

PROOF. We define P as the direct sum P' + P" and the maps P' -> P

and P -* P" as

/'-+</',0), (/>>")-*/.
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Since P" is projective and A -> A" is an epimorphism there is a map
h" : P" -*A which when composed with A -> A" yields P" -> A". Let h'

be the composition P' -+ A' - A. We define A: P -> ^ by setting

Then h maps P onto A and the lower two squares are commutative.

We define M as the kernel of h. Then the definition of the map in the

upper row is forced by the commutativity conditions and the proof of

exactness of the upper row is straightforward.

3. INJECTIVE MODULES

A module Q will be called infective if given any module A, a sub-

module A' and a homomorphism A' -> Q, there is an extension A -> Q.

In the language of diagrams this means that every diagram

- A f->A

in which the row is exact, can be imbedded in a commutative diagram

*A' >A

PROPOSITION 3.1. A direct product of modules is injectire if and only

if each factor is infective.

PROOF. Let {/*,/?} be a representation of Q as a direct product of

modules { a}. Let A be a module and A' a submodule of A. Assume

Q injective and let/: A' -> ga . Then /a/: A' -> Q and therefore there

is an extension g: A -> Q of /a/. Then pyg: A -> a is an extension of

/: /T-> ga . Thus each Qa is injective. Assume now that all the Qa

are injective and let/: A' -> Q. Then each
/?a/: A' -> Qa admits an

extension g^: A -> a . The homomorphisms ga yield #: >4 -> 2 w^h
/?a

= #a . Thus for each ;c c ^ 7 we have p^gx = g^x p^fx for all a,

and thereforefx = gx. Consequently Q is injective.

THEOREM 3.2. In order that a module Q be injective it is necessary
and sufficient that for each left ideal I of A and each homomorphism
f: /-> Q (with I regarded as a left A-module) there exists an element g Q
such thatft = Agfor all Ac/.
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PROOF. Suppose Q is
injective, then the homomorphism / has an

extension g: A->Q and /A gA Ag(l) for each Ac/. Thus the

condition is necessary. To prove sufficiency, consider a module A 9 a

submodule A', and a homomorphism/: A' -> Q. Consider the family
^of all pairs (A ltfi) where A

1
is a submodule of A containing A' and

/i : A l -> Q is an extension of/. We introduce a partial order in &> by

setting (A^ft) < (>4 2,/2) if A 1 C A 2 and /2 is an extension of /x . The

family 3F is obviously inductive and therefore by Zorn's lemma there is

an element (/4 ,/o)
of& which is maximal. We shall prove that A Q A.

Assume to the contrary that x c A and x not c A . The set of all A e A
such that Ax 6 AQ forms a left ideal / of A and the map/

'

: / -> Q defined

by / 'A = /)(Ax) is a homomorphism. There is therefore an element

g Q such that/ (Ax) Ag for all A e /. Setting

/'(* + Ax) -V -f A, a c ^ , A A,

yields then a map/" of the submodule /1 + Ax of ,4 which is an extension

of/'. Thus (^ /o) i s not maximal.

THEOREM 3.3. Each module A can be imbedded in an exact sequence

Q-+A->Q->N->Q where Q is injective (i.e. each module is a submodule

of an injective module).

PROOF. For each module A we shall define a module D(A) containing

A with the following property:

(*) If / is a left ideal of A and /: / -> A, then there is an element

g D(A) such that /(A)
--= Ig for all A /.

Let <I> be the set of all pairs (/,/) formed by a left ideal / of A and a

homomorphism/: / -+ A. Let F^ be the free module generated by the

elements of <1>. Let D(A) be the quotient of the direct sum A + F^ by
the submodule generated by the elements

The mapping a -^(0,0) yields a homomorphism <p: A^>D(A). If

a then

Therefore 2>.*.('n/.)
=" in Fo which implies I/.C^.A.)

= 0. This

implies a = 0. Thus 9? is a monomorphism and, by identifying a and <pa

we may regard A as a submodule of D(A).

We now prove that D(A) has the property (*). Let/: /-> ^ where

/ is a left ideal in A. Then (/,/) <D. Let g be the image in D(A) of

the element (0,(/,/)) of A + F*. Then for each A /

/A
as required.
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Let now Q be the least infinite ordinal number whose cardinal is

larger than that of the ring A. We define Q^A) for a ^ Q by transfinite

induction as follows: Qi(A)= D(A)\ if a =0+1 then (?a(/0
=

D(Qp(A))\ if a is a limiting ordinal then Q^(A) is the union of Q
ft
with

ft < a. We now prove that Qa(A) is injective. Indeed let/: /-* Qn(A)
where / is a left ideal of A. Then because of the choice of Q we have

f(I)CQ^(A) for some a < ii. Then by (*) there is an element

geD(Q(A))= Ga+1(/OC<2 C4) with /(A) = A# for all A/. Thus

by 3.2, Qn(A) is injective.

PROPOSITION 3.4. In order that Q be injective it is necessary and

sufficient that every exact sequence Q-+Q->A-+A'-*Q split.

PROOF. If Q is injective, then, since Q -> A is a monomorphism,
there is a homomorphism A -> Q such that Q ~~> A -> Q is the identity.

Thus the sequence splits. Conversely, if each sequence splits, we choose

A to be an injective module containing Q, and A' A/Q. Thus Q is a

direct factor of A and therefore, by 3.1, Q is injective.

PROPOSITION 3.5. Every exact sequence -> A' -> A -> 4" -> can

fee imbedded in a commutative diagram000
I I I

Q > A' * ,4 /*" >

i

> Q' > Q > Q" >

i I 1

> N' > N > N" >

i i i000
in which all rows and columns are exact, the middle row splits and consists

of injective modules. Infact, the exact sequences -> A' -> Q' -> N' -> 0,

0->^-> (T-> Af"->0, with Q' and Q" injective, may be given in

advance.

The proof is similar to that of 2.5.

Injective modules (under a different teiminology) were considered

by R. Baer (Bull. Am. Math. Soc. 46 (1940), 800-806) who with minor

variants has proved 3.2 and 3.3.
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4. SEMI.SIMPLE RINGS

A module A is called simple if it is 7^0 and it contains no submodules

except A and 0. A module A is called semi-simple if it is a direct sum
of simple modules.

PROPOSITION 4.1. In order that a module A be semi-simple it is neces-

sary and sufficient that each submodule ofA be a direct summand.

PROOF. Let A 2S,, i e / be a direct sum of simple submodules Sr
For each J C I let Sj = 2St , ieJ. Let B be a submodule of A and let

/ be a maximal subset of / such that Sj C] B 0. For / not c / we
then have (Sj + S

t ) n B ^ so that (S, + 5) n S, ^ 0. Since S,

is simple it follows that S
t CSj + B. This implies A= Sj + B and

since Sj O = 0, it follows that B is a direct summand of A.

Suppose now that every submodule of A is a direct summand. It

follows readily that every submodule of A also has the same property.
We first show that every non-zero submodule C of A contains a simple

module. Indeed let c C, c 7^ and let D be a maximal submodule of

C not containing c. Then C is the direct sum of D and a submodule E
which we will prove is simple. Indeed let F be a proper submodule

of E, F 7^-- 0. Then E is the direct sum of F and a submodule G 7^ 0.

Thus C -^ D + F+Gisa direct sum and either D + F or D + G does

not contain c, contrary to the maximal character of D.

Now, let {Sa } be a maximal family of simple submodules of A such

that B = ^5a is a direct sum of the modules S"a . Clearly such a family
exists. Then A is the direct sum of B and a submodule C. If C =

then C contains a simple module, thus contradicting the maximal

character of {Sa }. Thus A B and A is semi-simple.

THEOREM 4.2. /for eacA ring- A (with unit element 1 7^ 0), the following

properties are equivalent:

(a) A is semi-simple as a left A-module.

(b) Every left ideal ofA is a direct summand of A.

(c) Every left ideal ofA is injective.

(d) All left modules over A are semi-simple.

(e) All exact sequences Q-+A'-*A-*A"-+Qofleft A-modules split.

(f) All left A-modules are projective.

(g) All left A-modules are injective.

PROOF. The equivalence of (a) and (b) was proved in 4.1.

The equivalence of (d) and (e) follows from 4.1. The equivalence
of (e) and (f) follows from 2.4, while the equivalence of (e) and (g) follows

from 3.4. Thus (d) (g) are equivalent.

The implication (g) => (c) is obvious. If the ideal / of A is injective

then by 3.4 the exact sequence 0->/-> A-> A//->0 splits, so that I
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is a direct summand of A. Thus (c) => (b). Finally if each ideal / of A
is a direct summand then each homomorphism/: / -* A into any module

A admits an extension /: A -> A so that /A = A/(l) for all Ac/. Thus

by 3.2 the module A is injective. This proves (b) => (g) and concludes

the proof.

It is a classical result that a ring A is semi-simple (as a left A-module)
if and only if A is the direct product of a finite number of rings each of

which is a full matrix algebra over a (not necessarily commutative) field

(see for instance B. L. van der Waerden, Moderne Algebra, vol. 2, 2nd

edn., Berlin, 1940, p. 160). This implies that A is semi-simple as a

left A-module if and only if it is semi-simple as a right A-module. Con-

sequently conditions (a) (g) could equally well be stated for right ideals

and right modules.

5. HEREDITARY RINGS

PROPOSITION 5.1. In order that a module P be projective, it is necessary
and sufficient that every diagram

P

Q > Q" *

in which the row is exact and Q is injective, can be imbedded in a com-

mutative diagram

PROOF. The necessity of the condition is obvious. To prove suffi-

ciency, consider a module A, a submodule A' with A" = A/A' and a

homomorphism /: P -> A". We may regard A as a submodule of an

injective module Q. Then A" is a submodule of Q" = Q/A'. By the

condition above there is then a homomorphism g: P -+ Q which when
combined with Q -> Q" yields P -> A" -* Q". It follows that the values

of g lie in A. This yields g' : P-+A which when combined with A -+ A"

yields/: P-+A". Thus P is projective.

PROPOSITION 5.2. In order that a module Q be injective, it is necessary
and sufficient that every diagram

>/>' >P

i

Q
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in which the row is exact and P is projective^ can be imbedded in a com-

mutative diagram
>P' *P

PROOF. The necessity of the condition is obvious. To prove suffi-

ciency, consider a module A, a submodule A' and a homomorphism
/: A

1

-+ Q. Represent A as a quotient of a projective module P by a

submodule M. If P' is the counter-image of A' in P then A' = P'/M.
The composite homomorphism P' ->/*'-> Q can then be extended to a

homomorphism g: P-+ Q. But g maps M into zero and therefore

yields a homomorphism h: A -> Q which is an extension of/: A' -> Q.
Thus Q is injective. The above proof is dual to that of 5.1.

A ring A will be called left hereditary if every (left) ideal of A is a

projective module.

THEOREM 5.3. If A is left hereditary then every submodule of a

free module is the direct sum of modules each of which is isomorphic
with a left ideal of A. (I. Kaplansky, Trans. Am. Math. Soc. 72

(1952), 327-340).

PROOF. Let F be a free module with a well ordered base {xa}. We
denote by Fa (or Fa) the submodule of F consisting of elements which

can be expressed by means of generators x
ft
with ft < a (or ft <I a). Let

A be a submodule of F. Each element a e A O Fa is of the form a = b + Axa
with b Fa , A c A. The mapping a -> A maps A n Fa onto a left ideal

/a of A and has A n F* as kernel. Since /a is projective, it follows that

A n Fa is the direct sum of A n â anc* a submodule Ca isomorphic
with /a . We shall show that A is a direct sum of the modules Ca .

Firstly, the relation cl + + cn = w^h c Q , ax < < an ,

implies that c
t
= 0; indeed, the sum of A n^ and C^ being direct,

we have q + + cn_j =0, cn = 0; the assertion then follows by
recursion on n. Secondly, A is the sum of the modules Ca ; assume to

the contrary A ^ ^C^ Then there is a least index /? such that there is

an element a e A n Fp which is not in 2<xQ- Since a = b + c with

6 c A n ^> c C
ft

it follows that 6 is not in 2Q- However b A c\FY

for some y < ft, thus contradicting the minimality of ft.

If A is a principal ideal ring, then each ideal / of A is isomorphic with

A, thus / is free and A is hereditary. Since a direct sum of free modules

is free, 5.3 implies the well known result that a submodule of a free

module over a principal ideal ring is free.
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THEOREM 5.4. For each ring A, thefollowing properties are equivalent:

(a) A is left hereditary.

(b) Each submodule of a projective left A-module is projective.

(c) Each quotient of an infective left A-module is injective.

PROOF, (a) => (b). Let A be a submodule of a projective module P.

By 2.2, P is a submodule of a free module. Thus, by 5.3, A is the direct

sum of projective modules. Consequently, by 2. 1 , A is projective.

(b) => (a). Since A is free, and therefore projective, each submodule

of A, i.e. each left ideal of A, is projective.

In order to prove the equivalence of (b) and (c) consider a diagram

P* P'*

where the rows are exact, P is projective and Q is injective. Suppose
now that (b) holds. Then P' is projective. There is then a map P' -> Q
such that /is the composition P'-> Q -> Q". Since Q is injective there

is a map P-> Q such that P'-+P^> Q yields P'-> Q. Thus P'-+P

-+Q-+Q" yields /. This implies by 5.2 that Q" is injective. Thus

(b)=>(c).

Now, assume (c). Then Q" is injective, so that there is a map P -> Q"
such that P' ->P-> Q" yields / Since P is projective the map P -> Q"

may be factored into P->Q-+Q". Then the composition P'-*P
-* G-> Q" yields/. This implies, by 5.1, that P' is projective. Thus

(c)=>(b).

6. SEMI-HEREDITARY RINGS

A A-module A is said to be finitely generated if there exists a sequence
al9 . . . , an A such that each element of A has the form A

lal +
+ *n* A

15 . . . , An A.

The ring A will be called left semi-hereditary if each finitely generated

(left) ideal of A is a projective module.

PROPOSITION 6.1. If A is left semi-hereditary then every finitely

generated submodule of a free left A-module is the direct sum of a finite

number of modules each of which is isomorphic with a finitely generated
ideal of A.

PROOF. Let {jca} be a base for the free module F and let A be a finitely

generated submodule of F. Then y4,must be contained in a submodule

of F generated by a finite number of the elements Jta. Thus we may
assume that F has a finite base fo, . . . , xn).

We proceed by induction with respect to n. Let B be the submodule
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of those elements of A which can be expressed using x1?
. . . , xn_r Then

each a A can be written uniquely as a hxn + 6, A c A, b B (note

that B = if n = 1). The mapping a -> A maps ,4 onto an ideal / of A,

the kernel of the mapping being B. There results an exact sequence

It follows that the ideal / is finitely generated and therefore is a pro-

jective module. Thus, by 2.4, the exact sequence splits, and A is iso-

morphic with the direct sum of / and B. This implies that B is finitely

generated, and therefore by the inductive assumption, satisfies the con-

clusion of 6.1. It follows that A also satisfies the conclusion.

PROPOSITION 6.2. For each ring A thefollowing conditions are equivalent :

(a) A is left semi-hereditary.

(b) Each finitely generated submodule of a projectile left A-module

is projectile.

PROOF. The implication (a)=>(b) follows from 6.1 and the facts

that each projective module is a submodule of a free module and that the

direct sum of projective modules is projective. The implication (b) => (a)

is obvious since A itself is free and thus projective.

The definition of right hereditary and right semi-hereditary rings is

entirely similar. It is an open question whether a left hereditary (or

semi-hereditary) ring also is right hereditary (or semi-hereditary).

7. NOETHERIAN RINGS

A module A is called Noetherian if each submodule of A is finitely

generated. A ring A is called left (right) Noetherian if it is Noetherian

as a left (right) A-module.

PROPOSITION 7.1. If A is left Noetherian then each finitely generated

left A-module A is Noetherian.

PROOF. We must show that each submodule B of A is finitely

generated.
Let *!,..., xn be a system of generators for A. If n = 1, then

A f* A/7 for some left ideal /. Therefore B ^ J/I for some left ideal J

containing /. Since J is finitely generated, so is B. We now proceed

by induction and assume that the proposition is proved for modules A

generated by fewer than n elements. Assume n > 1 and let A' denote

the submodule of A generated by xv There results an exact sequence

0-T->y4->/r->0 with both A' and A" generated by fewer than n

elements. This exact sequence induces an exact sequence ->'->
_> B" -> with B'CA', B" C A". Thus B' and B" are finitely generated,

and therefore B is also finitely generated.
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We shall now construct an example (due to J. Dieudonne) of a ring A
which is left Noetherian without being right Noetherian. Let A be

the ring generated by the elements 1, x, y with relations yx = 0, yy = 0.

Let F be the subring of A generated by 1 and x. Every element of A
may then be written uniquely as yl + y^y where ylf y2 F.

The ring F is the ring of polynomials in the indeterminate x with

integer coefficients, and is well known to be Noetherian. Since A re-

garded as a left F-module is finitely generated it follows from 7.1 that

A is Noetherian as a left F-module and thus also as a left A-module.

Let / denote the subgroup of A generated by the elements xn
y (n i> 0).

Since Ix = ly 0, it follows that / is a right ideal and that any system of

right A-generators for / is also a system of right Z-generators for /.

Thus / is not finitely A-generated (as a right A-module). Therefore A is

not right Noetherian.

EXERCISES

1. Let A l9A2 be submodules of a module A and let A12
= A l n A 2 .

Show that the diagram00
i i i

> A 12 > A l
> AJA 12 *0

i i i

> A2 > A > A/A 2 >0

i i i

> AZ/AU A/A! > A/(A! + A 2) >

1 I i00
with the maps induced by inclusion, is commutative and has exact rows

and columns.

2. Let -* A' -> A -> A" -> be an exact sequence of left A-modules.

Show that if A' and A" are finitely generated then so is A. If A is left

Noetherian, then the converse also holds.

3. Let A be the direct sum of modules A^ Show that A is finitely

generated if and only if each Aa is finitely generated and A a
= for all

but a finite number of indices a.

4. Let A l and A 2 be submodules of a module A. Show that if

A 1 + A2 and Al n A2 are finitely generated, then so are A and A 2 .
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5. Consider the ring Zn
= Z/nZ, where Z denotes the ring of integers

and n is an integer (1 < n < oo). For each divisor r of n consider the

ideal rZn and define an exact sequence

-> r'Zn -> Zn -* rZn -* 0,

where r' = /r. Show that this sequence splits if and only if (r,r')
= 1.

The Zn-module rZn is projective if and only if (r,/i/r)
= 1 . Give examples

of projective modules which are not free.

6. For any integer n, prove the equivalence of the following con-

ditions:

(a) the ring Zn is semi-simple.

(b) the ring Zn is hereditary.

(c) n is a product of distinct primes.

7. Show that for every ring A the following properties are equivalent:

(a) Every left ideal of A is a free A-module.

(b) Every submodule of a free left A-module is A-free.

8. Let A be a left Noetherian ring. Show that the direct limit of

injective left A-modules is injective. [Hint: use 3.2.]



CHAPTER II

Additive Functors

Introduction. We consider functors (in the sense of Eilenberg-

MacLane (Trans. Am. Math. Soc. 58 (1945), 231-294)) defined for

A-modules and whose values are in the category of F-modules, where A
and F are two given rings. We only consider functors which satisfy an

additivity property reflecting the fact that homomorphisms of modules

can be added. Functors of several variables, some covariant, some

contravariant are also treated. The two basic examples of such functors

are A C (the tensor product) and Horn (A,C).

In 4 we discuss the extent to which functors may preserve exactness.

It turns out that Horn 04,C) is a left exact functor; this will give rise

(in Ch. m, v, vi) to right satellites and right derived functors of Horn (/4,C).

Similarly the functor A C is right exact; we shall later study its left

satellites and its left derived functors.

The associativity relations of 5 are quite elementary but of great

importance in the sequel.

Given a A-module A it is frequently necessary to "restrict" the opera-
tors to a smaller ring or to "extend" the operators to a larger ring (by a

suitable enlargement of A). In 6 we set up the basic notions involved

in such a change of rings. We shall return to these questions later (vi, 4;

xvi, 5). There will be numerous applications to homology theory of

groups and Lie algebras.

1. DEFINITIONS

Let A!, A be any two rings. Suppose that for each A-module A a

A-module T(A) is given and that to each A1-homomorphism q>: A -+ A'

a A-homomorphism T(y): T(A) -> T(A') is given such that

(1) if <p: A -> A is the identity, then T(<p) is the identity,

(2) T(<p'<p)
=

T(<p')T(v) for <p: A -> A', q>'\ A' -> A".

We then say that the pair of functions T(A\ T((p) forms a covariant

functor T on the category of A-modules with values in the category
of A-modules. In the case of a contravariant functor we have

T(q>): T(A') -> T(A) and T(<p'q>)
= T(V)T(<p').

In the sequel we shall have to consider functors in many variables,

some covariant some contravariant. To simplify the notation we define

18
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explicitly a functor in only two variables, covariant in the first and
contravariant in the second.

Let AJ, A2 , A be rings. We assume that for each Armodule A and
each A2-module C a A-module T(A,C) is given. Further, for each pair
of homomorphisms <p: A -> A\ y C' -> C, homomorphisms

are given subject to the following conditions:

(3) T(y,C) and T(A,y) are identity maps if 9?: /I ->/4, y>: C-> C are

identity maps,

(4) TV^C) - 7V,C)7(9?,C) and jT^.w') = r(/*,y/)r(/l,yO for

(5) The following diagram is commutative

T(A,v) T(A f

,v)

The composite mapping T(A,C) -> r(/4',C') is denoted by T(<p,y).

Clearly, by fixing C, T becomes a covariant functor of A and by
fixing A, T becomes a contravariant functor of C.

We shall only be concerned with functors which are additive, i.e.

satisfy

where <ft,9V A -> A\ yi^: C' -> C and addition denotes addition of

homomorphisms. In particular if <p and y are zero homomorphisms then

r(9?,C) and T(/l,y) also are zero homomorphisms. It follows that if

one of the modules A or C is zero, then the identity map T(A 9C) -> T(A,C)
is zero and therefore that T(A,C) is the zero module.

PROPOSITION 1.1. If the homomorphisms

(a = 1, . . . , m\ ft
= 1, . . . , n) yield direct sum decompositions of A and

C, then the homomorphisms

yield a direct sum decomposition ofT(A 9C).
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PROOF. We have H/W/r )7X'^) = T(p*> /.ty//r). This yields the

identity if (<x',|8')
=

(<x,/f) and zero otherwise. Further

=
identity.

Thus the conditions for a direct sum are satisfied.

COROLLARY 1.2. If

Q-+A' -+A-+A" -> 0, 0-yC'->C->C"->0

are
.s/>//7

tfjftic/ sequences, then

-> T(y4',C) -* T(A,C) -> r(^",C) ->

-> 7(^,0 -> T(^,C) -> r(/l,C') ->

fl/j^ are split exact sequences.

Let 7\ and T2 be two functors, both covariant in A and contravariant

in C. A natural transformationf: 7\ -> 72 is a family of homomorphisms

f(A,C): Ti(A,C) -> r2(X,C) such that the diagram

is commutative for all 9?: /4 ~> X', v^ C" -> C. If each f(A,C) maps
7\04,C) isomorphically onto T2(>4,C) then/is called a natural equivalence

or a natural isomorphism.

2. EXAMPLES

Our first example is the functor Horn (A,C). Let A and C be two

(left) A-modules. We shall denote as usual by Horn (A,C) the group of

all A-homomorphisms A -> C. Horn (,4,C) is regarded as an abelian

group (i.e. a Z-module where Z is the ring of integers). We usually
write HomA (A,C) to indicate that we are considering A-homomorphisms.

Given A-homomorphisms

<p: A'-*A, y>: C->C'
we define

Hom(<p,vO: Horn (A 9Q-> Horn (A',C
f

)

by setting for a Horn (A,C)
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With this definition it is clear that Horn (A,C) is an (additive) functor

contravariant in A and covariant in C.

Each element c c C determines a A-homomorphism g?f
: A -> C (with

A regarded as a left A-module) by setting g?c(A)
= Ac. This establishes

an isomorphism of C (regarded as an abelian group) with HomA (A,C).
Since A is also a right A-module it follows that HomA (A,C) may be

regarded as a left A-module (see next ); then HomA (A,C) & C is a

A-isomorphism. We shall frequently identify HomA (A,C) with C under

this isomorphism.
The functor HomA (/*,C) may also be defined when A and C are

right A-modules.

Our next example is the tensor product A A C where A is a right

A-module and C is a left A-module. We recall the definition. Let F
be the free abelian group generated by the pairs (a,c) with a c A, c C,

and let R be the subgroup of F generated by elements of the form

(a + fl',c)
-

(a,c)
-

(a',c), (fl,c + c')
-

(a,c)
-

(<i,c') f

(aA,c)
-

(fl,Ac) t (A c A).

Then ^ A C is defined as the quotient group F/R, regarded as an

abelian group (i.e. as a module over the ring Z of integers). The image
in A A C of the element (a,c) of F is denoted by a A c or by a c.

We then have the formal rules

(a + a) c = a c + a c, a (c + c')
= a c + a c',

0A c = a Ac.

If we regard >l and C as abelian groups, we may form also the tensor

product A z C, and it is clear that A A C is the quotient of A <>z C

by the subgroup generated by the elements aA ^ c a z Ac.

The function <p : X X C -> ^ A C defined by <p(0,c)
= a c is

bilinear and satisfies ^(aA,c)
^

y(a,Ac). Furthermore, any function

/: A X C -> D (where D is an abelian group) which is bilinear and

satisfies f(a^c)=f(a^c) admits a unique factorization /== g<p where

^: y4 C-> /) is a homomorphism. This last property could be used

as an axiomatic definition of A A C.

Given A-homomorphisms

<p: /4->X', y: C->C"

there exists a unique homomorphism (of abelian groups)

9? y : >4 A C -> >4' A C'

satisfying
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With this definition it is clear that A <g>A C is an additive functor covariant

in both variables.

The mappings A c -> Ac and a A -> 0A yield natural isomorphisms
A A C C and ^4 <8>A A ^ A. We shall frequently regard these as

identifications.

3. OPERATORS

Very frequently the modules A and C, in addition to being Ar and

A2-modules respectively, will have some other operators compatible with

the module structure. It is usually possible to transfer these operators
to T(A,Q.

For example, suppose that A in addition to being a (left) A1-module,

also is a (left) F-module where F is a ring, and that the operators of AJ
and F commute (i.e. that X(yd)

= y(ka) for a A, A c A
1$ y F). We

then say that A is a A^F-bimoduIe. Each y c F induces a Arendo-
morphism y t

: A -+ A and thereby induces a A-endomorphism T(yA,C)
of r(,4,C). Thus 7X/4,C) becomes a A-F-bimodule. If C is a A2

-F-

bimodule with F operating on C on the left, then T(A,C), because of the

contravariance of C, becomes a A-F-bimodule with F operating on the

right. Similarly a A^F-homomorphism <p\ A -> A' yields a A-F-

homomorphism T(y,C), etc.

The group (i.e. Z-module) HomA (/4,C) is defined when A and C
both are left A-modules. We indicate this situation by the symbol

(A.4,AC). If in addition either A or Cis a A-F-bimodule then HomA (A,C)

becomes a F-module. The following four cases are possible :

(A.r>4,AC), HomA (A,C) is a right F-module,

(Ay4 r ,AC), HomA (A,C) is a left F-module,

(A/4,A.rC), HomA (>1,C) is a left F-module,

(A/i,ACr), HomA (A 9C) is a right F-module.

If F is commutative, the difference between left and right F-modules

disappears and the four cases reduce to two. If F is a subring of A
contained in the center of A then A and C are automatically A-F-bi-

modules and, in this case, all four cases coincide since for a c HomA (A,C)

a A and y c F we have

(yoc) (a) = a(0y) =

Thus HomA 04,C) may always be regarded as a module over the center of

A. If A is commutative, then HomA (y4,C) is a A-module. A similar

discussion applies starting with the situation described by the symbol
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The tensor product A A C is an abelian group (i.e. a Z-module)
and is defined when A is a right A-module and C is a left A-module,
a situation that we shall describe by the symbol (/4A , AC). If in addition

either A or C is a A-F-bimodule then A A C becomes a F-module.

The following four cases are possible:

(jv4A ,AC), A A C is a left F-module,

0*A-rAO ^ A C is a right F-module,

(/JA,r.AC), A A C is a left F-module,

(4A ,ACr), A A C is a right F-module.

If F is commutative the difference between left and right F-modules

disappears and the four cases reduce to two. If F is in the center of A
then A and C are automatically A-F-bimodules and in this case, all four

cases coincide since

(yd) c -=
(ay) & c = a (yc)

= a (cy).

Thus X A C may always be regarded as a module over the center of A.

If A is commutative, then A A C is a A-module.

PROPOSITION 3.1. If A /j a commutative ring, then there exists a

unique homomorphismj : A A C -> C A /4 jwc/? thatf(a c)
~ c a.

This homomorphism is an isomorphism and establishes a natural equivalence

of the functors T(A,C) A A C am/ 7\(/l,C) =- C A ^.

The proof is straightforward.

4. PRESERVATION OF EXACTNESS

A functor T(A,C). covariant in A and contravariant in C, is called

exact if whenever

X' -> A -* A\ C'-+C-+ C"

are exact,

also are exact.

PROPOSITION 4. 1 . 7w orrf^r r/z^r T be exact it is necessary and sufficient

that for all exact sequences

Q_+A'->A-+A"->^ -> C -> C -> C" -> 0,

/Ae sequences
o -> rc/i'.c) -> r(/i,c) -> r(/i",c) -> o

o ->r(/4,o-> T(A,C) -> r(/^,c') -^ o

be exact.
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PROOF. The necessity of the condition is obvious. Assume, then,

that the condition holds, and suppose A'-*A->A" exact. Let

B' = Ker (A' -4), B= Ker (A -> A"), B" = Im (A -> A"). Then the

sequences -> B' -> A' -> B -> 0, -> J9 -> /I -*
"
-> 0, -> J5" -> A"

-> ^75" -* are exact. Therefore the sequences

T(A',C) -* r(fl,C) -* 0, -> T(B",C) -> 7X>T,C)

7(J9,C) -> T(A,C) -> r(",C)

are exact. This implies that T(A\C)-^T(A,C)-+T(A\C) is exact, as

required. The proof with respect to the second variable is similar.

PROPOSITION 4.2. If the rings \ and A2 are semi-simple then any

(additive) functor T(A,C\ definedfor A^modules A and A^modules C, is

'exact.

PROOF. Let Q-+A'-+A -+A* ->0 be an exact sequence. By
1,4.2, this sequence splits. Therefore by 1.2 the sequence 0->T(A',C)
-^r(y4,C)-^r(/4",C)->0 is exact. A similar reasoning applies to the

second variable. It now follows from 4.1 that T is exact.

Functors that are exact are encountered very rarely. Most of the

interesting functors that we shall consider preserve exactness only par-

tially. To classify these various kinds of functors we consider arbitrary
exact sequences -> A' -* A -> A" -> and -> C' -> C -> C" -> 0. We
say that T is half exact if

T(A,C") -

are exact. We say that T is right exact if

T(A',C) -> T(A,C) -> T(A\C) -

T(A,C") -> 7Y/4,C) -^ T(A,C) -
0,

are exact. We say that T is left exact if

-^ T(A\C) -+ T(A,C) -+ T(A\C)

-+ T(A,C") -> T(A) -* T(A,C)
are exact.

PROPOSITION 4.3. For each functor T the following conditions are

equivalent:

(a) T is right exact,

(b) for any exact sequences A' -* A -> A" ->0, -* C' -> C -^ C"
the sequences

T(A',C) -> T(A 9C) -> T(A\C) ->

') -> o
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(c) for any exact sequences A' -> A -+ A" ->0, -> C" -* C-> C"
the sequence

'TV A ' /~*\ 1 TY >< f"\ _L TV >4 /"'A T1/ A M /^>\ f\
1(A ,C) + ^(>4,C ) 1(A,C) * T(A ,C )

>

is exact, where the first term is a direct sum, and the homomorphism <p has

as its coordinates the maps T(A',C)-+T(A,C), T(A,C")-*T(A,C).
PROOF, (a) => (b). Let B = Ker (A' -> ,4), B' = Im (/*' -> ^). Then

O-^jS-^X'-^B'-^O and ->B' -+ A -* A" ->0 are exact. Conse-

quently r(/T,C)->r(#',C)->0 and T(B',C)-+T(A,C)-+T(A\C)-+0
are exact. This implies the exactness of T(A',C)^T(A,C)-+T(A",C)
~> 0. The proof for the second variable is similar.

(b) =>(c). This proof is obtained by familiar "diagram chasing" in

the commutative diagram

T"Y A* f n\ TY A f^n \ TV A" C*"\ O

\ I |

i i ;

T(A',C) > T(A,C) > T(A\C) *0

I

T(A',C')

!

I i000
in which the rows and columns are exact.

(c)=>(b) is proved by applying (c) in the following two cases:

C" - 0, C' - C and A' - 0, A - A".

The implication (b) ^> (a) is obvious.

PROPOSITION 4.3a. For any functor T the following conditions are

equivalent :

(a) T is left exact,

(b) for any exact sequences -> X '

-> A -* A\ C -> C -> C" -> the

sequences
-^ T(A',C) -> T(,4,C) -> T(A",C)

o -

are exact,

(c) for any exact sequences 0-> A' -> y4 -> A\ C'

/Ae sequence

TXX'.O r(/4,C) -^ T(A\C)

is exact, where the last term is a direct sum and the homomorphism y>
has as

coordinates the maps T(A,C) -> T(A\C\ T(A,C) -+ T(A').
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The proof is analogous to that of 4.3. We also leave to the reader

the statements and proofs of analogous propositions for other variances

and for functors of a larger number of variables.

PROPOSITION 4.4. Thefunctor HomA is left exact.

PROOF. Consider an exact sequence

(1)
> A' -^ A -1+ A" 0.

We must show that the induced sequence

Horn (A',C) -^ Horn (A 9C) -^ Horn (A',C)

is exact* We already know that /"// 0, and therefore p' defines a

homomorphism
t<:Hom(/r,C)->Ker/'.

It suffices to prove that u is an isomorphism. To this end we define a

homomorphism
v: Ker/'->Hom(/4",C)

as follows: given/c Horn 04,C) such that /'/= we have //
= 0; define

(vf)a' for a" A" to be fa where a A is any element with pa = a". It

follows readily that uv and vu are identity maps, so that u is an isomorphism.
The left exactness with respect to the variable C is proved similarly.

PROPOSITION 4.5. The functor A is right exact.

PROOF. Consider an exact sequence (1) as above. We shall show

that the induced sequence

A' C^-+A <8> C-2-+A" C >0

is exact. Since p'i'
= we have a homomorphism

u: Coker/'->/T C,

and it suffices to show that u is an isomorphism. We define a homo-

morphism
v: A" C->Coken"

as follows. Given a" c A, c C, choose a A with pa = a" and denote

by y>(a",c) the image of the element a c in Coker /'. Clearly g?(0V) is

independent of the choice of a, is bilinear and satisfies <p(a"A,c)
=

<p(a",Ac).

Thus there is a unique homomorphism v such that v(a" c) = <p(a",c).

Since wt; and i;w are obviously identity maps, u is an isomorphism.

PROPOSITION 4.6. A A-module A is projective if and only if thefunctor

T(C) = HomA (A yC) is exact. A A-module C is infective if and only if

thefunctor U(A) = HomA (A,C) is exact.
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PROOF. Since T is left exact it follows that T is exact if and only if

for every epimorphism C->C" the mapping Horn 04,C)-> Horn (A,C")
is an epimorphism. This however is immediately equivalent with A

being projective. The second half of 4.6 is proved similarly.

5. COMPOSITE FUNCTORS

Functors may be composed exactly as functions. For instance, let

T(A,C) be a functor defined for Armodules A and A2-modules C and

with A-modules as values, let U(D 9E) be a functor defined for A3-modules

D and A4-modules E and with A1-modules as values. We define the

composite functor V as follows

With respect to the variable C, V and T have the same variance ; with

respect to the variables D and E, V has the same (the opposite) variance

as U if A is a covariant (contravariant) variable in T.

If both U and T are exact, then so is V. If one of the functors U or

T is exact and the other is half exact, then V is half exact.

If A is a covariant variable of T and both Tand U are right (left) exact,

then V also is right (left) exact. If A is a contravariant variable of T,

T is right (left) exact and U is left (right) exact, then V is right (left) exact.

The proof of these facts uses the characterizations 4.3(b) and 4.3a(b) of

right and left exact functors.

Using the functors and Horn various functors of three variables

may be obtained by composition. It turns out that various relations

hold between these.

We begin with the situation described by the symbol (AA,ABr ,rC),

i.e. A is a right A-module, C is a left T-module, and B is a A-F-bimodule

with A operating on the left and F on the right. Then A A B is a right

F-module and B r C is a left A-module, so that the groups

(A A B) r C, A A (B r C)
are defined.

PROPOSITION 5.1. There exists a unique homomorphism

r: (A ^B) T C^A A (B r C)

such that r((a b) c) = a (b c). The homomorphism r is an

isomorphism and establishes a natural equivalence offunctors. It expresses

the associativity of the tensor product.
Next consider the situation described by the symbol (A^,rSA ,rC).
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Then B A A and C are left F-modules, while A and Homr (fi,C) are

left A-modules. Hence the groups

HomA (A, Homr (5,C)), Homr (B A 4,C)
are defined.

PROPOSITION 5.2. TTiere ex/ste a unique homomorphism

s: HomA 04, Homr (fl,C)) -> Homr (B A ,4,C)

jwcA that for each <p: A -> Homr (B,C) we have (s<p) (b a) = (y>a)b.

This homomorphism is an isomorphism and establishes a natural equivalence

offunctors.
The next case (AA ,ABr,Cr) differs from the above only in that all

right operators have been changed to left ones and vice-versa.

PROPOSITION 5.2'. There exists a unique homomorphism

s' : HomA (A, Homr (B,C)) -> Homr (A A B9C)

such that for each <p: A -> Homr (B,C) we have (s'q>) (a <g> b) = (<pa)b.

This homomorphism is an isomorphism and establishes a natural equivalence

offunctors.
The proofs of 5.1-5.2' are straightforward and are left to the reader.

We shall frequently regard the isomorphisms r, s, and s' as identifications.

According to the rules given earlier the functor appearing in 5.1 is

covariant in all three variables and is right exact. The functors appearing
in 5.2 and 5.2' are contravariant in A and B, covariant in C and are

left exact.

PROPOSITION 5.3. In the situation (AA,^Br) if A is A-projective and

B is T-projective then A A B is Y-projective.

PROOF. Let C be any right T-module. Then by 4.6, Homr (,C)
is an exact functor of C. Therefore, again by 4.6, HomA (A, Homr (B,C))

is an exact functor of C. Thus applying 5.2' we deduce that

Homr(y4 A B,C) is an exact functor of C. It thus follows from 4.6 that

A A B is F-projective.

A similar proposition holds also in the situation (r#A ,A >4).

A similar proposition in the case (r^A>rO WM ^e established later

(see vi, 1.4).

6. CHANGE OF RINGS

In all of this section we shall consider two rings A and F and a ring

homomorphism
<p: A->F (<pl= 1).

Every left F-module A may be treated as a left A-module, by setting

X A, a A.
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Similarly for right modules. In particular F itself may be regarded as a

left or a right A-module.

Conversely suppose A is a right A-module. We place ourselves in

the situation described by the symbol (>4A ,Arr) (i.e. we regard F as a

left A-module and right F-module). We then form the right F-module

AM = A A r

which we call the covariant (^-extension of A. If A is a left A-module
we are in the case (rFA ,A/4) and we define the left F-module

(tf>)
A as

F A A. Thus >4
(v)(resp. (9}A) is a covariant right exact functor of A.

Again assuming A is a right A-module, we can place ourselves in the

situation (rrA,/*A). Then

AM = HomA (T,A)

is a right F-module called the contravariant <p-extension of A. If A is a

left A-module, we are in the case (AFr ,A>4) and MA defined as above also

is a left F-module. Thus AM (resp. MA) is a covariant left exact

functor of A .

Let A be a right A-module. We define the A-homomorphism

A -> AM
as A <p\ A A A -+ A A F. Similarly when A is a left A-module.

We define also the A-homomorphism

> A

as Horn (9v4): HomA (T,A) -> HomA (A,v4).

We are now going to apply the identities of section 5 in the following
four cases:

Case 1. 04A ,AFr ,rC). Setting B = F in 5.1, yields the identity

(1) A A C~AM r C.

Case 2. (/4 r ,rrA ,AC). Again 5.1 yields the identity

(2) A A C=A r (^C).

Case 3. (A/*,rFA ,rC). Setting B = F in 5.2 yields the identity

(3) HomA (A,C) = Homr ((r)-4,C).

Case 4. (r^,AFr ,AC). Again 5.2 yields the identity

(4) HomA (A 9Q = Homr
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We also could consider two other cases 3' and 4' given by the symbols

(^A'ArrCr) and (/*r ,rrA,CA) and apply 5.2'. We obtain

(3') HomA (A,C) = Homr (AM,Q 9

(4') HomA 04,C) = Homr C4,C<*>).

PROPOSITION 6.1. If a right A-module A is A-projective then A
(q)}

-is T-projective. Similarly for a left A-module.

PROOF. Assume A is a A-projective right A-module. Then by
4.6, HomA (/4,C) is an exact functor of the variable C. Thus, by (3'),

Homr (A (<p),C) is an exact functor of C and therefore A
(v)

is F-projective,

again by 4.6.

Similarly, using (4) or (4') we prove:
PROPOSITION 6. la. If a right A-module C is A-injective then C<fp) is

T-injective. Similarlyfor a left A-module.

Assume from now on that A is a right F-module. We then define

the F-homomorphism

g> AM-+ A

by g(a y)
=

ay. The composition A > A
(<r)

> A is the identity,

which proves that g is an epimorphism and Ker g is a direct summand of

A
(v>)

as a A-module. If A is F-projective then Ker g is a direct summand
of A

(g}}
as a F-module.

DEFINITION. A F-module A is said to be <p-projective if Ker g is a

direct summand as a F-module; i.e. if the exact sequence 0-> Ker g
g

-> A
(g>)

A -> of F-modules splits.

PROPOSITION 6.2. If a T-module A is A-projective and <p-projective,

then A is T-projective. If F is A-projective and A is T-projective, then

A is A-projective.

PROOF. If A is A-projective, then A^ is F-projective by 6.1. If

further A is 99-projective, then A is isomorphic with a direct summand of

A
(v) (as a F-module) and therefore A is F-projective.
Assume F is A-projective; then C(9

is an exact functor of the (right)

A-module C; if further A is F-projective, then Homr (A,C(V)
) is an exact

functor of C; by (4') this means that HomA (A,C) is an exact functor of C,

thus A is A-projective.

Assume that C is a right F-module. We define the F-homomorphism

h: C-

which to each ccC assigns the homomorphism he: y-+cy. The

composition C -> C{tp) -+ C is the identity, which proves that A is a
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monomorphism and Im h is a direct summand of C(q>) as a A-module.

If C is F-injective then Im A is a direct summand as a F-module.

DEFINITION. A F-module C is said to be <p-injective if Im A is a direct

summand as a F-module, i.e. if the exact sequence 0->C > C(9>)

-> Coker h -> of F-modules splits.

PROPOSITION 6.2a. If a T-module C is A-injective and y-injective,

then C is T-injective. If F is A-projective and C is T-injective, then C
is A-injective.

The proof is dual to that of 6.2.

PROPOSITION 6.3. For any right A-module A, the module A
(v)

is

y-projective and the module A (tf)
is <p-injective. Similar results hold for

left A-modules.

PROOF. We shall only consider the module A
(v}

where A is a right

A-module. We define the homomorphisms

F -^ r A F -^ F.

by ay = 1 y, fi(yl y2)
= y^. These are left A- and right F-

homomorphisms. Since /?a identity we obtain right F-homomorphisms

A A F--- A A (F A F) -^ A A F.

with /?V = identity. However if we rewrite /4 A (F A F) as

(A A F) A F = A
(g)) A F we find that /?' coincides with g: (A^)^

-^ A
(r}

. Thus A
(<p)

is 9?-projective.

As an application of 6. la we give a new method for imbedding any
left F-module A into an injective F-module (see Theorem i,3.3). We
assume that the problem is already solved for the ring Z of rational

integers (see remark at the end of vii,5) and we consider the natural

homomorphism 9?: Z-> F. Assume that we have a Z-monomorphism
A -> Q where Q is Z-injective. We then have the F-monomorphism
A -> (* }A and the F-homomorphism

(<f)A -> (v)g which also is a mono-

morphism since Horn is left exact. There results a F-monomorphism
A-+MQ. However by 6.1a,

(qr)Q is F-injective. This proof was

communicated to us by B. Eckmann. A similar proof was also found by
H. A. Forrester.

EXERCISES

1. Show that A + B and A A are not additive functors; however

A B + B A and A + A are additive functors.

2. For a fixed family {A^} of right A-modules define the functors

U(C) = (H AJ A C, K(C) = ^ A C)
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of the left A-module C. Show that V is right exact, and that V is exact

if and only if for each a the functor A^ A C is an exact functor of C.

Define a natural transformation /: U -> V such that {aa} c

-> {aa <g> c}, and show that if C is finitely generated then/: t/(C) -> V(C)

is an epimorphism.
Assume that A is left Noetherian and C is finitely generated. Prove

that U(C)-*V(C) is an isomorphism. [Hint: use an exact sequence
0-*#->F->C->0 where F is free on a finite base.]

3. Let g: T-> U be a natural transformation of functors, and let

t= Ker g, U'= Coker g. Show that

(r half exact) and (U left exact) => f half exact

(7 left exact) and (U left exact) => f left exact

(7 right exact) and (t/ half exact) => {/ half exact

(r right exact) and (U right exact) => [/ right exact.

4. Consider the situation described by the symbol (AX,#r ,ACr).

Define a natural transformation

t: HomA 04, Homr (,C)) -> Homr (5, HomA 04,C))

and show that it is an isomorphism.
5. In the situation (A/4,ACr) show that if A is A-projective and C is

F-injective, then HomA (A,C) is F-injective.

6. Let A be a commutative ring, and A and C finitely generated
A-modules. Show that A A C is a finitely generated A-module.

Assume that A is Noetherian and show that HomA (A,C) is a finitely

generated A-module.

7. Let A be a ring such that there exists a ring homomorphism
<p: A-> K into a (not necessarily commutative) field K. Show that for

a free left A-module F, any two bases have the same cardinal number.

[Hint: consider the left /T-module
(<p}F.]

Show that for a commutative

ring A a homomorphism 9?,
as above, always exists.



CHAPTER III

Satellites

Introduction. With each functor T of one variable (covariant or

contravariant) we associate a right satellite functor 5 aTand a left satellite

functor S~1T= S^. By iteration, we then obtain satellites SnT for

any integer n ( oo < n < oo) with SQT= T. If the functor T is half

exact, then each exact sequence

gives rise to an unlimited exact sequence involving all the satellites of T.

It is in this way that we are led to the important notion of a "connected

sequence of functors" (4) which yields an axiomatic description of

satellites ( 5).

It is in the nature of the definition of satellites, that it applies only to

one variable at a time and that higher order satellites have to be obtained

by iteration. This is in sharp contrast with the theory of derived functors

(Ch. v) which uses homology methods and yields the derived functors of

arbitrary degree all at once. The later developments in this book will

be dominated by the theory of derived functors, and because of this a

thorough knowledge of this chapter is not indispensable. However, the

reader will find it well worth his trouble to familiarize himself with the

technique of proofs based on diagrams, as well as with the notion of a

"connected sequence of functors" that is useful throughout.

1. DEFINITION OF SATELLITES

Consider a diagram

(1) M P -?-+ A

A/! Pi^A l

where both rows are exact and P is projective. There is then a homo-

morphism /: P -> Pl with ^/= gp. The homomorphism / defines

uniquely a homomorphism /
'

: M -> Ml with at/
' =

/a.

33
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Let now T be a covariant (additive) functor of one variable. We
have then a commutative diagram

(2)

It follows that T(f') induces a homomorphism

,(g): Ker 7(a) -> Ker 7Xi).

If T is contravariant then all the arrows in (2) should be reversed. Then

T(f') induces

Coker T^) -> Coker T(a).

PROPOSITION 1.1. The homomorphisms &i(g) and ^(g) are inde-

pendent of the choice of /, satisfy the additivitv conditions i^(g + g)= *i() + 0i(), tf'Of + j?)
= !

<J?) + #'(), and the transitivitv con-

ditions ^(Klg) = fliCftWg), 0'OW?) - l

(g)
l

(gi).

The transitivity conditions refer to a diagram

--- M --- P ------ A --

!
----- Ml

-- Pl
--A

l

->

I,-- A/2
-> P2
-- A 2
--

with exact rows and P and Pl both projective.
PROOF. In view of the exactness of the bottom row of (1) the homo-

morphism / can only be replaced by a homomorphism /= / + ^h where
h: P->A/

1B Then/' gets replaced by /'
=

/' + h*. Thus in the

covariant case T(f) - T(f') -f T(h)T(*). Hence 7(/') and T(f') have
the same effect when applied to the kernel of T(a), thus showing the

uniqueness of d^g). In the contravariant case we have T(j')
=

T(f')

+ T(*)T(h). Hence T(f) and T(f) coincide modulo the image of T(*\
thus showing the uniqueness of #l

()- In order to prove the additivity
and transitivity it suffices to select any /, /, fa for g, g,gl respectively and
then use / + / and fj forg+g and

Next we consider a diagram

(la) L
\ e
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where both rows are exact and Q is injective. Then there is a homo-

morphism /: Ql -> Q with f^ = flg. The homomorphism / defines

uniquely a homomorphism /' : Nl
-^ N with f'cnl

=
a/.

If 7 is covariant, there results a commutative diagram

which yields a homomorphism

l

(g): Coker T(^) -> Coker T(a).

In the contravariant case the arrows in (2a) should be reversed." There

results a homomorphism

fl): Ker 7(a) -> Ker r(a ).

PROPOSITION 1 . 1 a. 77*p homomorphisms &l

(g) and ft^g) are independent

ofthechoice off, satisfy the additivity conditions &
l

(g -\- g)= tt
l

d^K + g) ^ #i() + *i(^)' and tne transitivity conditions

The proof is entirely analogous to that of 1.1 and will not be repeated.

We are now ready to proceed with the definition of the main object

of this chapter.

Let A be a module and let

(3) Q-+M->P-*A->Q

(4) Q.+ A->Q-+N->Q
be exact sequences with P projectwe and Q injective. Such exact

sequences exist by 1,2.3 and 1,3.3.

Let T be a covariant functor. We define

(5) SJ(A) - Ker (T(M) -> T(P))

(6) S 1

T(A) - Coker (T(Q) -> T(N))

thereby obtaining exact sequences

(5') -> S^A) -> T\M) --> T\P)

(6')

A priori, these definitions depend upon the choice of the sequences (3)

and (4). Let S^A) and S 1

T(A) denote the modules obtained
jising

another pair ofsequences 0->A?->,P->,4->0 and -> A -> Q -> N ~>0
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with P projective and Q injective. Then the maps &^g) and #*() taken

for A = A l and g = identity, yield maps

S^A) -> ^TVO, S^A) -+ SjTX/0,

S 1
T(A) -> S 1

T(A), S1
T(A) -> S^A),

which in view of the transitivity conditions of 1.1 and 1.1 a are inverses

of each other. Thus the modules (5) and (6) are unique up to natural

isomorphisms. In order to remove all logical difficulties from the

definitions (5) and (6) it suffices to assign to each A particular sequences

(3) and (4), for instance, those constructed in the proofs of 1,2.3 and

1,3.3.

If g: A -> A l9 then the maps &i(g) and & l

(g) yield maps

(7) SJ\g): S1T(A)^S1T(A 1 )

(8) S'TTg): S^T(A)->S1
T(A 1).

The conclusions of 1.1 and l.la then show that (5) -(8) yield covariant

(additive) functors S^ and S1T called the left satellite of T and the right

satellite of T respectively. These new functors act on the same categories

of modules as T.

If Tis contravariant then the above formulae are replaced by

(5a) SlT(A)^KQr(T(N)~>T(Q))

(6a) S1

T(A) - Coker (T(P) -> T(M))

(5'a) -> S^A) -> T(N) -> T(Q)

(6'a) T(P) -> T(M) -> S 1
T(A) ->

(7a) S^g): S^AJ-^S^A)
(8a) S*T(g): S1

T(AJ -> S*T(A).

The left satellite 5tr and the right satellite S*T are then contravariant.

The definition of the satellites may be iterated by setting

= T.

It will be convenient to arrange all the left and all the right satellites into a

single sequence {S
n
T}, oo < n < oo as follows :

SnT-^ S n T.

Several properties of the satellites are clear from the definitions.

PROPOSITION 1.2. If T isright exact then SnT= Ofor all n > 0. If
T is left exact then SnT for all n < 0. If T is exact then SnT= Ofor
all n ^ 0.
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PROPOSITION 1.3. If T is covariant (contrav.) and A is projective

(injective) then Sn
T(A) = for all n < 0. If A is infective (projective)

then Sn
T(A) = Ofor n > 0.

Indeed for A projective we can take P = A, M = while for A injective

we can take Q = A, N = 0.

PROPOSITION 1.4. Let Q -> M ->P-+ A -+Q, Q -> A -^> Q -+ N ->Q
be exact sequences with P projective and Q injective. IfTis covariant then

= ST(N),

IfTis contravariant then

* > 0.

This is an immediate consequence of 1.3 and the exact sequences

(5'), (6'), (5'a) and (6'a).

PROPOSITION 1.5. If the functor T is definedfor modules over a heredi-

tary ring A, then SnT =4) /or
\

n
\

> 1 .

Indeed in this case M is projective and TV is injective. Thus 1 .4 and

1.3 yield the conclusion.

2. CONNECTING HOMOMORPHISMS

Throughout this section we shall consider exact sequences

(1) 0->/4' -+A-+A" ->0

and commutative diagrams-> A' > A --> A"->

I ! !_y B' __> B-* B"->

with exact rows.

Let 0-> M -+P-+A " ->0 be an exact sequence with P projective.

Taking g = identity we then obtain a diagram

--- M-- P- A"-*~0

I*

A' -A > A" -0

as considered in 1. If T is a covariant functor we obtain a map

fife): Ker (T(M) -> T(P)) -+ Ker (T(A') -> T(A)).

This defines a map

(3) !:
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whose composition with T(A') -> T(A) is zero. Similarly using an exact

sequence 0->A'-+Q-+N-+Q with Q injective yields a homomorphism

(3a)
1

: T(A") ^ S1
T(A')

whose composition with T(A) -> T(A") is zero.

For T contravariant we obtain similar homomorphisms

(3') 1=

(3'a)
1

: T(A')-+S 1
T(A").

It follows readily from 1.1 and 1.1 a that these homomorphisms are

independent of the choice of the auxiliary sequences -> M ->P->A"
-> etc. We thus obtain an infinite sequence

(4)

defined for all integers /?. For T contravariant A" and A' should be

interchanged.
PROPOSITION 2.1. The diagram (2) induces a commutative diagram

..._. Sn~l
T(A") -> ST(A') -> Sn

T(A) -> Sn
T(A") -> Sn+ l

T(A') -> -

For T contravariant all arrows should be reversed and the indices

lowered.

PROOF. Only the commutativity relations in the squares involving
the maps need to be established. We shall only carry out the proof in

the case

> T(B')

for T covariant. Let -> A/ -> P -* ,4" -> 0, Q-+M^p-+B"-+Qbe
exact sequences with P and /* projective. We thus obtain a diagram

>M >P >A" >0

. !
> B' > B > B" >

which as above yields a map S^A") -+ T(B'\ In view of 1.1 this map
coincides with the compositions SJ\A")-*T(A')-*T(B') and ,

-> SJT(B") -> T(B') as desired.
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PROPOSITION 2.2. The composition of any two consecutive homo-

morphisms in the sequence (4) is zero.

PROOF. Since the composition A' -> A -* A" is zero it follows that

the composition S
n
T(A') -> S

n
T(A) -> Sn

T(A") is zero. Next we consider

the compositions

(5) S*T(A) -* Sn
T(A") -> Sn+l

T(A').

For n = this has been observed at the time 1 was defined. Thus, by
iteration, the composition (5) is zero for n ^> 0. Thus it suffices to

consider n < 0, which reduces to the case

(6) S^A) ->SW) -> T(A'}.

This composite map is obtained from a diagram

> M > P > A >

y

A"

> A' > A >A" >0.

It therefore suffices to show that the map # induced by the diagram

> M > P > A >

>A' >A *A" *0

is zero. To see this, choose the vertical map P -> A to coincide with

the horizontal one. Then the induced map M -> A' is zero.

The proof that the compositions

Sn
T(A") -> S n + l

T(A') -> Sn+l
T(A)

are zero is similar.

3. HALF EXACT FUNCTORS

The main objective of this section is to prove the following

THEOREM 3.1. Let

(1) A' -~+A^-+A" +0

be an exact sequence. IfT is a covariant halfexactfunctor then the sequence

(2)

> Sn-l
T(A*) -> Sn

T(A') -> Sn
T(A) -^ Sn

T(A") -> Sn+ l
T(A') ~> . . .

w exact. For T contravariant A' and A" should be interchanged.
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The proof will be preceded by two lemmas concerning homomor-

phisms derived from certain diagrams. These will also be useful in

later sections.

LEMMA 3.2. Let

1' !'

C' >C C"
v'

6e a commutative diagram with exact rows. There result homomorphisms

(3) Ker /'
- Ker /-> Ker f

(4) Coker /' -> Coker /-> Coker /".

If Ker y/
= then (3) 15 exac/. // Coker <p

= /A*/i (4) 15 exact.

The proof is left to the reader.

Next we consider the commutative diagram

A' A^A" >0

(5) V \f \r
>C' C C"

with exact rows. Given any element x Ker /"we can find elements

a A and c' e C" with <pa
= x and v>'c' =./ The element y c Coker/'

determined by c' can easily be seen to be a function of jc only. We thus

obtain a homomorphism

Ker /"-> Coker/'.

LEMMA 3.3. The sequence

(6) Ker /' -> Ker /-* Ker /" -^ Coker /' -> Coker /-> Coker /"

15 exac/.

The verification is left to the reader.

It should be noted that the homomorphisms considered above are

natural in the following sense. If (5) is another diagram like (5) and

we have a map of the diagram (5) into (5) then there results a map of the

exact sequence (6) into the exact sequence (6).

PROOF of 3.1. We apply i,2.5 to the exact sequence (1). We obtain

a commutative diagram

T(M ')
-- T(M)

-- T(M")

I'- i' 1''-<

T(P')
-> T(P)

-<

T(P")
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with exact rows. By 3.2 there results an exact sequence

Ker/'->Ker/->Ker/'
f

which implies that

S1T(A')-+S1T(A)-+S1T(A')

is exact.

Next we consider an exact sequence Q-+M-+P-+A-+Q with P

projective. Let R be the kernel of the composed map P -> A -> A".

There result exact sequences Q-+R-+P-+A"-*Q and ->M -+ R
-> A' -> 0. We obtain a commutative diagram

T(M)
-*

T(R)
--

T(A')

V V I-- T(P)
-- T(P)

- >

with exact rows. Thus, by 3.2, the sequence

Ker/'->Ker/->r(/O

is exact. Since Ker /-> 7*(/O is easily seen to coincide with S^A")
-+T(A')\t follows that

S
1T(A)->SlT(A'

t

)->T(A
/

)

is exact.

Finally we consider an exact sequence

(7)
+M^P^A H *0

with P projective. We denote by R the submodule of the direct sum
A + P consisting of all pairs (a,p) with q>(a) y>(p). We define the

homomorphisms R-+A and R->P by (a,/>)-> a, (a, p)-+p and the

homomorphisms A' -> R and M -> R by a -> (9?'a',0), m -> (0,y'/w).

There results a commutative diagram

i i-> M --> M->

\

- >/<'-> X -^/4*

1 I I000
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with exact rows and columns. Further, since P is projective, the middle

row splits. We thus obtain a commutative diagram->T(M)->T(M)->0

-> T(A')-* T(R)-> T(P)

with exact rows. An application of 3.3 yields an exact sequence

Ker (T(M) > T(P))
-^ T(A^ -^ Coker (T(M)

Since the sequence T(M) -> T(R) -> T(A) is exact, it follows that

Ker v = Ker (T(A
r

) -> T(A)), so that

Ker (T(M) T(P))
-^

T(A')
* T(A)

is exact. We must verify that u coincides with the connecting homo-

morphism Q^. S^A") -> T(A'). We first consider the case when the

sequence (1) coincides with (7). In this case, it can be easily seen that

the homomorphism
u:

is defined by inclusion. In the general case we consider maps- M-*P ---A"->0

|/ J, \y--,. A '_ A_,. A "_ . AS\ SI f\. \J

where y" is the identity map. The naturality property of u then yields

a commutative diagram

Ker(7XA/)

|

Ker (T(M) . T(P)) * T(A')
u

where the first vertical map is the identity. It follows that u= T(y') u ==
X .

We have thus proved the exactness of

SlT(A'
r

)-+T(A')->T(A).

Summarizing, we have established the exactness of the sequence

By a dual argument we show the exactness of

T(A') -+ T(A) -> T(A") -* S1
T(A') -> S1

T(A) -

In particular, 51 5
r and 517are also shown to be halt exact. The exactness

of the sequence (2) now follows by iteration.



4] CONNECTED SEQUENCES OF FUNCTORS 43

4. CONNECTED SEQUENCES OF FUNCTORS

A connected sequence of covariant functors is a family r= {T
n
} of

covariant functors, n running through all integers, together with con-

necting homomorphisms Tn
(A") -> T"+ l

(A') defined for each exact

sequence 0->4' -> A -> A" -*0. The following two conditions are

imposed :

(c.l) The composition of any two consecutive homomorphisms in the

sequence > Tn~ l
(A

H

) -> Tn
(A')-* Tn

(A)-> Tn
(A")-+ Tn

+\A')
- - is

zero.

(c.2) //

>A' +A >A" >0

-* B'-> B-> B"->

is a commutative diagram with exact rows then the following diagram is

commutative

Tn
(A")->T+\A')

i i

T*(B")-> Tn
+\B')

A similar definition for contravariant functors is obtained by postu-

lating connecting homomorphisms T^A^-^T^^A*). Thus in the

sequence of (c.l) the roles of A' and A" get interchanged.

The satellites STof any (additive covariant or contravariant) functor

together with the connecting homomorphisms defined in 2 form a

connected sequence of functors that will be denoted by ST.

Let 7= {T
n
} be a connected sequence of covariant functors, let

(S) -> AQ -> ----> A* ->

be an exact sequence of modules and let Z 1 denote the kernel of A 1 -> A*+l
.

This yields exact sequences

which lead to homomorphisms

p.-.-i^.+i) ^ rn
-'(Z') </</?.

Since Z1 ^ A and Zp = A p
, we obtain by composition a homomorphism
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called the iterated connecting homomorphism. This homomorphism

obviously commutes with the homomorphisms induced by a mapping of

the exact sequence (S) into another such exact sequence. For contra-

variant functors the iterated homomorphism is Tn~p
(A

Q
) -> T*~l

(A
9
).

Using the iterated connecting homomorphism we shall establish a

curious anticommutativity relation resulting from a commutative diagram000
i i i-*A'->A->/T-
i 1 i-> B'-> B-> B"->

V Y T->C' -->C->C"->0

i I i000
with exact rows and columns.

PROPOSITION 4.1. If T {T
n
} is a connected sequence of covariant

additive functors, then the diagram

i i

is anticommutative, i.e. the two composite homomorphisms Tn ~ l
(C")

-+ r+l
(A') differ in sign.

For contravariant functors interchange A' and C".

PROOF. We shall denote by <I> and T the composite homomorphisms

Tn
~\C") -+ Tn

(C) -> Tn+l
(A')

Tn~\C) -> Tn
(A") -> Tn

^(A
f

).

These are obviously the homomorphisms induced by the exact sequences

Now using the commutative diagram

A' +A

B'_
6
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we define maps

A'-^A + B'-^B
by setting

')
= ya

- db'.

Then it is easy to verify that the sequence

-> A' -> A + B'-+B ->C"->0

is exact. Further, using the projections (a,6') -> 0, (a,fr') -> b' and the

map e: A' -> ^4', e(fl')
= a', we obtain a commutative diagram

->A'-> A ->B"->C"-*0

t t '!

II I i--> A'-> A + B'-> B-> C"->
'

i I I-> A'-> B' -> C-> C"-> 0.

This implies Tn+ l
(e)V = <D. Since rn+1

is additive and e(a') = a' it

follows that -T <D.

COROLLARY 4.2. For any additive covariantfunctor Tand any integer H,

the diagram
Sn- l

T(C")-> Sn
T(C)

I I

ST(A") ->S

is anticommutative. For contravariant functors interchange C" and A'.

5. AXIOMATIC DESCRIPTION OF SATELLITES

We shall give here an axiomatic description of the connected sequence
ST of the satellites of a functor T.

Let T = {r
n
}, U = {U

n
} be connected sequences of covariant functors.

A map O: 7*-> U is a sequence of natural transformations-^" : Tn -> t/
n

which commute with the connecting homomorphisms ; i.e. the diagram

n+1
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is commutative for each exact sequence Q-+A'-+A-+A"-*Q. For

T and C7 contravariant A' and ,4" should be interchanged. If, for each it,

<p
n

is an equivalence, then O is called an isomorphism. We shall also

consider maps <J>: !T-> I/ defined only for /i I> or for /i <I 0.

THEOREM 5.1. v4/y> connected sequence T~ {T
n
} of covariantfunctors,

satisfying thefollowing two conditions:

(c.3) if ->M -> P -> ^4 -> w exacf vv/'/A P projective, then

-> rn
G4) -> T^HA/) -> rn+l

(^) fr ***<* /w n < 0.

(c.4) if -* A -> Q -> # -> w exacr w//A Q injective, then

T"-\Q) -> T*~l
(N) -> Tn

(/<) -> is exact for n>0,
is isomorphic with the connected sequence ST of the satellites of the

functor r.
The theorem is a consequence of the following more detailed

proposition.
PROPOSITION 5.2. Let T= {T

n
}, U= {U

n
} be connected sequences of

covariant functors and let 9?: T -> (7 be a natural transformation. If
U satisfies axiom (c.3) then 9? admits a unique extension to a map
<&; r-> U definedfor all n <1 0. If T satisfies axiom (c.4) then 93 admits

a unique extension to a map 4>: T -> U definedfor all n i> 0.

PROOF. Assume that U satisfies axiom (c.3). Suppose that <p: TQ->U9

are already defined for n < q ^ and properly commute with

the connecting homomorphisms. For a given module A select arbi-

trarily an exact sequence 0->A/->P-^/4l ->0 with P projective. This

yields a commutative diagram

Tn
(A)

^

-> Un
(A) {/""(AO

-- Un+ l

(P).

The bottom row is exact (axiom (c.3) for U) while in the top row the

composition is zero (axiom (c.l) for T). There results a unique homo-

morphism y
n
(A): Tn

(A) -> Un
(A) which, inserted into the diagram,

leaves it commutative.

Consider now /: A
1
-> A and let -> M

l
-> P

l
~> A

l
-> be the

sequence used* to define q>
n
(A^). Then since Pl is projective we may find

homomorphisms g: P
l ->P and h : Ml

-> M such that the diagram :

-
-A/!
--P

l
-

*A!
-

M
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is commutative. It follows that

=
d<p

n
(A)T

n
(f).

Since 9: l/"(^)-> t/nfl(A/) has zero kernel, we obtain

This proves that
<jr>

n
is natural, and incidentally implies that it is inde-

pendent of the choice of the auxiliary sequence Q->M-+P-+A->0.
To verify that y

n commutes with the connecting homomorphisms,
consider an exact sequence -> A' -*> A ~> A" ->0 and let 0->A/"
->/>"-> A" ->0 be exact with P" project!ve. Then there exist maps
/: P" -> /I and g: AT -* A' such that the diagram

------* A/"-- P" ---- A" ---

I
I 1

I

9

/ i---- A' ---- A - * A" -->

is commutative. This yields a commutative diagram:

Tn
(A") ---- Tnt \M") -----> T*~ l

(A')

\ \

which implies the requisite commutativity relation. This proves the

first part of 5.2. The proof of the second part is dual and will be omitted.

Passing to contraranant functor*, axioms (c.3) and (c.4) should be

replaced by:

(c.3') //
-v A -v Q yv -> is exact with Q infective* then

^ Tn
(A) - T"* l

(N) -> T+ l

(Q) is exactJor n ^ 0;

(c.4')// 0-> M ->/>-> A - >0 is exact with P projective, then

T" l

(P) -> T" \M) -v Tn
(A) -> is exact for n > 0.

Otherwise 5.1 and 5.2. remain unchanged.

COROLLARY 5.3. Given a natural transformation offunctors

9: r-vtt

there exists a unique map Q>: ST - > SU extending y. Thus the corresponding

natural transformations

<f
n

: SnT-+S"U (-ao<n< + oo)

commute with the connecting homomorphisms.
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As a rule the functors considered are defined on the category ^A
of all A-modules. However there may arise situations where it is con-

venient to consider functors defined only on suitable subcategories ^f

ofJt^. For instance, let T be a half-exact covariant functor, and let ^f
denote the subcategory of ^?A consisting of all modules A such that

SnT(A) = for n > and of all maps of one such module into another.

Clearly all projective modules are in JV and if 0->/4'->y4->/4"->0
is exact and A, A" ^, then A' J(. On this category^, the functor

T is left exact. It can be easily seen that all that was said about left

satellites of covariant functors and right satellites of contravariant

functors remains valid for functors considered only on the category
Jt above.

6. COMPOSITE FUNCTORS

Let V= TU be a functor obtained by composition of two functors

each of one variable. We shall consider the sequence of functors TSU
defined by (TSU)n= TS* n

U, where t- +1 or 1 depending upon whether

T is covariant or contravariant. It is easily seen that TSU is a connected

sequence of functors which for n coincides with SV. Thus 5.2

implies maps

A: TSU->SV defined for n _<

p: SV ->TSU defined for /i : : 0.

Specifically, we obtain natural transformations for n ">

An : T(SnU)->Sn y, P
n

: Sn y-+T(S"U\ T covariant

), T contravariant.

These homomorphisms commute with the connecting homomorphisms
and yield the identity for n 0.

PROPOSITION 6.1. If T is left exact then A w are isomorphisms. If T
is right exact then p

n are isomorphisms.
PROOF. Assume T covariant and left exact. Let -> A/ -> P -> A

->0 be exact with P projective. Then -> S,,U(A) -^ Sn ^(M)
-+Sn_ l U(P) is exact for n > 0. Since T is left exact it follows that

-* TSn U(A) -> TSn^U(M) -> TSn^V(P)

is exact. Thus TSU satisfies axiom (c.3). It therefore follows from 5.2

that An are isomorphisms. The other cases are proved similarly.
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If the functor U is exact then TSU collapses to the single term TV = V
and An , p

n are zero for n y 0. In this case we obtain another connected

sequence (ST)U composed of the composite functors {{S
n
T)U}. As above

we obtain maps

defined for n > 0. The maps a
rt (resp rn

) becomes isomorphisms when-

ever (ST)U satisfies axiom (c.3) (resp. axiom (c.4)).

As an application consider a ring homomorphism: 9?: A - F.

Any F-module A may be regarded as a A-module by setting fa = ((fX)a.

This yields a covariant and exact functor U defined for F-modules whose

values are A-modules. If T is an additive functor on the category of

A-modules then T' ---- TU is a functor on the category of F-modules.

We thus have the natural homomorphisms

a n : (Sn TY >S,,(r), r": S"(r)-> (ST)', /7^0.

PROPOSITION 6.2. // F regarded as a \-nwdule is projectile then

o n are isomorphisms for T corariant and r n are isomorphisms for T contra-

variant.

PROOF. Assume T covariant (resp. contravariant). It suffices then

to show that (5 n T)' satisfies axiom (c.3) (resp. (c.4)). This is an immediate

consequence of n,6.2.

7. SEVERAL VARIABLES

So far we considered only satellites of functors of one variable. Let

T(A,C) be a functor of two variables. Then for a fixed value of C we

obtain a functor Tr(A) - T(A.C) of the variable A alone. The resulting

satellites S"Tr(A) will be denoted by

(1) S
(V^,C),

the subscript 1 indicating that we consider the satellites with respect to

the first variable. A map y: C-> C' induces a natural transformation

Tr(A) -> TV H) (if the variable C is contravariant the arrow is reversed)

which induces a natural transformation of satellites. It follows that (1)

may be regarded as a functor of the two variables A and C. Similarly

we introduce the satellites Sfa T(A,C) with respect to the variable C.

We shall consider exact sequences

(2) --> M -> P ~> A ->

(3) Q-*A-+Q^N >Q

(4) o^A/'-^/5 '

-v(T->0

(5) 0->C->e'->^'->0
with P, P

f

projective and (?, Q' injective.
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Assume now that T is covariant in both A and C. We obtain then a

commutative diagram

--> S^T(A 9M') ---> T(MM')

I I
--> S^T(A,P')

-> T(Mf')

with exact rows. This yields the exact sequence

(6) -> S^S^T(A^C) -> T(MM') -> T(J>,M') + 7( A/,P').

Interchanging the roles of the variables we obtain a similar sequence

(7) o -> S
{\jS^T(A,C) -* r(A/,A/') -> T(P,M

f

) + T(Mf').

The sequences (6) and (7) yield a natural equivalence

(8) 5
(

.

2)
5

(1)
^ o

(1)
5

(1I)
.

For the right satellites we obtain similar exact sequences

(6a) T(Q,N') + T(Q',N) - T(N.N') -> S^S^T(A.C) -.

(7a) T(Q,N') + T(Q' 9N)- T(N,N') -
S^S^T(A,C) ->

which imply

(8a) S^S,
1

,,
S*wSi.

The above was for T covariant in both variables. If for instance C
is a contravariant variable of T then in the above exact sequences P' and

M' should be interchanged with Q' and N'. The isomorphisms (8) and

(8a) remain valid.

Formulae (8) and (8a) yield by iteration:

THEOREM 7.1. IfTis any (additive) functor of two variables then the

following natural equivalences hold

(Q\ cwi cw ^ on em
\y) a

(>,^ (1)
^ o

(1)
o

(2)

for in, n both I> or both < 0.

The conclusion is false for m,n of opposite signs.

We leave to the reader the discussion of the behavior of (9) with

respect to the connecting homomorphisms (on either variable).
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EXERCISES

1 . Show that for any functor T of one variable, the connected sequence
of functors ST is characterized (up to an isomorphism) by the following

properties:

(i) ST^ T.

(ii) For every connected sequence of functors /, every map 9>:

UQ -> T admits a unique extension <f : U -> 57" defined for n < 0.

(iii) For every connected sequence of functors U, every map y:
T -> U admits a unique extension y> : ST -> / defined for > 0.

2. Consider a natural transformation of covariant functors

where T is right exact and U is left exact. Consider the new functors

f Ker, f> Coker.

For each sequence of modules

A' - A -*>T 0,

consider the commutative diagram (cf. 5.3)

7X4') 7"</<) > r(.4*) -> ~ ->.

I 4 4 4 4

Applying 3.2 and 3.3 to suitable portions of this diagram, define a

sequence

and prove that this sequence is exact.

Examine the case when T and U are contravariant functors.

3. Consider an exact sequence of covariant (resp. contravariant)

functors and natural transformations

(i.e. for each module A the sequence

is exact). We assume that T(A) -> U(A) is a monomorphism whenever

A is projective (resp. injective). Then define a natural transformation
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<p : SlV -> T in the following way : assuming for example that all functors

are covariant, consider an exact sequence of modules ->M -> P -> A
-> with P projective. Using the diagram

T(M)-> U(M)-> V(M)
--

\r \f \r--
T(P)
-> U(P)

- >

V(P)

define an exact sequence

(1) ^T(A) -> S^A) -> S^A) -> Coker /' -> Coker /-> Coker f.

Using the natural mapping Coker /' ->r(/4), define S^A)-* T(A\
which yields the desired transformation (p.

Now define q>n : Sn+ly~> SnT for any n I> 0, and prove that, in the

sequence

the composition of any two consecutive homomorphisms is zero.

4. In the situation of Exer. 3, assume now that T is right exact and U
is half exact. Then prove that (S) is an exact sequence.

[Hint: first, using the sequence (1) of Exer. 3, prove that

is an exact sequence. Then, by induction on n 2> 1, prove that

is an exact sequence].

5. Translate Exer. 3 and 4 for the dual case of an exact sequence

such that U(A) -* V(A) is an epimorphism whenever A is inject!ve (in

the case of covariant functors), resp. projective (in the case of contra-

variant functors). The sequence (2
;

), dual of (2), will be exact if V is

left exact and U is half exact.



CHAPTER IV

Homology

Introduction. In this chapter we present all the algebraic tools of

homology theory that will be needed later, with the exception of spectral

sequences that will be treated in Ch. xv. The treatment here differs

from the standard one in that great care is taken to maintain all sym-
metries and thus keep the system self-dual at all times. For example,
the homology module H(A) is usually defined as a quotient module of

the module of "cycles" Z(A), which is the kernel of the differentiation

operator d: A -* A. We introduce the "dual" Z'(A) which is the co-

kernel of rfand show that H(A) is equally well defined as a submodule of

Z'(A). The reader will have ample opportunities to convince himself

that the preservation of this kind of a duality is indispensable.
3-5 are concerned with graded and multiply graded modules and

complexes. In 6 we introduce a sign convention which causes a large

number of signs usually present in algebraic topology to disappear from

the symbolism.
The known homomorphisms a: H(A) //(C) -> H(A C) and

a': //( Horn M,C))-> Horn (H(A\H(C)) are studied in 6 and 7 and

are generalized to other functors. As an application we give in 8 an

elementary version (not involving spectral sequences) of the Kiinneth

exact sequences. For the functors and Horn, these results will be made
more explicit in vi,3. A more advanced treatment must wait until

Ch. xvii.

I. MODULES WITH DIFFERENTIATION

A A-module A with differentiation is a A-module A together with a

A-endomorphism d: A -> A such that dd 0. We introduce the

following notations

Z(A) = Ker </, Z'(A) = Coker d,

B(A) = Im rf, B'(A) = Coim d.

Note that the differentiation d induces an isomorphism d: B'(A) & B(A)
but nevertheless there will be situations in which it is not convenient to

identify B with B''. The operator d admits the following factorization

A ' Z'(A) > B'(A) -^ B(A) * Z(A) A
53
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The map B(A)->Z(A) is a monomorphism, valid because dd=Q.
For the same reason the map A -> B'(A) induces an epimorphism
Z'(A)-+B\A).

This factorization yields a map
d\ Z'(A)-*Z(A)

and a sequence
-> B(A) -> Z(A) -+ Z\A) -> B'(A) ->

which can easily be seen to be exact. Further we have the following

equalities

Coker d =^ Z(A)/B(A) -- Ker (Z'(A) -> B'(A)) = Ker d.

This module is denoted by H(A) and is called the homology module of A.

We thus obtain an exact sequence

(1) -> H(A) -> Z'(A) -> Z(A) -> H(A) ->

and a commutative diagram

i
B > Z > H *

I I I
> B ^ A > Z' >

B' < > B'

with exact rows and columns.

A mapping or map f: A -^ A' of modules with differentiation is a

A-homomorphism/: A -> A' such that df=fd, where d\s used to denote

the differentiations in A and A'. It induces mappings/: Z(>l) ->Z(A'),

...,/: H(A)-+H(A'). If /#: (AJ)->(A',d) are two such maps, a

homotopy s: fg is a A-homomorphism s: ^->^' such that

ds + sd g f. Homotopic maps / and g induce the same homo-

morphism H(A) -> H(A').
Given an exact sequence

of modules with differentiation, we obtain a commutative diagram

Z'(A') > Z'(A) > Z'(A") >

> Z(/O > Z(A) > Z(A")

* c:\ re
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with exact rows, where the vertical maps are d . Applying m,3.3 we
obtain an exact sequence

(4) H(A') H(A) * H(A") -^>
H(A') > H(A) > H(A")

with the connecting homomorphism defined in m,3. Explicitly A may
be described as follows: given h H(A") choose x Z'(A) which is mapped

**

onto h\ then d x Z(A) is the image of an element zeZM') and A/? is

determined by the element z. Composing A with the maps H(A')->Z'(A')
and Z(A")-> H(A") we obtain homomorphisms

H(A')-*Z'(A') 9 Z(A") - H(A');

it is then easy to verify :

THEOREM 1.1. For each exact sequence (3) the sequences

---- > H(A") -* H(A') -> H(A) -v ff(A') -^Z'(A') -+Z'(A)-+Z'(A")-+0

-> Z(A') -+ Z(A) -> Z(/T) -* H(A') - > H(A) -> H(A") -

are exact.

If

A' --> A ---> A" -->

--- C ' --v C --> C"->

is a commutative diagram (of modules with differentiation), with exact

rows, then the vertical maps induce homomorphisms of the exact

sequences associated with the top row into the corresponding exact

sequences associated with the bottom row.

REMARK. The two exact sequences displayed in the theorem, coincide

in their main part (4). One frequently employs the "exact" triangle

H(A') -->H(A)

\ 7
\ *

H(A')

to indicate this main part.

It should be noted that any A-module A may be regarded as a module

with differentiation, by taking </---- 0. In this case Z(A)~Z'(A)
= H(A) = A, B'(A) =- B(A) =^ 0. For any module A with differentiation

the modules Z(A\ Z'(A), H(A\ B'(A\ B(A) will be regarded as modules

with zero differentiation.
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2. THE RING OF DUAL NUMBERS

The ring of dual numbers F = (A,J) over a ring A is defined as the

free A-module with generators 1 and d (1 being the unit element of A)
and with multiplication defined by

(A + I'd) (p + p'd) - ip + (V + Arf, A,A>,/*' c A.

In particular dd= 0, Arf rfA.

It is immediately clear that a A-module >4 with differentiation as

defined in the preceding section is precisely a F-module. A map of

(A,</)-modules is a F-homomorphism. It further follows that Z(A),

Z\A\ B(A), B'(A) and H(A) yield covariant functors defined on the

category of left F-modules with values in the category of left A-modules.

Each A-module may be regarded as a F-module (by setting da = for

all a A). In particular, A may be regarded as a left or right F-module.

We observe the following identities

Z'(A) = A r A, Z(A) =- Homr (A,A)

which are consequences of the identifications A = A A A and A =
HomA (A,/0. This again justifies the fact (contained in 1.1) that Z' is

right exact and Z is left exact.

PROPOSITION 2.1. If 000
i i i->A'->A->A"-^0

I i i-> B'-> B_> B"_>

i i i->C'->C->C"->0

i i I000
is a commutative diagram of modules with differentiation with exact rows

and columns, then the diagram

H(C") --> H(C)

i i

H(A")

is anticommutative. The same holds with H(C") replaced by Z(A") or

H(A') replaced by Z'(A'), or both.
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PROOF. Setting T
n = H we obtain a connected sequence of functors

defined on the category of F-modules. The anticommutativity in

question is then a direct consequence of the general proposition m,4.1.

The other cases are proved similarly using other connected sequences as

indicated in the preceding section.

THEOREM 2.2. The satellites of thefunctors Z', Z, H are asfollows

SnZ' = H for n< 0, SnZ' = for n > 0,

SnZ =
for n < 0, SnZ = //for n > 0,

S*//= Hfor all n.

PROOF. We use the axiomatic description of satellites. Theorem 1.1,

and the commutativity relation following 1.1 imply that it suffices to

prove that H(A) ----- if A is F-projective or F-injective. This is a conse-

quence of 2.4 below.

We denote by i] the inclusion mapping A -> F.

PROPOSITION 2.3. For any left Y-module A, the following conditions

are equivalent:

(a) A is Yi'projective.

(a') A is rj-injectire.

(b) There is a A-endomorphism s: A -> A such that ds + sd = identity.

(c) There is a A-module B with A ^^B.
(c') There is a A-module B with A & (ri)B.

PROOF. Given any A-module B we denote by B* the F-module

B + B with d(b^b2)
= (OA)- It is easy to see that

<,# - F A 5 ^ 5' ^ HomA (F,) - <">A

Assume that an endomorphism 5 as required in (b) is given. Let

B=B(A) and define <p: A -* B* by setting <pa
= (da.dsd). Then

9?rfa
== (dda.dsda) =^=

(0,rfa) rffl?a.
If 9?^

== then a = dwz + sda == 0.

If fe B then *6 b and rfyjft = 0, therefore <pb
-=

(0,fc) and y(sb)
=

(fc,0).

Thus 9? is a F-isomorphism. This proves the relations (b)=>(c),

(b) => (c'). The implications (c) => (a) and (c') => (a') follow from n,6.3.

There remains to be shown that (a) ^> (b) and (a') => (b).

If we identify fn)
A with A* we find that the natural mapping (r))

A -> A
becomes the mapping /: A* -> A given by f(a^a^ = al + da2 . If A
is fj-projective then there exists a F-mapping g: A -> A x

withy^ = identity.

Let ga = (taja). The condition dg = gd yields r = sda while^ = a

yields to + ds0 a. Thus rfsa + sda = a as required. The proof that

(a') => (b) is similar.
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COROLLARY 2.4. If the Y-module A is y-projective (rj-injective),

then H(A) = 0.

Indeed, by (b) above we have a ~ dsa if da 0.

The proof of the following proposition is left to the reader.

PROPOSITION 2.5. A T-module A is T-projective if and only if A ^ (tl)
B

where B is a A-projective module. Similarly A is Y-injective if and only if

A ^ WE where B is A-injective.

3. GRADED MODULES, COMPLEXES

A grading in a module A is defined by a family of submodules A 11

(n running through all integers) such that A is the direct sum ^ nA
n

.

Each a A has then a unique representation a ^a
n

, an
e A n where

only a finite number of an
's is different from zero; we call an the homo-

geneous component of degree n of a. Each element of A n
is called

homogeneous of degree n. The element is homogeneous of degree n

for all n.

A graded module A is called positive if A n
for n < 0, it is called

negative if A n = for n > 0. We systematically use the notation

A n
= A' n

; this is particularly convenient if A is negative.

A submodule B of a graded module A is called homogeneous if

B = ^B
n where Bn = B n A n

. The quotient A/B may then be regarded
as a graded module by setting

(A/B)
n =(A n + B)/B <* A n

/B
n

.

It will be convenient to identify A/B with ^A n
/B

n
.

Let A and C be two graded A-modules. A A-homomorphism
/: A -> C will be said to have degree p if f(A

n
) C C n+p for all n. The

induced map/
11

: ^ n ->Cwfp is called the w-th component of/. The

modules Ker (/) and Im (/) are homogeneous submodules of A and C
respectively; Coim (/) and Coker (/) are graded using the convention

for quotient modules. The mapping Coim (/) -^ Im (/) induced by/ has

degree p\ thus, despite the fact that this mapping is a A-isomorphism,
Coim (/) and Im (/) should not be identified.

A A-complex is a graded A-module A together with an endomorphism
d: A -> A of degree 1 such that dd 0. Thus a complex is completely
determined by a sequence

such that dndn~l = 0. Note that we are using the word "complex" to

denote what is usually called a "cochain complex." A "chain complex"
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may be obtained by lowering indices. Since a complex is a special
instance of a module with a differentiation operator, the various definitions

of 1 apply. The various modules, Z(A), . . . , H(A) are all graded.
The main diagrams (1) and (2) of 1 take then the following form

(!') ->//"-> Z/n
-

i i
> Bn > Zn > H n >

(2') >Bn > A n > Z' n ^0

i I
B' n < > B' n >Q

i i

Let A and C be complexes. A map f: A f C is a homomorphism of

degree of the graded modules such that fd= df, i.e. f n+ ld tl = dnfn

where the same letter d has been used for the differentiation operators in

A and C. A map /induces homomorphisms of the diagrams (!') and

(2') of the complex A into the corresponding diagrams of the complex C.

Let/,#: A > C be maps of complexes. A homotopy s: fc^g is a

homomorphism s: A * C of degree 1 such that ds + sd^gf,
i.e. dn~ 1s

n + s
n + ld" = g

n f n
. If/and g are homotopic, they induce

the same homomorphisms H n
(A) -> H n

(C).

An exact sequence -> A' -> A -> A" -> of complexes and maps,

yields as before homomorphisms
LJnf A n \ ^ /-/"-4-1/ ^'\fl \A ) > /I ^^V.^* ^

which induce the connecting homomorphisms

Z"(/O -> //n+1(^
/

)-

The sequences
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are exact. In particular, we obtain the exact sequence

----> Hn~l
(A") -> Hn

(A') -> Hn
(A) -> Hn

(A") -> Hn
+\A') -> . . .

unlimited in both directions. This last sequence is usually referred to as

the homology (or rather cohomology) sequence.

4. DOUBLE GRADINGS AND COMPLEXES

A double grading (or bi-grading) in a module A consists of a family of

submodules A nt<m
((n,m) running through all pairs of integers) such that A

is the direct sum A n 'm
. The elements of A n%m are called bihomo-

n,m

geneous of bidegree (n,m). We define the associated graded module

(also denoted by A) by setting

An element of bidegree (n,ni) has thus degree n + rn-

The bigraded module is said to be positive if A n>m for n < or

m < 0. It is said to be negative if A"' rn for n > or m > 0. We
write Anm = x~ Wi~m

; this notation is particularly useful if A is negative.

A submodule B of A is bihomogeneous if B 2# r''m
, where

Bn -m = B n ^ Ti>m
. As before we identify /*/ with ^A"'

m
/B"'

m
.

Let y4, C be bigraded modules. A homomorphism /: A -> C has

bidegree (/?,^) if for all n,m

f(A
n 'm

) C Cn+p>m ~*~q
.

The induced map/
n m

: >i
rl 'm -> Cn+J) 'rn+" is called the (,w)-component

of/. The remarks made in 3 about Ker (/), Im (/) etc. apply equally
in this case. A map/: A -> C of bidegree (p,q) induces a map of degree

p + <7
of the associated graded modules.

A double complex A is a doubly graded module together with two

differentiation operators d1 and d2 of degree (1,0) and (0,1) respectively,

which anticommute. Thus we have

(1)

//w,m. An tm __^ An+\ tm Ww.wi. An,m _^ ^rj

jn.mjn-l.m = 0> d^
m
d^'

m~l =
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These conditions can be expressed by means of the anticommutative

diagram

The (singly) graded module associated with A is now converted into a

(single) complex by defining a total differentiation operator d: Ap -

which on A n
>
m

is equal to

(3) d'm +^'m .

Thus

(4) c/^"') C yr+1 'w + A n 'm+l
.

Conditions (1) then imply dd 0. Conversely any differentiation d in

the associated graded module satisfying (4) defines uniquely the operators
dl and d2 which yield a double complex for which d is the total differentiation.

The modules Z n
(A)..... H n

(A) where A is a double complex are

always understood as those defined for the associated (single) complex

using the total differentiation operator.

Let A and C be double complexes. A mapf: A -> C is a map of

bidegree (0,0) of the doubly graded modules, which commutes with the

first and second differentiation operators in A and C. Clearly/induces a

map of the associated (single) complexes.
Let f,g : A -> C be two maps of double complexes. A homotopy

(sl9s2): /c g consists of a pair of homorphisms s^: A-+ C of bidegree

(1,0) and (0, 1) respectively such that

s^2 + d^ = 0, 52rfx + c/^2

where d
l
and d2 are the first and second differentiations in A and C. Passing

to the associated single complexes we define sp : A p -+ Cv~l as
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on A n
*
m

. We thus obtain a homotopy s: f^. g satisfying

s(A
n 'm

) C Cn~l >m + Cn 'm~l
.

Conversely every such homotopy uniquely determines a pair (sl9s2) as

above.

All the concepts introduced above admit an immediate extension to

H-graded modules and n-tuple complexes. For instance a quadruple

complex consists of a 4-graded module A = ^A n 'mtPiQ and four differentia-

tion operators
^n,m,p,<?. ^n.m.p.g __^ ^gn+l,m,p,<r

each having square zero and anticommuting with one another. The

total differentiation operator d on the associated (singly) graded module is

d= /! + </, + 1/3 + </4 -

Instead of passing directly from the w-tuple complex to the associated

single complex, we can pass to w-complexes for m < n by a suitable group-

ing of the indices. For instance in the case of the quadruple complex
described above, we can obtain a double complex by grouping the first

index with the third and the second with the fourth :

A r -8 = A"'m '

with dl and <52 defined as d + d^ and d2 + d4 . The original quadruple

complex and the double complex just constructed have the same associated

single complex.

5. FUNCTORS OF COMPLEXES

Let T(A^ . . . , A r) be a functor of r variables, some covariant, some

contravariant, where A
t
is a A

t
-module and T(A l9 . . . , A r) is a A-module.

Suppose now that each A
t
is a graded A t

-module. We define an r-graded

module T(A l9 . . . , A r) by setting

where BI= +1 or 1 depending whether the variable A
t
is covariant or

contravariant. From this r-graded module we may pass to a singly graded
module by defining Tn

(A^ . . . , A r) as the direct sum of the modules

rw
i ..... n* (A^ . . .

, A r) for all (m, . . . , nr) such that n
v -\

---- + "r
==
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One should be cautious not to confuse the r-graded module

T(A 19 . . . , A r) with the module T^A^ . . . , \A r \)
where

|^,|
is the

non-graded module underlying A t
. It is clear, for instance, that Horn (A,C)

and Horn
(|/4|,|C|)

differ not only in the fact that the first one is

2-graded; they actually differ as modules. The situation is somewhat
similar to that encountered with topological groups. Let A and C be

topological abelian groups, |

A
|, |

C
|

the underlying discrete groups and

let Horn (A,C) be the group of all continuous homomorphisms A -> C.

Then Horn (A,C) and Horn (\A |, |

C
|)

are distinct.

Let A\, . . . , A'r be another sequence of graded modules and consider

maps/,: A
l
-*A'

i (resp./: A\-+ A,) if the Mh variable of T is covariant

(resp. contravariant). Let/, have degree pr We define the map

\, . . . , A'r)

of r-degree (p^ . . . ,/>r), by defining the map Tn
i.....

*</, . . . ,/r) on

where e ^n,pj for / < y, /
t

=-- n
t
if Tis covariant in A

t
and

/, ~(n t+p t )

if 7" is contravariant in A
t

.

If ^ t
: A\-+ A'[ (resp. ^,: A" -> A'

t )
are maps of degrees ^ t , and

A
t
-- g tf,: A

t
-> A" (resp. /?, -~/,^,: /I,"

-> ^,), then it is easy to verify the

rule

7^, . . . , A r)
- (- l

where
?/

--
^/?,^;

for / </.

Suppose now that each X
t
is a complex with differentiation rf

t
. Then

setting

we find that d
l..... d r anticommute and define T(A l..... A r) as an

r-tuple complex. If/ are maps of complexes (each/ has then degree

zero) then T(fi..... /r) (this time not involving any signs) is a map of

/-tuple complexes. If .9,: / ^/' are homotopies for / 1, . . . , r, then

setting t
t T(A^ . . . , s

t
, . . . , A r)

we obtain a homotopy

To illustrate the above definitions we consider the tensor product
A C of graded modules. This is by definition the doubly graded
module m A n Cm . If/: A-+ A',g: C-> C are maps of degrees p
and ^ then

^ C->X' <8>C"
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is the map of degree p + q defined for a A n
, c Cm as

The sign is due to the interchange of the symbols g and a. If A and C are

complexes with differentiations dl and </2 , then ,4 <g) C is a double complex
with differentiations dl C and .4 </2 - The tota' differentiation in

,4Cis*/=</1 C +^4 and we have

d(a c)

6. THE HOMOMORPHISM a

In the remaining sections of this chapter we study certain relations

between H(T(A 9C)) and T(H(A\H(C)) that play a fundamental role in

later chapters.
We consider as a typical case, a functor T of two variables, covariant

in the first variable and contravariant in the second. If A and C are

complexes, then T(A,C) is a double complex, and thus T(A,C) may be

regarded also as a complex.
We consider the commutative diagrams

Z(A)-> H(A) Z(C)-> H(C)111!
A - Z'(A) C ->Z'(C)

They induce a commutative diagram

(1)

-> T(H(A)MC))

))
-> 1\Z'(A),Z(Q)

Actually all four modules in the diagram should have the operator H in

front; however in three of the modules the differentiation is zero so that

//may be omitted.

PROPOSITION 6.1. IfTis right exact , there exists a unique homomorphism
of degree zero

a: T(H(A),H(C))-
which when inserted in (1), leaves the diagram commutative. The homo-

morphism a is natural relative to maps A -> A '

and C '

-> C, and if A and C
have zero differentiations then a is the identity. The last two properties
characterize a uniquely.
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PROOF. Since T is right exact, f is an epimorphism. Thus there

exists at most one <x with af 17. For such an a we have af = 77
= rf

so that <x = T. To show that such an a exists, it suffices to prove that

Ker fC Kerry. Since T is right exact it follows from n,4.3 that Ker is

the sum oi the images

T(B(A),Z\C)) -> T(Z(A) 9Z'(C)) <- T(Z(A\B'(Q).

Thus to prove Ker C Ker
r\
amounts to showing that the homomorphisms

T(B(A) 9Z'(C))
-

are zero. These homomorphisms admit factorizations

T(B(A),Z'(Q)

T(Z(A\B'(C)) H(T(Z(A),C))

and it suffices to show that /? and y are zero. To show this we factor the

differentiation operators in T(A,Z'(C}) and T(Z(A\C) as follows

T\A 9 Z'(Q) ~> T(B'(A\ Z'(C)) ^-^l T(B(A\Z'(C))~ 1\A 9 Z'(C))

T(Z(A),C) -> T(Z(A) 9 B(C))
-

f- T\Z(A),B'(Q)
^

1\Z(A),C)

where <5 is the map B' -> B induced by d. Since T is right exact, the left

hand homomorphisms are epimorphisms. Since the middle homo-

morphisms are isomorphisms it follows that the image of /?' is in

B(T(A,Z'(Cyj) and the image of / is in B(T(Z(A\C)). Thus ft and y are

zero.

The naturality of a and the fact that a is the identity if A and C have

derivation zero are obvious. To prove the last assertion assume that

another family a of homomorphisms is given satisfying these two condi-

tions. The maps Z(A) - A and C^> Z'(C) then induce a commutative

diagram

T(Z(A\Z'(O)

T(Z(A\Z\C)) H(T\A,Q)

Therefore &{ = ?;
= ocf . Since f is an epimorphism, it follows that

a= a.

PROPOSITION 6. 1 a. If T is left exact, there exists a unique homomorphism

of degree zero

a': H(T(A,C))-*T(H(A) 9H(Q)
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which when inserted in (1), leaves the diagram commutative. The homo-

morphism a' is natural relative to maps A > A',C' -> C ofdegree zero, and

ifA and C have zero differentiation then a' is the identity. These last two

properties characterize a' uniquely.

The proof is dual to the preceding one.

PROPOSITION 6.2. If T is right exact and the sequences

-> H(A) -> Z'(A) -> B'(A) ->

-> JJ(C) -> Z(C) -> //(C) ->

sp//f, f/zert a has kernel zero and its image is a direct summand ofH(T(A,C)).
PROOF. Composing the splitting homomorphisms Z'(A) --> H(A) and

H(C) -> Z(C) with the natural maps A -> Z'(A) and Z(C) -> C yields maps
ft: A-> H(A) and y : //(C) -> C such that the induced maps ft+ : H(A)
-> H(A), y # : //(C) -> //(C) are identities. There results a commutative

diagram

T(H(A\H(C)) ~^-> H(T(A 9C))

T(H(A)<H(C)) >T(H(A\H(C))

where the vertical maps are induced by T(p?y). Thus <3a identity,

which implies the conclusion of 6.2.

PROPOSITION 6.2a. IfTis left exact and the sequences

-> B(A) -> Z(A) -> H(A) -+

-> H(C) -> Z\C) -> ^'(C) ->

^/>/;7,
//ze a' is an epimorphism and its kernel is a direct summand of

H(T(A,Q).
The proof is dual to that of 6.2.

7. THE HOMOMORPHISM a (CONTINUATION)

We shall establish here some less elementary properties of the homo-

morphisms a and a', that will be needed later. We begin by establishing
a commutativity relation with the connecting homomorphisms for

homology.
We consider a functor T(A,C) where C is a covariant variable and A

denotes all the remaining variables, some ofwhich may precede the variable

C and some of which may follow it. We shall assume that each of the

variables is a complex.
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We now assume that we have an exact sequence of complexes

(1) -C'-^C-^C"*

(9? and y> having degree zero) such that the sequence

(2) -> T(A,C') -* T(A,C) -> T(A,C") -*

is exact.

We then have connecting homomorphisms

(3) (5: H(C")-*H(C)

(4) A: H(T(A,C"))^H(T(A,C')).

PROPOSITION 7.1. If T is right exact, the following diagram is

commutative

T(H(A),H(C"))
-+

T(H(A),H(C'))

(5)

H(T(A,C")) , H(T(A,C'
A

If T is left exact, the same holds with the vertical arrows reversed and

replaced by a'2 , a'r
For T contravariant in C, we must interchange C' and C" in (2), in (4)

and in (5).

REMARK. The homomorphism T(H(A),d) in diagram (5) involves a

sign (see 5).

PROOF. For the sake of brevity we shall use a notation as if all the

variables of A were covariant. Thus for instance, if we write T(Z(A),Z(C))

we actually replace each covariant variable A
t by Z(/4,) and each contra-

variant variable by Z'(A^.
The proof is based on an alternative description of the homomorphism

6. We denote by X the kernel of the composed homomorphism

.

We then obtain the homomorphisms

H(C") ^- Z(C")
^- X~- Z(C') -^ H(C)

where //' and // are natural factorization homomorphisms, T' is defined by
dc since dc(X) C Im % and r" is defined by 9? since y(X) = Z(C")- Thus

r" and /a" are epimorphisms and it is easy to see that

(6) p'r'
= VT".
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Quite similarly we define Y as the kernel of the composed homomorphism

(7) T(A,Q -^ T(A,Q

and obtain

with

(8) p'o'
= ApV.

If we compose the map T(Z(A\X) -> T(A,C) with (7) we obtain zero, thus

we have a map
0: T(Z(A),X)- Y.

We consider the diagram

T(H(A\H(C
H

))< T(Z(A\Z(C))< T(Z(A\X)+T(Z(A\Z(C))*T(H(A)M(C))

I" I I" I h
")) ^_ y * z(T(A,c')) >

' '

where the maps in the upper row are

The commutativity of the extreme two squares follows from the definition

of a
t
and Og. The commutativity in the remaining two squares is an easy

consequence of the definition of 0. We now compute using (6) and (8)

- A/>V0 = p'o'
- OtTX/i^V)

V).

Since /M,^,T
W

are epimorphisms and 7 is right exact, it follows that

TXjw,//'',T") is an epimorphism. This proves that (5) is commutative.

For T left exact we consider instead of X the cokernel X' of

C' C^C.
THEOREM 7.2. If the functor T is exact, a am/ a' are isomorphisms and

are inverses of each other.

PROOF. We observe that (using the notation of diagram (1) of the

preceding section)

and since Ker r = = Coker f, it follows that a'a = identity. There

remains to be shown that a is an isomorphism. This is clear if all the

variables have zero differentiation. The proof is carried out by induction
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with respect to the number of variables that have a non-zero differentiation.

We denote one of these variables by C and write T(A,C) where all the

remaining variables have been lumped into a single symbol A. We
assume T covariant in C and consider the exact sequence

which yields the homology sequence

----^(C)-^Z(C) >//(

Since T is exact we obtain an exact sequence

T(H(A),Z(Q)
where 6' = T(H(A\S).

Now, applying 7.1 and the naturality of a we obtain a commutative

diagram

1- I*

H(T(A,B(C)))-+ H(T(A,Z(C)))

The lower row is the homology sequence of

-> 7UZ(C)) -> 7UC) -> r(^,5(C))^ 0.

Since the rows of the diagram are exact, and since, by the inductive

assumption, a
x
and 02 are isomorphisms, it follows from 1,1.1 (the "5

lemma") that a also is an isomorphism.

PROPOSITION 7.3. Let T(A,C) be right exact and covariant in C. If

7UZ(C))->7UC)

is a monomorphism, and

a: T(H(A),B(C))^HT(A,B(Q)

is an epimorphism, then the sequence

(9)

induced by the natural maps

(10) C-

is exact. For T contravariant in C, replace B(C) and Z(C) by B'(C) and

Z'(C) and reverse the arrows in (10).
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PROOF. Since the sequence

-> T(A,Z(Q) -> T(A,C) -> T(A,B(Q) ->

is exact, we obtain a homology sequence like (9) but with i* replaced by
the connecting homomorphism A. It therefore suffices to show that

A=i*.

By 7.1, we have the commutative diagram

T(H(A\B(C))
ww>

r T(H(A),Z(C))

H(T(A.B(C))-* HT(A,Z(Q)
A

where d: B(C)->Z(C) is the connecting homomorphism induced by the

exact sequence 0->Z(C)-> C-> (C)-> 0. It is clear that b = i.

Since by the naturality of a we have /*a ^T(H(A)^) it follows that

Aa = /*a. Thus A = /* since a is an epimorphism.

PROPOSITION 7.3a. Let T be left exact and covariant in C. If

is an epimorphism, and

a: HT(A,B\C))^T(H(A\B'(C))

is a monomorphism, then the sequence

(9a)
- -> H(T(A,C))^H(T(A,Z\C)))^H(T(A,

induced by the natural maps

(lOa) C -> Z'(C) -> B'(C) -> C

is exact. For T contravariant in C, replace B'(C) and Z'(C) by B(C) and

Z(C) and reverse the arrows in (lOa).

The preceding results may be sharpened in the following way. For

each complex A, \et^(A) denote the category consisting of the complexes

A, B(A), B'(A\ Z(A\ Z'(A\ H(A), the identity maps, the maps occurring

in diagram (1) of 1, the maps B'(A)-+ B(A) and of their compositions.
The conditions 'T is right exact," 'T is left exact" and 'T is exact" that

occurred before may be replaced by
4T is right exact on the categories

We shall say that a complex splits if the sequences in diagram (1) of 1

split.

PROPOSITION 7.4. If the complexes A and C split, then a and a' are

defined, are isomorphisms and are inverses of each other.

This follows directly from 7.1 since the functor T(A,C) is exact on the

categories JK(A) and^(C).
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8. RUNNETH RELATIONS

We shall consider a functor T of any number of variables. We shall

denote one of the variables by C and use the symbol A for all the remaining
variables. We shall use the symbols S

V
T and S1T to denote the satellites

of T with respect to the variable C. We shall assume that all the variables

in T are complexes.
THEOREM 8.1. Let T be right exact and covariant in C. If the homo-

morphisms

ai : T\H(A) 9B(C))-HT(A 9B(Q)

a,: 1\H(A) 9Z(C))^HT(A 9Z(Q)

are isomorphisms, and if

(1) S^A^C)) = = SjTX/A/O^C)),

then we hare an exact sequence

(2) T\H(A\H(C)) -->
//( T(A 9 C))

-^ Sl T(H(A\H(C))

with fi ofdegree 1 . IfTis contravariant in C, we replace B(C) andZ(C) by

B'(C)andZ'(C).
PROOF. We consider the commutative diagram

Since S^A^C)) 0, T(A,Z(C))-> T(A,C) is a monomorphism.
Thus 7.3 implies that the middle row in the diagram above is exact. Since

S
1r(//(^),Z(C)) = 0, the other two rows also are exact. It follows

easily that there is a unique homomorphism

ft: H(T(A.C))-*S1T\H(A) 9H(C))

which when inserted into the diagram, leads to a commutative diagram.
The exactness of (2) then follows readily from the diagram above.

The exact sequence (2) is natural in the following sense. Let A\ C' be

another pair satisfying the conditions of 8.1, and/: A-*A\g: C->C'be

maps of complexes (actually / is a family consisting of one mapping
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/t
: >4

t
-> Al for each covariant variable in A and/,: ^-> A

i
for each

contravariant variable in A). Then the diagram

i . i i

T(H(A'),H(C'))-> H(T(A',C'))-> SiT(H(A'),H(C
f

y)
--

is commutative.

It should further be remarked that if T is a functor of one variable C,

then the conditions concerning ax and oc2 are automatically satisfied and

conditions (1) become

(!') SJ\B(C)) = = SiTXZCQ).

Since a has degree and /? has degree 1 the exact sequence (2) may be

rewritten as

2 T(H*(A) 9H*(C))^Hn
(T(A,Q) -^ 2

REMARK. The only property of S^ that was used above is that for

each exact sequence -> C' -> C -> C" -> the sequence

5^(0 -> 5^(0 -> r(C') -> T(C)

is exact (assuming J covariant in C).

THEOREM 8. la. Let T be left exact and covariant in C. If the homo-

morphisms

a;: H(T(A,B'(Q))-+T(H(A),B'(Q)

4: H(T(A,Z'(C)))-*T(H(A\Z'(C))

are isomorphisms, and if

(la) &T(A,B'(Q) = - S*T(H(A\Z'(C)\

then we have an exact sequence

(2a)
> &T(H(A) 9H(C)) H(T(A,Q) -^ T(H(A) 9H(Q) ~+

/8' of degree I, IfT is contravariant in C, we rep/ace fi'(Q andZ'(C)

by B(C) and Z(C).

EXERCISES

1. Let A and >4' be A-complexes. A map f: A-* A' of degree u is

defined as a homomorphism of degree u such that ^f= (\)u
fd. If

g: >4 -> A' is another map of degree w, then a homotopy s: /^ g is a

homomorphism j: ^~>>4' of degree w 1 such that ds + (l)usd= g /.
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Show that if/: A -* A' and/' : A' -> X" are maps of degree u and t?

respectively, then /'/: A -> A" is a map of degree u + v. If further

5: f~g,s': /'~g'then

2. Extend the above definitions to double and /2-tuple complexes. In

particular show that if/: A -> A'
, g: C -> C' are maps of degrees u and i>,

then

,4 C->/l'<8>C', Hom(/,g): Horn C4',C)-> Horn (/4,C')

are maps of bidegrees (u,v). Draw appropriate conclusions if s: f~f,
I- g-g'-

3. Let A' and A"be complexes and let/: /4"-> >4' be a map of degree 0.

In the direct sum A = A' + A" introduce the grading A
n = A' n + A"n+l

and the differentiation operator d1 given by

Show that with this differentiation the homomorphisms

(I) -A' -^A-^+A"*

given by ya
r = (a',0), v(a\a") = a" are maps (y> is of degree 0, and 9? of

degree I). Prove that any differentiation operator in A with this property
has the form d

1 (for some map/of degree zero).

The exact sequence ( I ) gives rise to an exact homology sequence

----- Hn
(A')

-^ H n
(A)

-^ H n
+\A") -^ Hn+l

(A') >.
Show that b coincides with the map induced by/.

4. Denote the complex A of Exer. 3 by (A\A"J). Let (C',C",g) be

another such complex and let h
f

: A' -> C", h": A" -> C" be maps (of

degree zero). Show that a map h: (A\A\f)-+ (C\C\g) of degree

compatible with h' and h\ exists if and only if gh" c h'f. Show that each

homotopy 5: gh"
~

//'/uniquely determines such a map h and vice-versa.

In particular, a map (A\A"J) -> C is given by a map h: A' -> C and

a homotopy s :
~

/?/.
A map X -> (C',C^,g) is given by a map h : A -> C"

and a homotopy s: g/i ^ 0.

5. Let A and C be graded A-modules. Denote by A/U
(/4,C) the group

of all A-homomorphisms A -> C of degree u. Assume that A and C are

complexes and consider the subgroup Map
M
(/l,C) of all maps of degree u.

Further let Map|}(/l,C) denote the subgroup of maps homotopic to zero.

Convert the graded group M(A<C) = ^ UMU
(A,C) into a complex by

setting

(dg)a
=

(<fo) + (- ly+Mfc*), /I, ^ A/%4,C).
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Prove the equalities

Z*(M(A,Q) = Map'M.C), B*(M(A,Q) - MapR^C).

6. Consider an exact sequence of A-complexes

V 9*

A'-* A A"-+

with y Map (/4',/4), (p e MapH^/Oi and assume that each of the exact

sequences 0-> A'n -+An -> A"n+ l ->Q splits. Establish the exact

sequence of complexes

-> M(A*,O -> M(A,C) -* M(A\C) -> 0,

and using 1.1 obtain an exact sequence

Map
w
(/4,C)

* Map
M
(,4',C)-^ Map

M
(/r,C)/Mapg(/T,C).

Assuming that A is given in the form (A',A",f) of Exer. 3, show that the

map d is the one induced by/ Compare with the last part of Exer. 4.

Carry out a similar discussion with an exact sequence

7. Let A and C be double complexes such that A p
>
(1 ^ = CP - Q

if

p < 0, and let A' and C denote the double complex obtained from A and

C by setting the second differentiation equal to zero. Show that if a

map /: A^> C induces an isomorphism H(A') ^ H(C'), then / also

induces an isomorphism H(A) ^ //(C).

[Hint: observe that A' - ^ FT
(A)\F*+\A\ where Fr

(A) - ^ I A',
r p q^r

similarly for the complex C. Then, for a given n, prove, by a descending

induction on r, that Hn
(F

r
(A))-> H"(Fr

(Q) is an isomorphism ; this being

true for r > n, use the 5-lemma (i,l.l) for each step of the induction.

Prove finally that H n
(A) -> Hn

(C) is an isomorphism.]

8. Show that a right exact functor T is exact, if and only if the map
a: T(H(A\H(C)) ~> H(T(A,C)) is an isomorphism for any complexes
A and C. Establish a similar proposition for left exact functors.



CHAPTER V

Derived Functors

Introduction. This chapter is central and should be studied care-

fully. First we define for each module A certain complexes which are called

projective (or injective) resolutions of A. Then given a functor T(A,C) we

replace A and C by projective or injective resolutions A' and Y (depending

upon the variances of the variables). We then obtain a double complex

T(X, Y). The homology groups of this double complex are independent of

the choice of X and Y and are the left derived functors L n T(A,C) (or the

right derived functors R"T(A,C) depending upon the case) of the functor

T. There are connecting homomorphisms which link these functors for

different values of /i, and which lead to various exact sequences. This is

done in 1-4.

The fundamental properties of these derived functors are studied in

5-9. The last 10 is a digression intended primarily to prepare the

ground for Ch. xn on finite groups.

1. COMPLEXES OVER MODULES; RESOLUTIONS

In what follows it will be convenient to regard a A-module A as a

complex with A -= A, A" for n -/- and differentiation zero. Thus

A coincides with Z(A\ Z'(A) and H(A), while B(A) and B'(A) are zero.

A left complex X over A is a negative complex A' (i.e. X n --- for

n **> 0) and a map e: X > A called the augmentation. Since A n = for

n -/- 0, the map f actually reduces to a single map A' -> A subject to the

condition that the composition X l ~> X-> A be zero. The left complex
X is called projective if all A'" are projective, it is called acyclic if f induces

an isomorphism H(X) ^ A. This last condition is equivalent to the

requirement that the sequence

v rf" v rf
i v A n. . Xn

-- A n_i
* X,o

- A >

be exact. Note that we have lowered the indices to avoid writing negative

numbers. This will be done systematically with left complexes.
A left complex X over A which is both projective and acyclic will be

called a projective resolution of A.

75
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Let/: A -> A' be a homomorphism of modules, and let A^A" be left

complexes over A, A' with augmentations e,e'. A map F: Ar -> X' such

that the diagram

X^-+X'

I !'

is commutative, is called a mop overf.

PROPOSITION 1.1. Let X be a projective left complex over A, X' an

acyclic left complex over A' and let f: A -> A'. There is then a map
F: X-+ X' over/, and any two such maps are homotopic (see iv,3).

PROOF. In this proof as well as in various proofs in the following
section it will be convenient to use the following property of projective

modules which is immediately derivable from the definition. Consider a

diagram
P

V

in which the row is exact and P is projective. If <pr
= then T admits

a factorization \pa where a: P-> A".

We now begin with the construction of the map F: X-> X'. Consider

the diagram

r_jL
Since X is projective there is an F : AO~> XQ with 'F /. Next

consider the diagram

Since p/F^ =/6^i = there is a map Fx : Xl
-> X[ with d[F^

Assume by induction that Fn : A
r

n -> X'n are already defined for n <p
(/?>!) and satisfy d'nFn = Fn^dn for AI > 0. Consider the diagram

1

,-A
. y' - . y'-1 -2
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Since d'^F^d^ FP_2dp__ldp = there is a map Fp : XP -+ X'p with

d'J9 = F^d,.
Now suppose that F, F' are two maps of X into X' over/. Consider

the diagram

*o

I'
y' * y' ,. A

1
d

'
.'

^

where r F'Q F . Since eV = e'F'Q
-

;F = /e fe = there is a

map J : A^ -> A^ with d\sQ = FQ F . Assume that sn : Xn -> X^ +l are

already defined for n < p (p > 0) and satisfy dn+lsn + sn_ l
dn
= F'n Fn

for n > 0. Consider the diagram

with r~Fp
Fp s^dp. Since

rf^r, upon calculation gives 0, there is

a map sp : Xp
~* X

p+l
with r =

/p+1
J
pf

i.e. with
</,+!$ +^^= F

p
Fp.

PROPOSITION 1.2. For each module there exists a projective resolution.

If X and X' are projective resolutions of A and A', and f: A -> A' is a

homomorphism, then there exists a map F: X > X' overf. Any two maps
F, F': X-* X' over the same homomorphism A- A' are homotopic.

PROOF. The existence proof consists in a successive application of

1,2.3; given A, choose exact sequences

Z Xo-^A
Zt

X
l Z >0

with Xn projective. Then define dn as the composition Xn -> Zn^ -> Xn_v
This yields a projective resolution of A. The second and third part of 1.2

are consequences of 1 . 1 .

Note that actually the above proof yields a projective resolution X
of A with the modules Xn not only projective but free.

It follows from 1.2 that any two projective resolutions Jfand X' of the

same module A have the same homotopy type, i.e. there exist maps
F: X-> X' and F': X' -+ X over the identity map of A, such that the

compositions F'F and FF' are homotopic to identity maps.
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We now briefly and without proofs carry out a similar discussion for

right complexes.
A right complex Xover A is a positive complex Xand an augmentation

map e : A -> X. The right complex is called injective if all Xn are injective ;

it is called acyclic if e induces an isomorphism A & H(X), or equivalently
if the sequence

e d dn-,. A -* yo_ . yl_* . . ._* yn_,. yn+l_ . . . .
f\ yi y\ y\ /\

is exact. IfX is both injective and acyclic it is called an injective resolution

of A.

Let/: A -> ^4' be a map of modules, and let X, X' be right complexes
over A,A'. A map F: X^> X' such that the diagram

'I 1'

is commutative, is called a map over/.
PROPOSITION 1.1 a. Let X be an acyclic right complex over A, X' an

injective right complex over A\ and let f: A-> A'. There is then a map
F: X-+ X' overf, and any two such maps are homotopic.

PROPOSITION 1 .2a. For each module there exists an injective resolution.

IfX and X' are injective resolutions ofA and A ', andf: A -> A '

is a homo-

morphism, then there exists a map F: X -> X' overf. Any two F, F' : X-+X'
over the same map A -> A '

are homotopic.

PROPOSITION 1.3. If A is left Noetherian and A is a finitely generated

left A-module, then A has a A-projective resolution X such that each Xn is

free on a finite base.

PROOF. We use the notation of the proof of 1.2. Since A is finitely

generated we may choose XQ to be free on a finite base. Then since A
is left Noetherian, Z is finitely generated. Thus Xl may be chosen free

on a finite base, etc.

2. RESOLUTIONS OF SEQUENCES

Let

(1) Q+A'^-+A--*A"+0

be an exact sequence, and let

(2) JT-^ X-^ X"+
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be an exact sequence, where X', X, X" are left complexes over A 1

', A, A"

respectively, Y is a map over y and <1> is a map over <p. If X\ X, X" are

projective resolutions of A', A, A" respectively, then we say that (2) is a

projective resolution of (1).

PROPOSITION 2.1. If X
'

and X" are projective, then so is X. If X'and

X" are acyclic, then so is X. If X' and X" are projective resolutions of A'

and A", then (2) is a projective resolution of(\).

PROOF. For each index n, the sequence -> X'n -> Xn ~> X"n -> is

exact. If X"n is projective, then the sequence splits and Xn is isomorphic
to the direct sum X'n + X. If X'n also is projective then Xn is projective.

Suppose now that X' and X" are acyclic. This means that the sequences

-> x'n -> *;_ ,
-> -> < -> A

"
-> o -> .

are exact. Let A"' and A"" denote the complexes defined by these sequences

and let X denote the similar complex defined using X. Since

H(X')~> H(X) - > H(X") is exact, it follows that H(X) = 0, i.e. X is an

acyclic left complex over A.

We shall say that the exact sequence (2) is normal if, for each index /i,

the exact sequence
-^ X'n > Xn

-> X^ - >
splits. This for instance is

always the case if X" is projective. If the sequence (2) is normal, we may
replace Xn by the direct sum X'n \- X and assume that

M'r' -= (v' 0) O(Y' Y") Y"1 -*n V^w'W* ^ V'^n 1 * 1
/!' -*n*

With this representation we have

where

The homomorphisms a and n satisfy the conditions

H

(3) { v'f'Oi + << =

which are the translations of the conditions e"O gr , e^ ~ and

dn~\dn =-
respectively. This description of a normal sequence (2) will

be called the normalform of (2).
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PROPOSITION 2.2. Given an exact sequence (1), an acyclic left complex
X' over A' and a projective left complex X" over A", there exists a left

complex X over A and maps *, O over the maps y>, y, such that the sequence

(2) is exact. If X' and X" are projective resolutions ofA' and A" 9 then X is

a projective resolution of A.

PROOF. The second part follows from 2.1. To prove the first part,

it suffices to find homomorphisms a: X -> A and n : X^-^X^_^
satisfying (3). Consider the diagram

Since XQ is projective there is a a: XQ -> A with (pa
= e". Next consider

the diagram
Y"A

\

-ad,

Since the row is exact, X[ is projective, and (pa d" = e" d[ =- 0, there is a

ii X[ -> XQ with y e !
=

Gd[. Next we consider the diagram

Since y) e 0^ = ad^d^ = and since Ker y = it follows that

e' id
= so that there exists a homomorphism 2 : X% -> X[ with

> 2 we define P inductively using the diagram

PROPOSITION 2.3.

->B'* B-* B"--0
V* V*
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be a commutative diagram with exact rows and let

Y <D ip* $
o A"* jr * ;r *

o, o > r > r > y o

e normal exact sequences of left complexes over the rows such that X" is

projective and Y' is acyclic.

Given maps F': X' -> Y 1

and F": X" -> Y" overf andf\ there is a

map F: X-> Y over f such that the diagram

is commutative.

IfG'i G, G" is another triple ofmaps overf',f,f with the same property
and if s

f

: F'~ G' and s" : F" ~ G" are homotopies, then there exists a

homotopv s: F~ G such that the diagram

o n n --n

|, j.. j.

is commutative for all n >; 0.

PROOF. We assume that X and Y are given in normal form with the

maps ox , 0-jf, a
r

, 0^'. The required map F: X-+ Y must then have the

form

where y n : X"n -> y^ satisfies the conditions

f
V'**

f

yo + *rF
(4)

>

which are translations of the conditions e
YFQ =fex

for /z > 0. Equations (4) allow us to define y n inductively by the same

method as before.

We now turn to the part concerning the homotopy. The required

homotopy s: F^ G must have the form

' "\ t f

n<Xn )
=

(Snx
f '

nxn
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where tn : X"n -> y;+1 . The condition dn+ls n + s^dn
- Gn

- Fn then

becomes

< + i'n 4-W; + 0f+1*; + 5U0* - y?
-

y > 0.

Again these equations are solved inductively for f , f
x.....

The analogs of the results of this section for right complexes are

straightforward and will not be restated.

3. DEFINITION OF DERIVED FUNCTORS

As in Chs. HI and iv we shall be concerned with additive functors T in

any number of covariant and contravariant variables. We shall treat

explicitly the case of a functor T(A,C) covariant in the variable A and

contravariant in the variable C. However it is understood that A may be

replaced by any number of covariant variables, and C by any number of

contravariant variables. In most definitions and results the number of

variables is of no importance. In all other cases specific statements will be

made.

Consider the (additive) functor T(A,C) covariant in A, contravariant in

C, where A is a Aj-module, C is a A2-module and T(A,C) is a A-module.

Let X be a right complex over A and Y a left complex over C. Then

T(X,Y) is a double complex. With this double complex there is

associated a single complex, also written T(X, Y) which is a right complex

over7X/l,C). IfF: X-> A"andG: Y' ~> Y are maps over/: A -> A', g:

C'->Cthen

r(F,G):

is a map over

T(f,g): T(A,C)-*T(A\C).

Homotopies F c^ F' and G ^ G f

imply (see iv, 5) a homotopy
T(F,G) ^ T(F',G').

Suppose now that in the above discussion X, X' are A
1-injective

resolutions of A, A'and Y, Y' are A2-projective resolutions of C, C'. Given

the maps/: A -> A', g: C' -> C, the existence of maps F: X~+ X' and

G: Y'-* Y over/and g is assured by 1.2 and 1.2a. If F': X~> X' and

G' : Y' -> Y is another pair of such maps, then by 1 .2 and 1 .2a there exist

homotopies Fc F' and G ~ C'. Thus 7(F,G) and r(F',G') are homo-

topic and therefore yield the same homomorphism of the respective

homology modules. Thus the homomorphism

(1)
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depends only on the maps/and g and not on F and G. We denote the

homomorphism (1) by (RT)(f,g). It follows now readily that if A A',

C = C" and/and g are identity maps, then (1) is an isomorphism. Thus

up to natural isomorphisms HT(X, Y) is independent of the resolutions X
and Y and may be written as (RT)(A). These modules together with

the maps (RT)(f,g) yield a new (additive) functor RT, covariant in A and

contravariant in C. The values of RT are graded A-modules. The

components of degree n yield a functor RnT called the right n-th derived

functor of T. Since the complex T(X, Y) was positive, we have RnT
for n < 0.

Let X be an acyclic right complex over A and Y an acyclic left complex
over C. We shall define a natural homomorphism

(2) H(T(X,Y))->RT(A,C).

Indeed, let X' be an injective resolution of A and Y' a projective resolution

of C as used in defining RT(A,C). By 1.1 and l.la, there exist maps
F: X~> X' and G: Y' -> Y over the identity maps of A and C. Then

T(F,G) induces a homomorphism (2). Since, by 1.1 and l.la, F and Care

unique up to a homotopy, it follows that (2) is independent of the choice

of F and G.

Quite similarly if X is an injective right complex over A, and Y is a

projective left complex over C, then we obtain a homomorphism

(3) RT(A)-*H(T(X\Y)).

PROPOSITION 3.1. If A is injective and C is projective, then RT(A,C)
coincides with T(A,C\ i.e. R"T(A.C) ----- Oforn ^> QandRT(A,C) =- T(A,C).

If the functor T is exact, then the same holds for all modules A and C.

PROOF. If A is injective then A (regarded as a complex) is its own

injective resolution. Similarly C if projective, is its own projective

resolution. Thus RT(A.C) - H(T(A,C)) =- T(A,C).

Assume now that T is exact and let X be an injective resolution of A
and Y a projective resolution of C. We consider the augmentations
F: A -> X and //: Y--> C as maps of complexes. Applying the homo-

morphisms a' of iv,6 we obtain the commutative diagram

4

T(A,C)

The vertical maps a' are isomorphisms by iv,7.2. Since A -> H(X) and

//(r)->C are also isomorphisms it follows that T(A,C)-+H(T(X,Y))
= RT(A,C) is an isomorphism.
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PROPOSITION 3.2. If T is defined for modules over hereditary rings,

then RnT Qifn exceeds the number of variables in T.

PROOF. Consider the case of 2 variables as above. Since A is a

module over a hereditary ring the injective resolution X of A may be

chosen with Xn for n > 1 . Similarly the projective resolution Y of

C may be chosen with Yn
= for n > 1. Thus in the complex T(X, Y)

we have Tn
(X, Y) = for n> 2. Thus RnT= for n > 2.

In defining RT we took injective resolutions for all covariant variables

and projective resolutions for all contravariant variables. If instead we

take projective resolutions for all the covariant variables and injective

resolutions for all contravariant variables we obtain a functor LT= ^L nT,

where L nT is the n-th left derived functor of T. We have LnT= for

n < 0; the indices have been lowered to avoid negative numbers.

As before if X is an acyclic left complex over A and Y is an acyclic right

complex over C, we have the homomorphism

(2a) LT(A,C)-H(T(X9 Y)).

If A" is a projective left complex over A and Y is an injective right complex
over C, then

(3a)

PROPOSITION 3.1a. If A is projective and C is injective then LT(A<C)
coincides with T(A,C), i.e. LnT(A) = Oforn>Q andLQT(A,C) =-= T(A,C).

If thefunctor T is exact then the same holdsfor all modules A and C.

PROPOSITION 3.2a. If T is defined for modules over hereditary rings

then LnT=Qifn exceeds the number of variables in T.

4. CONNECTING HOMOMORPHISMS

Consider a functor T(A,C) as in 3, and let

(1) Q^A'-*A-+A tl -*Q

be an exact sequence. By 2.2 there exists a sequence

(2) 0-> X'-+ X-*X"-*Q

which is an injective resolution of (1). Let further Y be a projective
resolution of C. Since for each degree the sequence (2) splits, it follows

that the sequence of complexes

-> T(X\ Y) -+ T(X9 Y) -> T(X\ Y) ->

is exact. There result connecting homomorphisms

Hn
(T(X\ r))-> Hn+l

(T(X', Y))
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which yield homomorphisms

(3) Rn
T(A\C) -> Rn

The independence of (3) from the choice of (2) follows readily from 2.3.

We similarly define the connecting homomorphisms

(4) Rn
T(A,C)

for each exact sequence

(5) 0->C'->

PROPOSITION 4. 1 . Let

Q-+A'-+A -^/T^O
II III

be commutative diagrams with exact rows. Then the following diagrams
are commutative.

RnT(A\C) -> R

R n
T(A\C)

\

diagram
R n

T(A\C') -+ Rn4l
T(A\C')

I I

w anticommutatire. The sequences

(6)
---- > R*1\A'.C) -> R"T(A,C)

(7)
- ~> R n

T(A,C") -> R n
T(A,C)

are

PROOF. The first four commutativity relations are trivial consequences
of the definitions and of 2.3. The exactness of the sequences follows from

the fact that these are homology sequences of suitable exact sequences of

complexes. It remains to verify the anticommutativity relation.
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Let then -* X'-> X-> X" -> be an injective resolution of (1) and

0-> y'-> y-> y"->0 a projective resolution of (5). There results a

commutative diagram000
-> T(X\ y") -> T(X, Y") -> T(X\ Y") ->

o -> r(jr, Y) -> r( A; y) -> r(r', y) -> o

-> T(X\ Y
1

)^ T(X, Y') -> T(X\ Y') ->

Y Y Y000
Thus iv,2.1 yields the anti-commutative diagram

Hn
T(X\Y') -> Hn+l

T(X',Y')

Y i
Hn+l

T(X" 9 Y") -> H n
+*T(X', Y")

as desired.

An immediate consequence of 4. 1 is

COROLLARY 4.2. /?r /s left exact. If R"+ lT-= then R nT is right

exact.

If we consider left derived functors, then (3) and (4) above are replaced

by

(3a)

(4a)

Propositions 4.1 and 4.2 remain valid with the obvious formal changes.

PROPOSITION 4.3. Let X be an injective right complex over A and let

0^* y'-^ y-> y"--> be an exact sequence of projective left complexes
over an exact sequence 0-> C'-^ C -> C /r

->0. Then the sequence

, Y") -> T(X, Y) -+ T(X, Y') -> is exact and the diagram

Rn
T(A,C) -> Rn + l

T(A 9C")

Y I
Hn

(T(X, y ')) -> //
n

j l
(T(X, Y"))

is commutative.

PROOF. Since 0-> y^-> yn -> yj->0 splits for each n, it follows

that 0->r(A; Y")-+T(X, Y)-T(X, y')->0 is exact. Let 0->Z'->Z-*Z"-0
be a projective resolution of --> C' -> C-> C" -> 0. Then by 2.3 there
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exist maps f", F, F" over the respective identity maps, which yield a

commutative diagram

V > Y > Y" -0

I
F' I F F*

r--- Z' -- - Z ---> Z" -- >

This implies the commutativity relation above.

Proposition 4.3 is only an example of similar propositions with other

variances and with left derived functors. We leave it as an exercise to the

reader to slate and prove some of these.

The functors RT \R"T] and LT {L,,T\ are examples of what we

shall call multiply connected sequences of functors. We consider a sequence
of functors |7"|, all of the same variables and the same variance. We
suppose that with respect to each variable we have given connecting

homomorphisms such that, (l
c

) with respect to each variable separately

{T"} is a connected sequence of functors, (2' ) \vith the notation of 4.1 the

diagrams

Tn
(A\C) *Tn

^(A'.C) T''(A.C) -Tnt}
(A.C")

are commutative. We then say that
\
T n

\
w ith the given connecting homo-

morphisms constitute a multiply connected sequence of functors. We do

not postulate any anticommutativity relation between the connecting

homomorphisms for the different variables. If. with respect to each

variable, the connecting homomorphisms yield exact sequences like (6)

and (7), then we say that the multiply connected sequence {T
11

}
is exact.

Let \T"}< \U"} be two multiply connected sequences of functors. A
homomorphism <1>: [P'j

>
It'"} is a sequence of natural transformations

O": Tn -** U" which properly commute with the connecting homo-

morphisms.
An example of such a homomorphism can be obtained by considering

a natural transformation 7 : T ^ U of functors. If A' and Y are

appropriate resolutions of the variables A and C of T and 17, then <p

induces homomorphisms T(X\Y) * U(X.Y) \\hich in turn induce homo-

morphisms of the homology modules R"T(A.C)-* R n
U(A<C). These

clearly commute with the connecting homomorphisms. The same applies

to the left derived functors.

PROPOSITION 4.4. (Isomorphism criterion.} Let <I>: {T
n
}-*{U

n
}
be

a homomorphism of multiply connected exact sequences offunctors. We
assume that <1>: r--> t/ is a natural equivalence.
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If the homomorphism

is an isomorphism whenever n > and all the covariant variables are

injective and all the contravariant variables are projective, then (8) is an

isomorphism for n > andfor any variables.

Similarly if (8) is an isomorphism for n < whenever all the covariant

variables are projective and all the contravariant variables are injective,

then (8) 15 an isomorphism for n < andfor any variables.

PROOF. We shall only consider the case n > 0. Let p be the number

of variables in Tn and Un
. We first consider the case p I. Assume

that the functors are contravariant and that we already have shown that

<t>
1

: T*->U l

yields isomorphisms for O<^/<AZ. Consider an exact

sequence -> M -> P -* A -> where P is projective. We obtain a

commutative diagram

Tn
~\P) * T n~ l

(M) > T n
(A)

- T"(P) > T n
(M)

U n
-\P) > U n~\M) * U n

(A)
> U n

(P)
> U"(M)

with exact rows. We know that g^, qp2 , g?4 are isomorphisms. This

implies by i, 1.1 (the "5 lemma") that <p3 has kernel zero. Since this holds

for all A it follows that <p5 also has kernel zero. Thus by another applica-

tion of the "5 lemma" <p3 is an isomorphism.
The case when the variable A is covariant is treated similarly using an

exact sequence Q->A-+Q-*N-+Q with Q injective.

Suppose now that the proposition is already established if the number

of variables is p 1. Suppose now that T n and U n are functors of p
variables and that the last variable is contravariant. We replace the last

variable A 9 by a fixed projective module and treat T n and U n as functors of

the/? 1 remaining variables. It follows from the inductive hypothesis
that (8) is an isomorphism in this case. We now fix the variables

A!, . . ., A v_i and regard Tn and U n as functors of A v alone. Since (8)

is an isomorphism whenever A p is projective, the result follows from the

case/?= 1 already treated.

PROPOSITION 4.5. Let {T
n
} be an exact multiply connected sequence of

functors. If the exact sequence Q> A' -> A-* A" ->Q splits, then the

connecting homomorphisms relative to this sequence are zero.

PROOF. Assume that A is a covariant variable of T, then (omitting all

other variables) we know that T"(A) -> Tn
(A") is an epimorphism and

Tn
+\A') -> Tn+l

(A) is a monomorphism. Consequently T
n
(A*y>T

n + l

(A')

is zero.
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5. THE FUNCTORS RT AND L T

Let X be an injective resolution of A, and Y a projective resolution

of C. The augmentation maps A -> X, Y-> C induce a map

where A, C and T(A<C) are regarded as complexes consisting of elements

of degree only. There results a natural transformation

r: T-> RT.

PROPOSITION 5.1. The map r is a natural equivalence ifand only ifTis

left exact.

PROOF. By 4.2, RT is left exact, thus if r is an equivalence, then T
also is left exact. Suppose now that Tis left exact. By n,4.3a the sequence

~> T(A,C) -* 7U, y ) -> T(X\ K )
-- 77 A-, Y,)

is exact. However the kernel of the last homomorphism is precisely

//<T( A', Y)
" RT(A<C). Thus r is an isomorphism.

PROPOSITION 5.2. Let T be a left exact Junctor. Then T is exact if

and only if R
1 T -

0.

PROOF. If T is exact, then R 1 T- by 3.1. If R 1T
' = then, by

4.2, RPT is exact so that T is exact by 5.1.

THFOREM 5.3. The mapping R"TQ : R nT- R"RT induced by
r: T -> R(}T is an equivalence for all n

"

0.

PR(X)i. We first consider the case n- 0. We observe that jRT

coincides with the mapping T: /?T - R"(RT). Since K*T is left exact,

it follows from 5.1 that this map is an equivalence.

Next we observe (using 3.1) that both R"RT and R"T yield zero if

n ^-- and all covariant variables are replaced by injective modules and all

contravanant variables by projective modules. Since R"r is a map of

multiply connected sequences of functors, the conclusion follows from the

isomorphism criterion 4.4.

If A' is a projective resolution of A and Y is an injective resolution of C
then the augmentations X -^ A and C -> Y yield a map T( X, Y) -> T(A,C)
thus defining a natural map

a : L 7 >7.

PROPOSITION 5. la. The map a is an equivalence ifand only ifTis right

exact.

PROPOSITION 5.2a. Let T be a right exact functor. Then T is exact if

and only \f L^T --- 0.

THEOREM 5.3a. The mapping Lna : L nL T-+L nT induced by
-^ T is an equivalence.
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Theorem 5.3 shows that the right derived functors are of real interest

only if T is left exact. Indeed RnT may always be replaced by R nT' with

T' = RT which is left exact. Similarly the left derived functors are

mainly interesting for functors which are right exact.

REMARK. If we regard T as a connected sequence of functors with the

functor T in degree zero and the zero functor in all other degrees, then

T and CTO may be regarded as homomorphisms of connected sequences of

functors

6. COMPARISON WITH SATELLITES

In this section we limit ourselves to functors of one variable.

THEOREM 6.1. The natural maps

<TO : Io7*->r, r: T-+ RT

admit unique extensions to maps

an : L nT->Sn T< T": S"T-> R"T

of connected sequences offunctors. If T is right exact, then a n is an iso-

morphism', ifTis left exact, then r n
is an isomorphism.

PROOF. The existence and uniqueness of a^ and r n follow from

in,5.2. If T is right exact, then a is an isomorphism by 5.1, and 4.4

implies the same for a n . Similarly if T is left exact.

PROPOSITION 6.2, If the ring A is hereditary, then a n and rn are iso-

morphismsfor n r> 1.

PROOF. We first prove that L nT =-. --- SnT for n > 2, and similarly

SnT^ 0~ R nT for n I> 2. Assume for example that T is covariant;

then each module A has a projective resolution of the form

0-> Xl
-> XQ ->/*-> 0;

it follows that LnT(A) = for n > 2. Moreover, we have

SnT(A) = Ker (S

and Sn-iTXA^) for n ^> 2, since Xl is projective. The proof is similar

for the other cases. It remains now to be proved that

<V. LiT-^S^ and r1
: S^-^ R*T

are isomorphisms. We shall give the proof for a
l9 assuming T covariant
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Consider the commutative diagram

ft

Ol

"

LJ -^
S,T

where ft and y are induced by cr : LQT-+ 7\ and a is the homomorphism
a

l applied to the functor LQT. Since, by 4.2, L()
7is right exact, it follows

from 6.1 that a is an isomorphism. By 5.3, ft is an isomorphism. In

order to prove that a^ is an isomorphism, it suffices to show that y is an

isomorphism. Consider the commutative diagram

S^nA) * L T( X,)
- - L T(X )

\Y I

u ID

o >
SjTx/o

> r(X) r<V )

Since A', and >V are projective, w and r are isomorphisms by 3.1. The

conclusion follows.

PROPOSITION 6.3. For any functor T and any n,

RS } T=-- 0, L^T^- 0.

PROOF. Assume T covariant, and let X be an injective resolution of A.

Then R"S 1

T(A) =.-. H n
(S

}

T(X)). Since X" is injective, we have S lT(X
n
)

for any w; thus R nS lT = 0. The other cases are proved similarly.

7. COMPUTATIONAL DEVICES

We shall give here a number of propositions which will be useful in

computing the derived functors or the connecting" homomorphisms.
All the propositions here being auxiliary in nature, we shall limit ourselves

to stating only the cases needed in the sequel. Restatements for other

cases are left to the reader.

Let A' be a projective resolution of A. Given />0 we denote

A (t) ~ Im (Xt
-> X

t
_ j). We then obtain exact sequences

(1) -> A" -*
AV_! -> ----> XQ

-+ A -> 0,

(2)
---->Xn

-+ ----> X
t

- A" -> 0.

We may regard the sequence (2) as a projective resolution X (t} of A (t} with

augmentation F(O : X
t
-> y4

(1) induced by the map Xl
-> X

t
_v Of course,

the sequence (2) needs to be renumbered, before it may be regarded as a

projective resolution of A (l\ There is a natural mapping

(3) X->X"
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which maps the module Xn of X identically into the module Xn of X (l) for

n ^> /, and maps Xn into zero for n < i. The map (3) thus lowers the

degree by / and commutes with the differentiation.

PROPOSITION 7.1. Let T be a contrarariant functor in one variable.

With the notations above the sequence (1) induces an iterated connecting

homomorphism
6: R n

T(A (l))-> R n

rthile the map (3) induces a homomorphism

y\ R"T(A (t)
)
-> R n

These maps are related by the rule

A / m -
,d = (-l)V, t = m H

PROOF. We first consider the case / 1 . We construct a projective

resolution

o->;r (1) -> Y^> A'->O

of the exact sequence

given by the following diagram:

Xn+l

^--^,

I" I-_ x >A

The horizontal maps are

*n+l -* (Xn+i,Q), (Xn+l,Xn)-*Xn , M^O, XB+IC^!, Xn Xn .

The vertical maps in the middle column (i.e. in the complex Y) are

+1An+l) ^
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If we apply the functor T to this diagram (reversing all arrows) and com-

pute the connecting homomorphism H"(T(X (l)
))-> H n+l

(T(X)) we find

that the result differs from the homomorphism induced by X -+ X (l)
by the

sign ( l)
w+1

. This is the desired result for / = 1.

The general case now follows easily by induction. The connecting

homomorphism o and the map y both admit factorizations

and we already know that

<Y --(-ivy, v <-i)
wv. r' = /i(/- IH-

(

-^^.
This implies the final result.

PROPOSITION 7.2. Let

(4) 0->AV> -----XQ ->A->0 n>0
be an exact sequence with Xn _

l ..... XQ projectire. If T is a covariant

functor of one variable, then the iterated connecting homomorphism yields

isomorphisms

L^ J(A) ^ LJ(Xn ) forp>0
and the exact sequence

*L nT(A)LtT(XJ-*LtT(Xn J for p - 0.

For T contrai ariant, we have the isomorphisms

RpT(X ri )
^ R*"T(A) forp >

and the exact sequence

*
for p = 0.

PROOF. For n 1, the conclusions follow directly from the exact

sequences for the derived functors. For n ^> 1 we break the sequence (4) into

exact sequences
->Xn

- +
X,, .i~*X^ ,

*0 and 0->A'W'_ ,
-> -*X -*A-+Q.

Applying 7.2 to each of these sequences separately yields the desired result.

PROPOSITION 7.3. Let

o-> xn
-+ ^ A'O ->/*-> o, o-vc-^ r-> ^ y n ->o

be exact sequences with Xn _ l ..... X$ projective and Y n J
, . . . , y

injective. We denote b\ X and Y the acyclic complexes over A and C given

by these exact sequences. IfT(A,C) is a left exactJunctor contravariant in

A and covariant in C, then the natural homomorphism (v,3,(2))

H*(T(X,Y)) -> R k

T(A,C)

is an isomorphism for k^n.
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PROOF. Let X be a projective resolution of A such that Xk
= Xk for

k < n. Similarly let Y be an injective resolution of C such that Y k = Yk

for k < n. There result exact sequences

o-> x'->x-> ;r->o, o-> y->F-> r->o

where X' and 7' are acyclic complexes and X'k = y' fc for A: < w.

Since T
7

is left exact, n,4.3a yields an exact sequence

~> T(X, Y)^ T(X,Y) -> T( X\Y) + T(X, Y').

If we denote by N the cokernel of T(X,Y)-^ T(X,Y) we obtain exact

sequences

(5) Q-+T(X,Y)->T(X<Y)-N->Q

(6) -> N~> T(X\Y) + T(X, Y').

The desired isomorphisms Hk
T(X, Y) ^ H k

T(X,Y) for k <^ n will follow

from the homology sequence of (5), if we prove that H k
(N) ----- for A' < n.

For k < n this follows from the fact that is the only homogeneous
element of N of degree < n. To show that H"(N) -

it suffices to show

that the differentiation N n -> A^"+1 is a monomorphism. In view of (6) it

suffices to prove the same fact about the complex Z T(X',Y) -}- T(X, Y').

The component of degree n in Z is T(X^Y) + T(X\Y' n
). Since

X^-* X'n ->0 and 0-^ /'"-> Y' tnl are exact and T is left exact it

follows that

are exact. This proves that Z" - > Z" +1
is a monomorphism.

8. PARTIAL DERIVED FUNCTORS

Let T be a functor of p variables, some of which covanant, some

contravariant. Let s be a subset of {!,. .

,/>); the variables whose

indices are in 5- will be called active, the others will be called passive. If

we fix all the passive variables, we obtain a functor Tx for which we may
consider the derived functors /?'TS ; more explicitly these derived functors

are the homology modules of the complex obtained from T by taking

injective resolutions of the covariant active variables, projective resolu-

tions of the contravariant active variables, and leaving the passive variables

unresolved. We shall denote these partial derived functors by R
n

s T, and

will regard them as functors of all the variables, both active and passive.

The homomorphism (2) of 3 yields natural transformations

(1) Rn
J->R*T.
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These homomorphisms commute with the connecting homomorphisms
with respect to each of the active variables.

THEOREM 8.1. Given any functor T, the following conditions are

equivalent:

(a) The mapping (1) is an isomorphism for any n^>Q.
(b) If all the covariant active variables are replaced by injectire modules

and all the contravariant active variables are replaced by projective modules,

then T becomes an exact functor of the passive variables.

PROOF, (a) -> (b). If we replace the active variables as stated in (b),

then, by 3.1, R?T--= for n > and T^ R"J\ thus (a) implies that

Rn
T~- for n > and T ^ RT, hence T becomes an exact functor of the

passive variables.

(b)-->(a). We shall prove first that R"T-* RT is an isomorphism.
Denote simply by one letter A all active variables, by one letter C all

passive variables, by one letter X a set of resolutions of all active variables,

by one letter Y a set of resolutions of all passive variables (injective

resolutions for covariant variables, projective resolutions for contravariant

variables). Then T(X,Y) may be regarded as a double complex over

7"(/4,C), with two differentiation operators d^ d2 corresponding respectively

to the set X and to the set Y. Consider the commutative diagram

, cfo-o

o - *r(.v,o- -*

---- 7%V,C) ---*T l

*(X,Y)

By (b), the rows are exact. This implies that *!) induces an isomorphism

O Ker<"
-

R?T(A.C).

It remains now to be proved that R"T R n T is an isomorphism for

n
"

0. We regard \R"T} and \R"T\ as multiply connected sequences of

functors in the active variables. If/? - and all covariant (contravariant)

active variables arc injective (projective), then both R"T and R"T yield

zero. It therefore follows from the isomorphism criterion 4.4 that (1) is

an isomorphism.
For another proof of the part (b) -> (a), see Exer. 6.

Now let t be another subset of [1,
. .

,/>}, containing s. The homo-

morphism (1) admits a factorization

(2) R",T- fl|T->/?'T

If (1) is an isomorphism, then it follows from 8.1 that the same is true for

R*T~> RfTznd R?T-> R"T.
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The connecting homomorphisms of R"T with respect to a passive

variable are in general not defined. However, if the conditions of 8.1 are

satisfied, then (1) is an isomorphism, and we can define these connecting

homomorphisms using those of Rn
T. We shall now show how under these

conditions these connecting homomorphisms can be expressed directly.

In view of the factorization (2), it suffices to consider the case when there

is only one passive variable. Suppose this variable A is covariant, and let

A' denote all the remaining (active) covariant variables, and C denote all

the (active) contravariant variables. Let -> A l
-> A ^ /* 2

> be an

exact sequence; let further X' be an injective resolution of A\ and Y a

projective resolution of C. It follows from the condition of 8.1 that the

sequence

-> T(AX', Y) -> T(A,X', Y) -> T(A^X\ Y) ->

is exact, and therefore yields a connecting homomorphism

It remains to show that this connecting homomorphism is the one obtained

from the connecting homomorphism of R 11T using the isomorphism (1).

To this end we choose an injective resolution -> Xl
-> X ^ X2 of the

sequence -* A^
- > A -> A z

--> (see 2.2). There results a commutative

diagram with exact rows

-> T(A 19X\ Y) -> T(A,X\ Y) -> T(A.,X\ Y) ->

I I Jr

0-> T(X^X\ Y) -> T(X,X',Y)-> T(X^X\ Y)-

Passing to homology, we obtain the commutative diagram

which proves our assertion.

In view of 8.1 we introduce the following definition. A functor T will

be called right balanced if (1) when any one of the covariant variables of

Tis replaced by an injective module, T becomes an exact functor in the

remaining variables; (2) when any one of the contravariant variables in T
is replaced by a projective module, T becomes an exact functor of the

remaining variables.

It follows from 8.1 that for a right balanced functor, the derived functors

RnT may be identified with the partial derived functors Rn
K T taken with

respect to any non empty set s of active variables.
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A similar discussion applies to left derived functors. The mapping (1)

is replaced by

(la) L nT(A,C)->LiT(A 9C)

in 8.1 and in the definition of a left balanced functor, we interchange the

words "projective" and "injective" throughout.
It will be shown in the next chapter that A C is left balanced and

Horn (A,C) is right balanced. We know no balanced functors that are

not obtained in a trivial way from these two. In particular, we have no

example of a balanced functor of three variables.

9. SUMS, PRODUCTS, LIMITS

Let

'* T*

(1) A^A+A*
V 0/*

(2) C
lt
CC

fl

be direct families as defined in i,l. Then as we have already seen in the

proof of iij.l, we obtain a direct family

rOa.f/j) T(PX.JX)

(3) T(AC
ft
)

> T(A<C)
*

T(A^C ft
).

We recall that as usual 7* is assumed covariant in A and contravariant in C.

We introduce the following four types of functors:

Type Lil if (1) is a direct sum and (2) is a direct product, then (3) is a

direct sum.

Type R^L- if (1) is a direct product and (2) is a direct sum, then (3) is a

direct sum.

Type LI 1
- if (1) is a direct sum and (2) is a direct product, then (3) is a

direct product.

Type R\\ if (1) is a direct product and (2) is a direct sum, then (3) is a

direct product.
Similar definitions can be made for functors with any number of

variables.

PROPOSITION 9.1. The functor HomA (A*C) is of type R\\.

PROOF. We assume that (1) is a direct sum and (2) is a direct product.
We must show that the direct family

IIoin(f>a..M) Horn
(13,9,?)

(4) Horn (A^Cfi) Horn (AC) Horn (A a,Cft
)

is a direct product. Let<pa/}
Horn (/fa,C^)beafamilyofhomomorphisms.
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Let a A. Since (1) is a direct sum we have a 2/atfa , aa ^a anc* only a

finite number of aa's is ^ 0. Since (2) is a direct product, there is for

each a a single ca e C with ^ca 9^0*. Setting 9^ ra yields a

homomorphism <p: >J > C with ^9n/
ot
= 9^. The uniqueness of <p

is clear from the construction. This proves that (4) is a direct product

representation.

PROPOSITION 9.2. Thefunctor A A CisoftypeL.
PROOF. Let (1) and (2) be direct sum representations. Since each

element ofA C is a sum of a finite number of elements of the form a (?) c

and since a and c are finite sums a ^V aa' c ~ ZyX/f ^ follows that each

element ofA C is a finite sum of elements of the form (/a 0//;
)(flx ^) c

f}
).

This proves that

y* a C
ft

-> A C -+ A, C
ft

is a direct sum representation of A C.

Next we consider the functors Z(A), Z'(A) and H(A\ where A is a

module with differentiation or a complex. Let

'a P*

(5) 4, X ^a

be a direct family. Then
Z( a) Z(pJ

(6) Z(^ a)
--- Z(A)

a

(7) rM a)
--- Z'(A)

(8) H(AJ
-- H(A)

also are direct families. It is trivial to verify that if (5) is a direct sum or

direct product representation, then the same is true for (6)-(8). We thus

obtain

PROPOSITION 9.3. The functors Z,Z' and H are of type LZ and R\\, in

other words the functors Z,Z
;

and H commute with direct sums and direct

products.

THEOREM 9.4. If the functor T is of type L2 or Lll then the same is

true for the left derived functors L n T. IfTis of type #S or Rll then the

same is true for the right derivedfunctors R
n
T.

PROOF. Assume that (1) is a direct sum representation. Let X^ be a

projective resolution of A^ and let X be the direct sum of the complexes X^.

Clearly we may regard A" as a left complex over A. By i,2. 1 , X is projective,

and, by 9. 3, A" is acyclic. Thus X is a projective resolution of A. Similarly

if (2) is a direct product representation and Y^ are injective resolutions of

C-3, then the direct product Y of the complexes Y
ft

is an injective resolution

ofC
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Suppose now that T is of type LS (or type LFI). Then

, Y)
-

is a direct sum (or direct product) representation. By 9.3, the same applies

to

H(T(.YV y,))
-> H(T(X, Y))

i.e. to

^C) -> LT(A 9C) -^

The second half of 9.4 is proved similarly.

RIMARK. The analogue of 9.4 holds also for satellites of functors of

one variable. If T is of type LX orLII then the same holds for S n T,n > 0.

If T is of type flX or RU then the same holds for ST, /; - 0.

Part of the results established above carries over with direct sums

replaced by direct limits and direct products replaced by inverse limits.

Let A - Lim A^ be a direct limit of modules A^ and let C -- Lim C^ be an

inverse limit of modules C,. Then T(A^C it
) forms a direct system of

modules and we have a natural homomorphism

Lim T(A^Cfi
) -> T(A.C).

If this homomorphism always is an isomorphism \\e say that the functor

T is of type LX*. Similarly if A Lim A^ C - Lim C
ft
then

forms an inverse system of modules and \ve have

If this map always is an isomorphism, we say that T is of type Rll*.

PROPOSITION 9. 1 *. The functor HomA M,C) is of type RU *.

Since this proposition is not used in the sequel, the proof is left as an

exercise to the reader.

PROPOSITION 9.2*. The functor A A C is of type LS*.

PROOF. Let A be the direct limit of the modules A^ with the maps
?Va : ^a -* ^a' f r a ^ a '- Similarly let C Lim C, ?

with ^^y. C
(1->C^

for (f < ft' . The modules A^ (^ C., with the maps 9v x C? VV"^
^orm a

direct system of modules indexed by pairs (a,/?) with direct limit D. The

maps <pa ipfl
: A^ <^ C^ -> A (\> C induce a map fi: D -> A & C. We

must show that /* is an isomorphism (onto). To this end we shall define a

map f : A C-> D and show that
/>*

and f// are identity maps. Let
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eC. There exist then indices a and ft such thatx=-= ^aOO^V ^/*(
C
0)

for some xa ? A^ yft C^. Let #a i|3
: ^a C^ -> D be the natural pro-

jection. Then the element u(x,y) #ai/j(xa yft
) e D is independent of

choice of a,/3,xa,^. Further w(jc,j) is bilinear and satisfies u(xhy) w(x,Ay)
for A e A. Thus there exists a unique homomorphism f : A <S> C- D
with f(x y)

=
u(x,y). The verification that /*? and /* are identity

maps is trivial.

PROPOSITION 9.3*. Thefunctors Z,Z' and H are of type LS*, I.e. they
commute with direct limits.

PROOF. Let A be the direct limit of modules with differentiation A^
with maps <pa x

: ^a
~>

^a'* Then the modules H(A^ with maps //(TVJ
form a direct system of modules with limit D. The homomorphisms

yield a map /^: D > //(/4) which we shall show is an isomorphism.
Let a H(A) and let x e Z(/0 be an element of the coset a. There is

then an index a such that x 9yta for some .va /fa . Since Q=daJ<f'gt
x

gt

9?a^a there is an index a' > a such that 9va^*a = - Setting^ 7 a'^va

we have dx^ = so that ;ca> determines an element of H(A^) which in

turn determines an element f(a) of D- It is easy to see that f(a) is inde-

pendent of the choice of ;c,a,a' etc. and yields a map $: H(A) - D which

is the inverse of
//.

The proofs for the functors Z and Z' are similar but

simpler.

REMARK. The functor Z is also of type /?!!*, however the functors

Z' and H are not of type fill*, i.e. do not commute with inverse limits.

THEOREM 9.4*. IJTis a covariant functor (in any number of variables)

of type L2*, then the same is true of the left derivedfunctors L n T.

The proof is an immediate consequence of

LEMMA 9.5*. IfA = Lim A^ then there exist projective resolutions X^

ofAQ, forming a direct system such that X Lim X^ is a projectire resolution

of A.
~^

PROOF. Let XQt0t
be the free module FA generated by the elements of

Aa, and let JT = FA . The maps <7va : ^a -> A
*'
induce maps X(lOL

-> X^t(t
.

and X may be identified with the limit Lim XQ a . Let Ra be the kernel of

the natural map X^-* Aa . Then R^ forms a direct system of modules

with R ~ Ker (A'o -> A) as limit. We now repeat the argument with /4a

replaced by Ra . The complexes A^ are thus constructed by iteration.

REMARK. The reason why we restricted ourselves to covariant

functors in 9.4* is that we have no analogue of 9.5* for injective resolutions

and inverse limits.
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10. THE SEQUENCE OF A MAP

Let/: T-> U be a natural transformation of functors. As usual, we
shall treat the case when T and U are functors of two variables covariant

in the first and contravariant in the second. We denote by ? the map

obtained from the commutative diagram

Lor->T

and introduce the functors

LJ- Ker /, JPf- Coker /.

The sequence of functors

(1) ____ L n T< ____ L^ LJ, fl /, R*V..... R
n U____

will be called the derh ed sequence of the map f.

Before we define the connecting homomorphisms in the sequence (1) we
establish the following

LhMMA 10.1. Consider a commutative diagram

fi,',
^ ^ ^ ^ v B[ * B

l
^ B\ v . . .

with exact rows. Denote

AQ ^ Ker <7\ /? - Coker 9^.

similarly with
'

and ". Then with the connecting homomorphism
-

B/, defined in m,3 //;c
j

sequence

-* A'
}
-* Ai-^Al -* AQ -* A Q ^o ~" ^o -^ ^o -> Bo -> ^i ~> ^i

Indeed, the exactness of A(}

-* A Q
-* AQ-* B$ -^ ^ -> fij is asserted

by in,3.3. The remaining parts of the proof are trivial.

Now consider an exact sequence
* A' -+ A ~> A" -> Q. We obtain a

commutative diagram

-> LQT(A',C) -> Lor(/J,C) -> L 7(/I%C) ->
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with exact rows. Applying 1 0. 1 to the above diagram we obtain connecting

homomorphisms for the sequence (1) (with respect to the first variable).

Moreover these connecting homomorphisms yield an exact sequence for

each exact sequence 0-> A' -> A -> A"-* 0. The same applies to the

second variable. We thus obtain

PROPOSITION 10.2. The derived sequence (1) of a map f\ T-> U is a

multiply connected exact sequence offunctors.

Naming (1) a connected sequence of functors is not quite precise since

the functors are not properly indexed. However, it is clear that they can

be so re-indexed. Any such re-indexing would destroy the notational

symmetry between left and right derived functors, and because of this we

prefer to leave (1) with its indices as they are.

Let

T-- U'
&

be a commutative diagram of natural transformations of functors. Then

the pair (9>,y>) defines a map of the derived sequence of/into that of g.

PROPOSITION 10.3. Suppose that y: T(A,C) -> T'(A.C) is an iso-

morphism whenever A is projectile and C is infective, and that

y: /(/*,C)-> U'(A,C) is an isomorphism whenever A is infective and C is

projective. Then the pair (<p,y>) induces an isomorphism of the derived

sequence off onto that ofg.
PROOF. By 4.4, the hypotheses imply that 99 and y induce isomorphisms

This implies the result.

In the special case of the identity map /: T-> T we introduce the

notation

= Ker (LQT -> R*T), RQT= Coker (L 7 -> RQ
T).

The derived sequence is then

(2) . . . ,Ln T, . . . , L^LJT, RT, R 1
T, . . . , Rn

T, . . .

and is called the derived sequence of the functor T.

We now turn to the problem of computing the derived sequence of a

map/: 7*-> U using resolutions of the variables.

Let X be a left complex over a module A, Y a right complex over a

module C and let 9?: A -> C be a map. We denote by (X,<p, Y) the

complex
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where X^
" A -* C * y is obtained by composing <p with the augmen-

tation maps. Strictly speaking, (X,y,Y) is a complex only after the

modules are renumbered.

PROPOSITION 10.4. Let -> X' -> X-+ X" -> /?e aw exacf sequence

of left complexes over the exact sequence > /4' > >4 > A" -> 0, /e/

0~> y' > y~> y"-^ fe^ an exact sequence of right complexes over the

exact sequence -> C' -> C -> C" --> aw^/ /^/

't^t *k^
0-C' *C~*C"

Z?^ a commutative diagram. Then the homology sequence of the exact

sequence

0^ f V' xv/ V'\ ^/"V^* V\ f V" r*-
n V"\ ^ A>

( A ,9 , / )
>

(A^,7', i )
^

( JT ,<^ ,/ )
>

coincides with the exact sequence obtainedfrom the diagram

')-
- HQ(X) -> // (A"')->

!I ! !

'

i

10.1.

PROOF. Clearly Hn(X)= Hn(X,r,Y) and H"(Y)^ H"(X,<f,Y) for

n > 0. Furthermore

, Y) -- Ker (^ -> X)/ Im (A'j -> .V )

--- Ker (V 1m (^ -> X )
-> 7)

--- Ker(Coker(A'i-> A'o)
-* Ker(y->

and similarly W(A'.7\y) coincides with Coker (H (X) -> //(y)). It

remains to be verified that the connecting homomorphisms agree. The

only one for which this fact is not evident is the connecting homomorphism

(3) #(*>", Y") -* //"U'V, y').

By definition (see iv,l) this homomorphism is defined from the diagram

Z&X',V ', Y')-+Z&XtV. Y)^Z&X".<r', Y") ->

I I i

-> Z(X',<p', Y')
-
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This diagram is identical with

// (;T) ->

o -> //( r ) -> //( r ) -> //( r')

which proves that (3) coincides with the connecting homomorphism
obtained by 10.1.

We now return to the map /: T-> U. Let X, X be respectively

projective and injective resolutions of a module A, and X, Y similar resolu-

tions of a module C. It follows from 10.4 that the complex

(4) (T(X,Y),f,U(X,Y))

has as homology groups the values of the derived sequence of/ for the pair

(A,C). It further follows from 10.4 that the connecting homomorphisms
also may be computed by this method. If the functor T is left balanced

then in T(X,Y) in (4) we may replace X by A or F by C. Similarly if U
is right balanced, then in U(X, Y) in (4) we may replace X by A or Y by C.

EXERCISES

1. Let

-**-* *w-i -> -> *i -> *o - - <4 -
be a projective resolution of a module /I, and let Z,, denote the image of

A"n+1 -> A^, as in the proof of 1.2. If T is a covariant functor of one

variable, prove that

SnT(A) --- Ker (T(Z n_j -> 7( JT^)), /* ^ 1

L n T(A) - Ker (7UJ - TX^-iM/Im (F(^n+1) - T(X n )).

Then 7( A'J -> r(Zw_a) induces a map

Prove that this map is a n , as defined in 6.1. Prove again that a,, is an

isomorphism, whenever T is right exact, or whenever A is hereditary.

Examine the other similar cases.

2. Let T be a covariant, half exact functor of one variable (n,4).

Given an exact sequence 0-^y4->(2->A
r >0 with Q injective, establish

an isomorphism

S^TX/O ^ Kcr (T(A)^ T(Q.
Then prove that

Ker (T(A) > T(Q)) =- Ker(T(A)-^ RQ
T(A))<

and deduce an exact sequence of natural transformations of functors

If T is contravariant and half exact, the same sequence is obtained.
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3. Apply Exer. m,5 to the exact sequence of Exer. 2. There results an

exact sequence
-> S1ST^ T -

*-* S"T-> /

valid for any half exact functor T of one variable.

Establish the dual exact sequence.
4. If T is a right exact functor of one variable, then

R nT*> S w * 2
Ljr forw>0,

and there is an exact sequence

o S IL -> r-> /PT- sr-* o

[Hint: observe that LJ* ^ S^T, and SnT = for w > 0.]

Give the dual statements.

5. If T is a half exact functor of one variable, then for n >
S nS

l
S lT^ Sn

T.

[Hint: replace T by S 1T in the exact sequence of Exer. 3.]

6. Give an alternative proof of the part (b) ^> (a) of theorem 8.1, by

applying Exer. iv,7 to the map T(X*C) -> T(\\ Y).

7. Let T(A,C) be a right balanced functor of two variables, contra-

variant in A, covanant in C. Replacing A by a projective resolution X,

and C by any acyclic right complex >' over C prove that

R nT(A.C)* H"(T(X.Y)).

(Use Exer. iv,7 as in Exer. 6.) Examine the case when X is any acyclic

left complex over A, and Y as an injcctive resolution of C. Examine the

case of a left balanced functor: example: A ^ C.

8. Consider an exact sequence

(1) 0-A-,,-> ---- * JT ~v.4-X)

which may be regarded as an acyclic complex X over A. For each

contravariant functor T of one variable, there results a homomorphism

T(Xn ) ->//"7U)

1' 1

RQ
T(X,,)-d

* RT(A)

where 6 is the iterated connecting homomorphism corresponding to the

sequence ( 1 ). Show that this diagram is commutative or anticommutative

depending on whether n(n + l)/2 is even or odd. [Hint: use 7.1.]

9. Let T be a half exact covariant functor of type LS* (i.e. commuting
with direct limits). If T(A/7) for every (left) ideal / of A, then T= 0.



CHAPTER VI

Derived Functors of and Horn

Introduction, The methods of Ch. v are applied to the functors

A C and Horn (/4,C). The left derived functors of A C are denoted

by Torn (^,C); the right derived functors of Hom(/4,C) are written as

Extn (A,C). These are also the satellite functors with respect to each of

the variables A or C. The particular notation chosen will be justified in

vn,4 and xw,l.

The notion of the projective dimension of a A-module A is introduced

in 2 and will be of considerable use later. It is analogous with the

topological dimension of a space defined by homological methods. There

is also the notion of injective dimension for a module and the notion of a

global dimension for a ring. The semi-simple rings are precisely those of

global dimension zero; the hereditary rings are precisely those of global
dimension f 1 .

In 3 we return to a more detailed study of the Runneth relations of

iv,8. In 4 we return to the questions concerning the "change of rings"
initiated in 11,6. These results will be applied to homology theory of

groups (x,7) and of Lie algebras (xm,4).

1. THE FUNCTORS Tor AND Ext

In this chapter we shall be concerned exclusively with the functors

A A C HomA 04,C) and their derived functors. The symbol A will be

omitted whenever there is no danger of confusion.

We have already seen (n,4.4) that Horn (A,C) is left exact.

PROPOSITION 1.1 The functor Horn 04,C) is right balanced.

This is an immediate consequence of u,4.6.

We have already seen (n,4.5) that A C is right exact.

PROPOSITION LI a. The functor A C is left balanced.

PROOF. Let F be a free module. Then F is the direct sum of modules

Fn each of which is isomorphic wkh the ring A. Consequently the functor

T(C) = F (g) C is the direct sum of the functors 7a(C) = Fa C. Since

each of the functors ra is exact it follows that T is exact. Suppose now
that A is a direct summand of F. Then the functor T(C) =- F <g> C is the

direct sum of the functor T'(C) = A C and some other functor T*.

Since T is exact, it follows that T' is exact. A similar argument applies to

the other variable.

706
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We now apply the results of Ch. v to the balanced functors

HomA (A 9C) and A A C. The right derived functors of HomA (A,C)
are denoted by ExtnA (A,C) (or Ext" (A,C) with A omitted); in particular
Ext (A,C) HomA (A,C). If A' is a projective resolution of A and Y is

an injective resolution of C then E\tA (A,C)= 2 Extn
A C4,C) can be

n

computed as the homology module of any one of the complexes
HomA (X, Y), HomA (X,C) or HomA (A, Y). In view of v,6.1, we can also

compute ExtA as the /Mh satellite Sn HomA with respect to either of the

two variables.

The left derived functors of A A C are denoted by Tor* 04,C)
(or Tor,, (AO with A omitted); in particular, TorJM,C) A A C.

If X and Y are projective resolutions of A and C then TorA (A,C)

^ TorJ (A,C) can be computed as the homology module of either of the
ni()

complexes X v
7, X v

C or /* A K. We can also compute Tor as

the //-th satellite S n of the functor
v
with respect to any variable.

We shall not study the left derived functors of Horn or the right derived

functors of (cf. Exer. vn, 2-6).

PROPOSITION 1.2. The functors Ext" are of type R II.

This is an immediate consequence of v,9.I and v,9.4.

PROPOSITION 1 .2a. The functors Tor,\ are of type LS.

This follows from v,9.2 and v,9.4.

PROPOSITION 1 .3. Thefunctors Tor-J; are of type LS* (i.e. they commute

with direct limits).

This follows from v,9.2* and v,9.4*.

As an application of the fact that
v

is left balanced we prove:
PROPOSITION 1.4. In the situation (rA v

,rC) if A is \-projective and C
is T-injectiie then Homr (A*C) is \-injective.

PROOF. Let B be a left A-module. Then A A B is an exact functor

of B and therefore Homr (A A ,C) is an exact functor of B. It

follows from n,5.2 that HornA (B, Homr (A,C)) is an exact functor of B.

Thus by M.6, Homr (A<C) is A-injective.

A similar proposition holds for (A -4 r,Cr).

The next two theorems often allow us to compute Torn and Extn in

concretely given situations.

THEOREM 1.5. Let >M^-+P A K) and *C >Q ^A^ -O be

exact sequences with P projective and Q injective. We then have the

following natural isomorphisms:

(1) Ext (>4,C) ** Ext^
2
(M,N) forn>2

(2) Ext (A,Q ** Coker ( HomA (a,/3))

(3)ExtX(^,C)^Ker(HomA (a,/?))/[Ker(HomA (a,0)+Ker(HomA (/>,^))].
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PROOF. First consider the case n>2. We then have the anti-

commutative diagram

Extn
~2 (M9N) -> Ext"- 1

(A 9N)
I I

Ext*- 1 (M9C) -> Ext" (A 9Q
in which all four maps are isomorphisms. This yields two isomorphisms

(1) differing in sign.

For n = 2 we consider the diagram

Horn (P9Q) -> Horn (Af,0->

Horn (P,W) -> Horn (M,N) -> Ext 1
(A,N) ->

-> Ext 1
(A/,C) - Ext 2

(A,C) ->

with exact rows and columns and which is commutative except for the

lower right square which is anticommutative. This yields:

Ext2
(A 9C) ** Ext 1

(A,N) ** Coker (Horn (a,W)) = Coker (Horn (a,/3)).

Replacing Ext 1
(A 9N) by Ext 1

(A/,C) will yield the opposite isomorphism.

Finally we consider the case n= I. We use the exact sequence

*M-^+P A >0 to define a left complex X over A with

Xj=P9 Xl=M and A>=0 for /> 1. Similarly we use -C >Q-?-+N K)

to define a right complex Y over C with Y* (?, Y 1 = # and

Y*= for i > 1. An application of v,7.3 yields then the isomorphism

Ext^O^C) ^ H 1
(Hon\A (X9 Y)). The complex Hon\A (X9 Y) may be

written explicitly as

Horn (/>,0
-- Horn (A/,0 + Horn (/>,#)

-^ Horn (A/,//)

where

rf
</= (/a, /8/), dl

(g,h)
= ^ + /?a

for/: P-*Q,g: M-+Q 9 h: P-+N.
Since Q is injective and P is projective it follows that Horn (a,0 and

Horn (P9/$) are epimorphisms. Therefore the element (g,h) of degree 1

may be written as (/ia,/S/2) for some /ls/2 : P-* Q. The element/! is

determined uniquely modulo Ker (Horn (a,0) while /2 is determined

uniquely modulo Ker (Horn (/*,/?)). Thus the congruence class

modulo Ker (Horn (a,0) + Ker (Horn (P,/9)) is uniquely determined.
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Since

we have c/
1(^)=0 if and only if /2 /i c Ker (Horn (<x,0)). If

(g,h)
= <Pf= (/<*,/) then rtfrA)

= [/-/] = 0. If/c Ker (Horn (a,0))

then 9?(/a,0)
=

(/a,/?0)
=

[/]. This shows that 9? induces the isomorphism
(3). Taking [/i ~-/2] instead of [/2 /J replaces 9? by 9?.

Quite analogously we prove

THEOREM 1.5a. Let >Af^->P vl >Q and Q+M'-?-+P' *C K)

be exact sequences with P and ?' projectile. We then have the following
natural isomorphisms:

(la) Tor (A,C) ** Tor_ 2 (MM ') for n > 2

(2a) Tor* (A,C) * Ker (a A /?)

(3a) Toif (/*,C) [Im (a A P') n Im (P <g>A a')]/ Im (a A 0).

We now take up the question of the commutativity of the functors

Torn . For each ring A, the opposite ring A* has elements A* in 1-1

correspondence with the elements A A and the multiplication is given by

Wi = (Mi)*- The ring (A*)* clearly may be identified with A. If A
is commutative then A* and A may be identified. Any left (right)

A-module A may be regarded as a right (left) A *-module by settingaX*= Xa.

Thus the situationMA ,AC) leads to the situation (CA ,,A./0 and the mapping
a A c-> c A fl yields an isomorphism A A C ^ C A.4. If X
and Y are A-projective resolutions of A and C then we may regard X and

Y also as projective A*-resolutions of A and C. We define the map
9?: X A Y-> y A .X by setting

<p(x v)
- (- l)"v JC, x c *, >' e 7C .

Then 9? is an isomorphism of complexes. Passing to homology we obtain

the isomorphism

(4)

2. DIMENSION OF MODULES AND RINGS

We shall say that the left A-module A has projective dimension ^.n if A
has a projective resolution X satisfying Xk

= for fc > /i. The least such

integer /? is called the projective dimension of A and denoted by l.dimA A.

If no such integer exists the dimension is defined to be oo. We shall also

write dimA A or dim A whenever no confusion can arise. The zero

module has dimension 1. Projective modules are precisely those of

projective dimension < 0. The integer (or oo) r.dimA A for a right

A-module is defined similarly.
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PROPOSITION 2.1. Fo reach A-module A and each n 2> 0, thefollowing
conditions are equivalent:

(a) A hasprojective dimension <Ln.

(b) Ext^
1
(A,C) = 0/or all (left or right) A-moduIes C.

(c) ExtA (A,C) is a right exactfunctor of the variable C.

(d) Given an exact sequence -> Xn -> A^ -> -> A^ -> /4 ->

vv/'/A A^ (0 <1 k < H) projective, the module Xn is projective.

PROOF. (a)=>(b). Let A" be a projective resolution of A with

Xk =Q for k>n. Then Ext^
1
(A,C) = Hn+ l (Hom^C)) = 0.

(b) :=> (c) is immediate.

(c) => (d) is trivial if n = 0. Assume n > and let C -> C" be an

epimorphism. Applying the iterated connecting homomorphism we

obtain the commutative diagram

(/T,C)->

I I I
HomA (Jf^C*) -> HomA (Xn9C') -+ Ext^ (^,C") ->

in which, by v,7.2, the rows are exact. Since A'n_i is projective, the vertical

map on the left is an epimorphism. The vertical map on' the right is an

epimorphism since ExtA (/l, ) is supposed right exact. It follows easily

that the middle vertical map also is an epimorphism. Thus HomA (A"n1C)
is an exact functor of C, and therefore Xn is A-projective (n,4.6).

(d) => (a). By an iterated use of 1,2.3 we construct a sequence as

described in (d). Since, by (d), Xn is projective this sequence yields a

projective resolution and thus dim A < n.

COROLLARY 2.2. In order that E\\\ (A, Y) = Ofor all Y it is necessary

and sufficient that A be A-projective.

PROPOSITION 2.3. // -> A' -> A -> A" -> is exact with A projective

and A" not projective then dim A" = I + dim A'.

This is an immediate consequence of the relation ExtA
+1

(A\C)

PROPOSITION 2.4. // -* A' -> A -> A" -> is exact, dim A' <l n and

dim A" f /?, then dim A^n.
This follows from the exactness of Ext^

1
(/T,C)-> Ext^

1
(A,C)

PROPOSITION 2.5. Assume that A is left Noetherian and A is a finitely

generated left A-moduIe. Then dim A <1 n ifand only if Ext^
1
(A,C)=

for all finitely generated left A-modules C.

PROOF. The necessity of the condition follows from 2.1(b). To

prove sufficiency, consider an exact sequence 0->A/-*P->,4->0 with P

projective and finitely generated. Since A is left Noetherian, M is finitely

generated. Assume first that n = 0. Then E\i\ (A,M) = so that
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HomA C4,P)-> HomA (/M) is an epimorphism. It follows that the

exact sequence Q-+ M -+ P-+ A->0 splits and A is projective. Thus

dim A = 0. Assume now that n > and the proposition is valid for

/i 1. Since ExtA (A/,C) ^ExtA
f l

(>4,C)=0 it follows that dim A/ <; n 1,

which, by 2.3, implies dim A <
/?.

The injective dimension of a module C is defined as the least integer w

for which there is an injective resolution Y with Yk = for A: > . We
do not introduce a symbol for the injective dimension.

PROPOSITION 2. la. For each A-module C and each n ^> 0, the following
conditions ore equivalent:

(a) C /HW injective dimension <^n.

(b) ExtA
M

(/*,C) - 0/or all \-modules A.

(c) ExtA 04,C) w r//tf exact functor of the variable A.

(d) G/iwi an exact sequence -> C -> r-> y- 1 -> yn ->

with Yk
(0 ^ /c <. w) injective^ the module Y n

is infective.

COROLLARY 2.2a. In order that E\i\ (X,C) --=- for all X it is necessary
and sufficient that C be A-injective.

Analogues of 2.3 and 2.4 also hold; however there is no analogue of

2.5.

THEOREM 2.6. For each ring A and each n ^ 0, the following conditions

are equivalent:

(a) Each left \-module hos projective dimension <^n.

(b^ Each left \-module has injective dimension <^n.

(c) E\i\ - Ofor k>n.
(d) Ext;^

1 = 0.

(e) Ext\ is right exact.

Here Ext\ is understood as a functor of left \-modules.

PROOF. The implications (a) ^> (c) ^> (d) <^=> (e) are obvious. More-

over, it follows from 2.1 that (a) and (d) are equivalent, and from 2. la that

(b) and (d) are equivalent.

The least integer n ^ for which (a)-(e) hold will be called the left

global dimension of A (notation : l.gl.dim A). The right global dimension

of A may be defined similarly. We know no connection between the left

and right global dimensions, except for the following:

COROLLARY 2.7. For each ring A thefollowing conditions are equivalent:

(a) A is semi-simple.

(b) l.gl.dim A = 0.

(c) r.gl.dim A = 0.

This follows from the fact that left and right semi-simplicity coincide

and are equivalent to all A-modules being projective.
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It may be noted that l.gl. dim A = r.gl. dim A* and therefore for

rings for which A = A* the left and right global dimensions coincide.

PROPOSITION 2.8. A ring A is left hereditary ifandonly if l.gl. dim A<^ 1 .

The proof follows immediately from 2.1.

PROPOSITION 2.9. IfA 15 (left or right) semi-hereditary then Tor =
forn> 1.

PROOF. Assume A left semi-hereditary, and let 0~>Af~>P->C-^0 be

an exact sequence of left A-modules with P project!ve. Then Tor (A,C)
^ Tor_! (A,M). Since

r

Tor%_ 1
commutes with direct limits it suffices to

prove that Tor^_ t (A,M') = for any finitely generated submodule A/'

of M. However, by 1,6.2 each such M '

is projective which implies

OMf ')
= for ii > 1.

3. RUNNETH RELATIONS

Let A be a right A-complex and C a left A-complex. We wish to

establish connections between the graded groups H(A C), H(A) H(C)
and Torx (H(A),H(C)) where = A . We make the following assump-
tions:

f Tor, (B(A),B(Q) - = Tor, (H(A\B(Q)
(1)

(B(A\Z(C)) = - Torx (H(A),Z(Q).

We first consider the functor T(D) =-- D B(C). Since S1 T(B(A))
= SiTlWA)) it follows from the exact sequence 0--> B(A)-*Z(A)
-> H(A) -> that S1T(Z(A)) = 0. Thus applying iv,8.1 to the functor T
we obtain that a

x : T(H(A)) -> H(T(A)) is an isomorphism. Thus we have

proved that

ai : H(A) B(C)-*H(A B(Q)

is an isomorphism. Similarly

a2 : H(A) Z(C)-*H(A Z(C))

is an isomorphism.
Now we consider the functor of two variables A C. Since

Torl (B(A) 9B(C)) = r

ToTl (H(A),B(Q)-=0 it follows from the exact

sequence -> B(A) -> Z(A) -> H(A) ~> that Torj (Z(A\B(C)) = 0. Then

from the exact sequence Q^>Z(A)-+ A> B(A)-+Q we deduce that

Torx (/4,S(C)) = 0. Thus all the conditions iv,8.1 are satisfied and we
obtain
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THEOREM 3.1. Under the conditions (\) we have an exact sequence

(2) H(A) H(C) -^ H(A C) -?-+ Torx (H(A),H(Q) *

wAere a w of degree zero and ft is of degree 1. Explicitly

(2')

-* 2 ",(-4) "<,(C) -> //(/< C) -> 2 Tori (HJiA),HKC)) ->

If the ring A is (right or left) semi-hereditary conditions (1) are

equivalent with

1 (B(^) >C)=0=Tor1 (//(yl),O.

Indeed, the implication (1) ->(!') follows from the exact sequence
-> Z(C) -> C - B(C) -> 0. The implication (!') -> (1) follows from the

fact that To^ is left exact if A is semi-hereditary. In particular, (!') is

satisfied if C is projective.

THEOREM 3.2. If A is left and right hereditary and the A-complexes A
and C are projective, then the exact sequence (2) is valid and splits.

PROOF. Since condition (!') is satisfied the exact sequence (2) is

valid. Since A and C are projective and A is hereditary it follows that

B'(A) and B'(C) are projective. Therefore, the exact sequences

-> H(A) -> Z'(A) -
B'(A) -*

-> H(C) -> Z'(C) -> B\C) ->

split. It then follows from iv,6.2 that the image of a is a direct summand
of H(A C) and thus (2) splits.

REMARK. Under the conditions of 3.2 the hypotheses (1) are satisfied

also with the roles of A and C interchanged. This yields another exact

sequence (2). The maps a of these two exact sequences are the same;

however we do not know whether the maps ft of these two exact sequences
coincide.

If A, instead of being a A-complex is a A-module, then A C may be

regarded as a functor of the variable C alone. Since B(A) = and

H(A) ~ A we obtain the following result.

THEOREM 3.3 (Universal coefficient theorem for homology). If A is a

right A-module and C is a left A-complex such that

(3) Torj (A 9B(C)) = - To^ (A,Z(C))

then we have the exact sequence

(4) A Hn(C)
~^-+ Hn(A C) -^ To^ (A 9Hn~i(Q)

~* 0-
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IfA /5 left or right semi-hereditary, condition (3) 15 equivalent to

(3') Tori C4,C) = 0.

IfA 75 /e/j hereditary and C is A-projective, the exact sequence (4) 15 valid

and splits.

We now rapidly state the analogous results for the functor Horn

(= HomA) where A and C are assumed to be left A-complexes. We assume

(
Ext 1

(B(A),B'(Q) = =-- Ext 1 (B(A)MQ)
(la)

[ Ext 1
(Z(A) 9B'(C)) = = Ext 1

(Z(/0,//(C)).

THEOREM 3. la. Under the conditions (la) H*? A0r* a/i exact sequence

(2a)
> Ext 1 (H(A\H(C))> H( Horn (^,C))-^ Horn (H(A),H(Cy)+

vw//i ^' of degree 1 and a.' of degree 0.

There is an analogous theorem under hypotheses dual to (la).

If A is left hereditary, conditions (la) are equivalent to

(1'a) Ext 1
(A 9B'(C)) = = Ext 1

(A,H(C)) - 0.

In particular, (1'a) always holds if A is projective.

THEOREM 3.2a. //A 15 left hereditary, the complex A is projective and

the complex C is injective, then the exact sequence (2a) is valid and splits.

THEOREM 3.3a (Universal coefficient theorem for cohomology). If A
is a left A-complex and C is a left K-module such that

(3a) Ext 1
(B(A) 9Q = = Ext 1

(Z(A),C)

then we have the exact sequence

(4a) Ext 1
(H^(A),C)^ H n

(Horn (A 9Q) -^ Horn (Hn(A\C) 0.

IfA 15 left hereditary, condition (3a) 1*5 equivalent to

(3'a) Ext 1
(/l,C)-0.

If A 15 left hereditary and A is projective, then the exact sequence (4a) 15

valid and splits.

We shall use the above result to derive certain associativity relations

for Tor and Ext.
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PROPOSITION 3.4. In the situation G4A ,A flr>rC) assume that B is a

module, A is a A-projective complex, C is a Y-projective complex and A and
F are left or right semi-hereditary. Then we have the exact sequences

(5)
> H(A) A H(B r C) -^ H(A A (B r C))

rA (H(A),H(B r C))

(6) H(A A 5) r //(C)
-- //(M A B) r C)

Toif (//H A *),//(C)) 0,

wA*r* a w ofdegree aw//? ofdegree
-

1 . Iffunher A = F /$ commutative

and B is a A-module (instead ofa A-r-bimodule) then the sequences (5) am/

(6) split.

PROOF. The exact sequence (6) follows directly from 3.1 since condi-

tions (!') (with A replaced by A B) are satisfied. The sequence (5) is

established similarly. To prove the second half we denote by Y a pro-

jective resolution of B, and consider the augmentation map Y -> B. We
then obtain a commutative diagram

-> H( Y) //(C)
- > H( Y G C) -> To^ (//( K),//(C)) ->

~> 50 //(C) -v //( c C) -* Tor
a (5,//(C)) ->

with exact rows. Since H( >
r

)-> //(5) =r^ B is an isomorphism it follows

from 1,1.1 (the "5 lemma") that //( r C) -> //(B C) is an isomorphism.
Next we consider the commutative diagram

-> H(A) H( Y ^ C) ^ H(A ( Y C)) -v Tor
x (H(A\H( Y C)) ->

0-> //(/f) //(5 C)-> //(^ (B C))-> To ri (H(A)M(B C))->

with exact rows. Since the two extreme vertical maps are isomorphisms
it follows again from 1,1.1 that the middle vertical map is an isomorphism.
Since Y C is projective by n,5.3, it follows from 3.2 that the top row in

the diagram splits. Therefore the lower row, i.e. the sequence (5), also

splits. The proof that (6) splits is similar.

PROPOSITION 3.5. In the situation (A^ABr ,rC) assume that A and T
are left or right semi-hereditary. Then we have the natural isomorphism

(7) Tori
v
(A, TorJ

1

(#,Q) ^ Tor}^ (Tor^ (A^C).
PROOF. Let A" be a A-projective resolution of A and Y a F-projective

resolution of C. Applying 3.4 to the triple (X,B% Y) we obtain

A (B r Y)) Tor^ (A, Torf (B,C))

A B) r Y) Torf

which yields the desired result.
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PROPOSITION 3.6. If A is a commutative and hereditary ring, then for

any A-modules A, B, C we have the (non-natural) isomorphism

(8) A Tori (5,C)+ 70^(^,5 (8) Q^Tor^^^) C+Tor^ J3,C).

PROOF. With A" and K as above, we again apply 3.4 to the triple

(X9B, Y). We obtain exact sequences

-> A To^ (,C) -> //!(* <g> (5 <g> Y)) -> Torx (>*, C) ->

-> Torx G4,) <8> C -> H(X B)Y) -> Tor
x (^ <g> B,C) -> 0.

Since, by 3.4, these exact sequences split, the result follows.

We now state (without proof) similar results involving Horn and Ext.

PROPOSITION 3.4a. In the situation (>4A ,ABr,Cr) assume that A is a

A-projectiue complex, C is a r-injective complex, and A and F are right

hereditary. Then we have the exact sequences

(5a) -> ExtX (H(A),H(D)) -> //(HomA (A,D))^ HomA

(6a) -> Extx
r (H(E),H(C)) -> //(Homr (,C))^ Homr

w/rere Z) = Homr (B9C), E= A A B.

Iffurther A = F w commutative and B is a A-module then the sequences

(5a) and (6*) split.

PROPOSITION 3.5a. In the situation (A^^Br,Cr) assume that A and F

are right hereditary. Then we have the natural isomorphism

(la) ExtX (A, E\ll

r (5,C)) * Ext}, (Toif (A,B),C).

PROPOSITION 3.6a. If A is a commutative and hereditary ring then for

any A-modules A, B, C we have the (non-natural) isomorphism

(8a) Ext1
(A, Horn (B,C)) + Horn (A, Ext 1

(B,Q)

& Ext 1
(A B

9C) + Horn (To^ (A,B),C).

In Ch. xvi we shall return to these questions and, using the method of

spectral sequences, we shall obtain much more complete results.

4. CHANGE OP RINGS

We return to the discussion of the change of rings given by a ring

homomorphism 9?: A -> F, as initiated in 11,6. The discussion breaks up
into four cases, the situation in each case being indicated by an appropriate

symbol.
Case 1. (AA9ATr ,rC). We have the relation

(1) A A C=4,, r C.
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Let A'be a A-projective resolution of A. Then by H,6.1, X
(g))

is a T-projec-
tive left complex over A

(tf))
. Thus the homomorphism (3a) of v,3 yields

a homomorphism

(i) //(*< r O -> Torn
r
(/^,C).

However, by (1)

//(*< r C) - //n(JT A C) -

Thus we obtain a homomorphism

which for n = yields the identity (1). An alternative way of obtaining
the same homomorphism consists in considering the functor

T(A,Q - A A C = AM r C.

Then

where L^rand L^T denote the partial left derived functors with respect

to the first and second variable respectively. Then/i n coincides with the

homomorphism L nT-> L(^T of v,8.

PROPOSITION 4.1.1. If Tor (A , T) = for all p > then /M is an

isomorphism.
PROOF. Since

the hypothesis implies that X
(9)

is acyclic and thus is a projective resolution

of A
(^y Thus (i) is an isomorphism and so is/, n .

COROLLARY 4.2.1. //; the situation (A r ,rC) assume that T and C are

A-projectire and A is q -projective. Then Tor (A,C) 0/or n > 0.

Indeed, since A is isomorphic to a direct summand of A
(^ it suffices to

prove Tor (/i (7),C) for n > 0. However by 4.1.1, Tor (A (^C)
^ Tor^ (A,C) which is zero for n > because C is A-projective.

Case 2. (/* r ,rrA ,AC). We have

(2) A A C^A r ((r)C).

Taking a A-projective resolution of C we obtain the homomorphism

/2 ,
w : Tor^M,C)>Torw

r
(>f,(v)C)

which for n = reduces to (2).

PROPOSITION 4.1.2. // Tor^ (F,C) - for all p > f/M>n /2>n 15 a/i

isomorphism.
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COROLLARY 4.2.2. In the situation (Ar ,rC) assume that F and A are

A-projective and C is <p-projective. Then Tor (A,C) = Ofor n > 0.

Case 3. (A^>rrArO- We have the identity

(3) Homr (M/l,C) = HomA (A,C).

Taking a A-projective resolution of A we obtain the homomorphism

which for n = reduces to (3).

PROPOSITION 4.1.3. // Tor (F,/i)
=

for all p > /ten /3 n

COROLLARY 4.2.3. / f/ze situation (rA,rC) assume that F w A-projec-

tive, C is A-injective andA is y-projective. Then Ext (A,C) = /0r /j > 0.

Case 4. (r^ArrAC )- We have the identity

(4) Homr (^ f

(

C) - HomA (/I,C).

Taking a A-injective resolution of C we obtain the homomorphism

/4 ,n : ExtM^C)-*ExtJU^,C)

which for n = reduces to (4).

PROPOSITION 4.1.4. If Extft (F,C) = for all p > /A*/i /4fn w OAJ

isomorphism.
COROLLARY 4.2.4. In the situation ( rA,rC) assume that F and A are

A-projective and C is y-injective. Then Ext?. (A,C) = Ofor n>0.
We also could consider two other cases 3' and 4' given by the symbols

C4A ,AFr,Cr) and (A r ,rrA9CA) and apply the identification of n,5.2'.

However these cases differ from cases 3 and 4 only by a complete inter-

change of right and left operators and give the same results except that in

case 3' we must replace TorA (F,/l) by TorA (^,F).

We now place ourselves in the situation (/4 r ,rC), and define a homo-

morphism
9V

as follows. We first define <p : A A C -> A r C by a A c -> a r c.

Then we consider F-projective resolutions A^and YofA and C. Regarded
as A-modules X and Y are acyclic left complexes over A and C. Thus by
v,3 we have the homomorphisms

(5)

Further <p : X A Y-> X r r yields

(6) Hn(X A Y) -> Hn(X r r) -

We define ^n as the composition of (5) and (6).
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PROPOSITION 4.4. If A is a right Y-module and C is a left Y-module

then the diagram

w commutative, where g n and g'n are induced bv the maps g: A
(<f>)

-> A,

g':C-+C.
The proof is left as an exercise to the reader.

Similarly in the situation ( rA,rC) we define

using a F-projective resolution of A and T-injective resolution o f C.

PROPOSITION 4.4a. If A and C are left Y-modules then the diagram

\ (A,C)

is commutative, where g n . h n are induced bv the maps g: (tf)A-*A,
h: C-+ { <>C.

RFMARK. It is clear from the definition of the homomorphisms <f n

and p" that they commute with the connecting homomorphisms relative

to either variable.

5. DUALITY HOMOMORPHISMS

We consider the situation described by the symbol (A^ABr,Cr). In

11,5.2' we have established a natural isomorphism

(1) HomA (A< Hom r (,C)) ^ Homr (A A B,C).

Now, let A' be a projective resolution of A ; we have

ExtA(/l,Homr (,C))
- //(HomA(A

r

,Homr(5,C))^//(Ho

An application of the homomorphism a' of iv,6.1a yields

//(Homr (X A ,C))
- Homr (H(X A ),C)- Homr
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Thus we obtain a homomorphism

(2) p: ExtA (A, Homr (5,C)) -* Homr (Tor* (/4,fl),C)

which reduces to (1) in degree zero.

PROPOSITION 5.1. If C is T-injective then p is an isomorphism.

Indeed, the functor T(D) = Homr (Z>,C) is exact. Thus by iv,7.2 the

homomorphism a': H(T(X B))-> T(H(X B)) is an isomorphism.
The preceding result will be obtained, together with many others of a

similar nature, in Ch. xvi by an application of spectral sequences. The

homomorphism p and proposition 5.1 can also be found using the results

of m,6 about satellites of composite functors.

Next we consider the situation described by the symbol (A <4,A#r,Cr)
and define the homomorphism

(3) a: Homr (,C) A A -> Homr (HomA (A,B),C)

by setting

W/ a)]g
-

f(ga) /c Homr (,C), g e HomA (A,B).

PROPOSITION 5.2. IfA is \-projective andfinitely generated then a is an

isomorphism.
PROOF. First consider the case A = A. Then a is easily seen to be an

isomorphism. Therefore, since the functors involved are additive, it

follows that a is an isomorphism if A is a free A-module Fon a finite base.

Consequently, again by a direct sum argument, o is an isomorphism if A
is a direct summand of F.

Now let X be a projective resolution of A. The homomorphism (3)

combined with the homomorphism a' of iv,6 yield

B,C) <8>A X) -> //(Homr (HomA (X,B),C))

- Hom r (// (HomA (*,)),C).

We thus obtain a homomorphism

(4) a: Tor* (Homr (B 9C),A) -> Homr (ExtA (A 9B),C)

which reduces to (3) in degree zero.

PROPOSITION 5.3. IfA is left Noetherian, A is finitely A-generated and

C is T-infective then a is an isomorphism.
PROOF. Since C is P-injective, the functor Homr (D,C) is exact and

therefore, by iv,7.2, the map a' above is an isomorphism. If A is left

Noetherian and A is finitely A-generated, then, by v,1.3, the resolution X
may be chosen to be composed of finitely generated projective modules.

The result now follows from 5.2.
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REMARK. Instead of assuming that A is left Noetherian and A is

finitely generated it suffices to assume that A has a projective resolution

composed of finitely generated modules.

PROPOSITION 5.4. If A is left hereditary and left Noetherian and A is

finitely generated then

aj: Toif (Homr (B,C),A) -^ Homr (Ext^ (A,B),C)

is an isomorphism.
PROOF. Consider an exact sequence

o-> A-!-*;^ ->/<-> o

with X projective and finitely generated. Since A is Noetherian and

hereditary it follows that X
l
is projective and finitely generated so that we

obtain a projective resolution X of A. By 5.2, the homomorphism

H,( Homr (fl,C) A X) -> //!< Homr (HomA (X,B),Q)

is an isomorphism. It therefore suffices to show that

a': //
1(Homr (y,C))-*Homr (//

1(nC)

is an isomorphism, where Y -~ HomA (X,B). We have the exact sequence

and since Homr is left exact there results an exact sequence

> Hom r (H
l

( y),C) Homr ( Y l
<C)

-^ Homr ( r,C).

There results an isomorphism of Homr (H
l

( Y),C) with Ker y
H l

( Homr ( 7,0) which can easily be verified to coincide with a'.

Next we consider the case when A F = B. In this case Homr (B,C)

is identified with C so that (4) becomes

(4') a: TorA (C,A) -> HomA (ExtA (/I,A),C) (^CJ.
PROPOSITION 5.5. If A is left hereditary and left Noetherian then

a^ Torf (C/<) -> HomA

is a monomorphism.
PROOF. Let A^ be a finitely generated submodule of A. We obtain

the commutative diagram

To^ (C,/l a)
-^ Horn (Ext

1

(A^A),C)

I*.

Tor, (C,A) . Horn (Ext
1
(A,A),C).
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Since A is hereditary, ExtA is right exact by 2.8 and 2.6. Thus

Homr (ExtA (A,A),C) is left exact and thus ya is a monomorphism.
Since, by 5.4, alQi is a monomorphism it follows that a^ is a mono-

morphism. Since Torj commutes with direct limits, Torx (C,A) is the

union of the images of /a for A^ running through all finitely generated
submodules of A. Thus al is a monomorphism.

EXERCISES

1. Consider the ringZn
= Z/nZ. For each divisor r of A?, use Exer. 1,5

to define an infinite exact sequence

Show that the projective dimension of rZn , as a Zn-module, is or oo

according as (r,n/r)
= 1 or =1. Conclude that the ring Zn is either semi-

simple or gl.dimZn = oo.

2. Let A be a commutative Noetherian ring. If A and C are finitely

generated A-modules, then Tor (X,/?)andExtA (A,B) are finitely generated
A-modules [cf. Exer. n,6.]

3. We define the weak dimension of a left A-module A (notation:

w.dimA ^4) as the highest integer n such that Tor (C,A) ^ for some

right A-module C.

If w.dimA A =-
(i.e. if Tor (C,A) =- for all C and all n > 0), we

say that A is A-flat. Similar definitions are made for right A-modules.

(a) Show that w.dimA A < dimA A.

(b) Show that if A is left Noetherian and A is finitely generated, then

w.dimA A dimA A

[apply 5.3]. Similarly for right A-modules.

4. Show that if A is left Noetherian and {A^} is a family of right

A-modules, then HAa is A-flat if and only if each A^ is [use n, Exer. 2].

5. For each right A-module A and left ideal / of A establish the

equivalence of the following conditions:

(a) For each relation 2,0,/J,
=

( t
e ^, ^ c /) there exist elements

bj
c A, A c A, finite in number, such that

<*
t
= I,Mo> 2A^. = 0.

(b) The map A A /-> A (g)A A = A is a monomorphism.
(c) ToifM,A/7) = 0.

(d) For each exact sequence Q-+ N-* P-+ A-+Q with P a A-projec-
tive module, we have NH (PI) = NI.

(e) There exists an exact sequence Q-> N-+ P-> A-*Q with P

projective such that NC\ (PI) = JV7.
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6. For each right A-module A establish the equivalence of the following
conditions:

(a) A is A-flat.

(b) Torft/4, A//) = for each left ideal / of A.

(c) For each relation 2iai/^ (\ ^ /" A), there exist elements

/>,
c /I, A

t; A, finite in number, such that

Condition (c) expresses the fact that each linear relation in A is a

consequence of linear relations in A.

7. If a A-module A is a direct sum of A-modules A^ then

dim A sup dim A^ w.dim A = sup w.dim /4 a .

a a

State a similar result for the injective dimension of a direct product.
8. Let A A! + + A n be a direct product of rings. Show that

l.gl.dim A = sup l.gl.dim A,.
i

9. Let LdimA A^n< 0^w<oo. Show that Ext^,F) ^ for

some free A-module F. If further A is left Noetherian and A is finitely

generated, then Ext(/l,A) ^ 0. [Hint: choose C with Ext^(>l,C) ^ 0,

then consider an exact sequence 0->5-*/r-*C->0 with F free.]

10. Let 9?: A-> F be a ring homomorphism. Show that for each

left T-module A

w.dimA A <^ w.dimr A if F is left A-flat,

dimA A <I dim r A if F is left A-projective,

inj.dimA A <^ inj.dim r A if F is right A-flat.

Show that for each left A-module A

w.dimr(
(9;)

/4) <1 w.dimA A if F is right A-flat,

dim r( (g,)/4) ^ dimA A if F is right A-flat,

inj.dimr( (v) y4) ^ inj.dimA A if F is left A-projective.

[Hint: use 4,1.1-4,1.4.]

11. Let 9?: A-> F be a homomorphism of commutative rings such

that F is A-flat. For A-modules A and C, establish a natural isomorphism

(* A

of F-modules. Derive a natural isomorphism
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Establish a natural homomorphism

of F-modules, which becomes an isomorphism if A is A-projective and

finitely generated. Derive a homomorphism

which becomes an isomorphism if A is Noetherian and /4 finitely generated.

12. Consider a commutative diagram

Q-+A ->B -> C ->0

1- ! !
0->/*'->'->C"->0

with exact rows. Show that if/and h are monomorphisms then so is g.

Assume that the exact sequences split and show that if/and h are mono-

morphisms onto a direct summand (of A' or C'), then the same holds forg.

13. Let A be a (right and left) hereditary ring. Let A and A' be

projective right A-complexes, and C and C' projective left A-complexes.
Consider maps <p: A -> A' and y: C-> C such that <?v H(A}-+ H(A')
is a monomorphism of H(A) onto a direct summand of H(A'), and

ip+ : H(C) -> H(C') is a monomorphism of //(C) onto a direct summand of

//(C'). Show that (<p y)* : #(^ A c)-* #(^' A c ') is a mono-

morphism of //G4 A C) onto a direct summand of H(A' A C').

[Hint: use Exer. 12.]

14. In the situation (A^^rA^r) assume that C is a module, A is a

A-projective complex, B is a F-projective complex, A is left hereditary and

F is right hereditary. Then state and prove propositions analogous to

3.4, 3.5, 3.4a and 3.5a [use n, Exer. 4].

15. Let A be a commutative, hereditary ring; A, B, C, D being any
A-modules, show that the following modules M and W are (not naturally)

isomorphic :

M = Tor (A,B) <g> Tor (C,Z>) + Tor (Tor (/*,), C D)

+ Tor (A , Tor (C,>))

AT = Tor (Tor (A,B),C) D + Tor (Tor (/<,5) C, D)

+ Tor (Tor (A <g> 5, C), D).

Moreover, any permutation of A,B,C,D transforms M (resp. ^V) into a

module isomorphic to M (resp. N).

[Hint: use resolutions of A, B, C, D.]
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\ 6. Let X and Y be two complexes over the ringZ of integers. Assume
that X and Y have finite Z-bases for each degree. Show that

H(X Zn) H( Y Zn ) //(AT y Zn),

Zn denoting Z//iZ; but, if n is not a prime, there is no natural isomorphism.
[Hint: apply the Kiinneth formula to H(X ZJ, H(YZn) and

//((^ Zn ) r). Then prove that

A <8> To^ (Zn,C) * Torx (A Zn,C)

Tor, (/*,ZW ) Torj (Z^C) ^ To^ (To^ (^,ZJ,C)

whenever /I and C are finitely generated abelian groups. Reduce the

problem to the case of cyclic groups.]
17. Let A = Lim Aa be a direct limit of rings. Let A be a right A-

module, such that A Lim A^ A^ being a right A a-module. In the same

way, let C be a left A-module, C Lim Ca , Ca being a left Aa-module.

Prove that

A A C - Lim /J a Aa
Ca .

Then, using v,9.5*, prove that

,C) --- Lim

18. Consider a commutative diagram of A-modules and A-homo-

morphisms
- M *P - A -

} i I-

-C >Q N >0

with exact rows, P projective and Q injective. Let

U)
: Horn (A/,C)-^ Ext 1 (A)

(2)
: Horn (A.N)-+ Ext 1

(A.C)

be the connecting homomorphisms induced by the two rows. Prove that

(1)
(y) + (2)

(a) = 0.

[Hint: regard the top row as an acyclic left complex over A> and the

bottom row as an acyclic right complex over C; then use the commutative

diagram
//HHom (A, Y)) -> //HHom ( X, Y)) -> //'(Horn (X,C))

Ext 1
(A,C)

and apply Exer. v,8.]
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19. For a right ideal / and left ideal J of the ring A, prove (using l,5a)

that

TorfrA/7, A/7) ^(7n7)//7

Tor(A/7, A/7) * Ker(7 A 7-> 77)

Tor(A/7, A/7) To^ 2(7,7), n > 2

where 77 denotes the image of 7 A 7-> A A A A.



CHAPTER VII

Integral Domains

Introduction. Our main objective is to show how the notions intro-

duced earlier apply to the case of modules over an integral domain A.

The special case of abelian groups, i.e. of modules over the ring Z of

rational integers, is treated in the last two sections.

The fanctor Tor has remarkable properties if the ring A is a Prufer

ring (i.e. an integral domain in which all finitely generated ideals are

inversible in the field of fractions). For such a ring A we have Torn
=

for n ^ 2; To^ (A,C) depends only on the torsion sub-modules of A and

C; in order that Tor
t (A, Y) = for all Y it is necessary and sufficient that

A be torsion-free. These properties (studied in 4) are the origin of the

notation Tor and explain some of the peculiarities of the elementary
Runneth relations (for the tensor product of two Z-complexes).

In the last two sections ( 6-7) we study the relations of the functors

Torf and E\i l

z with the Pontrjagin duality theory for compact abelian

groups.

1. GENERALITIES

We shall assume throughout this chapter that A is an integral domain,
i.e. a commutative ring with a unit element -^ such that a, /? c A, a =?

and ft
==* imply a/?

= 0.

An element a of a module A is called a torsion element if Aa for

some A e A, A -/- 0. The torsion elements form a submodule tAofA. We
say that A is a torsion module if tA - A. Clearly tA is a torsion module.

We say that A is a torsion-free module if tA 0. For instance A/tA is

torsion-free. Any submodule of a torsion-free module is itself torsion-

free.

If A is a direct sum ~a /4 a , then tA ila(r/4a).

PROPOSITION 1.1. A projectire module is torsion-free.

PROOF. A being an integral domain, is torsion free. Since each free

module is a direct sum of modules isomorphic with A, it follows that free

modules are torsion-free. Since each projective module is a submodule of

a free module, the conclusion follows.

An element a of a module A is called divisible if for each A e A, A ^ 0,

there is an element b e A with a A6. The divisible elements of A form

727
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a submodule dA of A. A module A is called divisible if dA = A. A
quotient module of a divisible module by a submodule always is divisible.

It can be easily proved that d(A/dA) = 0.

If A is a direct product ITa/(a , then (5/1 == H^dAJ.
PROPOSITION 1.2. An infective module is divisible.

PROOF. Let A be an injective module and let a c A, X A, A ^ 0.

Consider the ideal /= AA. Since aA = /?A implies a =
/?,

the formula

/(aA) = 00 defines a homomorphism/: / -> A. Since >4 is injective there

exists, by 1,3.2, a b A with//?
=

fib for all c /. Thus a = /A = A6 so

that a is divisible.

PROPOSITION 1.3. ,4 torsion-free module is injective if and only if it is

divisible.

PROOF. The necessity of the condition follows from 1.2. To prove

sufficiency assume A torsion-free and divisible. Consider a homo-

morphism/: /-> A where / is a non zero ideal of A. Then for each

A c /, A ^ there is a unique aA e A such that /A = AaA . If p e /, // ^ 0,

then

=
/{/A =/(A//) = A(/u) =

so that aA
=

a^
= a. Thus /A = Aa for all A e / and X is injective by

1,3.2.

Since A is commutative, it follows from n,3 that for any functor T
defined for A-modules A whose values T(A) are groups, we may regard

T(A) as a A-module. It also follows from n,3 that A A C may be

regarded as a A-module with A(a c)
= (Aa) c = a Ac and similarly

for HomA (/4,C). Thus Tor^ (A,C) and Ext^ (/i,C) are A-modules. We
shall write , Horn, Torn , Ext

n
omitting the symbol A.

PROPOSITION 1.4. If thefunctor T is covenant and right exact and A is

divisible then T(A) is divisible. If T is contravariant and left exact and A
is divisible then T(A) is torsion-free. IfTis covariant and left exact and A
is torsion-free then T(A) is torsion-free. If T is contravariant and right

exact and A is torsion-free then T(A) is divisible. If A is divisible and

torsion-free then T(A) also is divisible and torsion-free for anyfunctor T.

PROOF. For each Ac A consider the A-endomorphism A: A -> A

given by a Xa. Then A is divisible if and only if A > A > is

A

exact for all A 7^ 0, and A is torsion-free if and only if * A - A is

exact. This implies the conclusions above, since the map T(A): T(A)->

T(A) by definition coincides with A: T(A) -> T(A).

COROLLARY 1.5. If either A or C is divisible then A C is divisible.

IfA is divisible or C is torsion-free then Horn (A,C) is torsion-free.

PROPOSITION 1.6. If A is a finitely generated torsion module then for
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any functor T the module T(A) is a torsion module. IfT is covariant and

of type LS* (i.e. T commutes with direct limits) thenfor any torsion module

A, T(A) is a torsion module.

PROOF. If A is a finitely generated torsion module then there is a

AA, A T such that the homomorphism A: A-*A is zero. Then

A: T(A)-^ T(A) also is zero and T(A) is a torsion module. The second

part of the proposition is immediate.

COROLLARY 1.7. If A or C is a torsion module, then Torn (A,C) is a

torsion module.

This follows from vi,K3 and from 1.6.

PROPOSITION 1.8. If A is a torsion module and C is divisible then

A <g) C = 0. If A is a torsion module and the module C is torsion-free,

then Horn (A,C) = 0.

PROOF. Consider a c A C. If A is a torsion module there is

an element A * A, A ^ with fa = 0. If C is divisible then there is a

c' e C with Ac' = c. Thus a c a Ac' = oA c' = 0. The other

half of the proposition is obvious.

Let A be a A-module. For each A e A the mapping a -> A0 is a

A-homomorphism A: A-+A. We denote

XA= Ker(A: A~*A\
XA = Im(A: /< -> >0,

y^ = ^/A^ = Coker A.

Since A is an integral domain it follows that A: A-> A has zero

kernel for A 7^ 0. Thus the sequence

A-^A * A*

is exact. Since A is projective this sequence yields a projective resolution

of A A . Thus we find

Torj (A^C) =-
AC, Torw (AA,C) - for n > 1

Ext 1
(AA,C) - CA , Ext" (AA,C) =0 for n > 1 .

In some cases these formulae and direct sum properties facilitate the

computation of Torn and Ext".

2. THE FIELD OF QUOTIENTS

We shall denote by Q the field of quotients of A and will write

K==Q/A. Thus

0-> A-+Q-+K-+Q
is an exact sequence. Since Q is torsion-free and divisible, it follows

from 1.3 that Q is injective. K is divisible but in general is not injective.
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Since Q is torsion free and divisible it follows from the last part of

1.4 that all the modules Q A, Horn (A 9 Q), Extn (Q,A) are torsion free

and divisible and therefore injective.

Since Q is the union of its submodules - A for a A, a ^ 0, it follows
a

1

that Q is the direct limit of the projective modules - A. Since Torn and
a

direct limits commute, we obtain

(1) Torn(C,^)=0 /i>0.

It follows that for any module A we have the exact sequence

To ri (K,A)^A-^QA
where A has been identified with A <g> A.

PROPOSITION 2. 1 . The kernel of the homomorphism

<p: A-* Q A

given by a -> 1 a is the torsion submodule tA.

In view of the exact sequence above, we obtain the equivalent formu-

lation

PROPOSITION 2.2. The homomorphism

y>:

maps Torx (K,A) isomorphically onto tA.

PROOF. Since Q is the union of its submodules - A for a A, a ^ 0,
a

it follows from the fact that and direct limits commute, that the kernel

of 9? is the union of the kernels of

<pa : A-+ (- A
j

A

where <pa
= 1 a. Consider the mapping

X-> A yl

given by /a I
- A I a = Aa. Since/a is an isomorphism, the kernel of

9?a coincides with the kernel of/a^a : X -> >4. This latter map is a

Thus the union of the kernels of 9?a is tA.

PROPOSITION 2.3. If C is torsion-free then the sequence

(2) 0->C-^e C->#<g>C->0
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is exact. If A is a torsion module, then this exact sequence yields an

isomorphism

(3) Horn (A,K <g> C) w Ext 1
(A,C).

In particular, taking C = A, we obtain the isomorphism

Horn (/*,)** Ext 1
(>*,A),

for any torsion module A.

PROOF. The exactness of (2) follows from 2.1 since C is torsion-free.

If A is a torsion module then \iom(A,Q C) --= 0, since Q C is

torsion-free. Since further Q C is injective we have ExtX^iC O
= 0. This implies (3).

PROPOSITION 2.4. Every finitely generated torsion-free module admits

a monomorphism into a free module with a finite base.

PROOF. Since the module A is torsion-free we may regard A as a

submodule of Q A. Let (al,...,a n ) be generators for A. Then

Q A regarded as a vector space over Q is finite dimensional and has

a base (e^ . . . , em). Then a
t

=-
S^,,*, where

</
c . Let A A,

A 76 be such that all
A<^

e A. Then

a.-.S^HA-if,)
so that /4 is contained in the A-submodule F of Q A generated by the

elements A" 1

^, j 1, . . . , m. Since F is free with (A"
1
^, . . . , A"

1^^
as base, the proposition follows,

PROPOSITION 2.5. If P is a projectile module, ?' a projective sub-

module of? and A is torsion-free, then the homomorphism

P' A->P <S> A

induced by P' -> P is a monomorphism. Equivalently

^ (P/P',A) - 0.

PROOF. Since tensor products and direct limits commute we may
limit our attention to the case when A is finitely generated. By 4.2 we

may then regard A as a submodule of a free module F. There results a

commutative diagram
P' A->P A

I 4P'F->PF
Since P\ P and F are projective, both vertical and the lower horizontal

homomorphisms are monomorphisms. Thus P' A -> P A also is a

monomorphism.
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PROPOSITION 2.6. Any module A admits a monomorphism into a

divisible module.

PROOF. Choose an exact sequence O^^Af->P->^4->0 with P
torsion-free (e.g. projective or free). Then, by 2.1, P-^P$$>Q is a

monomorphism. Consequently Coker (M -> P) -> Coker (A/ -> P
is amonomorphism. Since ,4 s Coker(M -> P) and Coker(M -> P <8>

is divisible, the conclusion follows.

3. INVERSIBLE IDEALS

PROPOSITION 3.1. 7>i order /A0/ module A be projective it is necessary
and sufficient that there exist a family {0a} of elements of A and a family

fax) of homomorphisms <pa : A -> A such that for all a A

(1) *=Z.(9V*)fl.

w/iere 9>a /5 zerofor all but a finite number of indices a.

PROOF. Let y>: F-> ^ be a homomorphism of a free module with

base {ea} onto A, and let aa = y(ea). In order that A be projective it

is necessary and sufficient that there exists a homomorphism 9? : /I -> F
such that ^93

=
identity. If we write <pa Sa(<paa)ea we obtain homo-

morphisms 9?a : A -> A such that for each a e /I we have <pa
= for all

but a finite number of indices a. The condition yip = identity is then

equivalent with

* = 2a(<paaK
for all a A.

The above proof did not utilize the fact that A is an integral domain
and is therefore valid for modules over any ring.

PROPOSITION 3.2. In order that a non-zero ideal I of A be projective
it is necessary and sufficient that I be an inversible ideal, i.e. that there exist

ft, . . . , qn Q and av . . . , an e / with qj C A, 2 t qta,
=

1, / = /..... n.

PROOF. Assume / inversible and define <p t
x = q t

x for x I. Then

<?<i

: / -> A and

Thus, by 3.1, /is projective. Assume now that / is projective and let

KJ faa) be as in 3. 1 . Then for each a we have xfyjr) = <pa(x)>)
=^ X^a^)-

Thus
<7a
=

(9?ax)/x for x c /, x ^ is an element of g such that y^y = q^y
for all y I. It follows that qj C A. If x ^ then <pajc

= q^x is zero

for all except a finite number of indices a. It follows that all
</a except

for a finite number are zero. Condition ( 1) of 3. 1 yields

x =
which is equivalent with Sa9a a

= 1 . Thus / is inversible.

PROPOSITION 3.3. Every inversible ideal isfinitely generated.
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PROOF. Let / be an inversible ideal, b c /. With q l
and a

i
as above

we have ^q t
ba

t
= b and qjb A. Thus a

l9 . . . , an generate /.

PROPOSITION 3.4. Let I be an inversible ideal in A and A a divisible

module. Then the mapping Horn (A,A) -> Horn (I,A) induced by /-> A
/5 an epimorphism. In other words for each homomorphism f: 1-*A
there is an element a A with ft = fa for all A e /.

PROOF. Since / is inversible there exist ql9 . . . , qn c Q and

AJ, . . . , An / such that

qj C A, %,At
= 1-

Since /4 is divisible, there exist elements a
t
e A with /A,

= A
t t , / = 1, . . . , H.

Then

Thus setting a = S/^AJa, yields/A = fa

From the exact sequence

Horn ( A,/t) -> Horn (/,/!) -> Ext 1
( A//,/l) ->

it follows that the conclusion of 3.4 may also be stated as Ext 1
(A//,^) == 0.

4. PRUFER RINGS

It follows from 3.2 that an integral domain A is semi-hereditary if

and only if every finitely generated ideal is inversible. Such rings are called

Prtifer rings. By vi,2.9, we have Tor;
x = for n > 1 and Tor^ is left

exact for such rings A.

PROPOSITION 4.1. A is a Prtifer ring if and only if every finitely

generated torsion-free A-module is projectile.

PROOF. If every finitely generated torsion-free A-module is pro-

jective, then every finitely generated ideal in A is projective and A is a

Prufer ring. If A is a Priifer ring then it is semi-hereditary and by
1,6.2 every finitely generated submodule of a free module is projective.
Thus the result follows from 2.4.

PROPOSITION 4.2. // A 15 a Prufer ring, then A is torsion-free if and

only i/Trfrj (X,A) =-- Ofor all modules X.

PROOF. If To^ (K,A )
= then, by 2.2, lA = and A is torsion-free.

Conversely assume A torsion-free. Then by 4.1 each finitely generated
submodule An of A is projective. Thus Torj (A^J = 0. Since

A = Lim Aa , and Tor
x commutes with direct limits, it follows that

(X,A) = 0.
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COROLLARY 4.3. If A is a Prufer ring and C is torsion-free then the

functors A C and C A are exact functors of A.

PROPOSITION 4.4. If A. is a Prufer ring then the homomorphisms

are isomorphisms.

PROOF. Since the module /1/M is torsion-free, it follows from 4.2 that

Torx (AjtA.C) 0. Since also Tor2
= 0, it follows from exactness that

1orl (tA,C)-^1orl (A,C) is an isomorphism. The other isomorphisms
are established similarly.

PROPOSITION 4.5. If A is a Prufer ring and A and C are torsion-free

then so is A C.

PROOF. Since A is torsion-free it follows from 2. 1 that the sequence
-> A^> Q ^4 is exact. Since C also is torsion-free, 4.3 may be applied

to give the exact sequence 0->>XC->QXC Thus by 2.1,

A C is torsion-free.

PROPOSITION 4.6. If A is a Prufer ring, then Torx (A,C) always is a

torsion module.

This follows directly from 4.4 and 1.7.

5. DEDEKIND RINGS

It follows from 3.2 that an integral domain A is hereditary if and only
if every ideal is inversible. Such rings are called Dedekind rings. It

follows from 3.3 that a Prufer ring is a Dedekind ring if and only if it is

Noetherian.

For any functor T defined for A-modules over a Dedekind ring, the

derived functors Rn
T, LnT and the satellites Sn

T, 5n7are zero for n > 1.

The functor R 1T is right exact and L^T is left exact.

PROPOSITION 5.1. For each integral domain A the following properties
are equivalent:

(a) A is a Dedekind ring.

(b) Each divisible A-module is A-injective.

PROOF, (a) -* (b). If A is a Dedekind ring then each ideal / of A is

inversible. Thus 3.4 and 1,3.2 imply that each divisible module is injective.

(b) -> (a). Since each quotient of a divisible module is divisible it

follows that each quotient of an injective module is injective. Thus, by
1,5.4, A is hereditary, and therefore a Dedekind ring.
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PROPOSITION 5.2. IfA is a Dedekind ring then the homomorphism

Ext 1
(A,C) -+ Ext 1 (A,qdC)

is an isomorphism.
This follows from the fact that Ext 1

(A,dC) and Ext2
(/4,<5C) are zero

since dC is divisible and thus injective.

PROPOSITION 5.3. IfA is a Dedekind ring, then the module A is torsion-

free ifand only //Ext
1
(A,C) is divisiblefor all modules C.

PROOF. If A is torsion free, then since Ext 1
is right exact, it follows

from 1.4 that Ext 1
(A 9C) is divisible. To prove the converse we use the

isomorphism (vi,3.5a)

Ext 1 (, Ext 1
(A,C)) a* Ext 1

(Torx (B,A),C).

If Ext 1
(A,C) is divisible, then by 5.1, it is injective. Therefore the expres-

sions above are zero. Since Ext 1

(To^ (B,A),C) = for all C it follows

from vi,2.2 that Torx (B,A) is projective, and therefore, by 1.1, is torsion-

free. However, by 1.7, To^ (B,A) is a torsion module, so that

To^ (B,A) = 0. Since this holds for all B it follows from 4.2 that A is

torsion-free.

REMARK. 5.1 combined with 2.6 yield a new proof that every A-

module A (where A is a Dedekind ring) admits a monomorphism into an

injective A-module. In particular, this is valid if A = Z is the ring of

integers (see remark at end of 11,6).

6. ABELIAN GROUPS

We shall assume in this section that A = Z is the ring of rational

integers. All modules considered are then simply abelian groups. The

results established for Dedekind and Priifer rings, all apply in this case.

In particular "injective" means "divisible." Since a subgroup of a free

abelian group is again a free abelian group it follows that "projective"

means "free."

Let R denote the additive group of real numbers and let T = R/Z be

the group of reals reduced mod 1 .

For each abelian group A, the group Horn (A,T) will be called the dual

of A and will be denoted by D(A). Since T is divisible it is injective.

Thus Horn (A,T) is an exact functor of A. Consequently D is a contra-

variant exact functor. For the moment no topology is imposed on R,T

and D(A).

Since 7* is injective, vi,5.1 gives an isomorphism

(1) p
1

: Ext1
(A, Horn (B,T)) ** Horn (To^ (A,B),T).
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This implies

PROPOSITION 6.1. For any two abelian groups A and B we have

Ext1
(A 9D(B)) w D(

P

Torl (A 9B)).

As an application we prove
COROLLARY 6.2. If A is a torsion-free abelian group and C is a finite

abelian group, then ExtK/f ,C) = 0.

PROOF. Since C is finite, there is a (finite) group B with C ^ D(B).

Then, by 6.1,

ExtV^C) * Ext\A 9 D(B)) * />(Tor! (A,B)).

Since A is torsion-free it follows from 4.2 that the latter term is 0.

Proposition 6.1 acquires more force if we introduce a topology in some

of the groups that appear.
So far we have dealt only with categories of A-modules and A-

homomorphisms, where A was a ring. Let # denote the category of

compact abelian groups (satisfying the Haussdorf separation axiom) and

continuous homomorphisms. In particular, all the results of iv,l remain

valid for compact abelian groups. The continuity of the connecting

homomorphisms for homology groups is an easy consequence of compact-
ness. When we pass to graded groups A = ^A n

(see w,3) we only

require that each A n be a compact group. We do not impose any topology
on the direct sum A. With this convention, the definition and basic

properties of derived functors remain valid for additive functors whose

values are in the category # of compact abelian groups. The same applies

to satellites. Also the homomorphisms a and a' of iv,6 are continuous.

An example of such a functor is T(A) = Hom(/4,C), where A is a

discrete group and C is a compact abelian group, with the topology in

Horn (A 9C) defined as follows. Given a finite subset FofA and a neighbor-
hood of zero Kin C, we consider the set ff(F, K) of all/ Horn (A 9C) with

/(F)C V. We consider in Hom(A 9C) the topology in which the sets

W(F9 y) form a fundamental system of neighborhoods of zero. In this

topology Hom(A 9C) is compact (and satisfies Haussdorf's separation

axiom) and for each <p: A -> A' 9 Horn (<p,C): Horn (A' 9C) -> Horn (A 9C)
is continuous.

Let A and B be discrete abelian groups and let C be a compact abelian

group. It is immediate that the isomorphism

Horn (A 9 Horn (B9Q) ** Horn (A B9C)

is a topological isomorphism. In particular, taking C = T with its

natural topology derived from the representation T= R/Z 9 we obtain

the topological isomorphism

Horn (A 9 D(B)) ** D(A B).
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Ifwe consider the right derived functors of the functorT(A)= Horn (A,C)
with C compact, we find Ext 1

04,C) has a natural topology and is a compact

group. Further all the homeomorphisms used to define p
l in vi,5 being

continuous, p
l

is continuous and therefore is a homeomorphism (since

the groups are compact). It follows that the isomorphism of 6.1 is

topological.

7. A DESCRIPTION OF Toi^ (/1,C)

We consider an exact sequence

(S) 0^ A ->/?-> 7->0

where A is an integral domain and R is a divisible and torsion-free

A-module ; the exact sequence

(S') 0-* A^Q->K-+Q
is an example of such a sequence. It is clear that Q may be regarded as a

submodule of R. Since, by 1.3, Q is injective we have a direct sum

decomposition R =-- Q + R' where R' again is divisible and torsion-free.

Consequently T = K + R' and (S) is obtained as the direct sum of (S') and

a trivial exact sequence -> -> R' -> R' -* 0.

Since, by 1.3, R is injective we have the exact sequence

Horn (AJ) -^ Ext 1
(A,A)

and since Horn is left exact we obtain an exact sequence

Horn (Ext
1
(A,A),C) -^ Horn (Horn (A,T),Q.

Combining 9" with the homomorphism

a^. To^ (/l,C)-> Horn (Ext
1
04,A),C)

of vi,5 we obtain the homomorphism

?<?! : To^ (A,C) -> Horn (Horn (/4,7),C)

which is the object of study of this section.

PROPOSITION 7.1. IfA is a Dedekind ring then (pal is a monomorphism.

//further A is afinitely generated torsion module then q>ol is an isomorphism.
PROOF. It follows from vi,5.5 that ^ is a monomorphism. Since <p

also is a monomorphism, it follows that ya^ is a monomorphism.
Assume now that A is a finitely generated torsion module. Then a^

is an isomorphism by vi,5.4. To show that <p is an isomorphism it suffices

to show that r: Horn (A,T)-+ ExtH^A) is an isomorphism. However
T= K+R' and we have already shown in 2.3 that Horn (A,K)-> Ext 1

04,A)
is an isomorphism (if A is a torsion module). Since A is a torsion module

and R' is torsion-free we have Horn (A,R')= 0. Thus r is an isomorphism.
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We now assume that A = Z is the group of integers, that R is the group
of real numbers and that T= R/Z. Then 7. 1 can be applied and we
obtain a monomorphism

: Torx (A,Q -> Horn (D(A),C).

In D(A) = Horn (A,T) we have the (compact) topology defined in the

preceding section.

PROPOSITION 7.2. Let A and C be discrete abelian groups. Then the

homomorphism

9?<V. Tor, (A,C) -* Horn (D(A\C)

maps Torl (A,C) isomorphically onto the subgroup Homc (D(A),C) of
Horn (D(A),C) consisting of all continuous homomorphisms D(A) -> C.

PROOF. Let Aa be a finite subgroup of A. We then have a commuta-

tive diagram

Tori C4a,C) Horn (D(A Qi\C)

^ (A,C) ^ Horn (D(A),C)

Let x Tort (A^C). Then (p^ (/a;c) admits a factorization

Since D(A a) is finite it follows that (pol (i^x) is continuous. Since each

element of Tort (A,C) is in the image of ia for some finite subgroup /4a , it

follows that Im 9?^ C Homc (D(X),C).

Conversely, let /: D(A) -> C be a continuous homomorphism.
Since C is discrete there is a neighborhood W(F,y) of zero in D(A) such

that /maps W(F,V) into zero. In particular, if <p D(A) is such that

q>(a)
= for all a F, then <p c W(F,V) and/9? = 0. Let A' be the sub-

group of A generated by the finite set F. It follows that / admits a

factorization

D(A)

where D(A) -> D(A') is induced by the inclusion A' -+ A and g is

continuous. The group A' being finitely generated, its torsion subgroup
t(A') is finite and A' is a direct sum of t(A') and a subgroup E isomorphic
with Zn (= direct sum of n factors isomorphic with Z). Since D(Z) & R
we have D(Z

n
) ** Tn which is connected. Since D(A ')

= D(t(A'))+ D(Z
n
)

and g is zero on the connected part Z)(Z
n
), it follows that g admits a

factorization D(A') -> D(t(A')) -* C. Consequently/admits a factoriza-

tion



EXERCISES 139

Taking Aa
= t(A') in the diagram above, we find that/ is in the image

ofya . Since by 7.1, <pala is an isomorphism, it follows that /is in the

image ofj^(pala
= cpa^ and thus in the image of 9?^. This concludes the

proof.
If we combine 7.2 with 6.1 we obtain a natural isomorphism

Ext(A,D(C)) D[Hom c (D(A),C)]

of compact groups. This result was established by Eilenberg-MacLane

(Ann. of Math. 43 (1942), 757-831) using the notion of a "modular trace."

EXERCISES

1. It A and C are finite abelian groups, then

Horn (/i,C) ** A C ** Tor! (X,C) * Ext 1
(/4,C).

Show that these isomorphisms are not natural. Give an example of two

infinite torsion groups A, C such that A C = 0, To^ (A,C) ^ 0.

2. If A is a Dedekind ring, any torsion module has an injective resolu-

tion consisting of torsion modules. Using this, prove that the right

derived functors R"U(A,C) of U(A<C) = A C are zero for any n ^ 0,

whenever A or C is a torsion module [Hint: use 1.8].

3. For any integral domain A, let U(A,C) denote the functor A C,

and let Q denote the field of quotients of A. Prove that

RU(A,C)= QAC
when A and C are torsion-free.

[Hint: consider exact consequences

0-> A~+ Q A-* (C/A) A ->

0-*C-> Q C-

-> ( QlA) A -

where -V, and Y
l
are injective. Then

(Y) GC- ^-^^-^y,^...

are injective resolutions of A and C. In the complex X Y, d is zero,

because (g/A) /4 YQ and A'Q (C/A) C are zero by 1.8.]
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4. Let A be a Dedekind ring; then, denoting by U(A 9C) the functor

A C, prove that

)
= QAC, Rn

U(A,C) = (n I> 1)

for all modules A and C.

[Hint: using Exer. 2, prove first that

Rn
U(A,C) ** Rn

U(A/tA,C/tC).

Then, using Exer. 3, prove that

)
= g(8)>* C.

Finally, observe that Q <%> A C = V(A,C) is an exact functor, whenever

A is a Priifer ring.]

5. Consider the functor

T(A) = A C,

where C is a given torsion module, the ring A being an integral domain.

Prove that

RT(A) = for any n I> 0.

Then using Exer. v,4, prove that the right satellite of the functor

7\ (A) = Tori (A,C)

is A C, whenever C is a torsion module. If follows that, assuming that

A is a PrUfer ring, the right satellite of T^A) = To^ (A,C) is A <g> (tC)

for any module C.

6. Consider the functor

T(C)= HomA 04,C)

where A is a torsion module, the ring A being an integral domain. Prove

that

LnT(C) = for any n ^ 0.

Then prove that the left satellite of the functor

is HomA (A,C), whenever A is a torsion module. If A is a Dedekind

ring and A is finitely generated, the left satellite of Tl
(C) = E\i\ (A,C) is

HomA (M,C).
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7. With the notations of 7, define a natural map

u: Tor! C4,C)-> Horn (Horn (A,T) 9C)

by setting, for x c To^ (A,C) and/* Horn 04,7),

(wx)/== v(wfx),

where w,: To^ (y4,C)-> Tor^T^C) is induced by/, and i>:

-> A C = C is the connecting homomorphism induced by the exact

sequence (S') of 7. Show that, with the notations of 7,

u + (pat
= 0.

[Hint: use Exer. vi,18.]

8. For each Z-complex X, Z-module G and prime /?,
establish the

natural isomorphism

//"(Horn (*,(?)) Horn (Hn(X,),G),

where PG denotes Ker(/?: G-*G) and A^ denotes ATpJf. Derive the

isomorphism
Ext1

04, PG) Horn ( VA,G)

for each Z-module A. [Hint: note that Homz (A
r

, pG) ^ Homz (ArpfpG)
and apply the isomorphism a' over the field Zp ; cf. iv, 7,2.]

p
Assume that X is torsion-free. The exact sequence

>X *X *XP K)

yields a homomorphism

Combine this with the above to obtain a homomorphism

Hn
(Horn (A-,G)) -> //n+1 (Horn (r, pG).

9. Let A be a commutative ring and S a subset of A with the following

properties: (1) is not in 5; (2) 1 e 5; (3) 5 is closed under multiplica-

tion. For each A-module A consider the set of all pairs (a,$), a e A 9

s 5", and consider the relation

(<V) * (a'/)

which means: there exists / S such that <u'f = dst. Show that this is

an equivalence relation, and that the set of equivalence classes As is a

A-module under the operations

(a,s) + (aV) - (of' + *'*, 55'),
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Show that 0->(0,l) yields a A-homomorphism A-+AS whose kernel

consists of all those a e A with as = for some s S.

Convert AxS into a ring by setting (A,s)(A',,s')
= (W,ss')> and show that

the mapping A - (A,l) yields a ring homomorphism 9?: A -> A#. Convert

As into a A5-module by setting

and show that the mapping (a,s) -> a 0(1,5) yields a A^-isomorphism

Show that if y4 is a Ag-module, then, if we regard A as a A-module we
have As = A.

10. Show that the functor T(A) = As as described in Exer. 9 is

exact, i.e. that A5 is A-flat. Apply the results of vi, Exer. 10, and in

particular show that

w.dimA4g = w.dimA As .

Apply vi, Exer. 1 1 to obtain the isomorphism

and similar homomorphisms for Ext.

11. Let A be a commutative ring and let M denote the set of all subsets

M of A such that A M is a maximal ideal. Show that for each A-
module A the relation AM = for all M e M implies A = 0. Use this

and Exer. 10 to show that

w.dimA A sup w.dimA A v .

AfM M

If A is Noetherian and A is finitely generated, then show that

dimA A == sup dimA AM
A/ M *

[Hint: use vi, Exer. 3.]

12. Let A be a finitely generated abelian group, A ^ 0. Show that

there exists a prime p such that A Zp ^ 0. As an application, let A
and B be two abelian groups, with A finitely generated and B free; let

/: A -> B be a homomorphism such that the induced homomorphism
A Zp-* Z,, is a monomorphism for each prime /?;

show that /
is a monomorphism and A is free. [Hint: consider AT= Ker/, and
observe that W is a direct summand of A.]



CHAPTER VIII

Augmented Rings

Introduction. The homology (and cohomology) theory of augmented

rings is the unifying concept of which various more specialized instances

will be studied later: homology of associative algebras (Ch. ix),

homology of supplemented algebras (Ch. x), homology of groups (x,4)

and homology of Lie algebras (Ch. XHI).

Sections 1-3 are devoted to a general exposition, with some examples.
The subject matter of 4-6 is more special; we show how the theorem of

"chains of syzygies" of Hilbert ties up with the general notion of the

"project!ve dimension" of a module. This theory is valid either for

graded rings or for local rings which are Noetherian.

1. HOMOLOGY AND COHOMOLOGY OF AN AUGMENTED RING

A left augmented ring is a triple formed by a ring A (always with a unit

element), a left A-module (?, and a A-epimorphism e: A-> Q. The
module Q is called the augmentation module, is called the augmentation

epimorphism, the kernel / of e (a left ideal of A) is called the augmentation
ideal.

We consider the functors

T(A) - A A e, U(C) - HomA (C,C),

where A is a right A-module and C is a left A-module. The groups

Tor (A,Q) = Sn T(A), Ext (0,C) - Sn
U(C)

are called the w-th homology (resp. cohomology) group of the augmented

ring A, with coefficients in A (resp. in C).

Strictly speaking SnT(A) and Sn
U(C) are abelian groups. However if

AorC have any additional operators which commute with the operators of

A, then, following the principles of n,3, these additional operators carry
over to SnT(A) or Sn

U(C). In particular, we may always regard these

groups as modules over the center of A.

To compute SnT(A) and Sn
U(C), we can use a A-projective resolution

X of A and a A-injective resolution Y of C. Then

Totf (A,Q) - Hn(X A 0, Ext (Q,C) = H\ HomA (Q, 7)).

143
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In the case of Tor (A 9Q) 9 this method of computation is due to H. Hopf
(Comment. Math. Helv. 17 (1945), 39-79) who used this process to define

homology groups of (discrete) groups.

It is often more convenient to compute using a A-projective resolution

XofQ. Then

,Q) = Hn(A A X\ Ext (g,C) = Hn
( HomA

The resolution X consists of a complex

w^ irr Y^ \T-* A n > A n-i > ' * * -> *i > A

and an augmentation map X -> Q such that the modules Xn are

A-projective (n ^ 0) and the sequence

is exact. Since the sequence

(1) */ *A-^*Q +Q

is exact, we can always begin the construction of X by choosing X A
and letting XQ -> Q coincide with e. The remainder of the construction

reduces to choosing a projective resolution for the left A-module /.

The exact sequence (1) gives rise to connecting homomorphisms for

Tor and Ext. Since A is A-projective we have Tor (A,A) =
= ExtA (A,C) for n > 0. This implies the isomorphisms

(2) T(A) = A A Q ** Coker (A A /-> A)

(2a) C/(C) = HomA (g,C) Ker (C -> HomA (/,C))

(3) ^^X) = Tor^ (A,Q) ** Ker (A A /- /4)

(3a) S^C) = Ext^ (g,C) ^ Coker (C -> HomA (7,C))

(4) SnT(A) = Tor^ (^,fi) Tor^.! (^,7) (n > 1)

(4a) Sn
t/(C) = Ext^ (C,C) w Extr

J (AQ (/j > 1).

The functors Tn(A) = SnT(A) and C/
n
(C) = Sn

U(C) (n ^ 0) are co-

variant functors in the variables A and C. Further they form connected

sequences of functors : more precisely, given exact sequences

(5) 0->A'^A->A"->0

(5a) 0->C'-
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we have the exact sequences

(6)
- -> Tn(A') -> Tn(A) -> Tn(A") -+ Tn_,(A

f

)
- -

(6a)
----> C/'-HO-* t/

n
(C")-> C/

n
(C)-> t/

n
(C")->

' ' '

In view of v,8 these sequences may be computed as the homology sequences
of the following exact sequences of complexes

(7) 0-4' A X-+A

(7a) -> HomA (X,C) -+ HomA (X,C) -+ Hom

where A" is a projective resolution of Q.
THEOREM 1.1. The connected sequence of covariant functors

Tn(A) = Tor (A,Q) of the variable A has thefollowing properties:

(i) for each exact sequence (5), the sequence (6) is exact;

(ii) Tn(A) = ifn > am/ X w A-projective;

(iii) r (/l)
- X A Q.

These three properties characterize the connected sequence of functors
Tn(A) = Tor^ (A*Q) up to an isomorphism.

THEOREM 1.1 a. The connected sequence of covariant functors
Un

(C) = Ext^ (g,C) of the variable C has thefollowing properties:

(i) for each exact sequence (5a), the sequence (6a) is exact;

(ii) Un
(C) = ///i > 0/u/ C w A-injective;

(iii) (/(C)-HomA (G,C).
These three properties characterize the connected sequence of functors
Un

(C)=^ E\i\(Q,C) up to an isomorphism.
The properties listed in 1.1 and 1.1 a are special instances of the pro-

perties of the functors Tor and Ext. The fact that these properties

constitute axiomatic descriptions, follows from m,5.1.

So far we have considered left augmented rings. The definition of

right augmented rings and the ensuing discussion are quite similar with

T(A) = Q A A and U(C) = HomA (0,C).

If the augmentation ideal / is a two-sided ideal in A, then Q = A/7 is a

ring, which may be regarded as a left and as a right A-module; thus in

this case A is simultaneously a left and a right augmented ring. Since A
operates on the right on Q it follows that for each right A-module A, the

group Tn(A) = Tor (A 9Q) is again a right A-module. Similarly for

each left A-module C, Un
(C) = Ext (f?,C) again is a left A-module.

Assuming again that / is a two-sided ideal of A, we may replace A by

Q in the formulas (2), (3), (4) (Q being considered as a right A-module).
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If we observe that Q A / ^ 7//
2

(7
2
being the image of the homo-

morphism / A /-* A A /= /) and that the homomorphism
Q is zero, we obtain

(8)

(9) SilXG) = Toif (6,0 w G A / ///
2

(10) S2T(Q) = Tor (6,0 Tor* (&/) Ker (/ A 7 -> /).

2. EXAMPLES

In the following examples, / will be a two-sided ideal in A.

Graded rings. A graded ring is a ring A which is graded as an additive

group, the grading satisfying the conditions

A" = for/?<0, A'A'CA**.

It follows that A is a subring which we denote by Q. We define the

epimorphism e: A -> Q by assigning to each element X its homogeneous

component of degree zero. The augmentation ideal is the two-sided ideal

which consists of all elements with a vanishing zero-component.
We list some examples ofgraded rings. Let K be a ring, and xl9 .. . 9 xn

a set of letters. We denote by A = FK(xl9 . . . , xn) the free left K-

module having as a base the elements

1, Xt9 X^X^ ... X^ . . . X
t^9 . . .

where each index i
t
assumes any value l,...,/i. The module A is

graded by regarding xt x{ as a homogeneous element of degree m.

We define a multiplication in A by setting

The resulting graded ring FK(xl9 . . . , xn) is called the free AT-ring on the

letters xv . . . , xn .

If we divide FK(xl9 . . . , xn) by the two-sided ideal generated by the

elements x
tx, x^xi9

we obtain the graded A-ring K[xl9 . . . , xn] 9 called

the polynomial K-fmg on the letters xl9 . . . , xn .

If we divide FK(xl9 . . . , xn) by the two-sided ideal generated by the

elements x
t
*

t
and xt

x
t + x,jtt , we obtain the graded tf-ring EK(xl9 . . . , xn)

called the exterior (or Grassmann) /T-ring on the letters xl9 . . . , xn .

For n = 1 the exterior ring EK(d) is easily seen to be the ring of dual
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numbers A = (K,d) over K, as defined in iv,2. The elements of A are of

the form A^ + k2d, the multiplication being given by

(*! + MX*! + *;</)
=

k,k\ + OMi + k2k()d.

The augmentation epimorphism e is defined by

We find a A-projective resolution A" of A: by taking Xn
= A for all w ^> 0,

and defining rfn : A^-^A^-iby

rfn(A:1 + k2d) = k,d (n > 0).

For each right A-module A, i.e. for each right K-moduleA with differentia-

tion operator rf, the complex A A X is simply

_, A
dn . _ A *i A--> ^4 * ^4 " --" A *A

where dn -= ^/. Thus Tor^ (A,K) as a right ^T-module, coincides with the

homology module H(A) for n > 0, and >4 A A: = Coker d= Z'(/l).

Similarly, for each left A-module C, the complex HomA (A^C) simply is

d dnC+C-* ---->C >C *

where rf
n == d. Thus Ext (/T,C) - //(C) for AI > 0, and HomA (K,C)

The exact sequences (6) and (6a) of 1 can be seen to coincide with

those of iv, 1.1.

Another class of augmented rings is the class of local rings. A ring A
is called a local ring if it satisfies the following condition :

(LC) The elements of A which do not have a left inverse form a left

ideal I.

PROPOSITION 2.1. I is a two-sided ideal and contains all proper left and

right ideals of A. The elements of I have neither left nor right inverse,

while the elements not in I have a two-sided inverse. Thefactor ring A/7 is

a (not necessarily commutative) field.

PROOF. IfJ is a proper left ideal then no element of/ has a left inverse.

Thus J C/.

Next we show that no element of / has a right inverse. Indeed,

suppose that xA = 1 for some x I. Then (1 Ax)A = and since

Ax / it follows that 1 AJC is not in / so that 1 Xx has a left inverse y.

Then A = y(l Ax)A = 0, a contradiction.

For each A e A, /A is a left ideal and since xA ^ 1 for x /, /A is a

proper left ideal. Thus /A C / so that / is a right ideal.

Now consider A not in / and let y be a left inverse of A. Then /A = 1



148 AUGMENTED RINGS [CHAP. VIII

and since / is a right ideal it follows that y is not in 7. Thus y has a left

inverse . Then = yA= A. Thus Ay= y= 1, which shows that

A has a two sided inverse. Since / consists of all the elements which have
no right inverses, it follows as above that /contains all proper right ideals.

The conclusion that A/7 is a field follows from the facts established

above.

Because of 2.1, there is no distinction between left and right local

rings. The maximal (two sided) ideal 7 of a local ring A defines A as an

augmented ring with Q = A/7 being a field. Important examples of

local rings are the following two :

K[[xl9 . . . , xn]] 9 the ring of formal power series in the letters xl9 . . . ,xn
with coefficients in the field K.

K{xl9 . . . , xn } 9 the ring of convergent power series in the letters

*lf . . . , xn with coefficients in a commutative field K with a complete
non-discrete valuation.

In both cases the ideal 7 is generated by the elements xl9 . . . , xn .

Another important class of augmented rings is furnished by the ring of
a monoid. A monoid II is a multiplicative associative system with a unit

element 1. Given a ring K we define the ring K(H) as the free ^-module

generated by the elements x II, with multiplication defined by

(kx)(k'x') = (kk')(xx') 9 k 9k' e K, x9x
f

0.

We observe that if II is the free monoid generated by the elements

*!,..., xn9 then A:(II) may be identified with the free tf-ring

FK(X\> *J- If H is the free abelian monoid generated by xl9 . . . , xn ,

then K(fl) may be identified with the polynomial ring K[xl9 ... 9 xj.
Given a ring K(U) 9 there are many possibilities for defining an

augmentation s: K(Tl)-^K. We shall only consider multiplicative

augmentations which satisfy the following condition

e(kl) = k.

Such an augmentation is determined by a function ^ : II -> K. This

function must satisfy the conditions

(1)

and p must take values in the center of K, because of the relation kx = xk
in the ring K(H). Conversely, given a function p satisfying (1) and taking
its values in the center of K9 we define e: K(U) -+Kby

e(kx)= k(fAx);

s is then a multiplicative augmentation, satisfying e(kl) = k.
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The introduction of the ring K(Tl) is motivated by the following remark.

Let Abe a right ^(Il)-module. Then A is a right /f-module and further

each element x U determines a AT-endomorphism of A given by a -+ ax.

These endomorphisms satisfy al = a, (ax)x a(xx
f

). Conversely each

right ^-module with /T-endomorphisms a -* ax for x * n satisfying

the conditions above may be regarded is a right ^(Il)-module.

Thus K(Il) plays the role of an "enveloping ring" for the ring K and the

elements x II. The same applies to left #(n)-modules. An analogous

example of an "enveloping" ring was the ring of dual numbers A = (K,d)

mentioned earlier. There will be other examples later.

Since a good deal of space will be devoted later to monoids and groups,
we shall not pursue the discussion here any further.

3. CHANGE OF RINGS

Given a fixed ring A with a left augmentation e : A -* Q we have

considered the homology groups Tor (A 9 Q) and cohomology groups
ExtA (g,C) as covariant functors in the variables A and C. We shall

now show that in some sense these are also functors of A.

Consider two augmented rings A and F with augmentations

and augmentation ideals /A and 7r . A map y: A-> F of augmented

rings is a ring homomorphism such that <p(JA) C /r . By passage to

quotients we obtain a mapping y>: QA -> Qr such that the diagram

J. I.
r r

er

is commutative. It follows that y>(hx) (<pX) (yx) for A A, x gA .

This shows that y> is a A-homomorphism if we regard Qr as a A-module

by means of <p (see 11,6 and vi, 4).

Let A be a right F-module and C a left F-module. Using y we may
regard A and C also as A-modules. We shall define homomorphisms

(1) F*: TorA (^eA)->Torr (.4,er)

(la) /V Extr (2r,O->ExtA (eA,C).

To this end let XA be a A-projective resolution of QA and XT a F-pro-

jective resolution of Qr . Further let

g- MCA=r A eA -^Cr
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be defined by g(y <8> x) = y(y>x). By n,6.1, F A XA = (<f)
XA is a

F-projective complex over F A QA . Following v,l.l there is a map
C: T A XA ->Xr

over and this map G is unique up to a homotopy. This yields homo-

morphisms

(2) H(A <8>A XA)
= //(/I r (F A JrA -> //(/I r AV)

(2a) //(Homr ( Jfr,O) -> #(Homr (F A *A,C)) = tf(HomA (XA,C)

which are the desired homomorphisms F9 and /y
THEOREM 3.1 (Mapping theorem). In order that Fv be an isomorphism

for all right T-modules A it is necessary and sufficient that

(0 : r <8>A QA w gr

(ii) Tor(r,CA)
= >r > 0.

//* r/r^e conditions are satisfied then Fv also is an isomorphism for all

left T-modules C; and, for any K-projective resolution XA of QA , the

Q

complex F A XA with the augmentation T A XA F A QA * Qr is

a T-projective resolution of Qr .

PROOF. Assume F* is an isomorphism. In particular, taking
A = T, we obtain that F*: TorA (F,eA) ** Torr (r,Qr). This yields

precisely (i) and (ii).

Assume that (i) and (ii) hold and let XA be a A-projective resolution

of QA . Then Hn(T A XA)
= Tor^ (F,QA )

= for n > 0. Thus (i)

and (ii), precisely express the fact that F A XA (with the augmentation
as above) is a F-projective resolution of Qr . Taking XT = F A XA
the map G may be taken to be the identity map. Then (2) and (2a)

become isomorphisms.
The "Mapping theorem" will have many applications.

4. DIMENSION

Let A be a left augmented ring with e: A^> Q and /== Ker 8. We
shall be interested in the projective dimension of Q as a left A-module

(see vi, 2). Clearly LdimA Q <I l.gl.dim A.

PROPOSITION 4. 1 . IfQ is not projective, then 1 + l.dimA /= l.dimA Q.

This is an immediate consequence of vi, 2.3.

THEOREM 4.2. Suppose that I is generated (as a left ideal) by elements

jCj, . . . , xn which commute with each other. Let /
fc(0

< k 5^ n) denote the

left ideal generated by x
t(i^ k). If

(i) (A A and Ax
fc
c 4^) => (X 4^), k = !,...,,

then l.dim.A Q = n, provided Q ^ 0.
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Before we proceed with the proof, we list the three most important

examples to which 4.2 applies. These are:

A = K[xl9 . . . , xw], the graded ring of polynomials in the letters

jclf . . . , xn with coefficients in the (not necessarily commutative) ring K.

A = K[[X!, . . . , Jtj], the ring of formal power series in the letters

xl9 . . . , xn with coefficients in the ring K. If AT is a (not necessarily

commutative) field, then A is a local ring.

A K{x^ . . . , xn}> the ring of convergent power series in the letters

xlf . . . , xn with coefficients in the commutative field K with a complete
non-discrete valuation. This is also a local ring.

In all three cases the augmentation ideal / is the two-sided ideal /

generated by xl9 . . . , xn and A//= K. Condition (i) of 4.2 is verified.

Therefore, by 4.2, l.dimA K= n. (For the case of A= K[[x^ . . . , jcj],

the fact that the dimension of K is finite has been proved by F. Recillas

(unpublished).)

PROOF of 4.2. Since jq, . . . , xn commute, we may regard A as

a (right) module over the ring T = Zfo, . . . , jcj. Let Jk(0 <I k <
n) be

the ideal of F generated by x
t(i <^ k). Then Ik = AJk .

More generally, for each F-module M we shall define a left complex
over the module M/MJn (in the sense of v,l). Consider the exterior

algebra E(y^ . . . , yk) on n letters yl9 . . . , yn with integral coefficients, as

defined in 2. The tensor product (over Z)

is graded by the modules

..., yn).

where E
t(y^ . . . , yn) denotes the group of elements of degree / in

E(yi> Jn)- ^e define an augmentation e: XQ -+ M/MJn as the

natural map of XG
= M onto M\MJn . We define a differentiation

</.: *,-*,_!(/>()) by

\y
+
\mx,) y ^ v

p<

where j? p indicates that 7P is to be omitted. Using the fact that

x
l9 . . . , xn commute with each other, it is easy to verify that </,_!</,

==

for / > 1 and e^ =-- 0.

Before proving 4.2 we establish

PROPOSITION 4.3. If the Y-module M satisfies

(/') (m A/, mxk A/-/*-!) => (m MJk_^) 9 k = 1 , . . . , /i,

then the complex X is acyclic.
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PROOF of 4.3. Condition (/") expresses the fact that the mapping

Af/M/fc.! -> MJkfMJk_i induced by m -> mxk is an isomorphism.
We introduce the left complexes X (k) = M E(yl9 . . . , yk) over

MIJk with differentiation and augmentation defined as above. We want

to show by induction that X (k} is acyclic. For k = this is clear because

J = and Ar<0) = A/. Suppose now that we already know that X {k~ l}

is acyclic over A///M (k > 0). Consider the complex

y<*> :
----^o-;rp>- ---->xy>-+MJk -+Q.

Since the augmentation X (^ = A/ -> M/MJk is an epimorphism with Af/
fc

as kernel, the acyclicity of the complex Ar(fc) is equivalent to H(Y (k)
)
= 0.

Since Y(k~l)
may be regarded as a subcomplex of 7 <A:) and since H(Y (k~ 1}

)

= 0, it follows from the exactness of

H(Y(k}
/ Y<

that it suffices to show that H(Y (k)
/ y<

fc- 1
>)
= 0. To this end we consider

the diagram

where JfJ^-^ X^fXf
~

l) is defined by right multiplication by j^.

The mapping MfMJk^ -* MJk/MJk_l is the isomorphism induced by
m->mxk . This diagram is commutative; the vertical maps are all

isomorphisms, and the upper row is exact by the inductive assumption;
it follows that the lower row is exact, i.e. that H(Y (k >

/ Y (k~1}
)
= 0.

We now return to the proof of 4.2. If we replace M by the ring A
of 4.2, we find that A" is a A-complex. Since the products yVi

-

yVi

(/?!<< />t) form a base for the free abelian group Et(y^ . . .
, yn\ it

follows that X is A-free and has dimension n. Thus A" is a projective

resolution of Q of dimension , so that l.dimA Q^n.
The preceding resolution X of Q = A/7 can be used to express the

homology and cohomology modules of the augmented ring A with any
coefficient module. For a right A-module A, we have

(1) TorA (A 9Q) = H
t(A E(yl9 . . . , yn).

Indeed Torf (A,Q) are the homology modules of the complex

A <8>A X= A A (A E(yl9 . . . , yn)) =A E(yl9 . . . 9 yn) 9

with the differentiation

(2) d
t(fly^--y,)= 2 (- l)

i+1
(ax,) y -

y yl '
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Similarly for cohomology, we have for any left A-module C:

Ext*A (g,C) - H* (Horn (E(yi..... jw),C)).

Indeed

HomA (X,C) = HomA (A E(yl9 . . . 9 yJ 9Q = Horn (E(yl9 . . . , yn\C).

An element of degree / in Horn (E(yl9 . . . , yn),C) may be identified with

a function f(pl9 ...,/><) defined for integers satisfying 1
< p < < pl

<i n\ the differentiation is then given by the formula

(2a)

We observe now that in the above method of computation the ring A
has almost completely disappeared; the only thing that needs to be

known is how the elements xl9 . . . , xn operate on A (resp. C) and that

these endomorphisms commute with each other.

In particular, we find

= Hom(Z,C)= G.

Thus if Q ^ then l.dimA Q = n. This completes the proof of 4.2.

The complex A E(y\, . . , , yn) was first found by J. L, Koszul

(Colloque de topologie, Bruxelles, 1950), in connection with cohomology
theory of Lie groups.

REMARK 1. If we apply (1) to calculate Torf(A/,Z) with M as in 4.3,

the acyclicity of the complex M E(y\..... yn) is equivalent to

(3) Tor
tr(M,Z) - 0, i > 0.

The fact that hypothesis (/") for M implies (3) can be established directly:
indeed we can show by induction on k that

using exact sequences r//^ -> T//^ -
YjJk

> 0.

REMARK 2. Consider the algebra A = K[xJ of polynomials in an

arbitrary set {xa} of variables. We may regard A as the direct limit of

algebras A^ = K(J) where J runs through the finite subsets of the col-

lection {*a }.
The complexes Xj constructed above form then a direct

system with a complex X as limit. It is immediately clear that X is a

A-projective resolution of K and that X is the tensor product A E(yJ,
where E(yQt) is the exterior algebra on the letters {ya }. The differentiation

in X is given by the same formulae as above.
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5. FAITHFUL SYSTEMS

We shall assume here that A is an augmented ring with a proper two

sided augmentation ideal /. Then Q = A// may be regarded as a ring

and e: A -> Q is a ring homomorphism.
Let A be a right A-module. Then A A Q is a right g-module.

From the exact sequence -> / -> A -> g -> we deduce

(1) A A Q >IM/.

A right A-module ^ will be called proper if either /4 = or A <S>A C T^

(i.e. y4 ^ >47). A free module clearly is proper.
Given a subset N of a module /I we consider the free module FN

generated by the elements of N. We have a natural homomorphism
FAV

-> A which leads to the exact sequence

(2) -> RX - F v -> ,4 -> L,v -> 0.

with Jl
4v = Ker (Fv -> >0. iV

= Coker (FA- -> /4).

DEFINITION. A subset Af of a right A-module A is called faithful if

for each N C M the modules / v and L v are proper. A family Q of

right A-modules is called allowable if for each A e & there is a faithful

setM generating A and such that in the exact sequence O-^/? u~>FJf->^->0
we have RM <&.

If A has a faithful subset A/, then taking N= we have L v = /< and

therefore X is proper. Thus all the modules in an allowable family are

proper.

To illustrate the notions just introduced we consider two important

special cases.

First we take up the case when A is a graded ring (see 2), Q = A ,

and / is the ideal of elements with a vanishing component of degree zero.

A right A-module A is graded if a grading

of A as an abelian group is given, with A pAq C A*+q
. Right A-modules

for which such a grading exists will be called gradable. Clearly a free

A-module is gradable.
PROPOSITION 5.1. Let A be a graded ring. Every graded A-module

A is proper and every set of homogeneous elements is faithful. Thefamily

of all gradable A-modules is allowable.

PROOF. Let A be a graded A-module with A ^ and let a Am be a

non-zero, homogeneous element of lowest possible degree. If A = AI
then a c AI, i.e. a = 2fli^ with homogeneous elements a

i A and A, e /.
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Since each a, has degree at least m and each A
t
has degree at least 1, it

follows that a has degree at least m+ I. This contradiction shows that

A is proper.
If TV is any set of homogeneous elements of A then the module Fv may

be graded by the requirement that the map Fv -+ A be homogeneous of

degree zero. Then R v and L Y are graded modules and therefore proper.
It follows that any subset of A composed of homogeneous elements is

faithful. In particular, since each graded module is generated by its

homogeneous elements it follows that the family of gradable modules is

allowable.

As a second illustration, we take up the case when A is a local ring and

/ its maximal ideal.

PROPOSITION 5.1'. Let A be a local ring. Every finitely generated

right A-moduIe is proper. If A is right Noetherian then everyfinite subset

of afinitely generated right A-module isfaithful and the class of allfinitely

generated right A-modules is allowable.

PROOF. Let A ^ be a finitely generated right A-module and let

(fli, . . . , an) be a minimal system of generators of A. Let B be the sub-

module generated by a& . . . , an . lfal /4/then al
= a1A1 + + anXn

for some A
19 . . . , An e /. Thus a(\ Ax) e B. Since 1 At is not in /

we may choose A A with (1 A
X)A
= 1. Then al

= a(\ AX)A B.

This contradiction shows that a
l

is not in Al. Thus Al ^ A and A is

proper.
If A is finitely generated and TV is a finite subset of A, then Fv and L,v

are finitely generated. If further A is right Noetherian then Rx also is

finitely generated. Thus every finite subset of A is faithful. This proves
the second half of the proposition.

With the notions of "proper," "faithful," and "allowable" thus

illustrated, we return to the abstract treatment.

PROPOSITION 5.2. Let A be a right A-module andM afaithful subset of
A. If the image ofM in A A Q = A IAl generates A A Q as a right Q-

module, then M generates A. Iffurther Tor^ (A 9Q) = and the images of
the elements of M in A A Q form a Q-base for A A Q then M is a

A-basefor A.

PROOF. We consider the exact sequence

By assumption the map FM A Q -> A <8>A Q is an epimorphism. There-

fore, by the right exactness of the tensor product, LM A C = 0. Since

LM is proper, it follows that LM = 0, i.e. FM -* A is an epimorphism.
Thus M generates A.
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Since LM = 0, we obtain an exact sequence

Tor* (A,Q) RM A Q FM A Q -^ A A Q.

The condition that the images of the elements of M form a g-base of

A A g means precisely that <p is an isomorphism. Since Tor* (A,Q)=Q 9

it follows that AM A g = 0. However RM is proper so that RM = 0.

This implies that FM -> A is an isomorphism, i.e. M is a A-base for A.

THEOREM 5.3. Assume thqt Q is a (not necessarily commutative)

field, and that Tor^ (A,Q) = 0. Then every faithful subset A-generating
A contains a A-basefor A . In particular, ifA is generated by afaithful set,

then A is A-free.

PROOF. Let M be a faithful subset generating A. Then the image of

MinA <g>A Q generates A A Q as a right g-module. Since Q is a field

M contains a subset N such that the images of the elements of TV in A A Q
are a g-base for A A Q. Since N also is faithful, it follows from 5.2

that N is a A-base for A.

THEOREM 5.4. Assume that Q = A/7 w o/fe/</, and let2 be an allowable

family of right A-modules. Then for every module A of Of

r.dimA A ^ LdimA g.

PROOF. Let M be a faithful subset generating A. Then
-* -RM -* ^Af -* A -> is exact. Since RM is again in & 9 this process

may be repeated with A replaced by RM . Thus by iteration we obtain an

exact sequence

of right A-modules, with X^ . . . , Xn^ A-free and with Xn @. It

then follows from v,7.2 that the iterated connecting homomorphism
yields an isomorphism

Assume now that dim Q^n. Then Tor+ ! (A,Q) = so that

Toif (Xn,Q) = 0. Since Xn c 3^ Xn is generated by a faithful subset

and therefore, by 5.3, Xn is A-free. Thus dim A ^ n.

6. APPLICATIONS TO GRADED AND LOCAL RINGS

THEOREM 6.1. Let Abe a graded ring with A = Q afield. IfA is a

graded right A-module with Tor (A 9Q) = then A is free; every homo-

geneous system ofgenerators ofsuch a module A contains a basefor A.

This follows from 5.1 and 5.3.
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THEOREM 6.2. Let A be a graded ring with A = Q afield. For each

graded right A-module A,

r.dimA A <^ l.dimA Q.

This follows from 5.1 and 5.4.

COROLLARY 6.3. Under the assumptions of 6.2, let J be a homogeneous

right ideal in A. Then

1 + r.dimA y<;i.dimA e
unless l.dimA 2=0, in which case r.dimA J ^ 0.

Indeed, consider the graded module A/J. Then by vi,2.3 we have

1 + dim J = dim A//, unless dim A/J < in which case dim .7^0.
Since dim A/J <1 dim Q, the conclusion follows.

Note that Q itself is a graded right A-module. Therefore

COROLLARY 6.4. l.dimA Q r.dimA Q. The conclusions of 6.2 and

6.3 apply equally well to left A-modules and left ideals.

Now consider the particular case when A = K[XI> . . . , xn ] is the ring

of polynomials in the letters x
l9

. . . 9 xn with coefficients in the (not neces-

sarily commutative) field K. Then Q = K and by 4.2, dimA (?
= n.

We thus obtain

THEOREM 6.5. Let K be a field and let A = K[xl9 . . . , xn] 9 n 2> 1.

For each graded (right or left) A-module A we have

dimA A<^n.
For each homogeneous (right or left) ideal J in A we have

dimA J <^ n 1 .

This theorem contains Hilbert's theorem on "chains of syzygies" (see

W. Grobner, Monatshefte fur Mathematik 53 (1949), 1-16). The method

used here is an extension of the one indicated by J. L. Koszul (Colloque

de topologie, Bruxelles, 1950). We shall see later (ix,7.11) that if # is a

commutative semi-simple ring, then gl.dim A = n.

We now pass to the case of a local ring A with a maximal ideal / and

with Q = A/7. We know then by 2.1 that Q is a field.

THEOREM 6.1'. Let A be a right Noetherian local ring with maximal

ideal J and with Q = A/7. Every finitely generated right A-module A
such that Tor^ (A,Q) = is thenfree; everyfinite set ofgenerators ofsuch

a module A contains a base.

This follows from 5.1' and 5.3.

THEOREM 6.2'. Let A be a right Noetherian local ring with maximal

ideal I and with Q = A/7. For eachfinitely generated right A-module A

r.dimA A <I l.dimA Q.

This follows from 5.1' and 5.4.
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COROLLARY 6.3'. Under the assumptions of 6.2' let J be any right ideal

in A. Then

1 + r.dimA J <J l.dimA g,

unless l.dimA Q = in which case r.dimA / <i 0.

The proof is the same as for 6.3.

COROLLARY 6.4'. Under the conditions of 6.2' assume that A is also

left Noetherian. Then l.dimA Q = r.dimA Q. The conclusions of 6.2'

and 6.3' apply equally well to left as tol right A-modules and left ideals.

We now consider two particular rings; the ring A = K[[xl9 . . . , xn]]

of formal power series in xl9 . . . , xn with coefficients in the field AT, and

the ring A = K{x^ . . . , xn} of convergent power series in jq, . . . , xn

with coefficients in a commutative field AT with a complete non-discrete

valuation. Then A is a local ring with Q = K and, by 4.2, dimA Q = n.

Further A is (both left and right) Noetherian ; for K[[xl9 . . . , xJ] see

W. Krull (Crelle 179 (1938), p. 204-226); for K{xl9 ...,*} see Bochner

and Martin (Several Complex Variables, Princeton, 1948; Ch. x, th. 1).

We thus obtain

THEOREM 6.5'. Let K be afield and let A == K[[xl9 . . .
, xj], n 2> 1,

or let K be a commutative field with a complete non-discrete valuation and

let A = K{x^ . . . , xn}, n^l. For each finitely generated (right or left)

A-module A we have

dimA A <I n.

For each (right or left) ideal J in A we have

EXERCISES

1 . In the situation treated in 3 establish the commutativity of the

following diagrams

Tor^^,CA)

TorC4,er)

V1

Ext (gA,C) Ext (gr,C)

v* ^A ^A'^/
ff
n

where gn and g
n are induced by g, yn and y

n are induced by y, and the

maPs/2,nAn <Pn anc* ^>
n are defined in vi,4.
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2. Show that under the conditions of 5.4 and using the notion of weak
dimension of vi, Exer. 3, the conclusion of 5.4 may be strengthened as

follows

w.dim A = dim A < w.dim Q

for each A 2. Apply this result to the considerations of 6.

3. Let A be an augmented ring with a two sided augmentation ideal /

such that O P where P is defined by recursion as Ip = IP
" 1I9 1

1 = /.
p J

Show that each submodule of a free A-module is proper.
4. Let A be a local ring with maximal ideal / such that O P = 0, and

let Q = A/7. Show that if A is a finitely generated right (resp. left)

A-module such that Tor^ (A,Q) = Q (resp. Toif (Q,A) = 0), then A
is free: each system of generators of such a module A contains a base.

5. Consider the example of the ring A given at the end of 1,7, and show

that it can be put in the form

A = Z[x] + Z[x]

with multiplication given for a,a',b,b' eZ[jt],

'Jb')
= (aa' 9 ab' + (ea')b).

Replace Z[x] by a commutative ring F with a ring endomorphism
. F-> F. Prove that the result is a ring A with (1,0) as unit element.

Show that in A an element (a,b) has a right (or left) inverse if and only if a

has an inverse in F. If F is a (commutative) local ring then A also is a

local ring with the same field of augmentation as F.

Taking F = K[[x]] whereK is a commutative field and e is the augmenta-
tion of F, prove that the local ring A is left Noetherian without being

right Noetherian.

6. Let A = K[[x]] be the ring of formal power series in one variable x

with coefficients in a commutative ring K. Let e: A -> K assign to each

series its "constant term." Then an element of A has an inverse if and

only if its image under e has an inverse in K. Hence, by recursion on n:

the ring K[[xl9 . . . , xn ]] is a local ring if and only if K is a local ring.

7. Let A = K[XH . . . , xn ] be the ring of polynomials with coefficients

in a commutative ring K. For any A-module A, establish natural iso-

morphisms
Tor (K,A) Ext

[Hint: let X be the complex A E(yl9
.

, yn) as defined in 4. Define

isomorphisms

X
g
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in order to induce an isomorphism of complexes

X-* HomA (;r,A)

raising the degrees by n. Observe that

HomA (A;A) <8>A A ** HomA (X,A).]

8. Let A be a left A-module with A-endomorphisms xk (1 <I k 5^ n)

which we shall write as a -> axk . Let Ik (0 <I k ^ n) denote the sub-

module of all elements of the type a^x^ + + <vcfc (in particular,

7 = 0). Assume that

(ii) (a A and axk 4_x) <==> (a 7^), k !,...,.

Show that

l.dimA A/fk <k + l.dimA A, k = 0, ...,.

9. Let A be an augmented ring. Assume that the augmentation
ideal / is such that 1 +*jc has a right inverse for any x /. Show that the

conclusions of 5.1' remain valid.

10. In the ring K[[x]], where K is a (not necessarily commutative)

field, consider the subring A consisting of all power series without terms

of degree 1. Show that A is a local ring.

Let A be the right A-module consisting of all series without a constant

term. Show that A is not A-free and thus is not A-projective. Establish

the exact sequence

A-^+A + A-^A*
with ^(A^Ag) = Ajjc

2
AgX

3
, yA = (Ax,A). As an application derive that

r.dimA ^ = 00.

11. In the ring A^[.x,j>]], where K is a (not necessarily commutative)

field, consider the subring A consisting of all power series in which all

terms are of even total degree. Show that A is a local ring.

Let A be the right A-module consisting of all series in A{[*,>>]] in

which all the terms have odd degree. Show that A is not A-free and thus

is not A-projective. Establish the exact sequence

^-^A+A-^X-
with ^(A^Ag) = A

xj>
- A2x, y>A

=
(Ax,Ay). As an application derive that

r.dimA A = oo.

12. In the ring K[[x]] + K[[y]], where # is a (not necessarily commuta-

tive) field, consider the subring consisting of all pairs (f(x),g(y)) with

/(O) = g(0). Show that A is a local ring.
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Let A and B be the right modules consisting respectively of all pairs

(/(x)x,0) and (Q,g(y)y). Show that A and B are not A-free and thus are

not A-projective. Establish the exact sequences

A-^A-^B+ 0, B-^+A^>A+ 0,

where y anc* v' are inclusions while <^(/(x),g(j))
=

(Q,g(y)y) and

9?'(/(^)^(>'))
=

(f(x)x,0). As an application derive that r.dimA A
== r.dimA B = oo.



CHAPTER IX

Associative Algebras

Introduction. The homology (and cohomology) theory of an associa-

tive A-algebra A is that of an augmented ring, namely the ring
A* = A K A* (where A* is the "opposite" algebra of A) with the aug-
mentation p: Ae -> A, p(X <g) /4*)

=
A//. The homology groups Hn(A,A)

and the cohomology groups H n
(A,A) are then defined for any two sided

A-module A (3). If the algebra A is tf-projective, the homology and

cohomology groups may be calculated using a "standard complex" (6);
we thus retrieve the initial definition of Hochschild (Ann. ofMath. 46 (1945),

58-67).

The last section ( 7) is devoted to the study of "dimension" of algebras
from the homological point of view. The method utilized leads to new
connections with the theory of algebras, and deserves further study.

1. ALGEBRAS AND THEIR TENSOR PRODUCTS

Let K be a commutative ring (with a unit element denoted by 1). A
K-algebra is a ring A (with a unit element also denoted by 1) which is also

a AT-module such that

(Mi)(M2)
-

(W(
for /rlf&2 K> ^i>^2 A- Setting r\k

= k\ yields a ring homomorphism
r\\ K-* A whose image is in the center of A. Clearly K itself is a K-

algebra.

Clearly every ring A may be regarded as a Z-algebra, where Z is the

ring of integers, with nA, n e Z, A c A defined in the obvious way.
Let A and T be ^-algebras. A ^-algebra homomorphism A -> F is a

ring homomorphism which also is a /if-homomorphism.
Given two tf-algebras A and F, the tensor product A K F is a

A-module, and the multiplication

(Ax X!)(A2 y2)
= (AXA2) <g> (ny2)

converts A K F into a A-algebra. As long as the ring K is fixed we

162
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shall frequently write A F for A K F. We have the natural K-

algebra homomorphisms

A->AF, F-*AF
given by A -> A 1, y -> 1 y.

The tensor product of ^-algebras has the usual associative property
of the tensor product over a commutative ring.

If A is a tf-algebra, every (left or right) A-module A may then also be

regarded as a AT-module. We shall frequently have to consider the

situation where A is also a F-module for another ^f-algebra F. In this

case we shall always assume that (1) the operators of A and F on A
commute; (2) the structure ofA as a /C-module induced by A is the same as

that induced by F. In particular, suppose A is a left A-module and a left

F-module (situation A_r/4). Then setting

(A y)a =

converts A into a left A $$>K F-module. The converse is also clear:

every left A (&K F-module is obtained in this way from a unique A-F-

module. The same applies with "left" replaced by "right."

Suppose now that A is a left A-module and a right F-module (situation

A /4r). We first use the opposite algebra F* (see vi,l) to convert A into

a left F*-module: y*a ay, and then, using the definition above, A
becomes a left A F*-module with

(A y*)a = (A*)y = l(ay).

Similarly A may be regarded as a right A* F-module.

These considerations generalize in an obvious way to a module A over

any finite number of /^-algebras.

The concept of the tensor product discussed above, can be applied to

define "the extension of the ring of operators" in an augmented ring.

Let A be an augmented ring with augmentation e : A -> Q. Assume that

A is a /^-algebra and e is a #-homomorphism and let L be another

A-algebra. Then clearly

is an epimorphism which defines an augmentation for the ring L
We obtain a commutative diagram
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where 9?A
= 1 A, yq = 1 q. Thus, by vm,3, we obtain homo-

morphisms
F*: Tor* (A,Q) -> Tor'' A

(^, L 0, ^_A

/; : Extx0A (L g, C) -> ExtA (g,C), A_rC.

PROPOSITION 1.1. If the algebra A is K-projective and //Tor*(L,0=0
/or n > 0, //zew F* and F^ are isomorphisms. If, furthermore, X is a

A-projective resolution of Q, then L K X is a L K A-projective
resolution of L K Q.

PROOF. The result will follow from the "mapping theorem" vm,3.1

provided we verify its hypotheses which in this case become:

(i) (L K A) A Q -> L K Q is an isomorphism;

(ii) Tor (L K A, Q) = for n > 0.

Condition (i) follows directly from associativity. To verify (ii) we
consider a A-projective resolution X of Q. Then

Tor (L K A, = Hn(L K A. A X) - //n(L ^ X).

Since A is A-projective, it follows from n,6.2 that X is also a /C-projective

resolution of Q. Thus //n(L ^ A")
= Torf (L,0 which was assumed

to be zero for n > 0.

We shall see useful applications of 1.1.

The definition of the tensor product A 0^- F of A-algebras has an

important variant when A and F are graded /C-algebras. A graded

K-algebra A is a graded ring (vm,2) which is also a ^-algebra such that

KAQ C Ag
. If F is another graded AT-algebra then A K F is a doubly

graded A!-module which is converted into a (singly) graded module in the

usual fashion. To define the product (Ax yi)(A2 y2), A! A*, A2 e Am ,

yx c F7
, y2 c Fn we denote by /: A -> A, ^: F -> F the endomorphisms

given by left multiplication by Ax and yx respectively. Clearly / and g
have degrees /> and q. Then / ^ should be left multiplication by

^i yi- However, by iv,5

and therefore we obtain the multiplication rule

where m is the degree of A2 and ^ is the degree of yv With this multiplica-

tion A K - F becomes a graded A-algebra, called the skew tensor product
of the graded /^-algebras A and F.

PROPOSITION 1.2. Let A and F 6e graded K-algebras. The map
(p : A K F ~> F x A defined by setting

<p(X y)
= (-l)"y A, A A, y F<^

ij fl K-algebra isomorphism.
The proof is left to the reader.
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REMARK. The definition of the tensor product A F of non-graded

algebras may be considered as a special case of the tensor product of

graded algebras, by defining on A and F the "trivial" grading which

assigns to each element the degree zero. With this convention, we may
apply 1.2 to the case when no grading is given on A and F.

2. ASSOCIATIVITY FORMULAE

We shall consider three /^-algebras A, F and 2. In the situation

(^A-r'A^z) we convert A A B into a right F Z-module by setting

(a b)(y a)
= ay ba.

Similarly in the situation (A^ECF_S) we convert Homs (B,C) into a right

A F-module by setting

for/HomE (,C).
We leave it to the reader to give similar definitions for other situations.

We can now state associativity formulae which generalize those of n,5.

PROPOSITION 2.1. Let A, F, be K-algebras. In the situation

(XA_r ,AB2 ,r_ 2C), there is a unique homomorphism

r: (A A B) r i:
C-> A A0r (B C)

such that r((a b) c) = a (b c). This homomorphism is an

isomorphism and establishes a natural equivalence offunctors.
PROPOSITION 2.2. Let A, F, S be K-algebras. In the situation

(^A-r*A^r:r-i:) there is a unique homomorphism

s: HomA r (A, HomL (,C)) -> Homre5S (A A

such that for each A F'-homomorphism f: A-* Hom (B9C) we have

(sf)(a b) = (fa)b. This homomorphism is an isomorphism and estab-

lishes a natural equivalence offunctors.
We leave the proofs to the reader. Proposition 2.2 has an analogue

with left and right operators interchanged and with A A B replaced by
B A A.

PROPOSITION 2.3. In the situation (AA_r ,ABx) assume that A is A F-

projective and B is %-projective. Then A A B is projective as a right
F ^-module.

PROOF. It suffices to prove that Hom r<8)S (/4 A , C) is an exact

functor of the right F S-module C. In view of 2.2 this last functor is

equivalent with the composition ofHomA$ r (A,D) with D = HomE CB,C).
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Since B is 2-projective, HomE (B,C) is an exact functor of C. Since A is

A F-projective, HomA(g>r (A 9D) is an exact functor of D. Thus the

composite functor is an exact functor of C.

Replacing A, F, 2, A, B by A*, 2, A, #, A we obtain

COROLLARY 2.4. 7/"l? is a projective right A* ^-module and ifA is

K-projective then B is %-projective.

COROLLARY 2.5. In the situation (A rjB^) 9 ifA is Y-projective and B is

T,-projective, then A K BisY Z-projective.

Quite analogously we prove
PROPOSITION 2.3a. In the situation (^B^Cr_z) assume that B is A-

projective and C is F %-injective. Then HomL (B,C) is infective as a

right A T-module.

COROLLARY 2.4a. If C is an infective right F ^.-module and if F
is K-projective, then C is ^-infective.

COROLLARY 2.5a. In the situation (A ,Cr) ifB is A-projective and C is

T-injective then Hom^ (B,C) is A T-injective .

PROPOSITION 2.6. Let A, F, 2 fee K-projective K-algebras. In the

situation (AA_r ,AB%) let X be a A Y-projective resolution of A, and Ya
A* X-projective resolution of B. If Tor (^,j?) = for n>0 then

X A y w fl F Z-projective resolution ofA A J?.

PROOF. First we note that following iv,5, X A 7 is to be regarded
first as a double complex and then converted into a complex. Since A
is ^-projective it follows from 2.4 that 7 is X-projective. Consequently

by 2.3, X A Y is F S-projective. There remains to be shown that

X A Y is an acyclic complex over A A B. Since the tensor product
is right exact it follows from n,4.3 that the sequence

*i A n + *o A n > x A y > ^ A ^ ^ o

is exact. Thus it suffices to show that Hn(X A 7) = for w > 0.

Since 2 is A-projective, it follows from 2.4 that Y is A-projective ; similarly,

X is A-projective since F is A-projective. Thus X and Y are A-projective

resolutions of A and B. Consequently Hn(X A K) = Tor (A,B) =
for n > by hypothesis.

COROLLARY 2.7. Lef F and 2 te K-projective K-algebras. In the

situation (Ar,B%) let X be a Y-projective resolution ofA and Ya ^-projective

resolution of B. If Tor^ (A,B) = Ofor n > then X K Y is a F 2-

projective resolution ofA <S)K B.

We similarly prove
PROPOSITION 2.6a. Z^/ A, F, 2 Ae K-projective K-algebras. In the

situation (^B^Cr_^) let X be a A* Z-projective resolution ofB, and Ya
F X-injective resolution of C. If Ext^ (B,C) = for n>0 then

Homs (X9 Y) is a A P-injective resolution of HomE (,C).
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COROLLARY 2.7'a. Let A,F be K-projective K-algebras. In the situa-

tion (AB,Cr) let X be a A-projective resolution of B and Y a T-injective

resolution of C. If Ext (B,C) = for n>Q then HomK (X, Y) is a

A Y-injective resolution of Hom^ (B,C).

THEOREM 2.8. Let A, F, 2 be K-projective K-algebras. In the situation

(AA-r'A^ET-sO assume

(1) Tor (A,B) = = TorJ (B,C) for n > 0.

Then there is an isomorphism

Torr s
(A A ,C) ^ Tor^ (/4, 5 s C)

which, in degree zero, reduces to the isomorphism of 2.1.

PROOF. Let X be a A F-projective resolution of >4, 7 a A* 2 -

projective resolution of B and Z a F S-projective resolution of C. In

view of (1), it follows from 2.6 that A' A Kis a F S-projective resolu-

tion of A A B and yvZisaA F-projective resolution of B s C.

Therefore

r S Z))

Quite analogously we prove
THEOREM 2.8a. Le/ A, F, S fe^ K-projective K-algebras. In the situation

(^!A .. r ,AJ?v,Cr_ j:) assume

(/^,^) = = Ext (B,C) for /z > 0.

there is an isomorphism

Extr^ (A A ,C) ^ ExtA0r (A,

which, in degree zero, reduces to the isomorphism of 2.2.

3. THE ENVELOPING ALGEBRA A'

Let A be a ^-algebra. A two-sided A-module is an abelian group A
on which A operates on the left and on the right in such a way that

(Aa)//
=

A(ajj,) and ka = ak for a A, A,// A, k K. With the notations

of the preceding section we are thus in the situation (AAA).

A two-sided A-module may be regarded as a left module over the

algebra A K A*, by setting

(A p*)a = lap.

The algebra A K A* will be called the enveloping algebra of A and

will be denoted by Ae
. We may also regard A as a right Ae-module by
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setting a(A //*)
= paL In particular, A is a two-sided A-module;

we shall therefore always regard A as a left A'-module with operators

(p y*)A = //Ay A,^,y c A.

In particular, taking A = 1, we obtain a mapping

P : Ae^A
given by p(ft <g) y*) = //y. This mapping p is an epimorphism of left

A'-modules, and thus defines on A" the structure of an augmented ring

(vm,l). We shall denote by J the augmentation ideal i.e. the kernel of p.

PROPOSITION 3.1. As a left A?-ideal, J is generated by the elements

A 1
-

1 <g> A*.

PROOF. Let 2X Y* J- Then 2Xyt
= and

(1) 2X yf = Z(A 1) yf
-

y, 1).

We define a /T-homomorphism

/ A->y

by setting y'A
= A 1 1 A*. We verify the identity

In general, given any left A*-module A (i.e. a two-sided A-module A)
we define a crossed homomorphism (also called derivation) f\ A -> /4 as a

AT-homomorphism such that

Each crossed homomorphism satisfies/ 1 = 0; therefore we may regard
as defined on A' = Coker (#-> A).

PROPOSITION 3.2. If with each h HomA. (J,A) we associate the

mapping hj\ we obtain an isomorphism of the K-module HomA (J,A) with

the K-module of all crossed homomorphisms ofA into A.

PROOF. The essential part of the proof consists in showing that

each crossed homomorphism/: A *A admits a factorization A +J A
where A is a Ae

-homomorphism. Let x = 2/*t Yi J- Guided by (1)

we define

/**= WOO-
Clearly A is a ^-homomorphism. To show that A is a Ae

-homomorphism
we compute

r*)x) =
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The last term is zero because J//,}^
= 0. The term before last yields

(A r*)hx as desired.

A A'-homomorphism h: J-*A\s extendable to a Ae

-homomorphism
A* -> A if and only if there is an element a A such that A(2X y?)

Z/**fl>V I* follows that the associated crossed homomorphism
f=hj: A -* X is given by/A = A0 aL Such a crossed homomorphism
is called principal (or rimer derivation). The /f-module of all principal

crossed homomorphisms corresponds to the image of A HomA. (A
e
,X)

-> HomA.

4. HOMOLOGY AND COHOMOLOGY OF ALGEBRAS

Let A be a tf-algebra and A a two-sided A-module. Using the

augmented algebra A* (with augmentation p : Ae -* A) we shall now
define the homology and cohomology groups of A with coefficients in A.

First we regard A as a right A'-module and define the u-th homology

group as

Then we regard A as a left Ae-module and define the n-ih cohomology

group as

H*(A 9A) = E\\nA. (A 9A).

Both the homology and cohomology groups are /C-modules. We shall

see in 6 that the cohomology groups Hn
(A,A) coincide with those defined

by Hochschild (Ann. of Math. 46 (1945), 58-67) in the case when A' is a

field. For this reason we shall frequently refer to the groups above as the

Hochschild homology and cohomology groups of the algebra A.

REMARK. The notation Hn(A,A) and Hn
(A,A) is contrary to our

general conventions concerning graded modules; indeed with the

notation as is we cannot use the symbol H(A,A) to denote either the

graded homology or the graded cohomology module.

To compute the homology and cohomology groups of A, a projective

resolution A" of A as a left A'-module may be used :

Hn(A,A) = Hn(A A. X)

Hn
(A 9A) - //"(HomA , (X9A)).

The functors Hn(A,A) and Hn
(A,A) are connected sequences of covariant

functors of A. If ~> A' -+ A -> A" -> is an exact sequence of two-

sided A-modules, we obtain the usual exact sequences

----> Hn(A,A') -> Hn(A 9A) -> Hn(A,A") -* H^(A 9A
9

) ->
-
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These exact sequences are the homology sequences of the exact sequences
of complexes

0-> A' <8>A. X-+ A <g)A. X-> A" <8>A. X-*

-> HomA, (X,A') -> HomA. (X,A) -> HomA. (X,A
n
) -* 0.

The formulae (2)-(4a) of vm,l are applicable. In particular we have

(3) // (A,/4) = Coker (A A. J -> A) = >4/A/

(3a) #(A,X) = Ker (/I -> HomA. CM))

(4a) /^(A,/*) = Coker (A -> HomA. (/,/<)).

The submodule AJ of X is, by 3.1, generated by the elements of the form

aA A<i (a A, A A). Let a A and let / HomA. (J,A) be the corre-

sponding homomorphism. In order that /== it is necessary and

sufficient that/be zero on elements A 1 1 A*, i.e. that A0 = aA

for all A A. We call such elements of A, invariant elements. As for

the terms in (4a) an interpretation is given in 3.2 and the subsequent
remark. Summarizing we obtain

PROPOSITION 4.1. The homology group // (A,/0 may be identified with

the quotient of A by the submodule generated by the elements aA A0,

a A, A e A. The cohomology group //(A,/4) may be identified with the

subgroup of the invariant elements of A. The cohomology group H l
(A,A)

may be identified with the group of all crossed homomorphisms A -> A

factored by the subgroup of principal crossed homomorphisms.

Let us now apply the associativity theorems 2.8 and 2.8a. In 2.8 we

replace (F,C) by (S*,S), then Tor (,)= for n > 0, and if we

assume that A is semi-simple then also Tor (A,B) = for n > 0. Thus

2.8 yields

PROPOSITION 4.2. Let A and be K-projective K-algebras with A

semi-simple. In the situation (^AA ,AB^) we have isomorphisms

Similarly, in 2.8a, we replace (T,A) by (A*,A). We obtain

PROPOSITION 4.3. Let A and S be K-projective K-algebras with

semi-simple. In the situation (A#,ACE) we have isomorphisms

/P(A,Homs (B,Q) Ext^ E(*,C).

Replacing (A,S) by (K9A) in 4.2, and S by K in 4.3 we obtain

COROLLARY 4.4. If A is a K-algebra with K semi-simple, we have the

isomorphisms
Hn(A 9 A K B) Totf (B,A) (AA,BA)

H (A,Homx (B9C) Ext (B9C) (A^A^)-
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REMARK 1. Throughout this discussion we have treated A as a left

A'-module and thus regarded A* as a left augmented ring. We could

regard A* as a right augmented ring with augmentation p'(ft y*) = y^u,

and accordingly regard A as a right A'-module. One then obtains the

same homology and cohomology groups Hn(A,A) and Hn
(A,A), because

these are the satellites of HQ(A,A) and H(A,A) whose description is

independent of the choice of p or p' as augmentation. If A is com-

mutative then p = p.
REMARK 2. The assumption that K is semi-simple may be replaced

without any loss of generality by the assumption that K is a field. Indeed,

a commutative semi-simple ring A' is a direct sum K-t + + Kn of

fields. This induces a decomposition A = Al + - + An of any

A-algebra A into a direct sum of ^-algebras A
t
= K

t
A. For the

algebra A* we then have a decomposition Ae = A^ -f + A*
,
where

AJ A
t j^

A? = /f,A*. These direct sum decompositions induce

similar direct sum decompositions for ExtA , ExtA,, etc.

5. THE HOGHSGHILD GROUPS AS FUNCTORS OF A

Let A and F be /^-algebras and (p: A-> F a /f-algebra homomor-

phism. Then <p induces a homomorphism 99*: Ae -> F*. More generally

let A be a tf-algebra and F an L-algebra. Consider a pair of ring

homomorphisms
tp: A-> F, y: K->L

such that (p(k%) y>(k)<p(A,), k K,
A A. Then q> induces a homo-

morphism <p
e of Ae = A K A* into Fe = F L F* such that the

diagram

Pr

is commutative. We are thus in the situation described in vm,3 for

augmented rings. Therefore for each two-sided F-module A (which

using <p may also be regarded as a two-sided A-module) we have the

homomorphisms

(1) Fl: Hn(A,A)^Hn(r,A)

(2) F;: H(r,A)-+H(A,A).

In this sense, Hn(k,A) is a covariant functor of A while Hn
(A.,A) is

contravariant in A.
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The mapping theorem vm,3.1 gives necessary and sufficient con-

ditions in order that FJJ and FJ be isomorphisms. We shall apply this

theorem to the case when F is obtained from A by an extension of the

ground ring from K to L. Thus we suppose that A and L are ^-algebras,

L is commutative, F = L K A, <p(X)
= 1 A; and y>(k)

= k\ e L.

We have

(L K A)' = (L K A) L (L K A)* (L K A) (L K A*)

** L x A K A* = L A. Ae
.

We may therefore apply 1.1 with A,g replaced by A*,A. If A is K-

projective then Tor* (L,A) = for n > 0, so that we obtain

PROPOSITION 5.1. If the K-algebra A is K-projective and L is a commu-

tative K-algebra, then for each two-sided L K A-module A we have the

isomorphisms
Fn : //n(A, A) ** Hn(L K A, A),

Fn
: Hn

(L K A, A) ^ //n
(A, A).

Further, ifXisa \e

-projective resolution ofK thenL K Xisan(L K A)
e-

projective resolution ofL K A.

We should remark here that since L K A is regarded as an L-algebra,

the left operators of L on A must coincide with the right operators of L
on A.

Proposition 5.1 may be applied when K is a field because then A is

always tf-projective. If L is a field extension of K, we can then say that

the homology and cohomology groups remain unchanged under an

extension of the ground field.

Let A and F be two /(-algebras. The direct sum A + F with multiplica-

tion and operators defined by

is then again a AT-algebra S, called the direct product of A and F. If eA
and er are the unit elements of A and F, then (eA,er) is the unit element

ofS.

We consider the homomorphisms 9?: 2->A, y: ->F given by

^?(A,y)
= A, y>(A,y)

=
y. These are ^-algebra homomorphisms which

induce homomorphisms

<p
e

: &-+ A6
, \f\ Z'-^F'.

Therefore every two-sided A-module A may be regarded also as a two-

sided 2-module. Similarly every two-sided F-module A' may be regarded
as a two-sided H-module. Consequently A + A' is a two-sided 2-module.
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Let A be a two-sided S-module. We introduce the module

e^AeA = AAA which is a two-sided A-module. It is easy to see that

AAA may be identified with Homs. (A',^4) and with A <g) s. Ae
. We

further note the following identities

c s . (/*+,4')=(ACA+rcr) 2.(/*+/o=ACA A.A+rcr r. /*'

HomL.(^+^
/

,C)=Homs. (/<+/<',ACA+TCF)
= HomA. (A,ACA) + Homr. (y4',FCF)

in the situation (A^A,r^'rECE)-

PROPOSITION 5.2. A two-sided A-module A is Ae

-projective if and only

if it is I.
e

-projective.

PROOF. For any 2
e-module C we haveHomL. 04,C)=HomA. (A,ACA).

Assume A is Ae

-projective. Since ACA is an exact functor of C it follows

that Hom 2. (A,C) is an exact functor of C, so that A is S'-projective.

Assume now that A is Se

-projective. If C is any A'-module then

HomE. 04,C) = HomA. (A,C). Thus HomA. (A,C) is an exact functor

of C, so that A is A*-projective.

THEOREM 5.3. (Additivity theorem). IfX is a Ae

-projective resolution

ofA and Y is a Ye

-projective resolution of F, then X + Y is a If-projective

resolution of = A + F. Furtherfor any two-sided ^-module A

(3) Hn(Z,A) Hn(L,AAA + F/4F) Hn(A,AA A) +

(4) // n(S,/4) ** ^W(E,A^A + F/iF) ^ //n(A,A^I A) +

PROOF. By 5.2, A" and y are 2e

-projective, thus X+ Y also is

Z-projective. Since H(X + Y)= H(X) + H( Y) it follows that X + Y
is a 2e

-projective resolution of 2. We have

A s-(A
r+ 7)= (AAA+TAT) .(A

r+ 7)

A. X +

Y,AAA
= HomA.(X,AAA)

Thus passing to homology we obtain the desired isomorphisms (3) and (4).

COROLLARY 5.4. IfA is a two-sided A-module then <p: 2 -> A induces

isomorphisms
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6. STANDARD COMPLEXES

As was said in 3 the homology and cohomology groups of a

Jf-algebra A are usually computed using a Ae

-projective resolution of A.

The existence of such resolutions and their uniqueness up to a homotopy

equivalence are guaranteed by the results of v, 1 . We shall describe here a

construction which to each /L-algebra A assigns an acyclic left complex

S(A) over A as a left A'-module. If A is A-projective then 5"(A) will be

a A*-projective resolution of A. In addition, the complex 5(A) will be a

functor of A.

For each integer /i^ 1, let 5n(A) denote the (n + 2)-fold tensor

product (over K) ofAwith itself. Thus S^(A)= A, Sn+l(A)=A <g>KSn(A).

We convert 5n(A) into a two-sided A-module by setting

(p <8> y*)(Ao <g> A! <8> An *+,)=(^) Ax <g> An <g> (An+1y).

We define a A-homomorphism

by the formula sna = 1 a, a 5n( A). Clearly jn is a A-homomorphism
for the right operators. Further, setting /n(A a) = Aa we obtain a map
fn : S^+jCA) -^ 5n(A) such that tnsn

=
identity. Thus ,sn is a mono-

morphism.
We shall now define for each n 2> a left A-homomorphism

dn : Sn(A) ->_!(A)
such that

(1) </ (A /*)
=

A// A

(2) rfn+^n^ + Jn-i^ = x for xe Sn(A), Ai^O.

It is immediate that these conditions determine dn by induction; given
dn , the homomorphism dn+l is determined by (2) on the image of sn \

since the image of sn generates 5n+1(A) as a left A-module, dn^ is unique.
The following closed formula for dn can easily be seen to verify (1) and (2)

(3) ^00"-^)= 2 (-

We further see from this formula that dn also is a right A-homomorphism.
Thus dn is a Ae

-homomorphism.
We now prove that dn^dn

= for n > 0. For /a = 1 this follows from

the associativity relation (^i)^2
= A (AiA2) in A. For w > 1 we argue by

induction on n using (2). Using (2) we compute
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Consequently dndn+lsn = 0. Since the image of sn generates Sn+l(A) && a

left A-module, it follows that dndn+l = 0.

We observe that 5 (A) = A A coincides with A A* = Ae as a

two-sided A-module; further the map dQ : SQ(A) -> Sl^A) is precisely

the augmentation p: A* -> A. It follows that 5(A) = 2 Sn(A) with the

differentiation dn and the augmentation rf = p is a left complex over the

A'-module A. Relations (2) prove that this complex is acyclic.

It is frequently convenient to write 5n(A) in the form

Sn(A) = A K Sn (A) K A = A- K Sn (A)

where S (A) = Ky and 5n (A) for n > is the AT-module obtained by

taking the /i-fold tensor product of A over K. This form shows more

explicitly the operators of A* on Sn(A).

If A is /i-projective, then by 2.5, Sn (A) is tf-projective and, again by
2.5, 5n(A) is A'-projective. Thus in this case S(A) is a A'-projective

resolution of A. This is the standard complex of A. It is clear how a

map <p: A -> F induces a map S(q>): S( A) -> 5(F).

In computing the homology groups we use the identification

A A. Sn(A) = A A . A' 0^ Sn (A) = A K Sn (A).

Thus Hn(A,A) are the homology groups of the complex A K S(A) with

differentiation

dn(a (g) A! A w)
=-

A! A2
- An

0<t<n

In computing the cohomology groups we use

HomA . (Sn(A),A) = HomA . (A' S.(A), A) - HomK

The elements of the latter group are called n-dimensional cochains, and are

/T-linear functions of n variables in A with values in A. The "coboundary"

<5/of an H-cochain/is

4- I (-l)'
0<t<n-f 1

This formula shows that the cohomology groups coincide with those

defined by Hochschild.
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There is a very useful variant of the standard complex S(A) called the

normalized standard complex N(A). We define Nn(A) = Ae

<8>x Nn(A)

where AT (A) = K and Nn(A) for AI > is the /i-fold tensor product over K
of the ^-module A' = Coker (K -> A) with itself. The natural K-

epimorphisms A-*A' induces A!-epimorphisms Sn(A)->Nn (A) and

Ae

-epimorphisms Sn(A) -> Nn(A). The operators ,sn and dn pass to the

quotients and yield similar operators in N(A) = 2 Wn(A) with (1) and (2)

still satisfied. Thus N(A) also is an acyclic left complex over A. If A'

is /T-projective, then N(A) is a Ae
-projective resolution of A.

If AO <81 $ An+1 Sn(A) we denote by A,,^, . . . , AJA^ the

corresponding element of Nn(A). For A = 1 (resp. Aw+1 = 1) we write

simply [A1? . . . , An]Aw4.1 (resp. AO[A!, . . . , AJ). We thus have the boundary
formula

. . , AJ + 2 c-
0<i<n

The above convention applies also in the case n = 0. The symbol [ ]

stands then for the unit element of JV (A) = K. Thus the element

A <8> A! 5 (A) = Af (A) will be written as A [ ]AX . With this convention

the boundary formula above yields

The notation just introduced will also be used for the non-normalized

complex 5(A). Thus the symbol [A1? . . . , AJ will be ambiguously

regarded as representing elements of either 5(A) or N(A). However it

must be remembered that [Als . . . , An] regarded as an element of W(A) is

zero whenever one of its coordinates A, is in the image of K-+ A.

7. DIMENSION

Let A be a /C-algebra, Aa
its enveloping algebra. We shall be con-

cerned with the projective dimension ofA as a left A*-module. According
to the conventions introduced in vi,2 this integer (or +00) is denoted by
dimA A or simply by dim A. This coincides also with the projective
dimension of A as a right A*-module. The relation dim A ^ n means,

by definition, that there is a A'-projective resolution A" of A such that

Xk
= for k > n (i.e. A" is a complex of dimension < n). It follows from

vi,2.1 that this is equivalent to

Hn
+\A,A) = Ext^t

1
(A,/4) =

for all two-sided A-modules A.



7] DIMENSION 177

PROPOSITION 7.1 . Let Abe a K-projective K-algebra andL a commuta-

tive K-algebra. Then

dim (L K A) <I dim A.

Iffurther the natural mapping K-*L is a monomorphism of K onto a

directfactor ofL (as a K-module) then

dim (L K A) = dim A.

PROOF. The first inequality follows directly from 5.1. To prove the

second part, consider a ^-homomorphisrn a: L-^K such that the

composition K -> L -> K is the identity. Let A be any two-sided A-

module. Then L K A may be regarded as a two-sided L K A-module,

and by 5.1

Hn
(L K A,L K A) ** //n(A,L K A).

Since the composition of the homomorphisms

Hn
(A,A) -> Hn

(A,L K A) -> Hn
(A,A)

is the identity it follows that the relation Hn
(L K A,L K A) =

implies //
n
(A,/4) = 0. Thus dim A <I dim (L K A).

COROLLARY 7.2.
//*
A w an algebra over a commutativefield K^ and L

is a commutativefield containing K, then

dim (L K A) dim A.

PROPOSITION 7.3. Let A and F be K-algebras and A + F their direct

product. Then

dim (A + F) max (dim A, dim F).

This follows directly from 5.3 and 5.4.

PROPOSITION 7.4. Let A and F be K-projective K-algebras. Then

dim (A K F) <^ dim A + dim F.

Iffurther K is a field and A and F are finitely K-generated then

dim (A <g>K F) = dim A + dim F.

PROOF. Let /If be a Ae

-projective resolution of A, of dimension^/?
and let Y be a F'-projective resolution of F, of dimension ^ q. Since

Tor (A,F) = for n > we may apply 2.7, to deduce that X K Y is a

Ae
K F'-projective resolution ofA K F. Since Ae

x Fe^(A K F)'

and since X K Y has dimension <^p + q, the first inequality follows.
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Now assume that A" is a field and that A and F are finitely AT-generated.

Then A* and F* are also finitely A-generated and therefore are Noetherian.

The projective resolutions X and Y may then be chosen so that each Xn

(resp. Yn) is Ae
-free (resp. F'-free) on a finite base. Then for any two-

sided A-module A and any two-sided F-module A' we have the natural

isomorphisms

HomA, (X9A) <%>K Homr, (Y9A
f

) ** Hom
(A<8>r)

. (X K Y9A K A').

Passing to homology this yields an isomorphism

Hn
( HomA. (X,A) K Homr. (Y9A

f

)) w Hn
(A K F, A K A').

Since K is a field, it follows from iv,7.2 that the mapping a yields an iso-

morphism of the left hand side with

2 //*(HomAe (X9A)) K #7(Hom
p+q=n

Thus, finally, we obtain an isomorphism

2 H*(A 9A) K H'(T 9A') ** #n
(A K F,

Therefore, if //P(A,X) ^ and //g(F,/O ^ then since AT is a field

H(A,A) K Hg
(T,A')^Q and consequently H*+

q(A K T,A K A')^Q.
Thus dim (A K F) ^ p + q.

Proposition 7.4 includes a theorem by Rose (Amer. Jour, ofMath. 74

(1952), 531-546).

We now propose to compare dim A with the various other dimensions,

namely: l.gl.dim A, r.gl.dim A, l.gl.dim A
e
, r.gl.dim Ae

. Since Ae
is

isomorphic with its opposite ring (Ae
)*, the last two numbers are equal and

will be denoted simply by gl.dim A
c

.

PROPOSITION 7.5. For any K-algebra A

dim A <i gl.dim A*.

Iffurther A is semi-simple and K-projective then

dim A = gl. dim Ae
.

PROOF. The first part follows directly from the definition of the

global dimension. To prove the second part we use 4.3 with 2 = A.

We obtain an isomorphism

#n
(A, HomA (,C)) w Ext^e (B,C)

for any two-sided A-modules B and C, where HomA (B9C) is the group of

right A-homomorphisms B -> C. This implies gl. dim A* <^ dim A.
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PROPOSITION 7.6. If A. is a K-algebra with K semi-simple then

l.gl.dim A ^ dim A, r.gl.dim A <[ dim A.

PROOF. We apply 4.3 with S = K. This yields

//"(A, Horn* (,C)) Ext (B,C)

for any left A-modules B and C. This implies l.gl.dim A ^ dim A.

We shall see in x,6.2 numerous examples where the inequalities of 7.6

are replaced by equalities.

We now proceed to discuss in greater detail algebras for which

dim A = 0, i.e. algebras A which are A*-projective.

PROPOSITION 7.7. In order that dim A = // 15 necessary and sufficient

that there exist an element e of the two-sided A-module A A (iso-

morphic with A* = A (g) A*) such that fa = e\ (i.e. e is invariant) and that

under the mapping x y -> xy the image of e in A. is 1.

PROOF. IfA is A*-projective, there is a Ae

-homomorphism/: A -> A*
/ p

such that the composition A * A* A is the identity. Then efl
has the desired properties. Conversely, given an element e with the

properties listed above, the map/A Ae is a A*-homomorphism A-> Ae

such that p/is the identity. Thus A is A'-projective.

PROPOSITION 7.8. Let Mn(K) be the algebra ofsquare matrices of order

n with coefficients in K. Then dim Mn(K) = 0.

PROOF. We shall apply the criterion of 7.7. Let e
l3
be the matrix with

1 at the intersection of the /-th row and y'-th column, and with zero

everywhere else. Then %elt
is the unit matrix. Clearly the elements

i

e
tj

constitute a #-base of A = Mn(K). Consider the element

e = Jetl elt A K A. Then

2Xi*it = 2X. = unit matrix.
t i

Thus the conditions of 7.7 are fulfilled and dim A = 0.

THEOREM 7.9. Let A be a K-algebra with K semi-simple. Then

dim A = if and only if A.
e

is semi-simple.

PROOF. If dim A = then, by 7.6, A is semi-simple. Therefore by

7.5, gl.dim Ae = 0, i.e. Ae
is semi-simple. Conversely, if A* is semi-simple

then, by 7.5, dim A = 0.

THEOREM 7.10. Let K be a commutative field and A a K-algebra,

finitely K-generated. In order that dim A = it is necessary and sufficient

that A be separable (i.e. that L K A be semi-simplefor every commutative

field L containing K).
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PROOF. Assume dim A = 0. Then, by 7.1, dim (L K A) = and

therefore, by 7.6, L K A is semi-simple. Thus A is separable.

Conversely assume that A is separable. Then it is well known (see

Albert, Structure of Algebras, New York, 1939, p. 45) that there exists a

commutative field L containing K which is a splitting field for A, i.e. such

that L K A is isomorphic to a direct product Ax + + Ar of full

matrix algebras over L. By 7.8 we have dim A
t
= so that 7.3 implies

dim (A4 + + Ar)
= 0. Thus dim (L K A) = which, by 7.1,

implies dim A = 0.

To prove the existence of algebras of dimension n for an arbitrary

integer n we consider the algebra A = K[xl9 . . . , xn ] of polynomials in

the letters jcl5
. . . , xn . We have shown in vm, 4.2 that dimA K n

provided K is converted into a A-module by means of eQ : A -> K, Qxl
0.

If e: A->/L is any /f-algebra homomorphism, then the substitution

jc
t ->*, ex

t yields an automorphism <p of A such that eq>
= e . There-

fore dimA K = n also with respect to s.

Now we have

A' = A K A & #[*!, . . . , xn , ^1? . . . ,>>J
= A[jl5 . . . ,>;n]. The

map 17: Ae -> A yields a A-algebra homomorphism r\\ A[^, . . . , yn] -> A
(actually ^t

= x
t). Thus dimA A = n, i.e. dim A = n.

Since dimA X = n, we have gl.dim A 2> A?; if further K is semi-simple,

then, by 7.6, gl.dim A < dim A = n. Thus we have

THEOREM 7.1 1. Ler K be a commutative ring and A = Afc^ . . . , xn].

dim A = dimA K= n.

IfK is semi-simple then

gl.dim A = n.

This supplements theorem vm,6.5 in which K was assumed to be a (not

necessarily commutative) field and only graded modules were considered.

EXERCISES

1. In the situation (A-r^^A-S'rQ) where A, T, S are AT-algebras,

establish the isomorphism

HomA(8>r (A, Homs (B,C)) ** HomA0L (B, Homr (>4,C)).

Prove that if A, F, S are ^-projective and

(A,C) = = Ext| (,C) for n >
then

ExtA(8>r (^, HomL (B,C)) w ExtA^ s (5, Hom
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2. Let A == FK(xl9 . . . , xn) be the free AT-algebra generated by
*!,..., xn . Show that any crossed homomorphism /: A -+ A is deter-

mined by its values on xly . . . , xn and that these may be chosen arbitrarily.
Deduce from this that / is A*-free with the elements x

t
1 1 xf ,

/ = 1 , ... fi, as base. Show that dim A = 1 for n > 0.

3. Show that in the normalized standard complex N(A) the "contract-

ing" homotopy s has the form

and that the sequence

N^(A) JV (A) -^ ----> Nn(A)

is exact. As a consequence show that dn (n > 0) maps Ker sn

isomorphically onto Im dn .

4. Given a /^-algebra A consider the AT-algebra A+ K + A with

multiplication and operators given by

(MiXMi) = (*i*. M>2 + Mi + W. *'(M) - (k'kJk'Ji).

Show that each two-sided A-module may be regarded as a two-sided

A+-module. Compare the complexes 5(A) and JV(A+). Prove that if

A is AT-projective and A is a two-sided A-module, then

5. Let A and P be /^-algebras. Show that if A is A^free and dim A =
then dim (A A- O = dim T. [Hint: assuming //

n
(T, C) ^ show that

//"(A K T, Hom^ ( A', C))^ 0.]

6. Let A be a #-algebra. Show that dim A = if and only if

//i(A,y) - 0.

7. Consider the /C-algebra with the basis 1, a, r with multiplication
aa a, rr = 0, ar r, ra = 0. Show that dim A 1.

8. Using the results of vi,5 establish the homomorphisms

(1) H(

(2) Hn(A, Homx (A,K)) -> HomK (H
n
(A,A),K).

Show that if AT is a field then (1) is an isomorphism. If AT is a field and A
is finitely ^-generated then (2) also is an isomorphism.



CHAPTER X

Supplemented Algebras

Introduction. The notion of a supplemented algebra is a very special

but very important case of an augmented ring. The homology theory of

supplemented algebras includes both the homology theory of groups (or

more generally, of monoids) and of Lie algebras (the .latter will be treated

in Ch. xm).
The homology groups //n(A,/4) of a supplemented algebra A are

defined for each right A-module A ; the cohomology groups //n(A,C) are

defined for each left A-module C. In the most interesting case when the

algebra A is ^-projective, these homology and cohomology groups may
be included in the Hochschild theory of Ch. ix. Theorem 2.1 shows

precisely how a complex which is constructed to be used for the computa-
tion of the Hochschild groups of A, may be used to compute the homology
and cohomology groups of A, as a supplemented algebra. This procedure
is applied to the standard complex; in the case A is the algebra AT(I1) of a

group II, we find the "non-homogeneous" complex introduced by

Eilenberg-MacLane (Proc. Nat. Acad. ScL U.S.A. 29 (1943), 155-158).

For some particular monoids and groups, it is more convenient to

use complexes especially constructed rather than the standard complex.
Some such examples are given in 5; the cyclic groups will be discussed

in xn,7.

In 7 we study some relations between algebras and subalgebras, as

well as between groups and subgroups.

1. HOMOLOGY OF SUPPLEMENTED ALGEBRAS

A AT-algebra A together with a AT-algebra homomorphism E: A -> K is

called a supplemented algebra. Clearly the kernel / of e is a two-sided

ideal, and A is a left and right augmented ring (with c as augmentation).
If 77: K-* A is the map defining the A-algebra structure in A then

sr)
=

identity. It follows that K may be regarded as a subalgebra of A
with r\ as inclusion map. Then A (as a right or left /^-module) is the

direct sum K + /

A supplemented algebra being a special case of an augmented ring the

definitions introduced in vm,l apply. In particular, the homology groups

182
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Tor (A 9K) and cohomology groups ExtA (K,C) are defined for any right

A-module A and any left A-module C. These may be computed as

Hn(A A X) and //n(HomA (X,C)) using any A-projective resolution X
of K as a left A-module. All the facts listed in vm,l apply with Q
replaced by K.

Using the augmentation map e : A -> K we may convert any K-

module A into a left (or right) A-module e
A (or A e) by setting Aff = (eX)a.

We then say that the operators of A on A are trivial. If >4 is already a

right (or left) A-module then e
A (or A e) is a two-sided A-module, i.e. a

left Ae-module. In particular K has trivial A-operators.

Using this process, several definitions made for two-sided modules may
be translated for A-modules. For instance, let C be a left A-module. An
element c c C will be called invariant if c as an element of Ce is invariant in

the sense of ix,4, i.e. if Ac = cL Since cA = c(eA) = (eA)c, it follows that

C is invariant if and only if (A eA)c = for all A A or equivalently if

Ic 0. The invariant elements of C form a A-submodule CA ; this is

the largest submodule of C with trivial A-operators. Formula (2a) of

VHI, 1 now can be interpreted as HomA (K9C) = CA . On the other hand it

follows from ix,4 that the 0-th Hochschild cohomology group //(A,Ce)

also coincides with CA . We thus obtain isomorphisms

(1) HomA (K,C) ** //(A,C ) w CA .

Similarly if A is a right A-module, then we observe that AI=(eA)J
where J is the kernel of the augmentation p: A*-> A. We therefore

obtain isomorphisms

(2) A A K ** // (A, /0 AA

where /IA = ^/X7. Clearly AI is the largest A-submodule in A such that

the operators of A on the quotient module are trivial.

We return to the consideration of a left A-module C. Following the

definition made in ix,3 a crossed homomorphism /: A -* C (or rather

/: A -> Ce) is a ^-homomorphism satisfying

f(W = VWa) +WW-
II is easy to see that each such crossed homomorphism admits a unique
factorization

where g is a A-homomorphism and/? is the projection operatorpA= A eA.

The crossed homomorphism / is principal if and only if the homo-

morphism g admits an extension to a A-homomorphism A -> C.
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Combining this with ix,3.2 we obtain an isomorphism

HomA (7,C) ** HomA.

Further, vm,l (3a) and ix,4.1 combine to give

(3)

Both groups are isomorphic with the group of all crossed homomorphisms
A -> C reduced modulo principal crossed homomorphisms.

The 0-th homology group A A K and the 0-th cohomology group
HomA (K,A) both reduce to the module A 9 if A has trivial A-operators.
The earlier discussion of the group ExtA (K,A) shows that this is the group
of all crossed homomorphisms/: A-> A (i.e. /f-homomorphisms satisfy-

ing /(AA) = (e^X/^) + (/*iXf*a)) all the principal crossed homo-

morphisms being zero. For the 1-dimensional homology group we have

by (3) of vm, 1

Torf (A 9K)**Ker(A A /-> A) ** Ker (A K (K A I)-+A <8>K K).

Since the homomorphism K A I^>K is zero we have

** A <8>K (K A /). By (9) of vm,l we have K (g>A / ^ ///
2

. Thus we

obtain

(4)

if A has trivial A-operators.

Consider supplemented algebras

A map of the first algebra into the second is a pair of ring homomorphisms
<p: A-> F, y>: K-+L such that e'gp y>e and 9?(/rA)

=
(yk)(<p%). This

places us in the situation discussed in vm,3, and we obtain homomorphisms

(A,L)

defined for any right F-module A and any left F-module C. The case

that most commonly applies is that of K= L, y = identity.

A somewhat different case is the following one. Let A " K be a

supplemented A-algebra and let L be a (not necessarily commutative)

A^algebra. By extending the ground ring we obtain an augmented ring
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This places us in the situation discussed in ix,l.l and we obtain homo-

morphisms

(5)

(5a) Extl A (L,C) -> Ext (K,C)

for any right L A- A-module A and any left L K A-module C.

Applying ix,l.l we obtain

PROPOSITION 1.1. If the supplemented K-algebra A is K-projective

then (5) and (5a) are isomorphisms. Further ifX is a A-projective resolution

ofK then L K X is an L K A-projective resolution ofL.
If the ring L is commutative, then L ^ A is a supplemented L-algebra

(obtained from A by covariant extension of the ground ring). Proposition
1.1 then asserts the invariance of the homology and cohomology groups
under such extensions.

2. COMPARISON WITH HOCHSCHILD GROUPS

Formulae (l)-(3) of the preceding section show that in low dimensions

the homology and cohomology of a supplemented algebra A coincide with

the Hochschild homology and cohomology groups of A. To carry out

this comparison more systematically we consider the diagram

yv *
/\

e

where <p(A y*) = A(fy). Since e<p(A y*) = f(Ay) er](A y*), the

diagram is commutative, and thus the pair (<p, ) is a map of the augmented

ring A* into the augmented ring A. We are thus in the situation treated in

vin,3, and we find homomorphisms

F*: Hn(A 9 eA) = Tor^ (,A 9A) -> Tor^ (A 9K)

(K9C) -+ Ext^e (A,Ct)
- //"(A,C.)

for a right A-module A and a left A-module C
THEOREM 2.1. //*f/ie supplemented K-algebra A w K-projective, then

F* and F^ are isomorphisms, andfor each Ae

-projective resolution X of A,

the complex X <8>A K is a A-projective resolution ofK=A <g)A K as a left

A-module.
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We begin with

LEMMA 2.2. Let B be a two-sided A-module. Then the homomorphism

T: eA (8>A. 5 -> 5 <8>A K

given by r(X b) = hb 1 is an isomorphism.

Indeed, define a homomorphism a: B A K^> e
A A ^ by

a(b A:)
= A: <8> 6. Then

<rr(A A. 6) = a(Afe <g>A 1)
= 1 Aa Afc == A A. 6

ro(6 A fc)
= r(k A. 6) = fcfe <8>A 1 = 6 <8>A A:.

Thus T is an isomorphism.
We now return to the proof of 2.1. It suffices to verify conditions

(i) and (ii) ofthe mapping theorem vm,3. 1 . Applying the lemma with B A
we find that condition (i) holds. Next we take B = X where A" is a Ae-

projective resolution of A. Then

Tor' (.A,A) = Hn(eA <g>A, *) //W(AT A AT).

Since A is tf-projective, it follows from ix,2.4 that ^ is A*-projective,
i.e. X is A-projective as a right A-module. Therefore Hn(X A /T)

= Tor^ (A,AT) which is zero for n > 0. This proves condition (ii) of the

mapping theorem and thus completes the proof of theorem 2.1.

Theorem 2.1 reduces completely the homology and cohomology theory
of a /L-projective supplemented tf-algebra to the Hochschild theory. This

will allow us to replace the notation Tor (A,K) by the homological nota-

tion Hn(A,eA) for a right A-module A. To further simplify the notation

we shall write Hn(A.,A) omitting e. Similarly for cohomology.
We may apply 2.1 to the standard complex S(A) or the normalized

standard complex W(A) of ix,6 (note that the normalized standard complex

may be used because A' = A/K & I is AT-projective as a /^-direct summand
of A). We denote the complexes S(A) A K and N(A) A K by S(A,e)

and N(A,e) respectively. To give an explicit description of N(A,e) note

that Nn(A) = A K Nn(A) K A so that Nn(A,e) = Nn(A) <8>A K
= A A- Nn(A). The differentiation operator in

is

0<t<n
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We recall that the symbol [Al5 . . . , AJ(n i> 0) is ^-multilinear and is zero

whenever A<
= 1 for some / = 1, ...,. If this last condition is dropped,

we obtain the (unnormalized) complex S(A,e).

The whole discussion of this section could be repeated by regarding K
as a right A-module and thus treating the supplemented algebra A as a

right augmented ring. If A is AT-projective then S(e ,A) = K A S(A) and

N(e,A) = K A A(A) are A-projective resolutions of AT as a right
A-module.

We conclude this section by discussing the case when the coefficient

module A (for homology and cohomology) has trivial A-operators, i.e. is

simply a AT-module.

PROPOSITION 2.3. Let A be a supplemented K-algebra and A a K-

module. Given a projective resolution X of K as a left A-module, define

X= K <g)A X. We then hare natural isomorphisms

(A,K) ** Hn(A

* Hn(HomK
PROOF. We have

)= Hn(A A X)= Hn((A K ^) A X) * Hn(A

^Hn(A K X).

A similar proof applies to cohomology.

Applying the above result to the normalized standard complex N(A,e)

(under the assumption that A is AT-projective) we find the complex
N(,A,e)=K A yV(A,f) composed of modules Nn(e 9A>e)=K A Nn(A,e)

= K A A x A^n(A) = AT n(A). The differentiation operator in the

complexF

1C

</i[A]
= 0,

3. AUGMENTED MONOIDS

We return to the discussion of monoids initiated in vm,2. Let II

be a monoid, L a ring (not necessarily commutative) and e: L(Yl) -> L an

augmentation of the ring L(H). As we have seen in vm,2, the augmenta-
tion is uniquely determined by a function FI -> L also denoted by c,

satisfying ' = '

el - 1



188 SUPPLEMENTED ALGEBRAS [HAP. X

and whose values are in the center of L. The monoid II together with

the augmentation function e: U -> L is called an augmented monoid.

We shall show that for the purposes ofhomology theory, one may always
assume that L is commutative. Indeed, consider a factorization

of the augmentation e, where AT is a commutative ring, ft is a ring homo-

morphism with values in the center of L, and e' is an augmentation
function. Such a factorization always exists ; it suffices to take K = center

of L. The map ^ defines on L the structure of a ^-algebra. It is then

clear that L(I1) may be identified with the tensor product of ^-algebras
L K K(fl). The augmentation e: L(fl) -> L then becomes

L e': L A- K(U) -> L. Since the elements x U form a /C-base for

/(!!), it follows that K(H) is K-projective. We are thus in a position
to apply 1.1, obtaining isomorphisms

(1) Torf
n >

(A 9K)

(la) ExtJ(n>

for any right L(n)-module A and any left L(Il)-module C.

Relations (1), (la) place us squarely in the theory of supplemented

algebras. Since K(Ii) is ^-projective, we may (in view of 2.1) regard the

left sides of (I) and (la) also as Hochschild homology and cohomology

groups. We shall use the notation Hn(U 9A) and //w(fI,C)to denote the

left sides of (1) and (la). This notation does not exhibit the ring K and

the augmentation e: IT -> K and will be used only if it is clear what these

are. The group A is assumed to be a right X(n)-module, while C is a

left A:(II)-module. The augmentation ideal, i.e. the kernel of e: K(H)-+K
will usually be denoted by /(FI).

We further minimize the role of K by using the*expression "II-module"

instead of "#(ri)-module". Similarly we use the notation n , Homn ,

Tor?, Extft instead of X(n) , Hom^(n) , Tor?
(n

>, ExtJ(n> .

The most important examples of augmentations in a monoid II are

the following two: (1) the unit augmentation ex= I for all jccll;

(2) the zero augmentation ex = for x c II, x ^ 1 and e\ = 1 ; this

augmentation may be used only if the relation xx = 1 in FI implies
x = 1 = x' (i.e. if no inverses exist in II). In the case of either of

these two augmentations the ring K may be taken to be the ring Z of

integers.

The standard complexes S(A,e) and N(A t e) for A = K(H) will be

denoted simply by (!!,) and N(H,e). The description given in 2

need not be repeated. We only observe that the elements [xx , , xn] 9
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x^n, form a /f(II)-basis for 5n(Il,e). The same applies to A^M(II,e),

except that in Nn(Il,e) we set [xl9 . . .
, xn]

= whenever one of the

coordinates x, is 1.

The functorial properties relative to the variable II may be easily

derived. Let 11, IT be monoids with augmentations e: H -> K,

e: IT -> K. A map <p: II'-^n is a multiplicative map such that

<p\ 1 and e<p= e. This clearly induces a map q>:

of supplemented algebras, and thus yields homomorphisms

where A is a right n -module and C is a left n-module.

As an application of the mapping theorem we obtain

PROPOSITION 3.1. In order that F* be an isomorphism for all right

H-modules A it is necessary and sufficient that

(i) K(ll) n , K & K under the mapping x k -> z(x)k,

(ii) Hn(n',K(ll))^Qforn>Q.

If these conditions are satisfied then F
q
also is an isomorphism for all left

Il-modules C. Further, for anv IV-projective resolution X of A', the

complex K(U) n . X is a H-projectiue resolution of K.

It should be noted that condition (i) is always satisfied when q>: !!'-> II

is an epimorphism.

4. GROUPS

We assume here that II is a group. We first show that no generality

is lost by assuming that the augmentation is the unit augmentation.

Indeed, let e: II .> K be any augmentation function. We denote by

K(H 9e) the tf-algebra #(11) with the supplementation given by e and by

K(U,i) the same algebra with the supplementation given by the unit

augmentation /. The mapping <p: K(ll,e)-> K(HJ) given by x-> (ex)x

for A: e II is then an isomorphism of supplemented algebras.

As a consequence we shall always assume that the augmentation is the

unit augmentation. As a further consequence we shall always assume that

K = Z is the ring of integers. We shall therefore deal with the algebra

Z(II) supplemented by e(2 z
t
x

t)
= ^zt , z t

Z9 x, ell. The augmenta-
tion ideal 7(11) is then a free abelian group with the elements x 1

as basis (x e II).

The standard complexes 5(11) and #(11) may be put in a somewhat

different form by a change of basis. We introduce the symbols

(1) (XQ, . . . , Xn)
= XQ[XQ X^ . . . , -Vn_l*n]>
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then

(2) *(* , . . . , xn) = (xx , . . . , xxn)

(3) [*!, . . . , Xj = (I,*!,*!** . . . , *! Xn)

n ^
(4) </n(*0 > *n) = 2 (- 1)'(*0 - ' > *i> > *)

i =

It follows that Sn(Tl) is the free group generated by the elements

(xOJ . . . , xn), xt
e II with II-operators defined by (2) and with differentia-

tion given by (4). This form of the standard complex is known as the

homogeneousform. The same applies to the normalized standard complex

N(H) provided we set (* , . . . , xn)
= whenever jc,^

=
x, for some

i = l,...,/i. We observe that the differentiation operator does not

involve the operators of II and has the standard form encountered in the

homology theory of simplicial complexes.

For low dimensions the homology and cohomology groups may be

described as follows :

7/ (n,y4) = A/AI= An is the factor group of A by the subgroup

generated by the elements a(x 1), a e A, x II.

//(I1,C)= Cn is the subgroup of invariant elements of C, i.e.

elements c with xc = c for all x II.

//1
(II,C) is the group of all crossed homomorphisms /: II -> C

(i.e. all functions satisfying f(xy)
== x(fy) +fx, for x,y II) reduced

modulo principal crossed homomorphisms (i.e. functions of the form

fx = xc c for a fixed c e C).

If n operates trivially on A (i.e. A
u = A) these results simplify as

follows

(5) //o(IM) = A =

(6)

Clearly Hom(n,^) may be replaced by Horn (II/[n,n],/4) where

[II,II] is the commutator subgroup of II. In the case of trivial

operators we can also calculate the group /^(FM). We have from

formula (4) of 1 that /^(IM) * A 7//
2 where 7=7(0). We

establish maps

?: 7/7
2
->n/[n,n], y

by setting <p(x 1)
=

jc, yjc
= x 1 . Simple calculations show that we

obtain an isomorphism

(7) 7/7* * n/[nji].
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Thus we have

(8) Hjffi^^A n/[n,n].

We shall now prove a proposition which shows that in some cases the

homology and cohomology groups of a group are the same as those of a

monoid contained in the group.
PROPOSITION 4.1. Let IT be a group and IT a monoid contained in II

such that each element of II has the form Jt
-1

)>,
x IT, y II'. Then

the homomorphisms

induced by the inclusion map II '-^11 are isomorphisms. Further, if

X is a Yl'-projective resolution of Z, then Z(U) <S>n . X is a H-projective
resolution ofZ.

PROOF. We apply 3.1. To verify that condition (i) of 3.1 is satisfied

we must show that the relation z ir 1 = 1 n . 1 is valid

in Z(l\) n,Z for each zell. Let then z^jc" 1
)', jtcIT, y IT.

Then, writing for n ', we have

z 1 = x~ l

y <g> 1 = x- 1 vl = .x-
1

1 -= x- 1 x\ = 1 1.

To verify condition (ii) of 3.1 we must show that Tor"' (Z(I1),Z) =
for n > 0. Since Tor"' commutes with direct limits (vi,1.3) it suffices to

prove that Z(I1) is a direct limit of Il'-projective right modules. Indeed,

we shall show that Z(I1) is the union of a directed family of submodules

M
s
each of which is isomorphic with Z(H').

For each jell consider the map fs : IT->n given by fsx=sx.
Since FI is a group, fs induces a IT-isomorphism of Z(II') with a right

IT-submodule A/, of Z(H). Since s e A/,, Z(II) is the union of the

submodules Ms . There remains to be shown that the family {Ms } is

directed. Given s>t II we have s~ lt=v~ lw with r,H'eH'. Thus

sir 1 = /w* 1
. Setting u = sv~ l = tw~ l we have

sx = u(vx) c A/M , tx = W(H'JC) c A/M , x e IT.

Consequently M8 C Mu and Mt
C A/u so that the family (A/J is directed,

as required.

COROLLARY 4.2. Let II be an abelian group and IT a submonoid

of II generating II. Then the conclusions of 4.1 hold.

One fundamental difference between groups and monoids is the

existence of the transformation cox = x~ l which yields an isomorphism

or. Z(FI) ** (Z(n*.
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This "antipodism" allows us to convert any right II-module A into a

left IT-module by setting

It is because of this antipodism, that it is possible to build the whole

homology and cohomology theory of groups using left II-modules

exclusively.

5. EXAMPLES OF RESOLUTIONS

The standard complex 5(11) has the advantage of being defined for all

augmented monoids II and being a covariant functor of the variable n.

However, for each individual monoid there are usually simpler II-

projective resolutions of K which lead more quickly to the computation of

the homology and cohomology groups of II. We shall discuss here a

number of such examples.
As our first example we shall treat simultaneously the following cases:

II is the free monoid generated by a (finite or infinite) set of letters

{xa } with any augmentation e: II -> K.

II is the free group generated by a set of letters {jca } with the unit

augmentation II -> Z.

Let C be any left /C(Il)-modiile. It is easy to verify that each crossed

homomorphism/: K(U) -> C is uniquely determined by its values on the

elements xa and that these may be arbitrarily prescribed in advance. In

view of the 1-1-correspondence between crossed homomorphisms and

/f(n)-homomorphisms g: /(!!)-> C it follows that each such homo-

morphism g is uniquely determined by its values on jca
- e.va and that

these values may be arbitrarily prescribed. It follows that the elements

{xa o:a } form a AT(lI)-base of I(U) as a left A:(II)-module. Thus

7(11) is A<II)-free. Therefore the exact sequence

o >
7(n )

--> #(n )
-^ A: o

yields a projective j?(n)-resolution of K. This implies the well known
result :

77n(II,/0
= = //

w
(n,C) for n>\.

Following formula (9) of vm,l we have 77
1(IT,K) = Tor? (K9K) ** 7//

2
.

The identity xy 1 = (x 1) + (y 1) -|- (x \)(y 1) implies that

in the module 7/7* the images of the elements xa 1 form a A"-base. Thus

if {xa } is not empty this module is non-zero. This shows that

if II is the free monoid (or group) on a non-empty base {xa}. Similarly
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Incidentally we have shown that if II is a free group generated by the

letters {xa} then for each x e II we have

with a(jt) Z(1~I) uniquely determined. The functions a are crossed

homomorphisms O -> Z(FI) uniquely determined by the conditions

a(*a) 1 and a*(xp)
for a ^ /?. The elements aa(x) are called the

partial derivatives of x and are written as -r .

9*

Our next example is that of the free abelian monoid II generated by a

finite set of letters xl9 . . . , x n with an arbitrary augmentation e: II -> #.

We introduce the elements x^
=

x, ex
t
of #(0). It is then clear that the

ring K(H) may be identified with the ring K[x{, . . . , jcJJ of polynomials
in *i, . . . , xn with the augmentation given by e(x() 0. We thus fall

into the case treated in vm,4 and obtain the complex

where E(yl9 . . . , y n) is the exterior /C-algebra on the letters jj, . . . > vn

with differentiation

In particular, the discussion carried out at the end of vm,4 applies.

The last case treated here will be that of the free abelian group FI

generated by a finite set of letters xl% . . . , x n (with the unit augmentation
II ->Z). In this group we have the free monoid FT generated by

*!,...,* and 4.1 may be applied. Using the complex constructed

above for the free monoid, we find the complex

Z(R) E(yi..... vn)

with

Further examples will be given in Ch. xn for finite groups.

6. THE INVERSE PROCESS

We have seen in 2. 1 that the homology and cohomology theory of a

tf-projective supplemented A'-algebra is expressible in terms of the

Hochschild theory. We shall see here that in some very important cases,

the converse also holds: the Hochschild homology theory may be derived

from the homology theory of supplemented algebras.
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Let A be a supplemented tf-algebra and assume that a ^-algebra

homomorphism

E: A->A"

is given, such that the diagram

.j 1,

A'* A
P

is commutative. In this diagram e is the augmentation of A, rf is deter-

mined by the /f-algebra structure of A and p is the augmentation of A*.

This commutativity relation is equivalent with the inclusion

(1) EICJ.

We are now in the situation covered by vm,3 and we obtain homo-

morphisms

FK : ToT*(A K9K)-+Hn(A 9A)

FE : H(A,A)^Ex$(K,KA)

where A is a two-sided A-module, KA (or A^ is the left (or right) A-

module obtained by regarding A as a left (or right) Ae-module and then

defining the A-module structure using E. In particular, we shall denote

by A'E the algebra A* regarded (1) as a left A*-module, (2) as a right

A-module by means of the map .

THEOREM 6.1. Assume that the following conditions hold

(E.i) j= Ay
(E.2) AJj is a projective right A-module.

Then the maps F
E and FE are isomorphisms, and for each projective resolu-

tion XofKasa left A-module, A e

E A X is a projective resolution ofA as a

left Ae-module.

PROOF. We only need to verify conditions (i) and (ii) of the mapping
theorem vm,3.1.

From the exact sequence 0->/->A->/f->0 we deduce the exact

sequence

A^ A /- Afc-> A*B A K->
which implies

K *, Coker (AJ A /-> Ay = Afc/AJ/= AfJJ- A.
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The isomorphism A^ A K ** A is given by y A 1 -> py and this

proves condition (i) of the mapping theorem.

Condition (ii) of the mapping theorem is Tor (A
e

E,K) = for n> 0.

This is a direct consequence of (E.2).

We return for a moment to the condition (E.I) above. The inclusion

A^/ C J is equivalent with the inclusion (1). The other inclusion J C Ae

El

expresses the fact that J is contained in the left ideal of A* generated by El.

Since / as a left ideal is generated by elements of the form A (g) 1 1 A*,

X e A (see ix,3-l), we find that in the presence of (1), condition (E.I) is

equivalent with

(.!') For each A A, the element A 1 1 <g> A* is in the left ideal

of A* generated by El.

THEOREM 6.2. Assume the conditions of 6.1 and that A is K-projective.
Then

dim A = l.dimA K~ r.dimA K.

Iffurther K is semi-simple, then

dim A l.gl.dim A r.gl.dim A.

PROOF. The equality dim A l.dimA /L follows directly from 2.1

and 6.1. To prove dim A r.dimA K it suffices to prove dim A l.dimA K.

The map E: A -> A* induces a map
*

: A* -> (A*)* = (A*)
e and it is

easy to see that conditions (E.I) and (E.2) still hold. Thus by the part of

the theorem already established, dim A* l.dimA K. Since dim A
= dim A*, the conclusion follows.

If K is semi-simple then, by ix,7.6, we have l.gl.dim A <^ dim A.

Since dim A = l.dimA K< l.gl.dim A we obtain dim A = l.gl.dim A.

Similarly for r.gl.dim A.

As an illustration of the inverse process consider the ring A = Z(I1)

(or more generally A= K(fl)) where is a group with unit augmenta-
tion. Define E: A -> A* by setting Ex = x Or 1

)* for x II. Then

pEx 1 so that (1) holds. Since

* =x 1 - 1 x* = (x 1X1 1
- x- 1

x*)

it follows that (E.T) holds. To verify (E.2) observe that the elements

1 x* (x II) form a base of Ae as a right A-module. Thus theorems

6.1 and 6.2 may be applied. Note that if A is a two-sided A-module then

KA is the left II -module with operators 0-> xax~ l and AE is the right

Il-module with operators a -> x~ lax.

In xin,5 we shall show that the inverse process can also be applied to

the homology theory of Lie algebras.
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7. SUBALGEBRAS AND SUBGROUPS

Let A and F be A^-algebras and let 9?: A -> F be a ^-algebra homo-

morphism. Given an augmentation e: F -> K which converts F into a

supplemented algebra, we define A as a supplemented algebra using the

augmentation e<p: A-> K. In most cases A will be a subalgebra of F

and <p will be the inclusion map. We shall use here the notations of n.6.

PROPOSITION 7.1. If Y, as a left (right) A-module, is projective, thenfor

any left (right) F'-module A, any T-projective or T-injective resolution X of
A is also a A-projective or A-injective resolution ofA.

This follows directly from n,6.2 and n,6.2a.

PROPOSITION 7.2. If F is projective as a left A-module, then we have

isomorphisms

Tor (A,K) TorJ (A (^K\ Exinr (K^C)) ExtJ (K,C)

for each right A-module A and each left A-module C.

This follows directly from vi,4.1.1 and vi,4.1.4. Similarly applying

vi,4.1.2 and vi,4.1.3 we find

PROPOSITION 7.3. If F is projective as a right A-module, then we have

isomorphisms

Tor(A,K) * Totf (A,T A K), Ext (F A K9C) ** Ext (K9Q
for each right r-module A and each left F-module C.

We apply these results to groups. Let TT be a subgroup of II and let

<p: Z(7r)->Z(Il) be induced by the inclusion TT -*!!. If {xa} is a

system of representatives of right cosets of TT in E, then it is clear that

{xa} is a base of Z(U) regarded as a left Z(7r)-module. Similarly Z(I1) is

free as a right Z(7r)-module. We may thus apply 7.2, replacing A (<f)
and

(<P)C by their definitions.

PROPOSITION 7.4. Let IT be a subgroup o/IL Then

(1) Hn(*9A) ** Hn(Yl 9A w Z(0))

(la) Hn
(ir,C) ** Hn

(H, Horn,, (Z(H),C))

for each right tr-module A and each left n-module C.

Before we apply 7.3 we reinterpret the module Z(I1) W Z as follows.

Let Z(n/7r) be the free abelian group generated by the left cosets XTT of TT

in n. Then n operates on Z(H/ir) on the left and we may identify

Z(n/7r)withZ(n) w Z.

PROPOSITION 7.5. Let TT be a subgroup ofU. Then

(2) Hn(* 9A) ** Tor]? (^,Z(n/7r)) f

(2a) Hn
(TT,C) ** Ext (Z(n/7r),C),

for each right Tl-module A and each left Tl-module C.
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Let TT be a subgroup of II and let x e II.

In the situation 04n ,nC) we define

by setting cx(a ff c)
= axr1

XffX-i xc. Replacing C by a Il-projective

resolution of Z, and passing to homology we obtain isomorphisms

cx : n TT,A **

for any right Il-module A.

Similarly, in the situation (n^nO we

cx : Horn,, (/i,C)->HomZ7r:P-i(^,C)

by setting (cxf)a = x(f(xr
l
a)). Replacing A by a Il-projective resolu-

tion ofZ and passing to homology we obtain isomorphisms

cx : Hn
(7T,Q ** H(xirx-

l
,C)

for any left II-module C.

The following properties of cx are directly verified

(3) cxcy
= cxv ,

(4) If jc e TT then cx is the identity.

Assume now that TT is an invariant subgroup of IL Then TT = XTrjc""
1

and it is clear from (3) and (4) that cx defines left operators of H/TT on

Hn(ir9A) and // n
(7r,C) for each right Il-module A and each left Il-module

C.

There is another way in which these operators may be arrived at. The
Il-module Z(II/7r) appearing in (2) and (2a) is the group algebra of the

group II/7T regarded as a left Il-module. The structure of Z(II/7r) as a

right II/7r-module can then be used to define right II/^-operators of the

groups appearing in (2) and left II/^-operators of the groups appearing in

(2a). The verification that these operators agree with the operators defined

using cg , is left to the reader.

In Ch. xni we shall carry out a similar discussion for Lie algebras. In

Ch. xvi we shall obtain further results using spectral sequences.

8. WEAKLY INJECTIVE AND PROJECTIVE MODULES

Let A be a /T-algebra and rj:
K -> A the natural map. A right A-

module A is said to be weakly projective if it is ^-projective in the sense of

11,6. This means that the kernel of the map g: A K A-> A given by
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a A -> aA is a direct summand of A K A regarded as a right A-
module using the right operators of A on A (not on A\). A similar

definition applies to left A-modules using A K A-> A.

Similarly a left A module C is said to be weakly infective if it is rj-

injective in the sense of 11,6. This means that the image of the homo-

morphism h: C-> Hom/c (A,C) which to each c assigns the homo-

morphism A -> Ac is a direct summand of Hom^ (A,C) regarded as a left

A-module using the right operators of A on A. Similarly for right A-
modules.

PROPOSITION 8.1. Let M be a K-module, and A a weakly projective

right A-module. Then M K A is weakly projective and Hom^ (A 9M) is

weakly infective.

PROOF. We shall only prove the second part. Consider the commuta-
tive diagram

(A <%>K A,Af)

where s is the A-isomorphism of n,5.2. Since A is weakly projective,

Kerg is a direct A-summand of A x A. It follows that the image of

j (g,M) is a A-direct summand. Thus the same holds for A, so that

- (A,M) is weakly injective.

PROPOSITION 8.2. Let A be a K-projective K-algebra. In the situation

(j4A ,AC), // C is K-projective and A is weakly projective, then

Tor (A,C) =Q for n > 0.

PROPOSITION 8.2a. Let A be a K-projective K-algebra. In the situation

(A/4,AC), ifA is K-projective and C is weakly injective then

Ext^ (A 9C) =0 for n > 0.

These are immediate consequences of vi,4.2.1 and vi,4.2.4. As a

consequence we obtain

COROLLARY 8.3. Let A be a K-projective supplemented K-algebra.
Then

Hn(A,A) == = Hn
(A,C) for n >

for any weakly projective right A-module A and any weakly injective left

A-module C.

We now turn to the discussion of weakly projective and injective
modules in the case A = Z(I1) where II is a group.
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Let A be a right II-module. On the group A Z(I1) we consider

two right Il-module structures given for a A, x,y e II by

(1) (a x)y= a xy

0') (ax)y=ayxy

respectively. The mapping <p: a x-> ax x maps structure (1)

isomorphically onto structure (!'). In defining weakly projective modules

we used the map g: A Z(II) -> X given by g(a x) = ax which was a

ri-homomorphism on the structure (1). The map g'
=

g(p~
l

is given by

g'(a *)= a, and is a Il-homomorphism on the structure (!'). We
thus obtain

PROPOSITION 8.4. A right Tl-module A is weakly projective ifand only if

there exists a \\-homomorphism v: A -> A Z(I1) (rel. to structure (I'))

such that g 'v identity.

Let C be a left D-module. On the group Horn (Z(I1),C) we con-

sider two left II-module structures given for / c Horn (Z(FI),C), x,y II

by

(2) (>/)*=/(*>')

(2') (yf)x

respectively. The mapping /-> ^/ given by (yf)x xC/x"
1
) maps

structure (2) isomorphically onto structure (2'). In defining weakly

injective modules we used the map h: C-> Horn (Z(II),C) given by

(hc)x=xc. The map h' = yh: C-> Horn (Z(n),C) is given by

(h'c)x = c, and is a Il-homomorphism on structure (2'). Thus we

obtain

PROPOSITION 8.4a. A left Yl-module C is weakly injective if and only

if there exists a H->homomorphism fi: Horn (Z(II),C)-> C (rel. to

structure (2')) such that ph' = identity, i.e. such that iffx is constant and

has value c then juf= c. Such a function p will be called a mean.

As an application of the above criteria we prove the following two

propositions that will be used in Ch. xvi.

PROPOSITION 8.5. In the situation (n^nO assume that A is weakly

projective. Then A C with left operators

x(a c) = xa xc

is weakly projective. Similarly Horn (A 9C) with left operators

(xf)a=x(f(x-
l
a))

is weakly infective.
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The proof is similar to that of 8.1 and uses the diagrams

(A A) C-^ A (A C)

AC
Horn (A ^,C) ^~ Horn (A, Horn (A

IIom<0',C) \
Horn (/4,C)

where A = Z(H) is treated as a left Il-module. The horizontal maps
r and $' are given by n,5.1 and n,5.2' and are II -isomorphisms.

PROPOSITION 8.6. A left Yl-module A is weakly projective if and only

if there exists a Z-endomorphism p: A -> A such that

(i) for each at A, p(xr
l
d) = Ofar all but a finite number ofelements x IT,

(ii) a 2 xp(x~
1

a)for all a A.
xtU

PROOF. Let g': Z(I1) A-^ A be given by g'(x a) = a. If A
is weakly projective then, by 8.4, there exists a 11-homomorphism
v: A -> Z(FI) (g) >4 such that

g'va
= c for all a ^4.

Here Z(I1) A has operators /(* fl) >x Jfl - Since the elements

^ II form a Z-base for Z(FI) each element va can be written as a finite

linear combination

(3) va=Zxg(x,a), x eU.

Since for y c II

it follows that the condition v(yd)
=

y(va) is equivalent to

(4) g(x,ya)
= ^(X"

1*^) for all *,>> c H .

This in turn is equivalent to

(5) g(x,a) = x^(l,x-^) for all x e H.

Therefore setting pa = g(l,a) we have

(6)
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Since for a fixed a, g(x,a)
= for all but a finite number of elements

x II, condition (i) follows. Finally

a = g'va
= '(]>* g(*>fl))

= Z(* fl) 2*/(x
~

lflO-

Conversely, given p : /4 -> /4 satisfying (i) and (ii), we may define g(x,a)

using (6) and v using (3). Then v is a Il-homomorphism and g'v=. identity.

In the discussion concerning groups the ground ring Z may be replaced

by any commutative ring K.

EXERCISES

1 . Let A be a supplemented /^-algebra, and A a /^-module. Show that

A K A is A-projective if and only if A is AT-projective. Assume further

that K is such that /f-projective modules are /f-free. Then show that if

A ^ A is A-projective then it is A-free.

2. Show that the inverse process of 6 can be applied to the algebras

A Fx(xl9 . . . , x n ) and A = K[x^ . . . , xn ] supplemented by ex
t
=

using the map E: A ~> A* given by Ex
l

= x
l

1 1 jc*.

3. Let A be a A^-projective supplemented AT-algebra with K a hereditary

(commutative) ring. Establish the exact splitting sequences

-> //n(A,/0 x A -> Hn(A,A) -> Torf (Hn^ (A,K\A) -> 0,

for any module A with trivial A-operators.
4. Let II be a group (or a monoid with an augmentation 11 -> Z).

Establish the splitting exact sequences

o -> //w(n,z) ^ -> j/aOM) -> Tor
a (//_! (n,ZM) -^ o

-> Ext1 (H
n~ l

(n,Z),/l) -> //w(H,/i) -> Horn (H
n(H),A) -*

for any abelian group /4 with trivial FI -operators.

5. Let A be a A-projective supplemented AT-algebra. Then

A' = Coker(/k-> A) may be identified with the augmentation ideal /.

Using this remark give a description of the complex T(A,e) using symbols

[Alt . . . , AJ with X
t

I.

6. Let A be a supplemented /^-algebra and let z be an element in the

center of A. For any left A-module C, multiplication by 2 defines an

endomorphism C->- C which induces an endomorphism H n
(A 9C)

-> //*(A,C). Show that the latter is given by multiplication by the

element sz of K. State a similar result for homology.



CHAPTER XI

Products

Introduction. The functors Tor and Ext may be combined with each

other using four product operations T, _L, V , A . Each of these products
involves three algebras, more precisely two algebras A and F and their

tensor product A F. They satisfy a number of associative, anti-

commutative and other rules.

There are also internal products involving only one algebra. To
obtain internal products m, u; corresponding to T, _L, we need an algebra

homomorphism A A-> A; such a homomorphism always exists if A
is commutative. For the internal products U , O corresponding to

V , A , we need an algebra homomorphism A -> A A ; such a homo-

morphism (usually called a "diagonal map") will be exhibited in a number

of interesting cases.

The external and internal products may be computed using suitable

multiplication formulae in complexes ( 5).

The situation outlined above closely resembles that encountered in

algebraic topology.
The general products for Tor and Ext are applied ( 6, 7) to the homo-

logy theories of Chs. ix and x. The internal products U , O will be modi-

fied in 8, using an "antipodism" A-> A*; this leads to reduction

theorems (9) which generalize the "cup product reduction theorem" of

Eilenberg-MacLane (Ann. of Math. 48 (1947), 51-78, Ch. HI).

1. EXTERNAL PRODUCTS

In this and the following sections we shall consider AT-algebras over the

same commutative ring K. We shall therefore simplify the notation by

writing and Horn instead of x and Horn^.
Given complexes X and Y composed of ^-modules we obtain new

complexes X Y and Horn (X, Y) and homomorphisms

(1) a: H(X) H( Y) -> H(X Y)

(!') a': //(Horn (X,Y))-> Horn (H(X),H(Y))
202
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defined in iv,6. The properties of these homomorphisms relative to the

degrees imply homomorphisms

a: HP
(X) Hq

(Y)-+ H(X Y)

a' : H(Hom (X, Y)) -> Horn (HP(X) 9HQ
(

Since these homomorphisms are fundamental for the theory of products
that we are about to develop, we give a brief survey of their definitions.

Let /jx H*(X), A2 H\ Y) and let zx e Z"(X), z2 e Z( 7) be representa-
tives of Ax and A2 . Regard zl and z2 as elements of Xp and 77

. Then
zx z2 JP K and rf^ z2) = 0, thus zl z2 c Z1^* Y). The
element a(/7x A2) c ZP+7

(A" 7) is the class of z
1

z2 .

Let A! //+(Hom (*, 7)), A2 HP(X) and let / Z (Horn (JT, 7)),

z2 c Z9(X) be representatives of /ij and /z2 . Then/z2 e Y9 and </(/z2)
= 0.

Thus/z2 determines an element of H9
(Y) which is precisely (<x.'h^h2 .

Let A and F be two /C-algebras and consider the /C-algebra

Q= A T

where as usual stands for

If A is a left A module and A 1

is a left T-module then A >!' is a left

ii-module.

Let A" be a A-projective resolution of X and X' a F-projective resolu-

tion of A'. Then, by ix,2.5, X A"' is an Q-projective left complex over

/4 A'. Thus we have the homomorphisms (of degree zero)

(2) H(B n (Jf A-')) -> Tor (5, X A') Ba

(2') Extn (/4 A\C)-> //(Homn (A
r

A
r/

,C)). nC

PROPOSITION 1.1. (cf. ix,2.7). If A cwrf F are K-projective and

4,^') = Ofor n > then X X' is an Q-projective resolution of
A <g) A'. In particular, (2) and (2') are then isomorphisms.

PROOF. Since A and F are #-projective, it follows from n,6.2 that X
and X' are AT-projective resolutions of A and A'. Thus Hn(X A"')

= Torf (/i,/4
;

)
= for n > 0.

We now place ourselves in the situation described by the symbol
(A^l,CA ,r>4

/

,Cf) and define the homomorphism

Vl : (C A A) (C r A') -+ (C C') n M A')

given by <?P((C a) (c' a')) = (c c') (a a'). Replacing A and

^' by X and AT' we obtain

<*V- (C A JO (C' r ^')-> (C (g) C) <8>n (JIT Jf' ).
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Passing to homology and applying a we obtain the homomorphism

TorA (C,A) Torr (C\A
f

) -> H((C C) Q (X X')).

Composing this with (2) we obtain the T-product

T : TorA (C,A) Torr (C',/T) -> Tor (C C.A A').

Since T has degree zero, it yields maps

T : TorA (C9A) Totf (C',A
f

) -> Tor" , (C

PROPOSITION 1.2.1. fbr p = ^ = the T -product reduces to the map
Vi-

This follows readily from the definition ofT by applying the augmenta-
tion maps X> A and X''-> /T.

Next we consider the situation described by the symbol (A/4,CA , r^', rC
/

).

We define Horn (C,C") as a left ii-module by setting

((A (8) y)/)c = y(/(cA)) c C,/ c Horn (C,C')

and define the homomorphism

<p2 : Homn (^ ^', Horn (C,C'))-> Horn (C A /4, Homr (/l',C'))

by setting

Replacing ^4 and >T by A" and A" we obtain

<D2 : Hom
fi (^ X', Horn (C,C'))^ Horn (C A X, Homr (^',0')

Passing to homology and applying a' we obtain the homomorphisms

//(HomQ (X Ar/

, Horn (CC')) -> Horn (Tor
A

(C,^), Extr (A\C)

Composing this with (2') we obtain the _L-product

_L : Extn (AA' 9 Horn (C,C')) -> Horn (Tor
A

(C,^), Extr (A',C)).

Since J_ has degree zero, it yields maps

J_ : Extfc
+ * (^ A', Horn (C,C')) -> Horn (Tor (C,^), Ext?, (A',C)).

PROPOSITION 1.2.2. For p = q = 0, the ^.-product reduces to the map
<P*

For the remaining two products V and A we make the following two

assumptions:*

(i) A and F are ^-projective

(ii) Tor (A,A
f

)
= for n > 0.
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It follows from 1.1 that the homomorphisms (2) and (2') are

isomorphisms.

We now place ourselves in the situation described by the symbol
(A/4,AC,r/4',rC'). We define the homomorphism

<p3 : HomA (A) Homr C4',C')-> Homn (A A\C C")

by setting

a')
=

Replacing X and A' by X and A", we obtain

O3 : HomA (A'.C) Homr (X\C')-+ Homn (X A",C

Passing to homology and applying a we obtain the homomorphism

ExtA (A,C) Extr (A\C') -> //(Hom c , (* A",C C'))

Combining this with the inverse of (2') we obtain the V -product

V : ExtA (/4,C) Ext r (A',')- ExtQ (A /4',C C').

Since V is of degree zero, it yields maps

V : Extft (A,C) ExtV (^
f

,C')-> Extfi
+ M ^',C C ;

).

PROPOSITION 1.2.3. For p = q=-Q the \J-product reduces to the

homomorphism <p3 .

Finally we place ourselves in the situation described by the symbol

(A/4,AC,ry4',Cr). We define Horn (C,C") as a right Q-module by setting

y))c
- (/(Ac))y c c C,/ Horn (C,C')

and define the homomorphism

<p4 : Horn (C,C
X

) n (A ^')-> Horn (HomA (/I,C), C' r ^')

by setting

for/ Horn (C,C'),g- HomA (^,C). Replacing /i and A' by -Tand ^'

obtain

O4 : Horn (C,C
7

) n (JIT X') -> Horn (HomA (JIT.C), C r X")-

Passing to homology and applying a' we obtain the homomorphism

//(Horn (C,C') n (^ AT')) -> Horn (ExtA (^,C), Tor
r
(C',^'))-
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Combining this with the inverse of (2) we obtain the A product

A : Tor (Horn (C9C'),A <g> A') -> Horn (ExtA (/4,C), Tor
r

(C',/4'))-

Since A has degree zero, it yields maps

A : Tor"
, (Horn (C,C'\A A 9

) -* Horn (Extft (A,Q, TorF (C',,4')).

PROPOSITION 1.2.4. Ifp = q = 0, the A product reduces to the map <p4 .

The notation used above for the four products is convenient as long as

we do not exhibit individual elements of the groups Tor and Ext involved.

For formulas involving elements, it is more convenient to adopt the

following notation

T(a b) = a T b, (a)b = a _L fc,

V(a 6) = V 6, ( A*)6 = a A 6.

We recall that V and A are defined only if conditions (i) and (ii) are

satisfied.

2. FORMAL PROPERTIES OF THE PRODUCTS

The formal properties of the four products are too numerous to be

listed in detail. We shall therefore be satisfied with an informal discussion

omitting most proofs. It should be remembered that whenever the

products V and A occur, suitable assumptions should be made in order

that these products be defined.

First, for fixed ^-algebras A and F we may consider maps A -> A L ,

C-> Q, A' -+ A[ and C" -> C[. For the product T we then obtain a

commutative diagram

TorA (C9A) Torr (C',A
f

)
^ Tor (C C \A A 9

)

TnrA (C A \ to Tnrr (C 9
A'\ > Tnrn (C ii or \^^A^) Q9 i or \\^^j/i-^)

101 vv-/i
'

Next we can consider homomorphisms q>: A'-> A, y;: F'-^ F of

^-algebras. Every A-module (resp. F-module) may then be regarded as a

A'-module (resp. F' module). In the situation (^A 9CA>rA' 9C'r) we then

obtain a commutative diagram

TorA'(C,/4) Torr'(C',^') ^ Tor'(C C\A A 9

)

\V* V, (V V),

Toi^ (C,/4) Torr (C',/1') Torn (C C',A /<')

where 9?# : TorA'->TorA and v?# : Torr'->Torr are induced by q>

and y>.
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Keeping the /f-algebras A and F fixed we may consider a ring homo-

morphism : L -> K where Lisa commutative ring. A and F may then

be regarded as L algebras. This leads to a commutative diagram

TorA (C,/*) K Torr (C',/O --+ Tor*** 1
*

(C A- C,A K A').

Similar diagrams to the above hold for the remaining three products.

One can also consider more complicated situations in which the

modules A,C, . . . , the algebras A, F and the ground ring K are all

mapped simultaneously.

Next we turn to commutativity rules. To formulate these rules we

must identify ii = A F with F A (cf. ix, 1.2).

PROPOSITION 2.1. The following diagram is commutative

TorA (A,C) Tor[ (A',C)~ Tor^ g (A A\C C)

TrtrF
1

(A' f"'\ f^\ HTrn-A ( A f^\ Tr*r^ ( A f
f3\ AC'' f3\ f\

1 Or- \s\ ,w ) vjy J OT_ v^*~ / * O
*n-\.q \S* ^-> f*^ yy ^ )

where f is the map establishing the commutativity of the tensor products,

whileg is induced by similar mapsfa A A'-*A' A,f2 : C C'~>C" C.

PROOF. The proof is an easy consequence of the fact that a map
Fl : X X' -> X' X over/ is obtained by setting F^x x') = ( l)

w

(^' *) for x A'p, x' c X
q

.

A similar commutativity rule for the V product is obtained by simply

replacing Tor by Ext in the diagram above.

We now come to the associativity rules, of which there are six. These

will be stated without proofs. We consider three /C-algebras A, F, X and

define } (A F) S = A (F il). In general, we shall regard

the tensor product as an associative operation.

PROPOSITION 2.2. In the situation (AA A *TA',C'T^A\C"J consider

aTorA (C,/l), b Tor[ (C\A'\ c elm? (C\A"). Then (a T b) T c

= a T (b T c)-

PROPOSITION 2.2a. In the situation (A/^AC,r/4\rC',v;/r,vC") consider

a c Extft M,C), b e Ext], (X',C'), c E\i
r

^(A\C). Then (a V b) \/ c

= a V (6 V c).

To state the next two associative laws we use the identification

Horn (C, Horn (C',CT)) = Horn (C C',C"). It should be observed that

in the situations (CA,Cr,sC") or (ACrC',C) this identification is

compatible with the operators of fi on both groups.
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PROPOSITION 2.3. In the situation (AA,CA ,rA',Cr,xA",xC"), consider

a E\$+ g+ r (A A' A\ Horn (C C',C")), 6 6 Tor (C,A) and

c Tor[ (C',A
f

). Then a J_ (b J c)
= (a J_ 6) _L c.

PROPOSITION 2.3a. //i fAe situation (AA,AC,TA',TC',xA",Cx) consider

a Tor^ ?4. r (Horn (C C",CT), ^ ^' X"), * E*t (^C) awrf

c Extf (/4',C'). 7%^ a A (* V c) = (a A *) A c.

To formulate the last pair of associative laws we consider the natural

homomorphism

f : Horn (C,C
7

) C" -> Horn (C,C
X

C")

given by

We observe that in the situation (AC,Cr,Cv) and (CA , rC',vC"), I is an

Q-homomorphism.
PROPOSITION 2.4. In the situation (AA,AC, rA\C^A

fr

,C^) consider

a e Torf/ (Horn (C,C'\A ^'), 6 Ext^ (A 9C) 9 c Tor
r

E
(C',^"). Then

(a A 6) f c = [,(* T 0] A

f : Tor^ (Horn (C,C') C\D) -> Tor? (Horn (C,C' C"),D)

w induced by i.

PROPOSITION 2.4a. In the situation (AA,CA , rA\ rC'^A
ff

^C
ft

) consider

a c Ext^
r
(A A', Horn (C,C')), b e Tor^ (C,X), ^c e Extr

v (^*,O.
Then (a _L ft) V c = [|*(a V c)] _L

I* : Ext (A Horn (C,C") C") -> Ext?2 (D, Horn (C,C
;

C"))

is induced by f .

We now pass to the discussion of connecting homomorphisms. Since

there are four products and each of them involves four variables, there is a

total of sixteen commutativity rules with connecting homomorphisms.
We shall only state two of these (concerning the variables C, C' in the

T -product), the others being quite similar.

PROPOSITION 2.5. Let

(1) 0->A l -*A^A 2 -+Q

be an exact sequence such that the sequence

(2) -> A A' -+ A A 1 -> A 2 A' ->

is exact. Then the diagram

TorA (C,A 2) Torr (C',^')
^ Tor" (C C',^2 A')

Torr (C',/1') Tor (C
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is commutative. Here d is the connecting homomorphism relative to (1),

A is the connecting homomorphism relative to (2) and i is the appropriate

identity map.
PROOF. Let -> Xl

-> X -> X2
-* be a projective resolution of

0-> A l
-> A-+ A 2^Q and let X' be a projective resolution of A'. In

view of the definition of T, the required relation follows from the following

commutativity relations

ffp(C A JTt) Hq(C' r A")
---

//^(C A ^)
a

A , (C r X'))
-- /Wt((C A A\) (C'

1 l

C') n ( 2̂ JT'))
--- //p^_i((C C')

J

(C C',/ a /O --^ Tor_i (C

The first of these relations follows from iv,7.1 (restated for left exact

functors), the second one follows from the naturality of the map Ox , the

third one follows from v,4.3.

PROPOSITION 2.5'. Let

be an exact sequence such that the sequence

(2') 0-> A A[ -> A /*'-> A /4o->

is exact. Then the diagram

TorA (C,/0 Torr (C\A .')
* Tor" (C C', A /Ig)

I

"

|

TorA (C,X) Torr (C'X) Tor" (C C\A A{)

is commutative.

It should be noted that the definition of the map i 6 includes a sign,

Mnce 6 has degree +1. Therefore, for a t TorA (C,/0, b Tor^ (C',/1
7

),

we have A(a T ^) ( l)
p T 56.

3. ISOMORPHISMS

THEOREM 3.1. If K is semi-simple then the maps T and J_ are iso-

morphisms. Iffurther A and F are left Noetherian, A is finitely ^generated
and A' isfinitely T-generated then V and A olso are isomorphisms.
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PROOF. First we observe that since K is semi-simple, condition (i)

and (ii) of 1 are satisfied and therefore the maps (2) and (2') of 1 are

isomorphisms. Further the functors K and Hom^- are exact and there-

fore, by iv,7.2, the maps a and a' employed in 1 are isomorphisms.
Next we consider the maps

<Pi- (C <8>A A) (C <8> r A') -+ (C C') n (A A')

<p2 : Homn (A A', Horn (C,C'))
- Horn (C <8>A /4, Homr (4',C'))

<p3 : HomA (,4,C) Homr (X',C')-> Homn (^ A' 9 C C')

?4 : Horn (C,C") n (/4 A') -> Horn (HomA (/4,C), C' <g) r /i')

as defined in 1. It is easy to see that 9?! and ^2 are isomorphisms. This

implies that the maps Ox and <J>2 obtained by replacing the modules A and

A' by their projective resolutions X and X' also are isomorphisms. This

proves that f and J_ are isomorphisms.
As for the maps <p3 and <p4 , they are isomorphisms if A = A and

A' = F. Therefore, by direct sum properties, it follows that <p3 and <p4

are isomorphisms if A is projective and finitely A-generated and A' is

projective and finitely F-generated. Now, if A and F are left Noetherian

and A and A' are finitely generated then, by v,1.3, the resolutions A" and X'

may be chosen so that each module Xp is projective and finitely A-generated
while each module X'

q
is projective and finitely F-generated. Thus in this

case the maps O3 and O4 also are isomorphisms. This concludes the

proof.

THEOREM 3.2. If the algebras A and F are K-projective, A is a left

\-module and A' is a left Y-module such that Tor* (A,A') =Qforn>Q,
then

dimA9F (A A') ^ dimA A + dimr A'.

If,further, Kis afield, A and F are left Noetherian, A isfinitely ^.-generated

and A' is finitely Y-generated, then the above inequality is an equality.

PROOF. Let dimA A <1 m, dimr A' <I n. There exist then projective

resolutions X of A and X' of A' such that X9
= for p > m and XQ

=
for q > n. Then, by 1.1, X A" is a projective A F-resolution of

A A'. Since A" A" is zero in degrees > n + m, it follows that

dimA(8)r (X >O <^ w + fl.

Assume now that the second set of hypotheses is satisfied. Suppose
dimA A I> m, dimr A' I> . Then there exist modules C and C' such

that ExtJJ (/i,C) ^ and Extr (A',C) ^ 0. Since A' is a field, we have

Ext^ (A,C) Ext^ (A',C) -- 0. Now, by 3.1, V is an isomorphism so

that Extjfjf. (A /I',C (g) C')^0. This implies AimA9r (A ^')^/
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We next consider the products J_ and A in the case r = K= A'.

Then Q = A, Extr (A',C) = Horn (A' 9C) = C\ Torr (C 9A') = C'.

The products thus become

(1) _L : ExtA (A, Horn (C,C')) -> Horn (Tor* (C,/i),C')

(2) A : Tor* (Horn (C,C'\A) -+ Horn (ExtA (A\C)
defined in the situations (A/4,CA ,XC"), (AA,AC,KC

f

) respectively. If we

inspect the definition of (1) and (2) using a A-projective resolution of A

(and using K as a #-projective resolution of K) we find that (2) is defined

without the condition that A be tf-projective. Further from this direct

definition it becomes clear that (1) is a special case of the homomorphism
p of vi,5 while (2) is a special case of a of vi,5. Consequently vi,5. 1 and

vi,5.3 imply
PROPOSITION 3.3. If C is K-injective then (1) is an isomorphism. If

further A is left Noetherian and A isfinitely i\-generated then (2) 15 also an

isomorphism.

4. INTERNAL PRODUCTS

Let A be a commutative ring. If we regard A as a A-algebra and

observe that A A A = A, the products T and _L yield the following
internal products

m : Tor* (C,A) A Tor* (C',/4') -> TorA (C A C', A A A')

u; : ExtA (A A', HomA (C,C"))-> HomA (Tor
A
(C,A\ ExtA (/i',C'))

defined for any A-modules A, C, A', C'. Both products are A-homo-

morphisms.
We recall that A operates on C A C' and HomA (C,C') as follows

A(c c')
- Ac c' - c Ac', (A/)c

= A(/c)
-

/(Ac).

These internal products being special instances of the products of 1,

all the formal properties stated in 2 remain valid.

There is another kind of internal products that can be obtained for a

A-algebra A (A no longer assumed commutative) provided we are given a

ring homomorphism D: A-> A A (tensor product over K) which we
shall call a diagonal map. The map D induces homomorphisms
Tor ->Tor 0A and Ext^ (8>A

-> ExtA . Composing these homomorphisms
with the V- and A -

Pr ducts we obtain the following two products

(called the cup-product and the cap-product):

U : ExtA (A,C) <S> ExtA (A',C) -> ExtA (A A\C <8> C'),

O : To^ (Horn (C,C"), A A') -> Horn (ExtA (A,C) 9 Toi^ (C',^1')).
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Both products are defined only under the condition that A is AT-projective

and Tor* (A 9A
f

)
= for n > 0. The U -product is defined in the situa-

tion (A>4,AC,A/r,AC') while the O -product is defined for (A^,AC,A/4',CA).

The operators of A on A A' 9 C C and Horn (C,C") are obtained

by composing the operators of A A with the diagonal map D.

The rules for connecting homomorphisms are the same as for the V -

and A -products. For the remaining formal rules, conditions must be

imposed on the diagonal map D: A-> A A. Specifically, we shall

say that D is commutative, if the diagram

A

where r(A A') = A' A, is commutative. If D is commutative then we

have the commutation rule

(1) a(J b=(\Yq b U a

for a Ext (A 9C) 9 b Ext^ (A' 9C).
The diagonal map D will be called associative if the diagram

A A +
(A A) A

A (A A)

where /((A A') A") = A (A
7

A"), is commutative. Under this

condition we obtain the associative rules (a U b) U c = a U (b U c) as in

2.2a, and a n (6 U c)
= (a O b) n c as in 2.3a.

The precise statements and proofs of these formal rules is left to the

reader.

A U -pairing is a A-homomorphism

Using this homomorphism, the U -product yields

U : ExtA (A 9C) ExtA (A' 9C) -> ExtA (A

A O -pairing is a A-homomorphism

*->Hom(C,C')

A' 9B).
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Using this homomorphism, the O -product yields

O : TorA (B, A A') -> Horn (ExtA (A,C), Tor
A
(C',/O)-

5. COMPUTATION OF PRODUCTS

We shall discuss here the question of computation of the products

using specific projective resolutions of A, A' and A A' . The procedures
derived in this section will be used later to obtain "product formulae" in

various specific situations.

Let A' be a A-projective resolution of A, X' a F-projective resolution

of A' and Y an Q-projective resolution of A A'.

We begin with the products T and _L. The definitions of T and _L

show that these maps admit factorizations

n ( y,D))
-- //(Hom (X A",D))

-^ Horn (H(C A X\ //(Hom r (

where D = Horn (CC"). The maps Oa
a and a'O2 are "explicit." The

remaining two maps were obtained using the fact that X X' is an

Q-projective left complex over A A'. Thus to render the remaining
two maps explicit we need an Q-map

(1) /: X X'-> Y

over the identity map of A A' .

The situation concerning the products V and A is similar. Again

looking at the definitions of these products we find that they admit

factorizations

O.a

//(HomA(Jr,C)) //(Homr(A",C'))^ //(HomQ(A- g> X',C C'))

H(D n Y)
->H(D ^(X A"))

4

^Hom(//(HomA (;ir,C)), H(C' r A"))

where D Horn (C,C'). Therefore the products above obtain explicit

definition if we have an fl-map

(2) g: Y-*XX'
over the identity map of A A' .
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In order to give general procedures for finding the maps/ and g we

must enter into a more detailed discussion of the resolutions X, X' and Y.

In practice, the resolution X of A will be not only A-projective but

A-free. This implies that each Xn may be written in the form A Xn

where Xn is a A-module. Actually all the resolutions encountered so far

and all those encountered later, are directly given in the form X= A X
where X is a graded /T-module. Clearly X may be regarded as a K-

submodule of X, but not as a subcomplex. Under these circumstances

we say that X is given in split form. Similar remarks apply to X 1

and Y.

It should further be noted that if JT= A X and X' =T X' are

given in split form then XX'=&XX' also has the split form.

Another notion that we need is that of a contracting homotopy. A
contracting homotopy {s n,a} for a left complex X over .4 is a family of

jK-homomorphisms
<r. /* -> A'o, sn : Xn -> A^,

such that

dn+lW + Sn-\dnX = X OX for X Xn ,

eax = x for x A,

where E: XQ
-* A is the augmentation map. Of course the existence of

a contracting homotopy implies that X is an acyclic left complex over A.

Conversely assume that X is an acyclic left complex over A and that A and

X are #-projective. Then the sequence

(3) >Xn -*--^Xo->A-*Q
is exact and may be regarded as a tf-projective resolution of the zero

module. It follows from v,1.2 that the identity map of (3) is homotopic
with the zero map. This yields a contracting homotopy for X.

PROPOSITION 5.1. //'A and A are K-projective then every A-projective

resolution of A has a contracting homotopy.

Indeed, let X be a A-projective resolution of A. Since A is A!-projec-

tive, it follows from n,6.2 that X is ^-projective. Thus the existence of a

contracting homotopy for X follows from what was said above.

We further note that if {sn,a} is a contracting homotopy for X while

[s'n>a'} is a contracting homotopy for X' then a contracting homotopy
{tn,r} for X X' may be obtained by setting

T= a',

t = s i' + (as) s'

where i" is the identity map of X'.

The usefulness of the above notions is shown by the following

proposition.
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PROPOSITION 5.2. Let C be a left Si-module. Let Z = Q Z be a

left complex over C given in split form and let Z' be a left complex over C
with a contracting homotopy {tn,r}. Then the inductiveformulae

f((o z) = corez z e Z

f(w z) == o)t
Q^fdz z ZQ, q>0

yield a map
: Z->Z'

/* identity map of C. TA/j /nap /j uniquely characterized by the

condition

dtfz
= z c Z.

PROOF. Clearly / is an fi-homomorphism. For z Z we have

e'/(co z) = toe'rez = coez = e(co z)

so that e'/= e. For z e Z 1? we have

df(a> z) =-=
mdtfdz co/c/z core'fdz

fd((o z)

For z Za , ^ > 1 we have inductively

df((o z)= ajdtfc/z
=

tofdz cotdfdz =fd(co z) wtfddz ~fd(a> z).

This shows that/ is a map as required.
For any map/: Z-> Z' over the identity map we have

/z = rfz + rf(/i z Z

/z - fd/z + rf//z
-

//c/z + dtfi z c Z,, q > 0.

Therefore / satisfies the inductive definition if and only if dtfz
= for

z eZ.

We now return to the question of finding maps (1) and (2) above. To
find /: X <g) X'-> Y we assume that X and A" are given in split form
while in Y we are given a contracting homotopy. Then X X' also is

given in split form and 5.2 may be used to define/.
To find g\ K-> X A" we assume that X is given in split form while

in X and X f we are given contracting homotopies. Then as shown above

we may construct a contracting homotopy in X X' and then use 5,2 to

define g.

Next we assume that A is commutative and consider the internal

products m and a*. The computation requires a A-map

(3) h: A
r

A Ar/
-> 7
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over the identity map of A A A', where X, X' and Y are A-projective
resolutions of A, A' and A A A'. We shall assume that X and X' are

given in split form X= A <g> jf, A"' = A (g) jf, while in F a contracting

homotopy is given. Then X A Ar/ = A JP X' also is given in split

form so that 5.2 may be applied to find h.

Finally we consider the U- and O -products corresponding to a

diagonal map D: A-> A A. The computation requires a map

(4) J: Y-*XX'
where X, X' and Fare A-projective resolutions of A, A' and A A', and

where A operates on A A' and X X' using the diagonal map D.

Again if Y is given in split form, while in A' and X' we are given contracting

homotopies, then a contracting homotopy in X X' also is given andy
may be found using 5.2.

6. PRODUCTS IN THE HOCHSCHILD THEORY

Let A and F be /f-algebras and A K F their tensor product. We
have

(A T)
e == (A F) (A <g> F)* ** A F A* F* ** A< F*

where all tensor products are over K. Henceforth we shall identify

(A <g) F)
e with Ae Fe

. Having made this identification we apply the

products of 1 replacing the symbol (A,F,/M',CC')by (A'^A^/M')
and replacing } by (A F)

e
. We obtain products

T: //P(A,/0

_L : //^(A F, Horn (X,/!')) -* Horn (//,(A,^),//'(r,X')),

V : //P(A,^) H<(r,A')^ //^(A F,/l X'),

A : //P+,(A F, Horn (A,A')) -+ Horn (H(A,A), HQ(T,A')) 9

where and Horn stand for K and Hom
/s: , A is a two-sided A-module,

A' is a two-sided F-module and A A' and Horn (A,A
f

) are converted

into two-sided A F modules as follows

The products themselves are A-homomorphisms. The products T and

JL are defined without any restrictions. For the products V and A to

be defined we must assume that conditions (i) and (ii) of 1 are satisfied.

These read: (i) A* and Fe are /C-projective; (ii) Tor (A,F) = for /i > 0.
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Clearly the assumption that A and F are /T-projective, suffices for both

(i) and (ii). Henceforth we shall always assume that A and F are

/C-projective, whenever the products V or A are involved.

The formal properties established in 2 all apply here and will not be

restated. The same holds for the results of 3. We shall only observe

that proposition ix,7.4 is an easy corollary of 3.2 and actually the proof
of ix,7.4 used implicitly the V -product and repeated the arguments of

3.1 and 3.2.

We now pass to internal products. Assume that A is a commutative

/f-algebra. Then the same holds for Ae and we have A A A = A.

The products m and u; of 4 are defined

m: HP(A 9A)

w : //""(A, HomAa (A 9A
r

)) ~> HomA . (H9(\ 9A) 9Hq(A 9A')).

Here both A and A' are two-sided A-modules and A operates two-sidedly

on A A. A' and HomA , (A,A') as follows

(A/A')a==A[/(<iA')].

Both products m and u; are A'-homomorphisms.
To discuss the cup- and cap-products we consider a ^-projective

/f-algebra A together with a /i-algebra homomorphism D: A -> A A- A
called the diagonal map. Clearly D induces a AT-algebra homomorphism
De

: A* -> (A &K A) . We thus obtain the products

U : //p(A,/4) W(A,X')-^ //^(A,^ A')

O : 7/p+c(A, Horn (A 9A')) -> Horn (/

where A and /I' are two-sided A-modules. A A' and Horn (A,A
f

) are

first regarded as two-sided A A-modules and then converted into two-

sided A-modules using D. As in the case of V and A , the symbols
and Horn stand for A- and HomA-, the products U and O themselves

are /^-homomorphisms.

We now come to the question of the computation of the products

using complexes. We begin by the consideration of the normalized

standard complexes #(A), Af(F) and 7V(A F). We assume that A, F,

Coker (#->A), Coker (A:->F) are AT-projective. Then Coker (K-+A F)

also is AT-projective, and therefore the normalized standard complexes
above are appropriate projective resolutions.
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To compute the T and JL products we need a map

/: N(A) N(T) -> N(A F)

over the identity map of A F. Since the standard complexes are

always given in split form, and since their definition is always accompanied

by a contracting homotopy, the procedure given in 5 may be applied.

We shall give a closed formula for a map/and then verify that it satisfies

the inductive definition given in 5.2. Consider elements

a = [A!, . . . ,
AJ, b = [yl9 . . . , yq]

of A^(A) and NQ(T). If p = then a = [A19 . . . , AJ is the unit element

ofNQ(A) = A* and similarly if q = 0. We define

(1) /(A)=IKi,...,i;*J
where lf . . . f +<, ranges over all permutations of the sequence

A! 1, . . . , AP 1,1 ylf . . . , 1 }^ for which AJ 1, . . . , Ap 1 remain

in order and 1 yl9 . . . , 1 ya remain in order. The sign is + for even

permutations and for odd ones. The mapping / is extended to

N,(A) NQ(T) by (A F)Minearity (see Eilenberg-MacLane, ,4w*. q/*

Math., 58, (1953)). To convert this into an inductive definition, we recall

that [d, . . . , +*]
= ^(^[^2, . . . , ^+J) where s is the contracting

homotopy of the complex N(A F). Now ^ is either Ax 1 or 1 ^
and considering these two cases separately we obtain for p > 0, q >

(2) /(a i) -^ 1)7(0! b) + (-l)'(l

where ax = [A2, . . . , AP] and *!
= [y2, - - , yj. For /?

= we have

7(1 ft)
=

[1 n, . , 1 yj

while for q = we have

To prove that the above definition of/checks with the inductive definition

of 5.2, we must show that/fc *) = rfd(a b). We recall that in the

complex N(A F) the operator s is zero on all elements of form

[col5 . . . , a)k]a) 9 which do not have an operator in front. Since f intro-

duces no operators, d(a b) may be replaced byA^ b +( l)
p

yifti

assuming that p > 0, q > 0. Thus ,y/i/(fl b) gives precisely formula (2)

above. The cases p = or q = are similarly verified by an easier

argument.
We now pass to the products V and A . Here we need a map

g:
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over the identity map of A P. Such a map is given by the formula

(3) g[*i yi, . . . , A, yJ

= 2 [Ai, , AJA^ An <g> y!

The verification that this formula is precisely the one given by the inductive

procedure of 5.2 using the standard splitting and contracting homotopies,
is analogous to the one just discussed and is left to the reader.

If A is commutative, then to compute the products m and u; we need a

map
h:

Such a map is given for

a = [AJ,
. . .

, AJ, b = [Aj,
. . .

, A,]

by the formula

A(*A*)=2(i,.. .,*+)

where lf . . . , +<, ranges over all permutations of the sequence

A!, . . . , Ap , AJ, . . . , A^ for which Aj, . . . , \p remain in order and AJ, . . . , A^
remain in order. The sign is + for even permutations and for odd ones.

For the U and O products depending on a diagonal map, we have no

explicit formulae except when the diagonal map D is explicitly given.

So far we have used the normalized standard complexes. For the

unnormalized standard complexes, the inductive procedures of 5 can

equally well be applied to obtain maps/, g, h. These will be considerably
more complicated. It turns out, however, that the same formulae used to

define/, g, h for the normalized complexes preserve their meaning and

commute with the differentiation even if the complexes are taken un-

normalized. They no longer are the maps given by the inductive pro-

cedure of 5.2. We have no rational explanation of this phenomenon.

7. PRODUCTS FOR SUPPLEMENTED ALGEBRAS

Let A and P be supplemented AT-algebras with augmentations eA : A-+K,
er : F-+K. The tensor product A <8>A- P is supplemented by setting

(A y) =

In the products of 1 we replace A and A' by K, thus obtaining products

T : Tor (A,K) <g> Tor[ (X\K) -> Torf,
r
(A A'.K)

-L : ExtftVr (K, Horn (A,C)) -> Horn (Tor (A,K), Ext[ (K,C))
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for (AA,A'r ,rC'). If A and F are /f-projective then so is A F and we

may pass to homology notation

T: HP(A 9A) <8> //,(F,/l')-> #,+,(A T,A A')

1 : H+*(A F, Horn (A,C)) -> Horn (//P(A,/0,#(F,C')).

For the products V and A we must assume that A and F are AT-projective.

We obtain

V : Hp
(A,C) //<(F,C")-> //*+(A F,C C')

A : ff^(A (g) F, Horn (C,/T))^ Horn (f/*(A,C),7/a(F,,4'))

for (AC,/l'r ,rC').

If A is commutative we have the internal products m and u; which, if

A is A-projective, are A-homomorphisms

m : HV(^A) A H^A') -> H^Q(A 9
A A A')

, HomA (A 9A')) -> HomA (H9(A,A) 9H<(A 9
A f

)).

Finally we come to the products U and O given by a diagonal map
D: A~>A(g)A. Here we postulate that D is compatible with the

augmentation e. This is expressed by requiring that the diagrams

A A
D>

'A: A A K

be commutative, where i^A
= 1 A and /2A = A 1. If we identify A

with K A and A K and regard /x and i2 as identity maps, the

conditions become

(e A)/> = identity
== (A e)D.

The conditions imposed on D imply for each (left or right) A-module A,

that the usual identifications of A with K ^4 and with ,4 /r are

compatible with the A-operators on the modules K A and ^4 /r

induced by D. In particular we may identify K with K K. This leads

to products

U : /P(A,C) #(A fC')-> H+'(A,C C')

U : /WA, Horn (C,^')) -> Horn (H(A9C),HQ(A,A')).
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The formulae for these products in terms of the standard complexes
differ only in that the complexes N(A) must be replaced by 7V(A,e). The
formulae for the maps

/: #(A,eA) N(r,er) -> N(A I

h: Af(A,e) A Af(A,e) -> W(A,e) A commutative

are unchanged. The formula for

g: #(A r,e)
-

reads

0<p<n

The same formulae apply to the unnormalized standard complexes.
We now pass to monoids. Given monoids IT and II' with augmenta-

tions E: n -> K, E\ n f -> K we define the direct product II x II' as

the monoid with elements (*,*'), jccll, x'cIT, multiplication

(x,x)(y,y)
=

(xy\x
f

y
f

) and augmentation E(X,X') f(x)f
;

(x'). It is then

easy to see that K(U x IT) may be identified with K(U) K K(U')
under the identification (x,x') jc x

7

. Thus all the considerations

concerning the T, J_, m and u; products apply with A, F, A F

replaced by II, IT, Fl x IT. We shall not duplicate the various formulae.

To introduce the U and O products we consider the diagonal map
D: K(U) ->/:(!! x FI) induced by x-*(x 9x). In order that this map
be compatible with the augmentation we must assume that E(X) = E(X)E(X)

i.e. that the augmentation e : FI -+ K is idempotent. The unit augmenta-
tion and the zero augmentation clearly are idempotent. Thus assuming
an idempotent augmentation, we obtain the products

O : /WO, Horn (C,^)) -^ Horn (H*(li\HQ(I\,A)\

in the situation (^n ,nC.n C'). The diagonal map D is commutative and

associative in the sense of 4, thus the commutative and associative rules

stated in 4 apply to the products U and O defined above.

To obtain formulae for the computation of the products, we define a

map
j: N(H)-+N(U) N(U)

over the identity map of K, as the composition of the map
#(!!)-> N(Hx U) induced by D with the map g: N(U x 0)
-> N(U) (g) N(H) defined above. We obtain

j[xl9 ...,*]=

This formula also is valid for the unnormalized standard complexes.
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8. ASSOCIATIVITY FORMULAE

Let A be a supplemented AT-algebra with augmentation e : A -> K. We
shall assume that a diagonal map

D: A-* A A
and an "antipodism"

a>: A-> A*

are given subject to the following conditions:

(i) D and co are homomorphisms of ^-algebras,

(ii) D and co are compatible with e, i.e.

= e*co, (e A)D = identity
= (A )Z>.

(iii) co*co = identity, where cu* : A* -> A is induced by to.

(iv) /> is associative, i.e. (A Z))i) = (> A)Z>.

(v) /) and a) commute, i.e. D*CD = (co co)D.

(vi) The map -E: A-> A* defined byE= (A co)Z) satisfies condition

(E.l)ofx,6.

It follows from (iii) that coco* also is the identity and therefore co is an

isomorphism with co" 1 = co*.

Consider the situation (XA ,AC). We may regard A C as a right

A A*-module, and, using the map E, also as a right A-moduie. It

follows from condition (vi) that (A C)7= (A C)J where / is the

kernel of e : A-+ K while J is the kernel of p : A* -> A. Since J is gene-
rated (as a left A'-module) by the elements A 1 1 A* and since

(0 c)(A 1 1 A*) = aX c ^ Ac it follows that (A C)7 is

the kernel of the natural map A C-> A A C. We thus obtain

(1) A <8>A C ** (^4 C)/(X O/= (X C)A ^ (X C) A K.

Next consider the situation (AX fAQ. We consider Hom(X,C) as a

left Ae-module with operators [(A y*)/]a ==
ty(yd). Using the map

we may regard Horn (A 9C) also as a left A-module. It then follows from

(vi) that the elements of Horn (A,C) invariant under the operators of A*

(i.e. the annihilators of /) coincide with the elements of Horn (A,C)

invariant under the operators of A (i.e. the annihilators of /). Since

[(A 1 1 A*)/]a = X(fa) /(Aa), it follows that the invariant

elements of Horn (X,C) are precisely those of the subgroup HomA (A 9C).

We thus obtain

(2) HomA (X,C) = [Horn (X,C)]
A HomA (K, Horn (A 9C)).
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PROPOSITION 8.1. In the situation (&A,AB,AC) the isomorphism

(3) Horn (A, Horn (,C)) m Horn (A <8> B,C)

of 11,5.2' induces an isomorphism

(4) HomA (A, Horn (5,C)) ** HomA (A ,C)

wAere Horn (J5,C) awrf >4 U are regarded as left A-modules using the

maps E and D respectively.

We first regard both sides of (3) as left (A A* A*)-modules by

setting

for the left side of (3) and

[(A y* /

for the right side of (3). Then (3) becomes an operator isomorphism.
Then we convert both sides of (3) into left A-modules using the map

q>: A- A A* A*

given by

(p
= (A a) co)(A /))Z)

= (A o> co)(Z) A)D.

Consequently the invariant elements of both sides of (3) correspond to

each other under the isomorphism (3). Since

V = (E A*)

the operators of A on Horn (A, Horn (,C)) may be arrived at as follows.

First regard Horn (,C) as a left A-module using the map , then regard

Horn (A, Horn (B,C)) as a left A-module again using the map E. Thus

by (2) the invariant elements are HomA (A, Horn (B,C)). Now examine

the right hand side of (3). Since

(f
=

(A D*)E

we may regard first A ^ as a left A-module using the map D and then

regard Horn (A fi,C) as a left A-module using the map E. Thus by (2),

the invariant elements are HomA (A B,C).

Quite analogously we prove
PROPOSITION 8. la. In the situation (^A ,A5,AC) the isomorphism

(3a) (A ^) C X (B C)

o/ii,5.1 induces an isomorphism

(4a) (/4 5) A C ^ /< A (^ C).
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where A B is regarded as a right A-module using the map E9 andB C is

regarded as a left A-module using the map D.

As an application of 8.1 we prove
PROPOSITION 8.2. In the situation (AX,A ,AC), ifA is A-projective and

B is K-projective then A B is A-projective. If B is K-projective and C is

A-injective then Horn (B9C) is A-injective.

PROOF. Assume A is A-projective and B is JK-projective. Then

HomA (A 9D) and Hom(/?,C) are exact functors of D and C. Thus

HomA (A 9 Horn (B9C)) is an exact functor of C. Consequently
HomA (A <8> B,C) is an exact functor of C, which implies that A B is

A-projective. The second half is proved similarly.

Now consider the situation

(AA,AA ',AB,AC9CA).

Applying 8.1 to the triples (Horn (,C),,C) and (C',,C' <8> B) (with C'

regarded as a left A-module using co) we obtain isomorphisms

HomA (Horn (,C), Horn (B,C)) ^ HomA (Horn (B,C) B,C)

HomA (C B,C B)** HomA (C', Horn (B,C 5)).

Substituting on the left the identity maps Horn (B,C)> Horn (#,C) and

C' J?-> C 7 ^ we obtain the A-homomorphisms

(5) <p

(5a) y: C -* Horn (5,C' B)

given by

Now assume that A is /f-projective and that

(*) Toif(/l',X) = for>0.

We then have the products

U : ExtA (A' 9 Horn (B9C)) ExtA (X,,/?) -> ExtA (/4' A 9 Horn (,C) .B)

Combining these with the pairings y and ^ we obtain the modifiedproducts

(6) U : ExtA 04', Horn (B,Q) ExtA (^,5) -> ExtA (/!' y4,C)

(6a) n : Toi^ (C 9A X') -> Horn (ExtA (/I,B
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Taking A' = K we find A A' = A and (*) is automatically satisfied.

We thus obtain

(7) u : H>(A, Horn (,C)) ExtA (/*,)
-

(7a) n: Tor+, (C',>0 -> Horn (ExtA (^,5), HQ(A,C *)).

Further, taking ,4 ~ /f we have

(8) u : //"(A, Horn (,C)) //(A,5) -* //'+<(A,C) (A*,AQ.

(8a) 0: //p+, (A,C') -> Horn (//*(A,), //Q(A,C' *)) (A^O
We recall that Horn (B,C) is regarded as a left A-module and C' B as a

right A-module using the map .

PROPOSITION 8.3. For p=- q^= Q the maps

U : HomA (A\ Horn (,C)) HomA (A,B) -> HomA (X' y4,C)

O: C' A (^ ^') -> Horn (HomA (X,B), (C' B) A X'))

cr^ ^/re/2 by

(fUg)(a Qa)=(fa)(ga)

[c (a fl ')] n/- (f' G/fl) a.

This is a direct consequence of 1.2.3, 1.2.4 and the definition of the

modified products.

In the case A = Z(F1), where FI is a group with unit augmentation,
we define

Dx =- (x,x) x .Y, cox = (x~
1
)*.

Axioms (i)-(vi) are then satisfied. Thus all the above considerations

apply in this case. We note that the operators of FI on Horn (f?,C) and

C 1 B are given by

(Xf)b = x[/(x- ^l, (c' b)x - c'x x- 1
*.

We shall see in Ch. xm that the discussion of this section applies

also to Lie algebras.

9. REDUCTION THEOREMS

We continue with the assumption that A is a /f-projective supple-

mented K-algebra. We assume that D: A -> A A and o>: A ~> A*

satisfying the conditions (i)-(vi) of 8 are given.

Taking A = B in the products (7), (7a) of 8 we obtain

U : //"( A, Horn (A.C)) ExtA (A,A) -> ExtA
+<?

(A,C)

O : Toi+, (C\A) -* Horn (ExtA (A,A\HQ(&.C' A))
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in the situation (AX,AC,CA). We concentrate our attention on the

element

which is the identity mapping of A. We thus obtain maps

(1) U j: //P(A, Horn (A 9Q) -> Ext (A,C)

(la) n j: Tor (C 9A) -> //P(A,C' ^)

which we propose to investigate.

PROPOSITION 9.1. For p = 0, f/te wops (1) artrf (10) raft/ce /o f/ie

isomorphisms
HomA (A:, Horn (^,C)) ** HomA (A 9Q

c <8>A ^ ** (c' /o A *

^/y^/i Aj 8.1 flrf 8. la.

This is an immediate consequence of 1.2.3, 1.2.4 and the definition of

the modified products.
PROPOSITION 9.2. IfA is K-projective then (Jj andOy are isomorphisms.

PROOF. Assuming that \jj and ny are isomorphisms in degree

p(p^>_Q) we shall prove the same for p + 1.

Consider an exact sequence 0-^C-> Q-> N -> with Q A-injective.

Since A is #-projective, the sequence

0^ Horn (AC)-> Horn (A,Q)^ Horn (/4,AO*->

is exact, and by 8.2, Horn (A 9Q) is A-injective. Using the rules for

commutation of O with connecting homomorphisms, we obtain a

commutative diagram

//P(A, Horn 04,0) /P(A, Horn (A,N)) > Hp+l
(A, Horn (A,C)

U; UJ UJ

with exact rows. Since the first two vertical maps are isomorphisms the

same follows for the third vertical map.
The proof for n j is similar using an exact sequence 0->M-+P-*C'->Q

with P A-projective.

Consider an exact sequence

(5) 0^ A -+ Fq^ -> ----> F ^ F->

of left A-modules (q > 0). The iterated connecting homomorphism

ds :
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is then defined. The image dsj E\iqA (F,A) of the element j is called the

characteristic element of (S).

The products (7) and (7a) with A and B replaced by Fand A yield maps

y : H*(A, Horn (A,Q) -> Ext+' (F,C) AC

*: Tor +f (C',F)-> H9(A,C <8> ^) Cj,

given by

y* - (-!)* u <W, A //"(A, Horn 04,C)),

PROPOSITION 9.3. The homomorphisms y and & admit factorizations

//"(A, Horn (/4,C)) -^ ExtJ (yJ,C) -^ Ext^
+f

'^> -^ //p(A,C'

A and A' are fAe iterated connecting homomorphisms relative to the

sequence (S).

PROOF. This clearly follows from the commutativity of the diagrams

ExtA (AT, Horn (,4,C)) ExtA (A,A)
- ExtA (A,C)

I'*'* 1
A

ExtA (tf, Horn (A,C)) ExtA (F9A) -^ ExtA (F,C)

TorA (C',F)-> Horn (ExtA (F,/i), Toi^ (C
I A' I Hom(<5s,/')

(C',/0^ Horn (ExtA (A,A) 9 Toi^ (C
x

A.K))

where 7 and /' stand for appropriate identity maps.

THEOREM 9.4. (Reduction theorem.) //"F , . . . , Fa . x
are A-projective

and A is K-projectice, then the maps y and & are isomorphisms for p > 0.

For p we have the exact sequences

HomA (F^C) -> HomA (A 9C)^ ExtJ^ (F,C)^
-> Toif (C',F) -> C' A A ~> C' A F^.

PROOF. We apply the factorizations given in 9.3 and observe that

since A is /C-projective, the maps U j and O j are isomorphisms by 9.2.

This reduces 9.4 to a statement about the iterated connecting homo-

morphisms A and A', which is a consequence of v,7.2.

COROLLARY 9.5. Let

(S) O-^A-^F^-* ----> F -> K-* q >
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be an exact sequence of left A-moduIes with Fg_l9 . . . , FQ A-projective.

Then for p > we have isomorphisms

H*(A, Horn (A,C)) * H (A,C) AC

given by h -> h U 65y awrf h
r

-> h' D <5g/. For
/?
= we have the exact

sequences

HomA (J^-nC) -> HomA 04,C) -> //'(A,C) ->

o -> j/^c') -> c' A A -> c A F^.

This follows directly from 9.4 provided we show that A is /C-projective.

This is immediately seen by decomposing (5) into short exact sequences.

In particular, if we consider the exact sequence

we obtain isomorphisms (p > 0)

//"(A, Horn (/,C)) ^ H+ l
(A,C), AC

//P+i (A,C') ^ HP(A,C /), C;

given by appropriate products.

EXERCISES

1. Let A, F, be AT-algebras with L assumed to be AT-projective.

Define the products

T: TorA s*(C,^)Tors r
*(C

/

,^')->Tor
A r

*(C
/

2 C,/l s ^')

in the situation (^A^^C^^A^^C^), and the product

_L : ExtAar , (^ s A', Homs (C,C'))

^ Horn (Tor
A s *

(C,^), Exts ^ r * (A' 9C))

in the situation (^A^^C^^A^C^).
Assume further that A, F, S are #-projective and that Tor^ (A,A') =

for n > 0. Define the product

V : ExtA0L , (A,C) Exts0r . (A',C')-> ExtA0r (A L /(',C E C')

in the situation (A^2,ACs ,2X'r ,LCr), and the product

A: Toi^^^fHom^CCCV^^')
-^ Horn (ExtA0s , (>I,C), Tor

2 r '

(C',A')

in the situation
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Show that replacing the triple (A,F,Z) by (A,F*,) gives the products
defined in 1 . Establish the formal properties of the generalized products.

2. Let A be a tf-projective tf-algebra. Taking A = F == S in Exer. 1

derive the "products of the second kind" for the Hochschild groups:

T : HP(A,A) H
Q(A,A') -> HP ,Q(A,A A A')

_L: //p+<(A,HomA (/M')) -> Horn (H,(\,A\H\\,A'))

V : Hp
(A,A) H(A,A') -> //"+'(A, A A X')

A: //p+a(A,HomA (/M')) -> Horn (H*(A

defined for any two-sided A-modules >4 and A''.

Find maps

analogous to the maps /and g of 6, and show that the products of the

second kind may be computed using /' and g'.

3. Show that the composition

7V(A) N(V) --~> N(\ F) -- N( A) N(T)

is the identity. Similarly for the maps /', g' of Exer. 2.

4. Show that in the normalized standard complex N(A) the contracting

homotopy .v has the form

s(Mi ..... AJ/O-fU,..... AJA'

and that the sequence

N. X(A)
-- AWA) -X ------. ^(A )

->-> ^n41 ( A) >

is exact. As a consequence show that dn (n ^r 0) maps Ker sn isomorphic-

ally onto Im dn .

5. Show that the map/: ^V(A) A^(F)-> N(A F) constructed in

6 satisfies sf(N(A) <$ N(l*)) = 0. Show that this property characterizes

the map/in a unique fashion. Using this method establish commutativity
and associativity properties of the map/. Apply a similar discussion to

/: 7V(A,fA) A^(F,fr)-> W(A IV) for supplemented algebras.

6. Show that the map g: N(A Q F) --> W(A) A^F) constructed in

6 satisfies ng(N(A F)) where n is the contracting homotopy for

N(A) W(F) constructed, as in 5, using the contracting homotopies s in

A^(A) and W(F). Show that the above property ofg characterizes that map
in a unique fashion. Derive an associativity property ofg by this method.

Apply a similar discussion to the map W(A F,f) -> JV( A,fA) Af(F, r)

for supplemented algebras.
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7. Let <p: A-> F be an epimorphism of commutative ^-algebras.

Let X be a projective resolution of F as a A-module, given in split form

X= A X with Xo
= K. Let further (sn ,a) be a contracting homotopy

for X. Then F A F = F r F = F and the complex X A ^
= A <g> j? A^ is a left complex over F also given in split form. Construct

a map
h: X A X^X

over the identity map of F using the inductive procedure of 5.2. Establish

the following properties of A:

(i) h(x y)
= (- l)"/rOr jc) for x JTP , j c A;.

(ii) If s(X) = then the element 1 A = XQ is a unit element for /z,

i.e. /?(! x)= jc= A(JC 1).

(iii) If h(X X) C X then h is associative, i.e. h(x A(y z))

If all these conditions hold then h converts X into a graded algebra with

differentiation.

Apply the above to the case p: Ae > A and X W(A), where A is a

commutative AT-algebra. Conclude that 7V(A) is a graded algebra with

differentiation under the map h given in 6.

Apply the above to the case e\ A-> K where A is a supplemented
commutative /f-algebra. Conclude that N(A 9e) is a graded algebra with

differentiation, under the map A of 7. In particular, for a commutative

augmented monoid II -> K, N(U) is a graded algebra with differentiation.

8. Let A be a /i-algebra, A a two-sided A-module and M a A-module.

Using the homomorphisms at the end of 3 (also those of vi,5) establish

homomorphisms

p
n

: //"(A, Horn (A,M)) -> Horn (//n(A,X),A/),

an : //n(A, Horn (/4,A/)) -> Horn (tf
n
(A,X),A/).

Show that p
n

is an isomorphism if M is A^-injective, and that an is an

isomorphism if M is tf-injective and Ae
is Noetherian. In particular

p
n and an are isomorphisms if A" is a field, M = AT and A is finitely

Af-generated.

9. Let II be a monoid with an augmentation II ->Z. Let >4 be a

right II-module and T= R/Z the group of reals reduced mod 1. Then
with the topology defined in vn,6, the group D(A) = Horn (A,T) is a

compact abelian group with continuous left Il-operators. Then p
n of

Exer. 8 becomes

P
n

: H n
(Il,D(A)) * D(Hn(H,A)).
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Assign a natural topology to the group H n
(tt,D(A)) using a H-projective

resolution of Z and show that the isomorphism p
n

is topological. Carry
out a similar discussion for

where C is a left II-module and the monoid O is finite.

10. Let A = (K,d) be the algebra of dual numbers over a commutative

ring K9 as defined in iv,2. Show that there is no diagonal map
D: A -> A A satisfying conditions (i)-(vi) of 8 (with o> = identity).



CHAPTER XII

Finite Groups

Introduction. If 11 is a finite group it is convenient to consider the

homology groups Hn(fl,A) and the cohomology groups Hn
(H,A) using

a left fl-module A in both cases. The norm homomorphism N: A -> A

induces a homomorphism TV*: HQ(I\,A)-> H*(ll,A). Using the

method introduced in v,10, this allows us to combine the homology and

cohomology groups into a single sequence H n
(ll.A) (00 <q <^ oo)

called the complete derived sequence of n. The interesting fact is that

for this complete derived sequence a product theory may be established

( 4-6) which generalizes the U and n products. In 8-10 we study the

relations between H(Tl,A) and H(TT,A) where IT is a subgroup of II.

The last section ( 11) is devoted to the study of groups II for which

Hn
(l1^A) has a periodicity with respect to q.

The theory presented here has been developed by Tate (unpublished)

with a view to applications in class-field theory. The results of 1 1 are

due to Artin and Tate (unpublished). The writing of this chapter was

made possible only through the generous help of G. P. Hochschild and

J. Tate.

1. NORMS

We shall be concerned with finite groups II. The ground ring for

the construction of the group algebra A Z(FI) will always be the ring

Z of integers; the augmentation Z(FI)->Z will always be the unit

augmentation. Unless otherwise stated all Il-modules will be assumed

to be left n-modules.

In the group ring Z(II) we distinguish a particular element

AT ---Ex, JtcIT.

j&ather than deal with the element N directly we shall consider the norm

homomorphism
N: A-+A

defined for each II-module A by

Na = jt0, x c II.

232
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Since TV(x 1) = and xN = N it follows that

IA C Ker N, Im N C An .

Consequently TV induces a homomorphism

TV*: An -+A
u

where as usual An =j AjIA, and An is the set of invariant elements of A.

The image of the norm homomorphism TV: A -> A will be denoted by
N(A) and will be regarded as a covariant functor of the Il-module A.

Clearly we have a commutative diagram

N(A)

O / \
A _,. AH
Aft f,

*

where is denned by TV and is an epimorphism, while h is an inclusion map.
The kernel of the homomorphism TV: A - A will be denoted by XA.
If A and C are Fl-modules, we convert Horn (A,C) into a El-module

by setting

(xf)a - .v(/(x-'a)).

We thus obtain a norm homomorphism

(2) N: Horn (AC)-^ Horn (A,C)

defined as (Nf)a ^xf(x~
la\ .veil. The image of (2) is in the sub-

group Homn (/4,C). If /: A -+ C is a II -homomorphism then

TV/- (l\ : I)/, where (II : 1) is the order of the group II.

Consider homomorphisms

where/ and h are II -homomorphisms and g is only a Z-homomorphism.
Then

N(hgf) --= h(NK)f.

PROPOSITION 1.1. For each H -module A the following properties are

equivalent:

(a) The identity map A -> A is the norm of some Z-endomorphism

p: A-* A.

(b) A is weakly projectile.

(c) A is weakly injectire.

PROOF. The equivalence of (a) and (b) is stated in x,8.6.

(a) => (c). Let p: A -> A be such that Np identity. For any

/ Horn (Z(FI),/0 define

xtll.
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Then for s U we have

If / is a constant with value a then

Thus ft is a "mean" in the sense of x,8-4a and A is weakly injective.

(c) => (a). Suppose ,4 is weakly injective and let // : Horn (Z(H),A)->A
be a mean in the sense of x,8.4a. For each a e A definefa Horn (Z(I1),X)

by setting fa l = a, /,*= for jc ^ 1 . Then *2xfx-ia is a function constant

on II with value a. Define pa = jufa . Then

(Np)a = S*/**'
1
*) = 2>M/*-ia) = M2*/x-O = *

Thus Wp is the identity.

PROPOSITION 1.2. / orrfer that fe Homn (/l,C) 6e /Ae worm o/ an

element h e Horn (/4,C) ir w necessary and sufficient thatfadmit afactoriza-
tion

0/irf A are \\-homomorphisms and II operates on Z(H) C as

y(x c)
= ^x c.

PROOF. Assume /= A#. Since Z(fl) C is weakly projective

(x,8.1) there is a Z-endomorphism p ofZ(H) C such that Wp = identity.

Then/= A^ - A(#P)
= 7V(A^).

Conversely assume f=Nk for some A: Horn (/4,C). Define

ga = 2* fcCxr
1
*) and A(JC r)

= xc. Then Aga ==

PROPOSITION 1.3. //*/< w weakly projective> then in the diagram (1), rAe

maps N* 9 g, A are isomorphisms, i.e.

Ker # =/./*, ImA^=>4n .

PROOF. By 1.1 there exists a Z-endomorphism p: A -> A such that

a = 2 xp(x~
1
a) for all a e .4. Suppose Na = 0. Then

a =
= Z(x

-
l)P(x-*a) c LA

so that Kerg= and g is an isomorphism. Suppose a Au . Then

xrla a for all x c II and

Thus Im #= >4
n and A is an isomorphism.
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2. THE COMPLETE DERIVED SEQUENCE

We shall consider the homology and cohomology groups of II with

coefficients in the same left II-module A. Thus for n ^

where on the left Z is regarded as a right II-module while on the right Z
is regarded as a left II-module.

In addition to these functors we also consider the covariant functor N
which to each module A assigns the image N(A) ofthe norm homomorphism
AT: A-+A.

Diagram (1) of the preceding section may thus be rewritten

AT

(1) '/ \A

"o-^"
where N*, g, h are natural transformations of functors.

The three functors and the three maps in diagram (1), each give rise to

a derived sequence in the sense of v,10. We shall denote these by D// ,

DH 9 DN, DN*, Dh, Dg. Between these six derived sequences we have

the following maps
Dg-+ DN-+ Dh

(2) t

which form a commutative diagram.

For instance the map DN-+ Dh is defined by the diagram

N N

I 1*
N >//

A

PROPOSITION 2.1. All the maps in diagram (2) are isomorphisms.

PROOF. We consider for example the map DN -> Dh, induced by the

diagram above. Since by 1.3, h: N(A)-+ HQ
(H,A) is an isomorphism

whenever A is projective, it follows from v,10.3 that DN-* Dh is an

isomorphism.

In view of 2.1 we shall identify the six derived sequences above into one

sequence called the complete derived sequence of II. We shall use either

the notation

or

. . . 9 H~n
, . . . , H" ,
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Thus we have

Hn
(H,A) = Hn

(U,A) = Extft (Z,A) n>Q

Coker (H -> //) = Coker (N-

= Ker (# -> #) = NA/LA.

The reason for renumbering the groups and introducing the symbol
Hn

is to enable us to consider the graded module H(H,A) including all the

terms of the complete derived sequence. The graded functor H is an

exact connected sequence of functors, i.e. for each exact sequence
0->^4

/

~>^4-^y4
//

->-Oof H-modules we have an exact sequence

----> Hn~l
(Yl,A") -> Hn

(U,A') -> Hn
(H,A)

- Hn
(H 9A")

-*fin
+\H,A')^-

PROPOSITION 2.2. If A is weakly projective (= weakly infective) then

PROOF. Since A is weakly projective, it follows from x,8.2 that

Hn(U 9A) =0 for n > 0. Since A also is weakly injective, it follows

from x,8.2a that Hn
(U,A) = for n > 0. Finally it follows from 1.3

that HQ
(U,A) = = HQ(H,A).

PROPOSITION 2.3. In the complete derived sequence of II, each functor

is the satellite Sx of thefollowing one and the satellite Sl

of the preceding one :

= SlHn
.

This follows directly from the axiomatic description of satellites

given by m,5.1.

Given a H-homomorphism /: A -> C of II-modules we shall

denote by / the induced homomorphism H(Il,A)-+ //(II,C).

PROPOSITION 2.4. Iff: A -> C is the norm ofan element ofHorn (A,C)

then f = 0.

PROOF. It follows from 1.2 that / admits a factorization

A-+Z(H) C->C. Since Z(II) C is weakly projective (x,8.1),

we have #(n,Z(II) C) = 0. Thus / = 0.

PROPOSITION 2.5. If n is of order r = (II : 1), then rfi(\\,A) = 0.

PROOF. The map/: A -> A given by a -> ra is the norm of the identity

map A -> A. Thus / = and rff(Il,A) = 0.

COROLLARY 2.6. If II = 1 is the trivial group, then H(U 9A)= 0.
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COROLLARY 2.7. If U is of order r = (II : 1) and nA = Q for some

n relatively prime to r, then H(H,A) = 0.

It should be noted that in contrast with Hn
(H,A) and Hn(U,A) the

functors H(ll,A) are not functors in the variable II. We shall see

substitute concepts in 8 when we discuss the relations between a group
II and a subgroup TT.

Using the group Z with trivial Il-operators as coefficient group, we
have

(4)
'

"-i

'

~L
'

>/- 2(n,z)=n/[n,n].

The first result follows from the fact that each crossed homomorphism
II -> Z is zero. The second and third follow from the fact that N: Z-+Z
consists in multiplication by r. The last formula follows from x,4, (8).

It will also be useful to determine the connecting homomorphism

(5) d: H-\n,A*)-+H*(n 9A
f

)

corresponding to an exact sequence
- A' >A A" > 0.

Replacing H~
l and HQ

by their definitions, we have

(5') d: xA"/LA"-+A'
n
INA'.

This homomorphism may be explicitly described as follows. Given

a" XA" choose a e A with (pa
= a". Then <pNa N<pa = Na" = so

that there is an element a' A '

with ya'= Na. Since yxa'= xNa= Na= y>a'

it follows that a'c A'n and determines an element of A'n/NA''. This is

da". This description is in agreement with the description obtained from

the diagrams of v,10.

3. COMPLETE RESOLUTIONS

We shall introduce a new type of resolutions which will allow us to

compute the complete derived sequence of a finite group using a single

complex.
We need some preliminary considerations. For each Z-module C, we

denote by C the Z-module Horn (C,Z). Clearly, if C has a finite Z-base,

then C also has one. For any Z-module A, the homomorphism

a: C <g> A -> Horn (C,/l)
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given by (cf. vi,5)

[<*(c <8> *)]/= (/c)a, c e C, acA, f c C,

is an isomorphism whenever C has a finite Z-base. In particular, taking
A = Z, we have an isomorphism C *& C if C has a finite Z-base.

PROPOSITION 3.1. Given an exact sequence ofZ-free modules

~ rt+1 - n -wf-

there exists a "contracting homotopy" i.e. a sequence ofZ-homomorphisms
sn : Xn -*Xn+l such that

(1) dn+lsn + sn^dn = identity.

PROOF. Let Un = Ker rfn
= Im dn+l . Then f/n is Z-free (cf. i,5.3),

and we have an exact sequence

0t/n^n /!
where in is the inclusion map and 9n is induced by dn . Since C/n_! is

projective, this sequence splits : there exist homomorphisrns

un ^-xn ^-un^
which together with in and dn yield a representation of Xn as a direct sum.

Set sn = yw+19n ; then (1) follows immediately.
COROLLARY 3.2. Given an exact sequence (X) of Z-free modules^ the

corresponding sequence

where X*n = Horn (Xn,Z) and d% = Horn (rfn+1,Z),

PROOF. Let jj
= Horn (5n_!,Z). Then

^O
n-i^ + ^i^=- identity,

showing that the complex (A" ) is acyclic.

We observe that if the Z-free modules Xn have a finite base, then the

modules X% also are Z-free with a finite base, and the sequence (X) is

simply (X).

We now consider Z(Il)-modules, n being a finite group. If C is a

left n-module, then C = Horn (C, Z) is a left II-module by setting

(1)

this definition agrees with that given in 1, if we consider Z as a II-

module on which II operates trivially. If A is another left H-module,
then the homomorphism a becomes a H-homomorphism. Moreover,
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if C is Z(Il)-free with a finite base, then a is an isomorphism, because

C has a finite Z-base. We shall always identify C <8> A and Horn (C,/0
as (left) Il-modules, when C is Z(Il)-free with a finite base. In particular

taking A = Z with trivial operators, we shall identify C and C as

Fl-modules.

If C is Z(II)-free with a finite base, then C also has one: it suffices to

give the proof for the case C = Z(FI). In fact, we have a natural

isomorphism

(2) Horn (Z(II),Z) ** Z(H)

defined in the following way: let (et) be the finite Z-base of C = Z(II)

consisting of all elements of IT, and let (ef) be the "dual base" of C,
defined by

O if

i -fif' = y.

There is a Z-isomorphism 9?: C-> C such that <p(e t)
=

ef, and it is

immediately seen that 9? is a Z(II)-isomorphism, which proves (2).

This result together with 3.1 and 3.2 implies
PROPOSITION 3.3. Given an exact sequence of (left) Z(Tl)-modules and

Z(fl )-homomorphisms
B+l - n -mp

such that each Xn is Z(Yl)-free with a finite base, then the sequence

dn-1 n
/ vO\ . . ._* VO _k. VO_* VO _w . . .(A) *n-l Xn *n+ l

is exact and each X% is Z(Il)-free with a finite base.

Consider now two (left) II-modules C and A. In the tensor product
C n A it is understood that C is considered as a right fl-module by

setting

cx= x~ l
c, c c C, x ell.

It follows that, considering C <g> A as a left II-module by setting

x(c a) = (xc) (xa), c 6 C, a c /4, x c II,

we have

(3) (C A)n =C n ^-

Moreover

(3a) (Horn (C,A))
U = Homn (C/4).
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Assuming now that C has a finite Z(II)-base, we use the isomorphism a

CA*x Horn (C,/0,

or, replacing C by C,

(4) C <8> A & Horn (C,A).

Since, by x,8.5, C A is weakly projective (== weakly injective), it

follows from 1.3 that

N*: (C ^)n -> (C A)
n

is an isomorphism. By using (3), (3a), and (4) we have finally an isomor-

phism
T: C n^ * Homn (C,/4)

when C and A are (left) Il-modules, and C has a finite Z(ll)-base. This

isomorphism can be made explicit by the formula

(5) [r(f a)]<r
- I/Oc^c)**, / e C, c e C, a e ,4.

In particular, taking A = Z(II), we have, for each Z(FI)-free module

C with a finite base, an isomorphism

r: C^ Homn (C,Z(n,
defined by

= 2 /(x-^Jx, / c C, c C.

After these preliminaries we return to the main objective of this section.

A complete resolution X for a finite group n is an exact sequence

(X)
----> ^n~

JL
'^n-\

* ----"^o "-*"-!
* *X_n

of finitely generated free (left) Il-modules, together with an element

e (JfLi)
11 such that the image of d is generated by e.

Since x = e for each x c II it follows that Im </ is the sub-Z-module

generated by e. Further, since X^ is Z-free, we have ne ^ for n Z,

n T 0. Therefore the mapping rf admits a factorization

(6) X ^Z^X^
where e is a Il-epimorphism while p is a Fl-monomorphism given by

H\ = e. We consider the exact sequences
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The sequence (XL) provides a projective resolution of Z by means of

finitely generated Il-free modules; by 3.3, the "dual" of (XR):

(XR) ^X_n ->X_n+l
-. -> *_!-> Z-*0

provides also a projective resolution of Z by means of finitely generated
Fl-free modules.

Conversely, given two resolutions (XL) and (X'L ) of Z by finitely

generated Fl-free modules, we can construct a complete resolution X by

"splicing" (XL) with the sequence (A^) suitably renumbered.

Given a complete resolution X and a (left) H-module A, consider

the complex
Homn (X,A).

For n ^: we leave the group Homn (Xn,A) as it is. For n < we

replace Homn (Xn,A) by the isomorphic group X
Q
n n A, using the iso-

morphism r. We must examine in detail the map

(7) *
a n yl-vHomn (jro> yl)

induced by dQ : X > X v In view of the factorization (6) of dQ , we

obtain a commutative diagram

-~* Homn (X.^A)
> Homn (X^A)

Z n A-* Hom
ri (Z.AY

Thus (7) admits the factorization

*-i Qn A -^ "o(n,^)
^ //(rM) > Hom

Using the notation of v,10, we obtain

Homn (X<A) - (X% n ^^** Hom

This applying v,10.4 we obtain

THEOREM 3.2. For any left T\ -module A, the group H n
(ll,A) may be

computed as //
w(Homn (X,A)) where X is any complete resolution of 0.

If f: A -> A' is a homomorphism then f may be computed from
Homn (X,A) -> Homn (X<A

f

). If -> A' -> A -> A" -> w an exact

sequence of left tt-modules, then the connecting homomorphisms

H(l\,A") -> H(\\,A') may be computedfrom the exact sequence

-> Homn (X,A
f

)
-> Homn (^X) -> Homn (^/l") -^ 0.

REMARK. In the definition of a complete resolution it would be

possible to use finitely generated projective Tl-modules, instead of finitely

generated free H-modules. But it is unknown whether the first category
of modules is actually greater than the second.
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4. PRODUCTS FOR FINITE GROUPS

Given two (left) H-modules A and A' we consider the tensor product

(over Z) A A' with the diagonal operators x(a a') = xa xa' . If

a An and a' A' 11 then x(a a') = a a' and therefore

a a' c (A <g> X')
n

. If a Xn and a' = M>',6' A' then a a'

= a 2**' = 2X *') = #(* *') so that *'

Similarly if a AM, a' X /n
. There results a homomorphism

(1) f : Xn/M4 A'n/NA' -> 04 A')
n
/N(A ^'

or

.- ^(n,^) ^(n,^')->^(n,x A').

THEOREM 4.1. There is a uniquefamily ofhomomorphisms

defined for each pair of YL-modules A and A' and all integers p,q such that

f * coincides with f arf p' q commutes with the connecting homomorphisms
with respect to the variables A and A' as stated in xi,2.5 and xi,2.5'.

We shall only be concerned in this section with the existence of the

products f
Pt9

. Uniqueness is postponed to the next section.

Let X be a complete resolution for FI with selected element e X_ r
We consider the double complex X <g) X with differentiations d' = d X
and d" X d (the definition of d" involves the usual sign). A mapping

is a family of H-homomorphisms

*>** x**

satisfying the following conditions:

(0 ^d^d'
(ii) if x XQ and dx= e then (d

The last condition may be rephrased as follows: if e : X -*Z is the

augmentation map obtained from the factorization of d\ XQ
-> AL15 then

(e )OM = e.

Now given two cochains /e Homn (A
r

J3,>4),
e Homn (Xq,A

f

) we
define the product cochain/. Homn (Xv+q,A ^4') as/.^= (/ )$,<,.

Then t/(/g)
=

(ty).^ + ( l)
p
/- W?), so that passing to cohomology we

obtain a 6//m*zr map H(O,^) ^(n,>4') -> ^(n,/i X')- The
verification that this map verifies the condition of the theorem is immediate.
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We now proceed to show that there exist mappings O: X-+ X X.

In this construction we shall utilize

1 a contracting homotopy s for X. This is given by 3.1.

2 a Z-endomorphism p: X-> X (of degree zero) such that Np = /,

where / is the identity map of X. The existence of such a p is proved by
1.1 since each Xn is projective.

Next we introduce

s
f = s /, s* = I s,

p= P1 P
" = / p.

To define O we consider the diagram

in which the row is exact. Since XQ is projective, there is a map
<D -= XQ-XQ XQ such that (e e)^0t0

^= e. This implies d"d
f

^d=0.
We first define O p with p + </

= as follows

^0
3,.u_p) jp>0

and verify by induction that

(d'to^ + d-Q^^d^Q all/7.

We now suppose that O
;> 7 is already defined for

| p + q \

< t where t is

a positive integer, that it satisfies (i) for t <p + q < * 1 and that

(iii) W'^iH-M + ^*p,mV == for /7 + 9
= - ^.

Now for p + q = t define

Then

Pi,(l
-

ds)) =

Further



244 FINITE GROUPS [CHAP. XII

which verifies condition (iii) at the next stage.

Next define

0,,,-A^'O
Then

Thus (i) holds as desired.

This concludes the existence proof.

5. THE UNIQUENESS THEOREM

The argument that will be used in proving the uniqueness of the

products reappears many times in subsequent considerations. Therefore

we shall give it an abstract formulation applicable in various situations.

Let II be a fixed finite group; letters A,A l9 . . . , A n,B,C etc. will all

be used to denote left FI-modules. Let Ul9 . . . , (4, K each represent an

exact connected sequence of covariant functors of A. A map

F: t/! l/
fc
-> V

is a family of homomorphisms

F: UfrAJ -

Ujf(Ak) -> K't+ +<* (A l Ak)

which is natural relative to II-homomorphisms of the variables A^ . . . , Ak

and which commutes with connecting homomorphisms in the following
sense: If 0-> ^-> Aj~* A'- ->0 is an exact sequence of II-modules

which splits over Z, then the diagram

Uk(Ak) -> V(Ai
-

A'- (8) Ak)

Uk(Ak) -> F(^ -

^. Ak)

is commutative.

THEOREM 5.1. (Uniqueness theorem.) Assume that the functors
Ul9 . . . , Uk9 V satisfy

U
t(Hom (Z(Tl) 9A)) =

V(Z(H) ^) =
/or any H-module A. If

F,G: f/!--- t/
fc
-^K
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are two maps such that F and G coincide on t/J <8> U%, then F= G.

Z(U) A and Horn (Z(H) 9A) are treated as H-modules with

operators

X* *) =-- y* *>

PROOF. Since F G also is a map /! I/
fc
~> F we may

assume that G = and prove that F 0. To simplify the notation

we shall limit our attention to the case k 2.

Suppose that we already know that the map Fp ff
: t/^j) W(^2 )

-^ K^'^! A 2) is zero. Consider the exact sequence

(i) o *z(n) ^
l -^x 1 >o

where ^(A- a)
- a and B Ker y. The Z-homomorphism

9/: /i 1 ->Z(n)G^i given by y/a 1 0a shows that the exact

sequence splits over the ring Z. It follows that the sequence

A \ ($A 2
-+ A! 0/l 2 ->0

is exact, and we obtain the commutative diagram

i X 2)

!

|

|

a r
I !

t/JM 2) -7^- ^ 4

'(5 A 2)

Since Fp
'
7 we have Fp- l

>
(' - 0. However K(Z(I1) ^! A 2)

=
by assumption, so that A is an isomorphism. Thus Fp~ } ^ 0. In

exactly the same way arguing on the second variable, we prove that

/TP,<7-1 -_._ 0.

Next we consider the exact sequence

(2) 0--+A l --+Hom(Z(ll)iA l )
fl'--0

where (yuz).Y
-- ^f^/ and 5' Coker y. Again we obtain a splitting

Z-homomorphism v' /: Hom(Z(H) 9A l)-> A
l by setting y'/-=/l.

Consequently the sequence

-> ^ ^ 2
-> Horn (Z(nM x) ^ 2

-> B' ^ 2
~>

is exact, and we obtain a commutative diagram

i/5M)
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Since Fp
. = we have F*+ l >9(6 i)

= 0. Since J/^Hom (ZCn),^) =
by assumption, it follows that 6 is an isomorphism. Thus F*+ l

'
Q = 0.

Similarly we prove F*>Q+ l = 0. This completes the proofof the uniqueness
theorem.

The uniqueness of the products asserted in 4.1 follows readily by

taking 17X
= U2

= V=H.

For aH p
(Il 9A), b e Hg(U 9A') we shall denote the product

*>*(a <8> b)H p+Q
(U,A A') by the symbol 06. We shall regard the

tensor product as a commutative and associative operation and thus

identify A A', A <g> (/<' <g> X") with /*' <8>A,(A A') A".

PROPOSITION 5.2. For a H*(H 9A) 9 b c H9
(H 9A') we have

ab = (\Yq
ba\ more precisely, the elements ab fi*+ q

(H 9
A (g> A') and

( l)
pqba Hp+q

(H,A' g) A) correspond to each other under the iso-

morphism induced by the natural isomorphism A (g) A' & A' A.

PROPOSITION 5.3. For a c H*(U,A), b c Hq(U 9A'), c H r
(ll,A") we

have a(bc) = (ab)c.

To prove 5.2 it suffices to verify that v >q(a b)--^ (\) pgba verifies

the axioms for a product. The proof of 5.3 follows from the uniqueness

theorem by taking U^ = /2
= f/3

= V= H and F(a b c)
^ a(bc),

G(a (g) b (8) c)
=

(afc)c.

In the group

//(II,Z) = Zr
= Z/rZ r = (H : 1)

we denote by 1 the element given by the coset 1 + rZ (i.e. the unit element

of the ring Zr).

PROPOSITION 5.4. If a e H*(tt 9A) then \a=a=al provided we

identify the modules Z A, A and A Z.

The proof again follows from the uniqueness theorem by taking

/= V^ H,Fa=-a,Ga= \a.

As usual, a Il-homomorphism /4 X' -> B yields products

by composition with the map //(!!,/( A')-> H(H,B). In particular

if >4 is a ring and II operates on A in such a way that x(a1a2)
= (xa1)(jca 2)>

then ^(IT,y4) becomes a ring. The unit element 1 of A is invariant, and

its image in //(FM) = AU/NA is a unit element for H(I1 9A). If the

multiplication in A is commutative then the multiplication in H(H 9A) is

skew-commutative.



fl DUALITY 247

6. DUALITY

As in xi,8 we can use the Il-homomorphism

<p: Horn (A,Q A -> C M,nQ
given by/ fl-^/a, to obtain the modified product

(1) //(IT, Horn G4,C)) #(n,/4) -> //(n,C)

where as usual II operates on Hom(/4,C) as (xf)a
= x(f(x~

l
a)). We

shall still use the symbol ab to denote the image of a 6 under (1).

PROPOSITION 6.1. L<?f ^'-^/*^-/T -- > 6e an exact

sequence such that the sequence

Horn (/T,C) -^ Horn (/*,C)
-^ Horn (^',C)

. LetaHp(Yl}iom(A\C)),bHq
(n,A

ff

). Then

where 6 indicates the appropriate connecting homomorphisms.
PROOF. Let A" be a complete projective resolution for II. Let

g"'- XQ
-> A" be a cocycle in the class b. Then there is a cochain

g: XQ -> A with jg = g" and a cocycle g': XQ+l -> A' with ig'
=

dg.
The cocycle #' is then in the class db. Similarly for a we have a cocycle

/': Xv
-> Horn (A',C) in the class a, and a cochain/: A^ -> Horn (A 9C)

with/'/^/' and a cocycle/": X^l
-> Horn (A\C) with;/" = ^. The

cocycle/" is in the class 6a. Consequently (using the notation of 4) we
have

(-!)'/'*'

(-Wf-g'

("-!)*/'. ^
which implies the conclusion.

We introduce the mappings

(2) yptQ
: *(n, Horn (X,C)) -* Horn

by setting

=a.b.
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PROPOSITION 6.2. If for a fixed Il-module C and a pair of integers

p,q\ the mapping yPtQ
is an isomorphism for all Tl-modules A, then the same

holds for all y^j with p' + q = P + q-

PROOF. Consider the exact sequence

of 5. Since this sequence Z-splits, the sequence

-> Horn (A,C) -> Horn (Z(H) A,C) -> Horn (B9C) ->

is exact. Thus by 6.1 we have the commutative diagram (with II omitted)

tf"(Horn (fi,C))
Vp"

Horn (H(B\H(Q)
\(-l)*+ ld Horn (<5,J/"+<C))

(/1,C))
--- Horn (

Since Z(I1) A is weakly projective, it follows from x,8.5 that

Hom(Z(II) A,C) is weakly injective. Consequently both connecting

homomorphisms involved are isomorphisms. Since y p Q is an isomorphism

by assumption, it follows that y^i tQ_i is an isomorphism. The proof
that yp_i)<H.i

is an isomorphism is similar and uses the exact sequence 5,(2).

PROPOSITION 6.3. The mapping

ro7 : #(II, Horn (A 9C)) -* Horn (H*(U,A

composed with the natural epimorphism

Homn (A,C) -> W(n, Horn (A,C))

yields a homomorphism

Homn (A,C) -> Horn (&*(H,A\A*(U,

which to each f Homn (A,C) assigns the induced homomorphisms

f: ^(IM)->#(II fC).

PROOF. Consider the map g: Z-> Horn (A,C) given by gl =/, and

let A: A = Z /4 -> Horn (^,C) X be induced by . We obtain a

commutative diagram

^) ^n, z ^>

l

) (g)
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If a e//(n, Hom(/i,C)) is the element determined by /and 1 e//(II,Z)

is the unit element, then g I = a. Thus for each b H\H 9A) we have

= fta . b) - $( 1 . b) = $>(! . b) = /(I . b) = /*

since, by 5.3, 16 = b.

THEOREM 6.4. (Duality theorem). Let C be a group with trivial

Tl-operators and which is Z-injective (i.e. C is a divisible abelian group).

Then for any H-moduIe A the homomorphism

(4) y p_ lt_ p : //'-'(H, Horn (A,C)) -> Horn (ft-'(n 9A) 9fi-*(Tl 9C))

given by (ya)b = a . b, is an isomorphism.

We note that fi- l(n 9C)= A C//C= rC is the subgroup of those

elements c C such that re = where r = (II : 1). Since rfi(Yl,A) 0,

it follows that every homomorphism H(U,A) -> C automatically is a

homomorphism J^(n,^)-> rC. Thus (4) may be rewritten as follows

(4') n-i,- V- ti'-W* Horn (^,C)) -> Horn

In view of 6.2, it suffices to show that y^i is an isomorphism. Since

[Horn 04,C)]
n - Homn (A,C), we have

y0>_! : Homn (A,C)/N Horn (X ,C) -> Horn (XA/LA,C).

It follows from 6.3 that y0f-1 is obtained by restricting H-homo-

morphisms A -> C to the subgroup ^A. Consider any homomorphism

/: ^A -> C with/(/X) = 0. Since C is injective, / admits an extension

g: A -> C. Since #(/>0 = we have g Homn (A,C). Thus y ^! is an

epimorphism. Next consider g c Homn (A,C) with #( A /4)
= 0. Since

the sequence
* XA A -* y4 is exact and since C is Z-injective, it

follows that

Horn (A 9C) -^ Horn (/4,C)
* Horn (,V/*,C)

is exact. Thus there exists hc}iom(A,C) such that the composition
N h

A A > C is g. Then

(Ng)a - 2^(^~^) = Ig(x~
l
a) = if(Ato)

- Aa

and g e N Horn (A,C). Thus y0i-1 is a monomorphism. This concludes

the proof of 6.4.

Taking C = T= J?/Z where /^ is the group of reals, and using the

notation D(A) = Horn (/4T) introduced in vn,6, we obtain
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COROLLARY 6.5. The homomorphism

(5)

is an isomorphism for all H-modules A.

In particular, taking A = Z we have D(A) = T9 so that we obtain the

isomorphism

(6)

Actually the group D(H~ P
(H>Z)) should be replaced by

Hom^-nn^X//- 1^,!
1

)) and //^(Iir) = rr is a cyclic group of

order r=(H : 1).

THEOREM 6.6. (Integral duality theorem). The mapping

>V- P : #*(n,Z) -> Horn (//-'(II,Z),Zr)

ij 0/i isomorphism. More exactlyfor every isomorphism <p: H~P
(U,Z) -> Z.

PROOF. Consider the exact sequence

o->z->#->:r->o

where R is the group of reals with trivial Il-operators. Let d denote the

connecting homomorphism //p(n,T)-> //p+1(n,Z). Define the endo-

morphism />: R-> R by setting pt
= r""

1
/ for / J?, r = (II : 1). Then

Np=rp= identity. Thus, by 1.1, R is weakly projective and H(U,R) 0.

It follows that d is an isomorphism. Since (da)b = d(ab) for a HP
(H,T),

b #*(II,Z), the conclusion follows directly from 6.5.

Using 6.6 we can supplement the list of values of Hq
(H,Z) given in (4)

of 2 by the following one

(7)
2
(II,Z) * Horn (n/[II,II],Zr), r =(U : 1).

7. EXAMPLES

Our first example is that of a cyclic group II of order h with generator
x. The ring Z(H) is then the quotient of the ring of polynomials Z[x] by
the ideal generated by the polynomial x

h
1 . In addition to the element

ff = ]#* we also consider the element T= x 1 . For every O-module

we thus obtain homomorphisms

N: A-+A, T: A-+A.

The kernel of T is An while the image of T is LA. These are independent
of the choice of the generator x.
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A complete resolution X for FI is obtained by setting

the distinguished element of X _ is the element N = dQ l. The fact that

the sequence

is exact can be verified trivially. Also the following contracting homotopy
s may be used for the proof:

(0
iffc=0

sxk =
|

in even degrees,

10 if

sxk =
|

in odd degrees.

(l if k = h- 1

For any H-module A the complex Homn (X,A) is

N T N T
A. A A /\. f\.

with N appearing in odd and T in even dimensions. As a consequence we

have

H*n
(l\,A) = An/NA, H2n^(H 9A) = xAf!A.

If A has trivial Il-operators then

H*n
(H,A) = Ah9 H*n+ l

(U,A) = hA.

In particular

W2
-(n,Z) = Z,, 6**+ l

(Il,Z) = 0.

To compute the products we must define a map <I>: X-> X ^, or

rather a family of maps <t
pia

: A'p^-^ Xp A"c . These are obtained by

setting

<J>, a l =101, /?even

O
PiQ

l = 1 x, /> odd, ^ even,

O^l = 2 xm xn . /^ odd, q odd.

In verifying that these formulae satisfy the required identities we use the

identity

(*<8>JC-1<8>1) 2 xm x*=N\ \N
0m

in the ring A A.
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To exhibit the multiplication of cohomology classes, we consider an

element of HP
(H,A) represented by a c A with a Au for p even and

a e NA for p odd. Similarly let a' A' represent an element ofHQ
(H,A').

Then the product is an element ofHp+q
(U,A <8> A') represented by

a a', p even or q even,

xma <g) jc
n
a', p and q odd.

This last product may be simplified if A and A' have trivial Il-operators.

Then for/) and q odd we have a Ay4, a'
,t
4 and the product is represented

i / r _ |
\

by the element -^ - a a'. Since the result lies in HP+9
(II 9A A')

2 i /i _ \

=
(>4 (g> A\, it follows that the integer

-- - may be reduced mod h.

We thus obtain the product (for/? and q odd):

L

a . a
1 = - a

'

if A is even,

# . a' = if A is odd.

If we wish to treat the cyclic group II within the framework of the

homology and cohomology theory of Ch. x, we must replace the complete
resolution X by its positive part XL . The homology and cohomology

groups are as follows

= A/I.A, H2p+l(Il,A)
= An/NA, //2p+2(IU) = NA/IA,

Au , H2P+1
(I1 9A) = NA/IA, H**+2

(Il,A) = AU/NA.

The products U and n may be computed using the map
L : XL -* XL XL induced by the map O above. In addition we have

the products m and uj ; to compute these we need a map XL n XL ~* XL .

To define such a map we denote by yv the unit element of Xv Z(II).

Now we convert XL into a commutative graded Z(II)-algebra with

differentiation by setting

= 0.

The description of this algebra may be simplified if we observe that

>Wi- We may now represent the algebra as a tensor product
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where E(y^ is the exterior Z-algebra on the element yl of degree 1 and P
is generated by the elements y^y^ . . . with degrees indicated by the sub-

scripts and with multiplication given by

The differentiation in the algebra is given by dx = for x II, dyl
= T,

dy2
= Nyl9

Our next example is the group II defined by two generators x and y
with relations

x t = j
2

, xyx = y

where / is a non-negative integer. Iterating the second relation we find

x*yx*
= y which implies that jc

2 ' == 1 . Any element H' II has a unique
canonical form

w = Jt
m/ 0<^w<2f, 5 = 0,1.

The group II has order 4f . The group II may be regarded as a subgroup
of the group of quaternions of absolute value 1 by setting

These groups are usually considered only when f is a power of 2 and are

called the generalized quaternion groups.

A complete resolution X for the group II described above is defined as

follows, using abstract generators a p , b p , b'p , c p , cp , ep :

A-4p
= Aap where A = Z(0),

- A^ + AA;

- Lb p
-

CV + 0*;, I = 1

<fep
= (x l)cp (xy l)cp .

The selected element of X_ v is the element Ne^. The verification that

rfrf= is straightforward. The verification that the homology groups are

trivial involves some computations which will be omitted.
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The groups H(T1 9A) with trivial operators of II on A are as follows

*A + A t even,2 2

^A t odd,

A 2 + A 2 t even,

/< 4 / odd,

A common feature of the cyclic groups and the generalized quaternion

groups is the periodicity encountered in the complex X and the groups

H(H,A). A detailed study of the phenomenon of periodicity will be

carried out in 11.

8. RELATIONS WITH SUBGROUPS

Let TT be a subgroup of a (finite) group II. We shall use the letters A,

A' etc. to denote n-modules, which of course may also be regarded as

7r-modules.

Since Z(I1) regarded as a left Z(7r)-module is free on a finite base, it

follows that every complete resolution X for II also may be regarded as a

complete resolution for TT.

The inclusion

Homn (X9A) C Hom ff (X9A)

induces a homomorphism (called restriction)

(1) /foil): H(H 9A) -> H(TT,A)

Next, consider two (left) ri-modules C and A. Define the homo-

morphism (called the transfer)

t: Homw (C,A) -> Homn (C,A)

by setting for/ Homw (C,A)

where J^TT, . . . , xrn 9 r = (II : TT), are the left cosets of TT in II. If x
t
is

replaced byx# 9 fory TT, thcnxj/ftjfj;)-^)
= x^f(jr

l
xr

l

c) = xf(xr
l
c),

so that the definition of (/"is independent of the choice of the representatives

xlf . . . , xr . Further, for x II, we have

(tf)(xc)
- Zx(x-iXi)f((x-

lx
tr*c) = x((tf)c]
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since x~ lxlt . . . , x~ lxr also is a system of representatives of left cosets of
TT in II. Consequently //is indeed a Il-homomorphism.

Replacing C by a complete resolution A" of n and passing to homology
we obtain the transfer homomorphisms

(2) '(n,7r): H(7T,A)-+H(TL,A).

In addition to the homomorphisms (1) and (2) we also have the

isomorphisms

(3) cx : H(7r9A)^

defined using the homomorphism (studied in x,7)

cx : Hom^C/O -> Hom^-i (C9A)

given by (cxf)c = xf(x~
l
c).

In degree zero the homomorphisms (l)-(3) yield

0)o /foil): AU!NUA ~> A-IN.A,

(2) r(n,7r): A-IN.A -+A
n
/NuA,

(3) cx : A-IN^A^A^/N^A.

The map (1) is induced by the inclusion Au C A"; the map (2) is

induced by the map A" -> A 11

given by a -* ^x,a\ the map (3) is induced

by the map A" -> A XirX
~ l

given by a ~> xa.

To verify these rules, we consider a complete resolution X for II and

consider the mapping e: X - Z given by A" Z of the factorization
e

A'Q
" Z ^

A^.j of dQ . This induces a homomorphism Homn (Z,A)

-*H(H,A) which is easily seen to be the natural homomorphism
An -+ti*(U 9A)= AnINA. Thus the above formal rules follow

trivially by replacing the complex X by Z.

The formal properties of the homomorphisms (l)-(3) will now be

discussed. Clearly the homomorphisms are natural relative to maps
A -> A' and commute with connecting homomorphisms relative to exact

sequences 0->/4'->/4->/l"->0. Further we have

(4) cxcv
= cxy

(5) cx identity if x e TT

(6) /(n,7r)/(7T,n)0 = (II : 7r)a, for a
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If TT' is a subgroup of IT then we have the following rules

(7) l(ir/(JI) = 'V,H)

(8) /OM/orX) = r(nx)

(9) C

(10) c

All the above rules are straightforward consequences of the definitions.

To consider the rules connecting the homomorphisms (l)-(3) with the

products, we consider elements a e H(U,A), a' e H(ll,A'), b ffi(n,A\

b' e H(7r,A'). Then

(1 1) /(trJIXa . fl')
=

I/(w,n)fl] . [i(ir,nX],

(12) t(H,Tt)(b . /(irJIX) = t(U,-rt)b . a'

(13) xiux/^iDa . &') = a . f(n,7r)6',

(14) c,(6 . b')
= cj> . cjb'.

We first use the rules given earlier for computing i(w,II), /(Il,7r) and

cm in degree zero, to verify that (1 1)-(14) hold if a, a', b, b' all have degree
zero. Then we use the uniqueness theorem 5.1 to complete the proof.

Taking rule (12) as an example, we introduce the functors

U,(A) - tfOvO, UA) - tf(IM), V(A) =
and the maps

G(b a') - /(n,7r)6 . a'.

We must verify that the maps F and G properly commute with the connect-

ing homomorphisms; this is immediate, since Fand G are compositions
of maps which commute with connecting homomorphisms. Next we
must show that Ul9 (72 ,

V satisfy the conditions of 5.1. Thus we must

show that H(TT, Horn (Z(I1),^)) = 0. To prove this we observe that

Z(I1) is 7r-projective and therefore, by x,8.1, Horn (Z(U),A) is weakly

TT-injective; consequently //(TT, Horn (Z(H),/4)) = by 2.2. We now
can apply 5.1 to deduce that F= G.

9. DOUBLE COSETS

Let 77 and TT' be subgroups of II. We shall investigate the map

(1) /(

for a II-module A.
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To this end we consider double cosets TTXTT' with x n. It can easily
be seen that two such cosets are either equal or disjoint, so that we may
represent II as a disjoint union

(2) n = U, 7TX
t
7T

f

of such double cosets.

PROPOSITION 9.1. Given a decomposition (2) of U as a disjoint union

of double cosets we have

(3) (II: TT')
=

2,(ir : IT n JcX*;-
1

)

(4) i(ir,ll)t(Il<iT')
--=

2i'(7r 7r O X^X" 1^ H X^'x^^'x^C^.

PROOF. Let y t
IT n x

t
ir'x~

l and let

w = u^y.

be a representation of TT as a disjoint union of left y l
cosets. Then

Trx
t
= U,yn(irx t

O JcX)-

Multiplying by TT' on the right we find

7rjf
t
7r' = U, y,t(irx t

ir' n X.TT')
= U^Vj.^w'

and this union is still disjoint. Combining this with (2) we obtain a

representation

n u v;t*x
ttj

of n as a disjoint union of left cosets of TT'. This implies (3).

Let/ 6 Hom n'(A^ ;,,/l) where A' is a complete resolution of II. Then

Passing to homology, we obtain (4).

COROLLARY 9.2. If -n is an invariant subgroup of II, //ie/i /or any

\\-module A and an a H(TT,A),

An element a H(n,A) will be called stable if for each x e II we have

(5) /(TT n jcTTjir
1,^ = i(w O X7rjir

1
,X77A:

or equivalently if

I(TT O Jcxrx~
l
,7r)fl

= cj(x~
lnx O 7r,7r)a.



258 FINITE GROUPS [CHAP. XII

If TT is an invariant subgroup, (5) reduces to a = c^a. Thus in this case

the stable elements are precisely those invariant under the operators of U/TT.

PROPOSITION 9.3. Ifa is in the image ofifaU) then a is stable.

PROOF. Let a = i(7T9H)b for some b c H(H 9A). Then cxb = b.

Therefore

cji = cxi(7T9n)b = i(xirx-
l
jl)cj> = i(x7TX-\n)b

and thus

I(TT n X7TXr1
9X7rx"

l
)caja = /(TT O XirX~ l

,Tl)b

=
/(TT O

=
I(TT O

PROPOSITION 9.4. Tf a #(7r,4) is stable then

i(7T9H)t(II,7r)a
= (H : 77)0.

PROOF. Applying formula (4) with TT' = TT we have

i

= 2X77
"

i

Thus formula (3) yields the desired result.

10. p-GROUPS AND SYLOW GROUPS

For each prime p we shall denote by H(U 9A 9p) the /^-primary com-

ponent of H(U 9A). Clearly H(T1 9A) is the direct sum of H(ll 9A 9p) for

various primes p. Since the order of each element of H(H 9A) is a

divisor of (II : 1) it follows that H(U 9A 9p)
= unless p is a divisor of

(II : 1), and each element of H(H 9
A 9p) has an order which is a divisor

of p", where p
v

is the /^-primary component of (II : 1). In particular,

if n is a/?-group (i.e. (II : 1)
=

/?"),
then H(U 9A 9p) = H(U 9A).

The product of two elements a e H(Tl 9A 9p) and b H(U 9A' 9q) is zero

if/? ^ ^ and is in #(II,,4 X',/?) if/?
=

^.

Taking A = Z we find that the ring //(II,Z) is a direct product of the

rings #(II,Z,/?) for /? running through all the prime divisors of (FI : 1).

The unit element of H(U 9
Z9p) will be denoted by 1 p .
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THEOREM 10.1. Let -n be a p-Sylow subgroup of II and let A be a
Hi-module. Then

is an epimorphism and

is a monomorphism whose image consists of the stable elements of H(n9A).
Further we have a direct sum decomposition

H(7T 9A) = Im /foil) + Ker /foil).

Iffurther TT is an invariant subgroup ofYl then O/TT operates on H(ir 9A)
and

NH(7T,A) = [H(ir 9A)]
ni* = Im /foil) & H(H 9A 9p)

v//fo/4) = I(Hlir)H(ir9A) = Ker /foil)

[ff(7T9A)]nlw
= Coim /foil) a* H(U,A 9 p).

PROOF. Let (ir:\) = p* and (II : TT)
=

^. Then
/?"

and q are

relatively prime so that there exists an integer / such that ql == 1 mod
/?*.

It follows from 9.3 that the elements of Im /foil) are stable. Con-

versely assume that a H(n,A) is stable. Then, by 9.2.

//foll)/(n,7r)fl
- /(O : 77)0

=
tya
= a.

Thus a Im /foil). In view of (6) of 8 we also have

//(n,7r)/foll)6 = I(U : n)b =lqb=b

for each b H(l\,A,p), and this yields all the conclusions of the first

half of the theorem.

If TT is an invariant subgroup of II then II/TT operates on H(TT,A) and

the stable elements of H(TT,A) are those invariant under the operators of

II/7T. Thus Im /foil) = [H(7T,A)]
UI\ Further, from 9.2, we have

/foll)/(n,7r)tf = Na

so that Ker /(II,7r)
= xfi(ir 9A).

Since p
v
H(7T 9A) = and since II/7r has order relatively prime to p*

it follows from 2.7 that ff(H/7r 9H(7T9A)) = 0. In particular,

^(M) = /(HM J^fo^) and [^(7r,/j)]
n/w = NH(n9A). This con-

cludes the proof.
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11. PERIODICITY

We shall discuss here the finite groups II for which the cohomology

groups Hn
(Tl 9A) show a periodicity with respect to n. This question is of

interest for the problem of groups operating without fixed points on spheres
(see xvi,9). The results of this section are due to Artin and Tate

(unpublished).

An element g c Hq
(U,Z) will be called a maximal generator if it is a

generator and has order (H : 1).

PROPOSITION 11.1. For each g c Hq
(U,Z) the following properties are

equivalent:

(a) g is a maximal generator;

(b) g has order (H : 1);

(c) there is an element g~* H-q
(Tl,Z) with g~

l

g 1 ;

(d) the map a -> ag is an isomorphism

tin(Il,A) ** Hn
+<*(Il,A)for all n and A.

PROOF, (a) => (b) is obvious.

(b)=>(c). Assume g has order (II : 1). Since the order of any
element of Aq

(Il,Z) is a divisor of (II : 1), it easily follows that there

exists a map <p: /Hn,Z)-> Zr ,
r = (II : 1), with <pg

= 1. By 6.6 there

is then an element g~
l H~q(U 9Z) with g~

l
g <pg

= 1.

(c) => (d). Consider the maps

given by <xa = ag, pa = ag~
l

. Then a/5a
= ag~

l

g
~ a and /foa = agg~

l

=
( l)^"

1
^ = (1)^. Thus a and ft are isomorphisms.

(d)=>(a). Consider the isomorphism H(Il,Z) f* H(Il,Z) given

by a-+ag. Since #(II,Z) is cyclic of order (II : 1) and generated by
the element 1 it follows that H*(H 9Z) also is cyclic of order (0:1) and

generated by the element g.

The uniqueness of the element g~
l with g~

l
g = 1 follows from the

following argument. For any a c H~\U,Z)

Thus ag 1 implies a = ( l)^"
1

. By the same reason g"
1 =

( l

so that a = g~
l

. This justifies the notation ^~
1

.

PROPOSITION 1 1.2. Ifg //*(II,Z) is a maximal generator then so is

g~
l

H-*(H,Z). If h //
r
(II,Z) is another maximal generator, then

gh H Q+r
(Tl,Z) also is a maximal generator.
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PROOF. The first part follows from (c) above. The second one

follows from (d) since the map a -> agh is a composition of two iso-

morphisms.

An integer q will be called a period for the group EL if Hq
(H,Z)

contains a maximal generator, i.e. if Hq
(H,Z) is cyclic of order (II : 1).

It follows from 1 1.2 that the periods form a subgroup of Z. It can easily
be seen that the periods are even if II ^ {!}. Indeed assume that

g e Hq
(II yZ) is a maximal generator with q odd. Theng gg~

lg= g~
l

gg=
g. Thus 2g = so that (II : 1)

= 2. However we know from 7

that the group II Z2 has only even periods.

PROPOSITION 11.3. Ifll has period q then so does every subgroup IT.

Further, ifg Hq
(l\,Z) is a maximal generator then so is i(-jr,U)g HQ

(TT,Z).

PROOF. We have /(n,7r)/(7r,n)g
= (0 : 7r)g. Since (II : Tr)g has order

precisely (TT : \)
= (0 : 1)/(II : ?r), it follows that i(irjl)g has order

at least (TT : 1). However no element of HQ
(TT,Z) has order exceeding

(rr : 1). Thus i(7rjl)g has order (IT : 1) and thus, by ll.l(b), it is a

maximal generator.

PROPOSITION 11.4. Let TT be a p-Sylow subgroup of U and let

g HQ
(TT,Z) be a maximal generator. Let r be an integer such that

kr = lmod(7r: 1)

for all integers k prime to p. Then the element g
r Hqr

(TT,Z) is stable and

t(Il,TT)g
r has order (rr : 1).

PROOF. Let xnx" 1 be a subgroup of II conjugate to IT. Since the

mapping a -> c^a is an isomorphism it follows that cxg c HQ
(XTTX~

I
,Z)

is a maximal generator. Consequently, by 11.3, the elements

gl
=

I(TT n xnx~ l

,Tf)g and #2
=

I(TT O xtrx' 1
,xirx-

l
)cxg both are maximal

generators of Hq
(7T O xnx~ l

,Z). There exists therefore an integer k

prime to p such that gl
= kg2 . This implies

However,
= /TT O

which shows that g
r
is stable.

Since g
r
is stable it follows from 9.4 that

Since g
r has order (TT : 1), and (II : TT) is relatively prime to (TT : 1), it

follows that (II : 7r)g
r also has order (TT : 1). Consequently f(n,7r)

r
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must have as order a multiple of (TT : 1). But t(H,Tr)g
r
e H(tt 9A,p) and

every element of this last group has order at most (TT : 1). Thus f(II,7r)
r

has order (TT : 1).

THEOREM 11.6. For each finite group II the following statements are

equivalent:

(a) IT has a period > 0;

(b) every abelian subgroup ofU is cyclic;

(c) every p-subgroup ofU is either cyclic or is a generalized quaternion

group;

(d) every Sylow subgroup of II is either cyclic or is a generalized

quaternion group.

PROOF, (a) => (b). A non-cyclic abelian group contains a subgroup
of the form Zv + Zp where p is a prime. In view of 11.3, it therefore

suffices to show that Zp -\- Zp has no period. Consider homomorphisms
ZP -> Zp + Zv

-> Zv whose composition is the identity. This induces

homomorphisms

#<(ZP,Z) -> H\ZP + Z,,Z) -> //<(ZP,Z)

whose composition is the identity. For each positive even integer q the

group H9
(Z^Z) is cyclic of order p. Consequently HQ

(ZP + ZP,Z) has a

direct summand which is cyclic of order p. Thus HQ
(ZV + ZP,Z), for

positive even integers q, is not cyclic of order/?
2

. Consequently Zp + Zv

does not have a period.

(b) => (c). Let TT be a /7-subgroup of EL Since the center of a /?-group
is non-trivial (see Zassenhaus, The Theory of Groups, New York, 1949,

p. 1 10), TT contains a central cyclic subgroup TT' of order p. We claim that

TT' is the only subgroup of TT of order p. Indeed if TT" is another such sub-

group, then since TT' n TT" = {1} and since TT' is in the center of TT, it

follows that TT contains the direct sum TT' + TT" which is a non-cyclic

abelian group, contradicting (b). Thus TT contains only one subgroup of

order/?. It is then known (Zassenhaus, ibid., p. 118) that TT is either

cyclic or a generalized quaternion group.

(c) => (d) is obvious.

(d) => (a). We have seen in 7 that a cyclic group has period 2 while

the generalized quaternion groups have period 4.

Let TTl9 . . . 9
TT8 be Sylow subgroups corresponding to the primes

Pi9 >P8 ^at occur in (II : 1). Assume that ?r
t has period qt

and

maximal generator gi
e HQ

*(TTi9Z). By 1 1.4 there exists an integer u which

is a common multiple of ql9 . . . , q8 and such that the elements
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have order (tri
: I). It follows that the sum of these elements is an element

of //M(n,Z) of order (II : 1), i.e. a maximal generator. Thus II has

period u.

EXERCISES

1. Let II be a group of order r. Show that a Il-module A, such that

the multiplication by r is an isomorphism r : A *& A, is weakly projective.
2. Show that if there exists an exact sequence -> A n -+

---->AQ
-> A

->OorO->>4->>4 -> ----> A n -*Q with A$, . . . , A n weakly projective, then

ft(U,A) = 0. In particular, H(U,A) = whenever A has a finite

projective or injective dimension. As an application show that if II ^ 1

then the projective and injective dimensions of Z as a Il-module are

infinite. Thus gl.dim Z(I1) = oo.

3. Show that ifA is finitely generated then Hq
(H,A) is finitely generated

and hence finite.

4. Let IT be the cyclic group of order h with generator x and A a

cyclic group of order k (written additively) with generator^. Assume that

an integer /is given such that /* 1 E= mod k. Then define the operators
of Ft on A as xy = ly. Show that A is weakly projective if and only if

(h,k) = 1. Show that if /* - 1 = k then H(U,A) = 0. In particular

for h = 2, k = 8, / = 3, we have H(U,A) = without A being weakly

projective.

5. Given a complete resolution X for II, show that XQ
, suitably

relabelled, again is a complete resolution for n. Using this result

establish the isomorphism

//(IM) * H_q_,(A n X)

where A is regarded as a right Il-module by setting ax = x^a, x c II.

6. Show that the products

U : H*(Il,A) HQ(H 9A')-+ H^Q
(U,A <g> A')

O :

of Ch. xi, may be modified (for n finite) so that H and HQ be replaced by

# and // . Show that after this modification we have

a U fe== a.b

for a tip(Tl 9A), b e H(Il,A'), p I> 0, q I> 0, and

a r\b = ( 1)
2 b . a

for a
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7. Given a subgroup TT of II establish the isomorphism

for any Il-module A. Show that Homw (Z(li\A) and Z(U) n A are

isomorphic. Show that the following diagram is commutative

where

i : /* - Homn (Z(O),/0 -> Homw

is the inclusion, while

/: Horn, (Z(n),/4) -> Homn

is the transfer.

8. Let 77 be a subgroup of II. In the situation (^nn^) define

/: A n C-> A w C
by setting

/(flnO= Z. w*r^

where jcjw, . . . , xr
7r are distinct cosets of TT in FI with r = (II,7r).

Examine the formal properties of r and compare it with the natural

epimorphism

j: A w C->/4 n C.

Replace C by a complete resolution X for II and use Exer. 5 to show that

Meads to the homomorphism i(ir,II): H(tt,A) -> H(TT,A) while j leads

to /(n,7r): H(TT,A) -> ^(0,^).
9. Define the transfer homomorphisms

where II is any group and TT is a subgroup of II of finite index. Compare
these homomorphisms with f(n,ir) and i'(ir,n) for finite groups.

Establish the analogue of Exer. 7.

10. Show that the map
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which coincides with the transfer map

fKII): ^(11,2)-+ H^Z)
(see Exer. 9) coincides with the classical transfer map

as defined for instance in Zassenhaus (Theory of Groups, New York, 1949,

p. 137).

11. Let P ==
(pl..... /?,) be a set of primes. We define H(H,A 9P) as

the direct sum of H(l\,A,p t), and define (II : l)p as the product of the

/Vpriniary components of (11,1) for / 1, ...,/. An element

g Hq
(Tl,Z,P) will be called a maximal P-generator if it generates

// fl

(II,Z,P) and has order (II : 1) 7 >. The integer q is then called a

P-period for II. Restate all the results of 11 in this more general

setting. In particular show that theorem 11.6 may be reformulated to

assert the equivalence of the following four conditions:

(a) II has a P-period > 0;

(b) every abelian subgroup of II whose order is a divisor of (II : 1)P is

cyclic;

(c) every /^-subgroup of n with p e P is either cyclic or a generalized

quaternion group;

(d) every /?-Sylow subgroup of Ft with p P is either cyclic or is a

generalized quaternion group.

11. Let p
v be the order of the /?-Sylow subgroup of II. Show that

the least integer r satisfying 11.4 is (using the Euler (^-function)

r - <F(P
V
)
= p*-\P

- D ifp ^2

r
-

<f(p
v
)

=-- 21'- 1
if />= 2, v=\ or 2

r -
\/2<r(p

v
)
= 2"~ 2

if p=2 9
v > 2.

As a consequence, show that if II has a /^-period, then 2<f(p
v
) is a /^-period.

If/?
= 2 and n is cyclic of order > 8 then II has y(p

v
) as a ^-period.

If Ft has a period, then 2^(11 : 1) is a period for II.

13. Show that if for some integers / and p the functors H l

(H,A) and

HM(l\,A) are naturally equivalent (as functors of the Il-module A),

then II has period q.

14. Let fl have order r. Show that for each q there exists II-modules

C with // f/

(II,C) cyclic of order r. [Hint : for q
= take C = Z, then use

sequences of the type (1) and (2) of 5.]



CHAPTER XIII

Lie Algebras

Introduction. In this chapter, Lie algebras are considered from a

purely algebraical point of view, without reference to Lie groups and

differential geometry. The "Jacobi identity" may be justified by the

properties of the "bracket" operation [x9y] = xy yx in an associative

algebra.

To each Lie algebra g (over a commutative ring K) there corresponds
a -K-algebra cf (called the "enveloping algebra" of g), in such a way that

the "representations" of g in a /^-module C are in a 1-1-correspondence
with the g'-module structures of C. Since g* has a natural augmentation
e: cf->K, it is a supplemented /f-algebra. This at once leads to the

homology and cohomology groups of g. To prove that these coincide

with the ones hitherto considered (Chevally-Eilenberg, Trans. Am. Math.

Soc. 63 (1948), 85-124) we must assume that g is /T-free and apply the

theorem of Poincare-Witt ( 3) which is an essential tool in the theory.
While the first two sections contain only definitions and results which

are essentially trivial, because they do not use Jacobi's identity, this

identity is essential for the theorem of Poincare-Witt (3). Once this

theorem is established, the theory develops in a manner analogous to that

for groups.
We do not touch upon the more advanced aspects of the homology

theory of Lie algebras (Whitehead lemmas, Levi's theorem, semi-simple
Lie algebras, etc.).

1. LIE ALGEBRAS AND THEIR ENVELOPING ALGEBRAS

We recall that a Lie algebra over a commutative ring K is a /f-module g

together with a AT-homomorphism x y -> [x,y] of g A- g into g such

that for jc, y 9 z g :

(1) [*,*] =

(2) [x,[y,z]] + [y 9 [z 9x]] + [z,[x,y]]
= (Jacobi's identity).

Condition (1) implies the condition

0') [x,y] + [y,x]
=

and is equivalent with (!') if in the ring K there is an element k with 2k = 1 .

266
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A (left) g-representation of g is a AT-module A together with a K-

homomorphism x<8>a->xaofQ<8)A into A such that

x(yd) y(xa)
=

[x,y]a.

We now construct an associative /L-algebra g
e with the property that each

(left) g-representation may be regarded as a (left) g
e-module and vice-versa.

We shall call g* the enveloping algebra of g.

Let 7(g) be the tensor algebra of the /^-module g : this is the graded

(associative) tf-algebra such that TQ(Q)
= K and Tn(g) is the n-fold tensor

product (over K) of g with itself. The product of elements xl xp
and yl g) yq is x

l
x p ^ j fl

. It is clear that a

/^-linear map g A- A -> /I admits a unique extension !T(g) A- 4 -> A

satisfying (xl xn ) a -> (xt (xBa) ) This converts X
into a left r(g)-module. Conversely any 7(g)-module A is obtained this

way from a unique map g A -> A. In order that this map g A -> A
be a g-representation it is necessary and sufficient that the elements of

or the form

(3) x v v x [x,y] x,y g

annihilate A. Consequently, we are led to introduce the two-sided ideal

6/(g) of T(g) generated by the elements (3) and define the enveloping

algebra of g as g
f =

7Xg)/t/(g). Clearly left g-representations and left

g'-modules may be identified ;*we shall use the term left Q-module to indicate

either of the above.

We arrived at the enveloping algebra g' by the consideration of left

representations g A -^ A. A right representation A g -* A with

(ax)y (ay)x
~

a[x*y]

could equally well be used. Indeed, any AMiomomorphism A g~^ A
extends uniquely to a A'-homomorphism A T(g) -> A satisfying

a (x1 (S x n)
=

( -(aXi)-
- - x n ). This converts A into a right

7Xg)-module. In order that A (x) g ~> A be a right representation of A it

is necessary and sufficient that the elements of the form (3) in 7*(g)

annihilate A. We are thus led to the same enveloping algebra

g r(g)/C/(g). Thus right g-representations and right g'-modules may
be identified ;

we shall use the term right ^-module to indicate either of

the two.

The relation between g-representations and g*-modules can be made

more explicit by the use of the tf-homomorphism

'* 9^9'

defined by the fact that g = 7\(g). We then have
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PROPOSITION 1.1. Letf: g A -> A be the map which defines A as

a left ^-representation. Thenf admits a uniquefactorizationf= h(i A)
where h: cf (g) A -> A is a map defining A as a left of-module. Similarly

for right representations and right modules.

Since T(Q) is a graded ring we have a natural augmentation
e: r(g) -> TO(Q) = K. Since e is zero on Tn($) for n > it follows that

the ideal C/(g) is in the kernel of e. Thus by passing to quotients we obtain

the augmentation
s: tf->K

which converts cf into a supplemented /^-algebra. The augmentation
ideal 7(g) is generated by the image of /: g -> g

15

.

As an example, consider the case of an abelian Lie algebra g (i.e.

[x,y]
= for x9y c g). The enveloping algebra g

e
is then the quotient of

T(g) by the two-sided ideal /(g) generated by the elements x y y *;

thus g" is the "symmetric algebra" of the ^-module g. If g is /C-free with

A>basis {xa}, then g
e

may be identified with the algebra K[xa ] of polynomials
in the letters xa .

A homomorphism/: g -> g' of a Lie algebra g into a Lie algebra g'

over the same ring K is a /C-homomorpnism satisfying f([x,y])
-=

[fxjy].

Clearly/induces a map/*: g
e ~> g'

e of supplemented algebras such that

the diagram

"
9' 77* 9

is commutative.

Let g and g' be two Lie algebras over the same ring K. The direct sum

8 + 9' (also called "direct product") is defined as a Lie algebra by setting

[(*,*'),<>,/)]
-

([*,>'],[*',/])

If we identify A- with (x,0) and x' with (0,x') then g and g' become sub-

*!fi;ebras of g + g', and [x,x
f

]
= for x g, x g'. The inclusion maps

g --> g
-i

<i', g' > g -f g' induce homomorphisms

9'^(9 + 9')
e

, 9
/c
->(9 + 97

which in turn define a homomorphism

PROPOSITION 1.2. The homomorphism <p is an isomorphism of

supplemented algebras.
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PROOF. The map (x,jc') -> x 1 + 1 *' of g + g' into the tensor

product of algebras 7(g) TXg') induces a homomorphism of /C-algebras

After composing y> with the natural map TXg) (x) T(g') -> g* g'' we
find that L'(g + g' ) is mapped into zero. Thus we obtain a homomorphism

V- (9 + 9')'->9'09">

and it is trivial to verify that yy and <py are identity maps. Thus <p is an

isomorphism.

The definition of a Lie subalgebra I)
of a Lie algebra is obvious. We

say that I) is an ideal if [.v, v] c
1) for x g, v e

I).
In view of the anti-

commutativity of the bracket operation, there is no need to distinguish

between left and right ideals. If
I) is an ideal, then g/l) is again a Lie

algebra with the bracket operation induced by that of g. Consider the

composite map

(4) i) g g
e

where/ is the inclusion, and let L denote the right ideal in g' generated by
the image of

//.
Then L coincides with the left ideal generated by the

image //,
since in g' we have

if(x')i(x) iMif(x') + if([x',x]) x' e
1), x e g

PROPOSITION 1.3. Let I) be an ideal in g and <p: g-^ g/l) the natural

homomorphism. Then <p
e

: g
f -> (g/l))' is an epimorphism and its kernel

is the ideal L generated by the image of the composed map (4).

PROOF. The fact that g^ is an epimorphism is obvious. Clearly the

image of // is in the kernel of cp
r

. Thus <p
f induces a homomorphism

^: tf/L -> (g/l))'. We choose a function u: g/l)
-

g (not a homo-

morphism) which followed by <f is the identity. It is easily seen that the

composite map
U I

9A)
"
9

"
9'

* 9/^

is independent of the choice of u and is a tf-homomorphism. There

results a JT-algebra homomorphism r(g/f)) -> g'/L which maps /(g/f)) into

zero. We thus obtain a map y^ (g/f)V -> tf/L for which both composi-
tions ^y; and yjy> are identity maps. Thus ^ is an isomorphism.

As in the case of groups we have an antipodism
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defined by the map xl <8> *p
-> ( l)

p^* jcf of TTg) into

T(g)*. As in the case of groups this allows us to convert a right g-module
A into a left one, by setting

xa = ax.

2. HOMOLOGY AND COHOMOLOGY OF LIE ALGEBRAS

For each Lie algebra g over K, the (associative) /^-algebra g
e

is a

supplemented /C-algebra, and therefore, following x,l, we have homology
and cohomology groups of g

e
. We shall write

//n(g,/l) - Tor?/ (A 9K), //"(g,C) - Ex

for any right g-module A and any left g-module C. Thus the homology
and cohomology groups of g are defined as those of the supplemented

algebra g'.

If/: g ->
f) is a homomorphism of Lie algebras, we have the induced

homomorphism/*: g
c -> If which in turn induces homomorphisms

F': //n(g,/0->"M(M)> A^

F,: //(f),C)->//"(g,C), ft
C.

The homology group // (g,^) is the tf-module A
fl

^ ^ A/Al
where /= /(g) is the augmentation ideal in g

f
. Clearly A/ ~ AQ and

therefore

(1) HfaA) - ^/^g.

This /C-module will also be denoted by Ay
The cohomology group //(g,C) is the group Hom

fl<
(K,C) which may

be identified with the tf-module of all invariant elements of C, i.e. all

elements c such that xc = for any x g. Denoting this module by Cfl

,

we have

(la) //(g,C) - C*.

The group Hl
(&C) has been described in x,l as the group of all crossed

homomorphisms /: tf -> C modulo the subgroup of principal crossed

homomorphisms. Composing / with the map /: g >g
c we obtain a

/L-homomorphism g: g -> C such that

which we call a crossed homomorphism of g into C. Clearly the crossed

homomorphisms of g and those of g
e are in a 1-1 -correspondence given

by the relation =
//. The principal crossed homomorphisms Q->A
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are those of the form gx = xc for some fixed c C. We thus obtain again
that //Hg^C) may be identified with the group of crossed homomorphisms
g -> C reduced modulo principal homomorphisms.

If A has trivial g-operators (i.e. xa = for all a c A,x e g), then we find

(2)

(3) H*(&A) - Horn (g/[g,gM)

where [g,g] is the image of g g -> g under the map x j ->
[jt,^'].

We shall also interpret the group H^&A) for >4 with trivial g-operators.

We know from x,l,(4) that HfaA) ** A K 111
2 where /= 7(g) is the

augmentation ideal. Since / maps g into / and [g,g] into 72 it defines a map
V- g/[g*g] -> I!f2 - On the other hand the map T(g)->g which is the

identity on 7\(g)
= g and is zero on r,,(g) for n =

1, maps U(Q) into

[g,g] thus defining a map /-> g'l&g]. Since this map is zero on I2 we
obtain a map y: I/I

2 -> g/[g,g]. Both compositions <py and y<p are

identities and we obtain an isomorphism

(4) 7//
2 ^ g/[g,g].

We thus have

(5) H^A)^A 7v'g'[g,g]

if g operates trivially on A.

3. THE POINCARfc-WITT THEOREM

Throughout this section it will be assumed that the Lie algebra g over

K is AT-free. A fixed /C-base {.vj will be chosen and it will be assumed that

this A'-base (or rather the set of indices) has been simply ordered.

We shall use the following notation: va will stand for the image of

.va under the map /: g > g'; if / is a finite sequence of indices a
t , . . . , a p

we shall write v/ ,va
* * va ; we say that / is increasing if^ <^ ^ ap ;

we define v/ 1 if / is empty, and we regard the empty set as increasing;

the integer p will be called the length of /.

THEOREM 3.1. The elements v/, corresponding to finite increasing

sequences Inform a K-base of the enveloping algebra g
f

.

COROLLARY 3.2. g' is K-free.

Since by 3. 1 , the elements ra are linearly independent in g' we obtain

COROLLARY 3.3. 77?? map /: g -> g' is a K-monomorphism.

PROOF of 3.1. We first show that the elements v/ corresponding to

finite increasing sequences generate g'. We denote by /^(g*) the image of

the submodule ^ ^.(g) of ^(g) under the natural mapping T(g) -> g*. It
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suffices to show that the elementsyT corresponding to increasing sequences
/ of length <^ p generate Fv(Q

e

). Clearly the elements
j>7 corresponding to

all sequences / of length <I p generate Fp(Q
e
). The conclusion thus follows

by recursion from the following lemma (in which the fact that g is /C-free is

not needed):

LEMMA 3.4. For each sequence a, . . . , ap e g and each permutation
TT of (I, . . . ,p) we have

As usual /: g -> g
6

is the natural map. It clearly suffices to consider

Ihe case when TT interchanges two consecutive indices j\ j + 1. In this

case the conclusion is evident from the relation

We now come to the more difficult part of the proof which consists in

showing that the elements yl of 3. 1 are /f-linearly independent. We shall

denote by P the polynomial algebra K[zJ on letters {za } in a 1-1 -cor-

respondence with the base {*a }. For each finite sequence / of indices

04, . . . , a,, we shall denote by zr the element zy za of P.

LEMMA 3.5. There exists a left representation of $ in P such that

0) -V/ = V/
whenever a < / (i.e. whenever a <I ftfor all fi c I).

Postponing the proof of the lemma, we can complete the proof of the

theorem. The representation of Q in P induces a left cf-module structure

on P. If / is an increasing sequence of indices of length n it follows from

(1) by recursion on n that y7 . 1 z ; . Since the elements r/ are K~

linearly independent in P, the same follows for the elements v/ of g'.

PROOF of 3.5. In the graded algebra P, we denote as usual by P p the

/C-module of homogeneous polynomials of degree p and set Q p
-= V P

t
.

t^p
Lemma 3.5 is an immediate consequence of the following inductive

proposition:

(A v). For each integer p there is a unique homomorphism

f: Q^P
such that

(O /(* */)
= Vi ^ /, z7 c Q p

(2) /(xa (g) Zj) QQ+l zl eQq,q<p

(3) /(
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It is immediate that (2) is a consequence of (4); however we wrote (2)

out explicitly in order to make it clear that the terms in (3) are well defined.

For/?
= 0, the definition/^ 1)

= za is forced by (!') and trivially

satisfies also (2)-(4).

Assume now that (A^) is established for some/? > 0. We shall show
that the map /satisfying (A V_J admits a unique extension (also denoted

by/) satisfying (A p). We must define /(jta z 7) for / of length p. If

a _< A the definition is forced by (!'). If a <1 / is false then / may be

uniquely written as / (fij) where a>/?<y. Then z7 z
ftZj f(xft Zj)

so that the left side of (3) is/(.va r 7 ).
In order to be able to use (3)

as a definition we must verify that the right hand side of (3) is already
defined. To this end we use (4) to write

Then the right hand side of (3) becomes

Z
ftZJj +/(*,, U

This defines/in all cases, and (!'), (2) and (4) are clearly satisfied. As for

(3) we only know that it holds if a > (i
< J. Because of the anti-symmetry

of lx^xft ]
it follows that (3) also holds if ft > a < J. Since (3) trivially

holds if a -ft, it follows that (3) is verified if either a <I 7 or ft <I J. We
shall show that this together with ( 1') and (4) and together with the induc-

tive assumption (A v j) implies (3) in all cases.

Indeed suppose that neither a *' J nor fi<^J. Then J has positive

length and J (;,L) where y < L* y
-
: a, y -.: /i. Using the abridged

notation /(.Y, r 7 ) .Yar/ we then have by the inductive assumption

where u (

A-,,r A r^rL c ^,) _ 2 . Applying A'a to both sides we have

XjiXftZj)
--

Xj,XY(ZfiZ,)) + Jf,(.Y..H') + AT^Y^.Y.JrJ.

Since
}'
<

(p\L), (3) may be applied to the term Xy(x..(2ft
zL)) ; to the

remaining two terms on the right we may apply (3) by the inductive

assumption. Upon computation we obtain

(5) Xa(X flZj)
-- X

Y(xJtX0ZL)) + [XvX.,](XfiZL ) + [XpXyKxjri

Our assumptions on a and ft were symmetric, so that (5) holds with a and /?

interchanged. Subtracting from (5) this yields

(6) X^XpZj)
- X^Zj) - X

Y{xJixft
SL)

-
*,(*.*/,)} + [^..[^
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Applying (3) we have

x{xya(xft
zL)

-

Substituting this in (6), we find that the three terms involving double

brackets cancel by virtue of Jacobi's identity, and the final result is

as desired.

Theorem 3.1 was first proved by Poincare (Cambridge Philosophical

Transactions 18 (1899), 220-225, m); a complete proof, based on the

same principles, was given later by E. Witt (Journ.furr.u.a. Math. (Crelle)

111 (1937), 152-166; Hilfsatz, p. 153). The proof given here is modeled

after Iwasawa.

4. SUBALGEBRAS AND IDEALS

If
I)

is a Lie subalgebra of a Lie algebra g over K, then the inclusion map
1)
-> g induces a tf-algebra homomorphism

(1) ^ V^tf
so that Q

e

may be regarded either as a left or as a right f)

e-module.

PROPOSITION 4.1. If the K-modules
I)
and g/l) are both K-free, then (p

is a monomorphism and Q
e

regarded as a left or right If-module is \f-free.

PROOF. In the exact sequence -*
1)
-> g ->

g/l)
-> of /^-modules,

the modules
1)
and cj/f) are AT-free. Therefore the sequence splits and g also

is AT-free. Furthermore, we can find a /f-base of g composed of two

disjoint sets {xa}a A , {yft }ft B such that {xa} is a /L-base for
I).

We simply
order the union A U B of the disjoint sets A and B so that each a A

precedes each ft
c B. If we identify each element of g with its image in g*

under the monomorphism /: g->g
c
, then it follows from 3.1 that the

elements of the form

of Q
e form a AT-base for g

e
, while the elements ^ra xa form a AT-base for

I)'. This implies that (1) is a monomorphism and that the elements

ypi
' ' '

y?*
* rm a "e^ f)

e'^ase f r 9
e

- The proof that these elements also

form a right l)

e-base is similar.

We may now apply x,7.2 and x,7.3. We obtain
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PROPOSITION 4.2. Under the hypotheses 0/4.1 we have

(2) #n(M) <* #n(94 i>- 9')

(2a) //
n
O),C) //"(9 , Homy (g',C)),

/or e0cA r//j/ fy-module A and each left tymodule C.

PROPOSITION 4.3. Under the hypotheses of 4.1 we have

(3) //n(M) * Totf (X.tf <8V /C),

(3a) //
n
(f),C) ExtJ. (

/or each right ^-module A and each left ^-module C.

The module g' y /T appearing in (3) and (3a) may also be written as

ffifbitf) which has been computed in 2 to be g'/g'I). If I) is an ideal in

g then g'l) coincides with the ideal L of 1.3. Thus if
I)

is an ideal in g we
have the isomorphism

g'
ft
. tf

COROLLARY 4.4. If 1)
w an ideal in g cwrf the hypotheses of 4. 1 are

satisfied then

(4)

(4a) /

/or ^acA r/^/j/ ^-module A and each left Q-module C. T/j^e isomorphisms

may be used to define a right $/[)-module structure on //n(I),/4) and a left

fo-module structure on //"(l),C).

In xvi,6 we shall establish closer relations between the homology
(and cohomology) groups of g, I) and g/l).

5. THE DIAGONAL MAP AND ITS APPLICATIONS

For each Lie algebra g over K, the diagonal map

D: g'->g'g<

is defined by the requirement

Dx = x 1 + 1 x, x g.

If we identify g' g' with (g + g)
e as in 1 .2, and consider the map

/: 9-^9 + 9 given by Ix - (x,x) - (jc,0) + (0,x), then D = P. This

diagonal map Z) is compatible with the augmentation (in the sense

explained in xi,8) and is commutative and associative (in the sense defined

in xi,4).
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The diagonal map D may be combined with the antipodism co : g
e^ge *

defined in 1, to obtain a map

as the composition
D

fl <8> to

g'
--

g' g
e->

g' g'*.

It follows that the map E satisfies

Ex = x 1 1 x*, jc * g,

and that this condition determines E uniquely.

We first verify that the map E satisfies condition (".!) of x,6. To this

end we denote by / and J the kernels of the respective augmentation maps

e: tf^K, p: <f g'* -> g<.

By ix,3.1, J is the left ideal generated by the elements u 1 1 u* for

u cf. In view of the relation

(MI?) 1 1 (!;)* = (H 1X0 1~1 0*)+0 0*X* 1-1 w*)

valid for w,t; e g% we find that / is the left ideal in g* g
e *

generated by
the elements

x 1 1 x* = Ex jc g.

Since the elements x c g generate the ideal / of g* it follows that J is the

left ideal generated by the image of El in g' g
e
*. This is precisely

condition (.1) of x,6.

We now introduce the assumption that the Lie algebra g is /C-free.

Then, by 3.2, g* also is /T-free. Consequently, the diagonal map D may be

used to define U - and O -products as in xi,7. Further we find that the

conditions (iHvi) of xi,8 are satisfied by the maps D and co. Consequently
the considerations of xi,8 and xi,9 (reduction theorems) are applicable to

the homology and cohomology groups of a Af-free Lie algebra g.

Next (still under the assumption that g is AT-free) we shall show that

condition (E.2) of x,6 is satisfied, i.e. that g* g
e*

regarded as a right

g
e-module by means of the map E is g*-projective. Since the map g* co is

an isomorphism, it clearly suffices to show that g
e

g
e

regarded as a right

g
e-module using the map Z), is g

e
-free. To this end we identify g

e

g
e

with (g + g)* and notice that D = /*, where /: g -> g + g is the map of

Lie algebras given by Ix = (x,x). Since / is a monomorphism and since

Coker / is a ^-module isomorphic with g which is /T-free, it follows from

4.1 that (g + g)* is g'-free.
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Now that condition (.1) and (.2) of the "inverse process" have been

verified, we may apply x,6.1. We obtain

THEOREM 5.1. Lei g be a Lie clgebra over K which is K-free, and let A
be a two-sided cf-module. Let A K be the right ^-module obtainedfrom A by

setting

(a,jc) -> ax xa a e A, x c g

and let FA be the left ^-module obtained by

(x,a) -> xa ax a A,x g.

We then hare isomorphisms

FK : Hn(tf,A) * Hn(Q 9AK)

FE : H*(&EA) ** //"(gVO.

Furthermore if A --
g' and if X is a A-projective resolution ofK (as a left

A-module) then Af

A X is a Ae

-projectile resolution of A as a left

Ae-modu/e.

In particular, let g be the abelian Lie algebra with the letters jq, . . . , xn

as a A>base. Then cf
=- K[x^ x n]=~ A, and we know from vm,4

that A E(x l
x n ) with a suitable differentiation operator is a

g'-projective resolution of A'. It follows that A< E(x^ . . . , xn) with a

suitable differentiation operator is a A'-projective resolution of A.

An application of x,6.2 gives

THEOREM 5.2. If is a Lie algebra over K which is K-free then

dim g'
-=- dim

fl

, A'.

Iffurther the commutative ring K is semi-simple, then

dim g'
^

gl.dim g
r

.

In view of the antipodism ft>, there is no need to distinguish between

l.dim
fl
. K and r.dim . A' and between l.gl.dim g' and r.gl.dim g*.

6. A RELATION IN THE STANDARD COMPLEX

For the purpose of the next section we shall establish here a relation

valid in the normalized standard complex N(A) ofan arbitrary (associative)

/f-algebra A.

The notation [^ x n ] in the complex N(A) introduced in ix,6 will

be replaced here by {x1 *} in order to avoid confusion with the

brackets in the Lie algebras.
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For each y c A we consider the Ae

-endomorphisms a(y) and &(y) of

JV(A) defined by

(1) cf(y){xl9 ...,xn}= 2 ( 0'{*i, x
i9y 9xl+l9 . . . , xn }

(2) 0(jO{*l> ...,*} = >>{*1> . . . , Xn}

where [y,x]
= jx xy.

PROPOSITION 6.1. Far each y A we Aaye f/ze identity

(3)

rf w /Ae differentiation operator of MA).
PROOF. Let ,4(y) denote the left hand side of (3). We must show that

for all n ^ 0,

(4)

This is immediate if n 0. We now assume, by induction, that (4) holds

for n 1 (n > 0). In the complex W(A) we have the contracting homo-

topy s defined in ix,6 and satisfying the identity

ds + sd identity

when applied to any element of degree > 0. Thus for n > 0, relation (4)

is equivalent to the pair of relations

(5) sA(y){xl9 ...,*} = 0,

(6) sdA(y){xl9 ...,*}- 0.

We recall that in the normalized complex we have s(y{xlJ . . . , xn}y
f

)

= [y,xl9 . . . , xn}y' and that the right hand side is zero if y 1. This

rule easily implies

sda(y){xl9 . . . , xn }
= s(y{xl , . . .

,
xn)

- x

sa(y)d{xl9 . . . , x n}
= s(xla(y){x2 , . . . , xw})

l9 . . . , xn}= -s(y{xl9 . . . , xn}).

Adding these relations yields (5).

To prove (6) we first compute the element

z = dA(y){Xl , ...,*}= da(y)d{Xl , . . . , xn}
-

d&(y){xl9 . . . , xn}.

An application of the inductive assumption yields

z = &(y)d{xlt . . . , xw }
- M(y){xlt . . . , xn}.
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We must show that z EEE mod the kernel of s. Calculating modulo this

kernel we find that d&(y){xl9 . . . , ;cn) gives

yd{xl9 ...,*} ^{xg, . . . , xn}y
-

while &(y)d{xl9 . . . , xn } gives

. . . . , xn } + y(d{xl..... x n ]
- x^x* . . . , xn })

The two results coincide and this concludes the proof.

Suppose now that A is a supplemented A-algebra with augmentation
e: A -> K. In the normalized standard complex N(Ae) N(\) A A"

we have endomorphisms induced by a(y) and d(y). These will still be

denoted by a(y) and ft(y). These operators are left A-endomorphisms of

N( A,F) and we still have the relation (3). The explicit definition of a(y) is

still given by formula (1), while the definition of #( v) gets replaced by

7. THE COMPLEX V(9)

Throughout this section g will denote a Lie algebra over K which is

tf-free.

We denote by (g) the exterior algebra of the /^-module g. The
tensor product (over A')

=-- a'

is a left g'-module and is g
f
-free since ($) is /C-free. Using the grading

of (g) we define a grading in K(g) as

Pn(fl)
-

9' n(9)-

Since ro(g) A" it follows that K (g) g' , and the augmentation e:cf^> K
defines an augmentation e: K(g) -> K which is zero on Kn(g), n > 0.

For w e g
e

, jq, . . . , xn e g, the element u (jct XB) e g* (g)

= ^(9) wiH be written as u(xl%
. . . , jc n ). If u = 1 we shall simply write

(*!, . . . , ;cn). Consequently the symbol ( ) will denote the element

I 1 ofg'(g).
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We now consider the normalized standard complex N(cf,e) of the

supplemented algebra g*. Let

be the g
e

-homomorphism defined by the requirement

f(xl9 . . . , xn >
= I(-l)T(7r)

k,<i . . , *<>},
tr

where the summation extends over all permutations TT of (1, ...,) and

T(TT) is the signature of TT. To verify that/is well defined we only need to

observe that /(xt , . . . , xn )
= if xt

= x
}
for some Q<^ i < j <^ AZ. In

particular, the definition yields f( )
=

{ }.

If we choose a simply ordered /T-base for g, we obtain in the usual

fashion a A'-base for (g) which in turn induces a g'-base for K(g). It

follows then by inspection that/maps this g
e-base of K(g) into elements of

N($
e
,e) which are g'-linearly independent. Consequently / is a mono-

morphism. In the sequel we shall identify K(g) with a g'-submodule of

N(cf,e) and regard/as an inclusion map.
THEOREM 7.1. The submodule K(g) of N(tf,e) is a subcomplex. The

differentiation in K(g) is given by theformula

(i) </<*!,...,*>= 2 (-ir^x^,...,^,...,^)

+ 2 (

/Ae augmentation e : K(g) -> /T, //ze complex K(g) w a cf-free resolution

ofK as a left of-module.

PRCK>F. Once formula (1) is proved, it will follow that K(g) is a sub-

complex of 7V(g',e). For n = formula (1) needs rf( )
^ which is

obviously correct. We now proceed by induction and assume that (1)

holds for n.

We shall use the endomorphisms a(x) and #0t) of the complex A^gV)

as defined by formulas (1) and (2
f

) of 6. For v^, . . . , x n 6 g, we
obtain

(2) <*(y)(xl9 . . . , xw >
=

(>>,*!, ... 9 xn )

(3) #(;0<*i> . . - , xn >
=

^(x!, . . . , xn ) 2 (XL . . . , [ v,x,], . . . , xn >.

The formula da(y) + a(y)d= $(y) (established in 6.1) together with (2)

yields

l , . . . , xn ).
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Using (2) and (3) and the inductive assumption, this implies

..... xn )
= y(xl9 . . . , xn > + 2 ( l)'([>',*.L*i* ...,* ...,*>

This is precisely the desired formula for d(y,x l9 . . . , xn ). Thus (3) is

proved.
We have already exhibited a g'-base for K(g), which is thus g*-free.

The kernel of the augmentation K (g) -> K is the AT-module generated

by the elements of the form x l
-

.xp { ), with x
t g, p > 0. Since

*! *( )
=

</(*! x p_! -v p )),it follows that K!(g)-> K (g)-> #->() is

exact. Thus to conclude the proof of the theorem it suffices to show that

H
Q( ^(g))

- for 9 > 0. The following proof is due to J. L. Koszul.

We choose a simply ordered /C-base {xj for g. The elements

\xa , . . . , .va } with &!<-'< a,,, n ^: form a /C-base for (g). The

elements ^^ x^ with^ < <I /im , /w ": 0, form by 3. 1 , a /L-base for

g'. Consequently we obtain a /^-base of K(g) g
f

(g):

(4)
- x (.ra ..... xa ), ai < < an ,

/; ^

We introduce the submodule F,,K(g) generated by the elements (4) with

w + /7 ^/? - 1" l^e quotient module Wv FpHtgVFp-i^g) we then

have the /T-base represented by the elements (4) with m + n = p. Further-

more, it follows from 3.4 that the class represented in W^ by an element (4)

is independent of the order in which the elements
jc^,

. . . , x
ftm

are written.

The formula (1) for the differentiation d in K(g) implies

(5) d(x
fti

- - x
ftm

(x
ti
..... x,J)

modulo Fm ^. n _ l y(Q). This implies that the modules FP V() are sub-

complexes and that the differentiation induced in Wp is given by the formula

(5).

It is now clear that the complex W 2^P is the complex
p

K[xJ (*)

with the differentiation given by (5). This complex is isomorphic to the

projective resolution of K as a left tffxj-module constructed in vm,4.

It follows that H
Q(W) =-= for q > 0, and therefore that HQ(WJ =

for q > 0.
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Now consider the exact sequence

Hq(F^V($) - Hq(F9 V($) -> Hq(Wv\ q>0.

This implies that HJJ?9_ l V($)-*> Hq(F9 V(Q)) is an epimorphism. Since

=0 we obtain Hq(Fp V($) = for
<?
>0 and all p. Since

K(g) = UpFjKfe) it follows that //
a(F(g))

= for 9 > 0. This concludes

the proof of the theorem.

8. APPLICATIONS OF THE COMPLEX V(Q)

We first show how the homology and cohomology groups of g may be

computed using the complex F(g).

If A is a right g-module, then the homology groups HQ($ 9A) are the

homology groups of the complex

A
fl
e K(g) = A

fl
. 8* (g)

- /I

The differentiation operator in this complex is

d(a (X!, . . . , xn ))
= 2 (-1)<

+1(,) <*

+ 2 (

If C is a left g-module, the cohomology groups H "(&C) are the

homology groups of the complex

Honv Wg),C) - Hom
fl
. (g

c
(g),C) - Horn (E(9),C).

In this last complex, a gr-cochain/:
"

(fl)-> Cis simply a /T-linear alternating

function f(xl9 . . . , xg) of 9 variables in g, with values in C. The co-

boundary dfof such a cochain is the q + 1-cochain given by the formula

This description of the cohomology groups //7(g,C) shows directly that

these coincide with the cohomology groups of g considered hitherto

(C. Chevalley and S. Eilenberg, Trans. Am. Math. Soc. 63 (1948), 85-124).

We recall that the complex K(g) is a subcomplex of the normalized

standard complex W(g
e
,e). In this connection the following proposition

will be useful.

PROPOSITION 8. 1 . Every cochainf Hom
fl
, ( K(g),C) admits an extension

f c Hom
fi
, (N((f 9e),C). Iff is a cocycle thenf may be chosen to be a

cocycle.
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PROOF. The first fact follows from the observation that K(g) as a

g'-module is a direct summand of N(cf,e). This is clear from the bases

exhibited in 7. Now assume that df~ 0. Since the cohomology

groups obtained using K(g) and W(gV) are isomorphic under the inclusion

map, there exists a cocycle g' e Hom
fl
, (/V(gV),C) whose restriction g to

V(Q) is cohomologous to/; then/ g = dh. Let ti be an extension of

the cochain h. It follows that/'
= g'+ dh' is an extension of/and 6f

as desired.

The next application of the complex K(g) has to do with dimension.

THEOREM 8.2. If has a K-base composed ofn elements, then

dim g*
= dim

Q
. K = n.

Iffurther the commutative ring K is semi-simple then

gl.dim Q
e = w.

PROOF. In view of 5.2, we only need to prove d\m
Q
eK= n. Since

EQ(Q)
" for 9 > n, it follows that the complex K(g) is ^-dimensional and

thus dim
Q
e K<i n. Now consider the group

"

n(g), with g operating on

the left by

Let /be a (n l)-cochain with values in n(g); an easy computation

(cf. Exer. 12) shows that <$/ 0; thus //
w
(g, n(g)) is isomorphic to the

A>module of w-cochains w(g)-> n(g), which is obviously isomorphic
to K. Hence dim

fl

, K^_ n.

Next we pass to the question of computing the products using the

complexes K(g). We begin with the external products for two Lie algebras

g and 1)
over K, both of which are /f-free. As agreed upon in 1, we shall

systematically identify (g + I))' with g' \f. As we have seen in xi,5, to

compute the products _L and T we need a map

while for the products V and A we need a map

g: K(g + l))-

The answer to both of these problems is quite trivial here since the

identification fg + W ~
g' V and the natural isomorphism E(g + I))

^ (g) E(f)) imply a natural isomorphism

(1) Y(Q + W <

compatible with the (g + ^-operators and the differentiations.
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For the internal products u; and m we assume that g is an abelian Lie

algebra. Then of is a commutative algebra. As we have seen in xi,5, to

compute the products u; and m we need a map

To obtain such a map it suffices to regard K(g) = cf (Q) as a g'-algebra,

and verify that this map is compatible with the differentiation (cf. Exer. 15).

We finally consider the products U and O defined using the diagonal

map D: g" -> g* g
e =

(g + g)
e

. According to xi,5, we need a map

This is given by the maps g* -> g* tf and *(g)
-> (g) (g) (g) both

defined by x~>jcl + ljc,x6g. If we carry out the explicit computa-
tion and apply this map to find the cup product of cochains we obtain the

classical formula for the multiplication of alternating multilinear forms.

Explicitly, consider cochains /e Horn ( p(g),C), /' Horn ("Q(fl),C'),
where C and C' are left g-modules. If C C' is regarded as

a left g-module by means of the map /), we find that the cochain

/U/' Horn ( p+c(g),C <8> C') is given by

U /')(*i, . , xp+q)
= S

the sum being extended over all partitions of the sequence (1 ..... p -\- q)

into two increasing sequences (i^, . . . , /) and (j\ 9 . . . , jQ). The sign is

the signature of the permutation (il9 . . . , ip,j\, . . . , jq).

EXERCISES

1 . Given an associative /f-algebra A, define

[x,y]
= xy yx x,y c A

and prove that this assigns to A the structure of a Lie algebra, denoted by

l(A). Show that for any Lie algebra g (over K), the map / is a Lie algebra

homomorphism
/: 9

2. Given a Lie algebra c and an associative algebra A (both over the

same ring K), show that any Lie algebra homomorphism /: g -> l(A)
admits a unique factorization

g g
e A

where A is a ^-algebra homomorphism. Show further that this property
of the pair (g

e
,f) characterizes this pair uniquely up to an isomorphism.
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Show that in order that there exists an associative /^-algebra A and a

Lie algebra monomorphism/: g -> I( A), it is necessary and sufficient that

/: 9
~> 9

e be a monomorphism.
3. For a given Lie algebra g, let g denote the image of the homo-

morphism /: g -> g
e

; we regard as a Lie algebra. Show that the inclu-

sion map g -> g' satisfies the criterion of Exer. 2 and thus we may identify

g' with (g)'.

4. Given a Lie algebra g over K, consider the associative ^-algebra
A = HomA-(g,g) and the map

given by

Show that p is a homomorphism of Lie algebras and that p = if and only
if g is a commutative (i.e. [g,g] 0). As an application show that if

g 9^ then the natural map / : g -> g* is not zero.

5. Let M be a A'-module. Consider the graded /^-module

A(M) = 2*i>i A
k(M ), where

A l(M)^M, A k(M)= 2 A l

(M) K A k - l(M) fork>\.
Q<i^k

Define the mapping A(M) & K A(M)-> A(M) by the inclusion maps
A k
(M)($ K A h(M)-+A^ h

(M). We call A(M) the free non-associative

K-algebra (without unit element) over M. In A(M) consider the two-

sided ideal J(M) generated by the elements

xx and x(yz) + y(zx) -\- z(xy\ .v,v,z A(M).

Show that the quotient L(M)=- A(M)/J(M) is a (graded) Lie algebra;

we call L(M) thefree Lie algebra over M. Show that the mapy : A/-^L(A/),

defined by composition M = A l(M)-> A(M)-> L(M), is a mono-

morphism. Show that every A:-homomorphism /: M -> g into a Lie

algebra g admits a unique factorization M > L(M) g, where (p is

a homomorphism of Lie algebras over K.

6. Let M be a A'-module, and A' a AMiomomorphism of M into a Lie

/^-algebra 1. Suppose that each A>homomorphism /: M -
g into a Lie

AT-algebra g admits a unique factorization

where v^ is a homomorphism of Lie A>algebras. Prove that there exists a

unique isomorphism a:I^L(Af) such that aik=j. This gives an

axiomatic description of the pair (L(M\j).
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7. Consider the tensor algebra T(M) of the /C-module M. Show that

the natural injection M -> T(M) admits a unique factorization

A/ + L(M) T(M), where / is a homomorphism of the Lie algebra

L(M) into the Lie algebra \(T(M)). This mapping / is compatible with

with the gradings in L(M) and T(M). Show that T(M ) may be identified

with the enveloping algebra L(M)
e
ofL(M). lfL(M) denotes the image of

/, show that L(M) is the Lie subalgebra of \(T(M)) generated by the elements

of degree 1 in T(M), i.e. by A/.

8. Prove the following theorem: if M is a /C-free module, then L(M)
is A-free and i:L(M)-*T(M) is a monomorphism ; thus the Lie sub-

algebra L(M) of l(r(A/)), generated by A/, is /C-free and isomorphic to

L(M).

[Hint: ifL(M) is AT-free, then, by 3.3 and Exer. 7, i is a monomorphism.
Hence the theorem is proved when K is a field. For any commutative

ring K9 and any /f-free module A/, there exists a free abelian group A such

that M = A K\ show that L(M) = l(^) A:. This reduces the proof
to showing that L(A) is Z-free when A is Z-free; it will be sufficient to

prove that /: L(A)-^ T(A) is a monomorphism. Let A r be the subgroup
of A generated by any finite subset / of the base of A ; then T(A 7)

-> T(A)
is a monomorphism, which reduces the proof to the case of a finitely

generated free abelian group. Let now A be an abelian group
with a finite base; for proving that /: L(A)-> T(A) is a mono-

morphism, observe that, for each prime /?, L(A) & Z
;,
~> T(A) Zp is a

monomorphism of degree zero, since the theorem is proved for

a field; then apply VH, Exer. 12 to each graded component
Lk(A) Z, -> Tk(A) ZPJ

9. Show that any representation satisfying 3.5 automatically satisfies

condition (4) and therefore is unique.
10. Show that if g is K-free and g

e
is commutative then g is an abelian

Lie algebra.

11. Given a map K-> L (of commutative rings) examine the effects of

this change of ground ring upon the homology and cohomology groups of

a Lie algebra.

12. Let g be a Lie algebra with a /f-base x
x , . . . , xn . Define the

constants of structure c
ljk by the relations

[xx,] = ^ cljkxk .

k

Express the axioms of the Lie algebra in terms of cljk . Prove that in the

complex K <8>
fl K(g) we have

...,*>= 2 (-l)*^/*!' .. .,-*,, ...,Xn >-
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13. Under the conditions of Exer. 12, g is said to be unimodular if for

any y g, the relation

2 *i
' '

*,-i[.y.*J*M.i xn
=

holds in (g). Show that this is equivalent with

</(*!, . . . , *n )
=

in the complex K
14. (Alternative description of the complex K(g)). Let A = (K,d) be

the ring of dual numbers over K and consider the ^-module A K g with

endomorphism d. Let T(A g) be the tensor algebra over K of the

/T-module A & g. The map / : x -> 1 x will be used to identify g with

a submodule of A g and thus also of T(A Q g). In 7*(A g) intro-

duce a grading written with lower indices in which the elements x t g have

degree 1 and the elements dx (x g) have degree 0. The endomorphism d

ofA <x> g may now be extended uniquely to an antiderivation rfofT(A g),

i.e. a A'-endomorphism satisfying

rf(nr)
- (du)v + ( l)

p
w(rfr)

for w of degree p in 7T(A g). This operator d satisfies dd and is of

degree 1 (with respect to the lower indices).

Let L be the two-sided ideal in T(A g) generated by the elements

U) xx

(2) (dx)y-y(dx)- [x,v]

(3) (dx)(dy)
-

(dy)(dx)
-

d[x,y]

for x,y g.

Prove that L is a homogeneous ideal and is stable under d. Consider

the /f-algebra
= r(A0g)/L

which is a left g'-complex over K.

Use the maps

i: g->A0g, j=di: g->A0g
to obtain maps

9), /: T(Q) -> T(A g)

>*: g'

=y* 0/*: g'0(g)-
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Prove that 9? is an isomorphism ofgraded /^-modules and is an isomorphism
of the complexes K(g) and W(g).

[Hint to the last part: denote by M the ideal of T(A g) generated by
the elements (2). Prove that;' i

'

: T(Q) T(g) -^ T(A g) induces an

isomorphism T(g) T(g) ^ T(A g)/A/.]

15. Let g be a Lie algebra with a tf-base; then W($) (Exer. 14) is a

graded differential algebra and cf a subalgebra of degree 0, thus W(g) is a

two-sided g'-module. The multiplication of W(g) defines a map

(1) W($fW($-+W($
which is compatible with the structures of two-sided g'-modules. Let A

be a left g
e
-module; (1) defines

(2) 1Y($ fl
. A -> Honv ( W($\ W(Q) Q

. A),

where Hom
fl

is related to the left g'-module structures. Let n be the

number of the elements of the K-base of g ; (2) induces

(3)
"

Wg) fl
- A -> Hom,e ( ^(g),^ri(g) fl

. A)

for any integer k\ this is a map yk of the module of (n &)-chains (with

coefficients in A) into the module of -cochains (with coefficients in

^n(9) Q
A & EK(Q) K A)., Show that the collection of maps y k

commute (up to the sign) with the boundary and coboundary op Tators,

and that each yk is an isomorphism. Compute explicitly the left opera-

tions of g on w(g) K A, and establish the natural isomorphisms

For k = n and A = K (with trivial operators) we find again //"(g, n(g))

f. 8.2).



CHAPTER XIV

Extensions

Introduction. In general an extension over A is given by an epi-

morphism/: X -> A. This concept may be considered for various kinds

of algebraic structures:

(1) X and A are A-modules, and /is an epimorphism of A-modules.

(2) F and A are /^-algebras, and/: F -> A is a tf-algebra epimorphism.
(3) H/and II are groups, and f: W -* \\ is an epimorphism of groups.
(4) 1) and $ are Lie algebras, and/: I)

*
g is an epimorphism of Lie

algebras.
In the case (1), the kernel C of/is a A-module. The knowledge of A

and C does not yet determine the extension even up to "equivalence."
Indeed, the set of equivalence classes of extensions is in a 1-1-cor-

respondence with the group Ext\(/4,C); this was the origin of the notation

"Ext".

Cases (2), (3), (4) are more complicated, and will be studied here only
under restrictive conditions which permit the introduction of a suitable

structure into the kernel C of/ In the case (2), C is assumed to be a

two-sided A-module; in the case (3), C is assumed to be a II-module (C
is then an abelian subgroup of W)\ in the case (4), C is assumed to be a

g-module (C is then an abelian ideal in I)). In each of these cases, the set

of all equivalence classes is in a- 1-1 -correspondence with a 2-dimensional

cohomology group with coefficients in C. These are: the Hochschild

cohomology group 7/ 2(A,C) in the case (2), the group // 2
(FI,C) in the

case (3), and the group //*(n,C) in the case (4).

The four problems of extensions listed above are inter-related and some

of these relations are studied in detail.

1. EXTENSIONS OF MODULES

Let A and C be (left) A-modules. An extension over A with kernel C
is an exact sequence

() C-^X-^A *0

where X is a A-module and <p and y are A-homomorphisms. The

extension (") is said to be equivalent with an extension

(') 0-*C-* A"->/4^0
289
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if there is a A-homomorphism k: X-> X' such that the diagram

X

is commutative. It is clear that such a k is an isomorphism. We denote

by E(A,C) the set of all equivalence classes of extensions ofA and C. All

split exact sequences are in the same class, called the "split class" of E(A,C).

Following Baer (Math. Zeit. 38 (1934), 375-416) we define a multiplica-
tion in the set E(A,C)\ given extensions (E) and ('), we define their

product as an extension 0-> C -> K-> A -> as follows. In the direct

sum X + X 1

consider the submodule B consisting of pairs (*,*') with

(jpx
= 9/x', and the submodule D of pairs of the form ( yc,y'c) for c C.

Then D C B; we define Y = B/D. The maps T and 4> are defined by

Tc = class of (y>c,0)
= class of (0,y/r),

O (class of Cx,jc')) <px
=-=

<pV,

where by "class" we mean congruence class of B mod />.

*F <X>

The verification that the sequence C ^ 7 * /I > is exact

is immediate. It is also clear that this multiplication defines a multiplica-
tion in the set E(A,C).

An extension

(E)

defines a connecting homomorphism QE : Horn (C,C)-> Ext 1
(A,C)

which maps the identity element j e Horn (C,C) into the "characteristic

class" of the extension (E) (cf. xi,9). Equivalent extensions have the same
characteristic class.

THEOREM 1.1. Given two A-modules A and C the mapping (E) > &Kj
establishes a \-\-correspondence between E(A,C) and E\t\ (A,C).
Baer multiplication in E(A,C) is carried into the addition in Ext\ (A,C)\
the split class ofE(A,C) is carried into the zero element ofE\i\ (A,C).

COROLLARY 1.2. The set E(A,C) with the Baer multiplication is an

abelian group with the split class as zero element.

(This assertion could be proved directly although the proof is somewhat

laborious.)
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PROOF of 1.1. We choose once and for all an exact sequence

aM P -A >0

with P projective. For each extension () we can find homomorphisms
y and T such that the diagram

> M --- P -^ A >

(1)
\r [ \iir w ' <T *

/\ s~i _ y *
t f\

is commutative (/ denotes the identity map of A).

Diagram (1) gives rise to a commutative diagram

HomA (C,C)

(2) Ilom(y.C) \*
* >4

HomA (P,C)
* HomA (Af,C) ^ E\i\ (A,C) *

in which the row is exact and where # is the connecting homomorphism
induced by the top row of (1). Since Horn (y,C) mapsy into y, it follows

that fty is the characteristic class C-)
f;y of the extension ().

Now consider the direct sum C *- P and define an exact sequence

(3) M -'-> C + P -- X

by setting

Using the exact sequence (3) to identify X with Coker fi we obtain

yc ----- class of (c,0),

(5) r/7
= class of (0,/>),

p (class of (c,/?)) a/?,

where "class" means "congruence class mod the image of //."

Now assume that a homomorphism y e Horn (M,C) is given. We may
then define p by formula (4), take X - Coker //, and define ^, T, g? by (5).

The resulting sequence

( y)
+C--*X--*A >0

is then exact, and diagram (1) is valid with the prescribed map y. The

characteristic class of ( v)
is therefore #y. Since #: HomA (A/,C)

->ExtA (/*,C) is an epimorphism, it follows that the correspondence

maps E(A,C) onto ExtA (A,C).
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In order to prove that the correspondence is 1-1 we must show that

&yl
= #y2 implies that (

Vj
) and ( yj)

are equivalent. From the exactness

of the row in (2) it follows that &(yl y2)
= is equivalent with

yl y2
= up for some a) HomA (P,C). Using a) we define an auto-

morphism ii: C + P-^C + Pby setting

i(c,/7)
= (c + co/?,/?).

It follows readily that /4 2
== Q/*i> ^us Q induces an isomorphism

{}': A^-^A^ (where X
i

Coker // / = 1,2), such that Q'^ ^2 ,

9>2 2' 9?!. Therefore ( Vi
) and ( ya)

are equivalent.

If the extension () splits, then by v,4.5 the connecting homomorphism
QK is zero, and therefore QKj= 0. An alternative proof is obtained by

taking y = in the construction of ( y).
Then p,m (0,/to?) so that

Coker //= C + A.

It remains to be proved that carries the Baer multiplication in

E(A,C) into the addition in ExtA (/4,C). To this end we consider the

Baer product () of two extensions ( Vi
) and (,

/a
) ; define y : M -+ C and

r: />-> JTby

y y l -\- y 2 ,
rp = Class Of (r^p.T^p).

Then <pr
= a and

yjyw = -^7!^ + ^7 2/w class of (^i7iW,0) + class of (0,^272/??)

class of (r 1fi lm,r2f)2m) T/?AW.

Thus we have a commutative diagram like (1), which proves that the

extension () is defined by y y l + 72-

This concludes the proof of theorem 1.1.

REMARK. Instead of using the connecting homomorphism
#: HomA (C,C)-> ExtA (^,C) we could use the connecting homo-

morphism
0i: HomA (>M)->ExtXO<,C)

induced by (). If / c HomA (A,A) denotes the identity element, it can

be shown (see Exer. 1) that 0^/ + &Kj= 0. There exists a proof of 1 . 1 ,

dual to the one given above, and adjusted to the connecting homo-

morphism 0^. We choose once and for all an exact sequence

with Q injective. Diagram (1) is then replaced by

** C- * X * A. **

m
1' . l

!

, 1-

-C >Q N -0
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As before, the map e: A-+N determines essentially the rest of the

diagram. Indeed if we define v: A + Q -> N by v(a 9q)
= ea + f\q

and identify X with Ker v, then

(5')

<p(a>q)
= a.

2. EXTENSIONS OF ASSOCIATIVE ALGEBRAS

Let K be a commutative ring. An epimorphism of tf-algebras

/: F->A,

will be called an extension over A. The extension is called inessential if

there exists a /f-algebra homomorphism u: A -> F with/w = identity.

The kernel C of /is a two-sided ideal in F and therefore is also a

two-sided F-module. In particular, the multiplication in F induces a

multiplication in C. If this multiplication is zero, i.e. c^ for all

c^c2 C, then the structure of C as a two-sided F-module induces on C
the structure of a two-sided A-module:

(1) he ^~=
yc, CA --

cy c c Cy * F. X fy A.

Conversely if C carries the structure of a two-sided A-module satisfying

(1) then the multiplication in C induced by that of F is zero.

DEFINITION. Let A be a tf-algebra and C a two-sided A-module.

An extension over A with kernel C is an exact sequence

(F) C--T- -A
where F is a /^-algebra,/ is a AT-algebra epimorphism, g is a monomorphism
of /C-modules and

(2) (Ar) = y(gcl g(cl)
-

(gc)y, c c C,y e F, A - fy c A.

These last conditions are simply a translation of (1).

Two extensions (F) and (F') over A with kernel C are equivalent if

there exists a /C-algebra homomorphism k : F -> F' such that the diagram

F

(3) C:

is commutative. The map k is then necessarily an isomorphism.

'

-r-
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The set of all equivalence classes of extensions over A with kernel C
will be denoted by F(A,C).

From now on we shall assume that A is /L-projective. Under this

assumption the exact sequence 0->C->F->A->0 regarded as a

sequence of ^-modules, splits. Therefore without loss of generality we

may assume that F as a /^-module coincides with the direct sum

r= c + A
and that

The multiplication in F has then necessarily the form

i,0)(c2,0)
=

V2) a(^) c C.

The first of these relations expresses the fact that (gc l )(gc2)
=-= 0, the second

and third conditions are translations of (2), while the last condition

expresses the fact that f is multiplicative. The function a is a /C-homo-

morphism a: A A~> C and will be regarded as a 2-cochain in the

standard complex 5(A) with coefficients in the two-sided A-module C.

The multiplication table above may be summarized in the single formula

(4) (^1X^2) (c^ + A^ + aU^Ao), AjAo).

Conversely, consider an arbitrary 2-cochain a, define a multiplication in

F C + A by (4) and examine the associativity of this multiplication.

Upon calculation we obtain

(5) (c1,A 1X(c2,A2)(r3,A3))
-

((c1,A 1)(c2,A2))(c3,A:j )

A1A 2,A3)
-

fl(A 1 ,A 2)A3f 0)

This shows that the multiplication (4) is associative if and only if a is a

2-cocycle. If this is the case then

which implies

It follows that the element (~a(l,l),l) is the unit element of F. Then,

defining g: C-> F and /: F -> C by gc = (c,0), /(c,A)
= A, it is

immediately verified that (2) holds.
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Summarizing, we find that (4) defines a mapping ofthe groupZ
2
(SXA),C)

onto the set F(A,C). There remains to find when two cocycles a and a'

yield equivalent extensions (F)and (F'). The commutativity ofthe diagram

(3) is equivalent with

*(c,A) - (c + *>(A),A), 6(A) C.

Since

M^i^Xc^)] -M 2 + A
t
c2

-u flU^A,) + A^A,), A XA 2)

we find that A: is multiplicative if and only if

A^Aj) + WA^Aj + *'(A lf
A 2 )
- tfA^Aj) -f- b(/^ 2)

i.e. if

a - a' =-- db.

This condition implies a(l,l) cr'(l,1) /?(!), so that A' maps the unit

element of F into that of F".

Finally let us examine the conditions under which the extension given

by a cocycle a is inessential. A AMiomomorphism u\ A F such that

fu
-

identity, must have the form

wA =~ (A(A),A) 6(A) c C.

Then

(wA^twAo)
-
w(/!A 2)

- (/KA^Ao
-

/j/H/o) + ^(A^Aa /KAjAa), A^),

so that u is multiplicative if and only if a d/>. If this is the case then

fl(l,l) /)(!) so that wl 1.

We thus obtain

THEOREM 2.1. The set F(A,C) o/a// equivalence classes of extensions

over \ H7//J kernel C is in a 1
-

1 -correspondence with the group //2(A,C).

7///J correspondence o : //2
( A,O ~* /^ A,C) /.v obtained by assigning to each

cocvcle a c Z2
(5( A),C), ///^ extension given bv the multiplication (4). 7/?e

inessential extensions form a single class of F( A,C) a/7^/ correspond to the

zero element of H2
(\*C).

This exposition follows Hochschild (Ann. of Math. 46 (1945), 58-67).

3. EXTENSIONS OF SUPPLEMENTED ALGEBRAS

Let A be a supplemented AT-algebra with e : A -> A as augmentation.

We shall always assume that A is K-projective. If/: F -> A is an exten-

sion over A, then F may be regarded as a supplemented AT-algebra with

f/: F -> K as augmentation.
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Let C be a left A-module; we denote by C the two-sided A-module

obtained from C by defining the right operators by the formula

(1) cA = c(eA) = (eA)c c c C, A A.

We may then consider the set F(A,C ) as defined in 2. We are thus led

to consider exact sequences

(F) C-^r-^*A

where F is a AT-algebra,/is a AT-algebra epimorphism, g is a monomorphism
of A-modules, and

(2) g(Ac)
= y(c), (gc)7 = (c(t-A)) c C y T, A - /y c A.

Such a sequence will be called an extension over A with kernel C. The set

of all equivalence classes F(A,Ce) of such extensions will be denoted simply

by F(A,C). The discussion carried out in 2 now applies without change.
In particular, the basic formula (4) may be written as

(3) (ci,AiXc*2) - (c^A,,) + A
t
c2 + ^A^Aa), A^.,).

In the calculation (5) of 2 the term ^(A^AgUa is therefore to be replaced

by (A 1,A2)(6A3). It follows that a is to be regarded as a cocycle in the

complex 5(A,f) = 5(A) A K.

There is one further improvement that can be introduced. Since as a

^-module, A is the direct sum K + /(A), it follows that /(A) is AT-projective.

Therefore for each extension C * T -> A the AMiomomorphism
u\ A-> F which shows that the sequence 0-> C-> F-> A ->

splits

(over /0 may be chosen so that u\ 1 . Thus the identification of F with

C + A may be chosen so that the unit element of F corresponds to the

element(0,l). This implies that the cocycle a satisfies a( A, 1) 0(1, A).

We thus find that a is a cocycle in the normalized standard complex

We shall now relate the extensions over supplemented algebras with the

extension theory for A-modules of 1. Consider an extension

(F) C-^F-^A
over A with kernel C. Let X denote the set of all x F with/jc c /(A).

Then g(C) C X and there results a commutative diagram

s~i Y
\~r A

(4)
J, Jt



3] SUPPLEMENTED ALGEBRAS 297

where k and i are inclusion maps,y is the identity, and y and <p are induced

by g and/. The top row clearly is exact. Since X is an ideal in F we may
regard A' as a left F-module. For each c C we have

(gc)x
-

g(c(fx))
-

g(c(efx))
= 0.

This implies that X may be regarded as a left A-module, and that y and

(p are A-homomorphisms. It follows that the top row of the diagram is

an extension over /(A) with kernel C. We have thus obtained a mapping

(5) 7;: F(A,C)->(/(A),C).

THEOREM 3.1. If A is a K-projectiue supplemented K-algebra and C is a

left A-module, then the following diagram is anticommutatire

co- 1

F(A,C) > // 2
(A,C) ---- Ext\ (K,C)

I t a
>/

!,

|

*

(/(A\C) Ext\(/(A),C)

where O awr/ r/j r^ the correspondences of\.\ and 2.1, and is the connecting

homomorphism corresponding to the exact sequence

Since ft is an isomorphism, and and co are 1-1 -correspondences, we

obtain

COROLLARY 3.2. The correspondence (5) is a \-\-correspondence.

PROOF of 3.1. To simplify the notation, let N denote the complex

N( A,0- The extension (F) will be assumed given in the form F C + A,

with the multiplication described by a cocycle a HomA (N^C). Then X
consists of all elements (c,A fA). Let M denote the image ofd2 : N2-^Nl .

The maps d*\ N2
~* N\ an(l dl : N l

-* 7V -=-- A then admit factorizations

r/2 J, d[ i

Wo >M - N^ N
l

> /(A)
- A.

Consider the commutative diagram

t
t d\

> M * N
l /(A)

(6)
[

c . x >
/(A)

V V

with

r[A]
- (0,A

-
eX)



29S EXTENSIONS [CHAP. XIV

and with w defined by v. The lower row is the exact sequence (*)= rj(F).

The element Q(E) E\t\ (/(A),C) defined in 1, is the image of the

identity element j e HomA (C,C) under the connecting homomorphism
corresponding to the lower row of (6). It then follows from the com-

mutativity in (6) that () is the image of w e HoritA (A/,C) under the

connecting homomorphism corresponding to the upper row of (6). It

follows that the composition &(E) is the image of w under the iterated

connecting homomorphism

corresponding to the exact sequence

-> A/-> N! -> A -> A:-> 0.

We are now in the situation described in v,7. 1. The element dw &Q(E)
is thus the negative of the cohomology class given by the 2-cocycle

To complete the proof it suffices to show that wd% = a. Since y is a

monomorphism it suffices to show that ywrfg
=

y>0. Since ywd2 ui2d'2
= vd, it suffices to show that vd = ya. We have

2),A1A2 AjfiAj)
~

(O^jAj fA
1
eA8)

(0,A1eA2 eA1eAa)

This concludes the proof.
PROPOSITION 3.3. The composite map

)
-

Ext},(/(A),C)
--

Exti(/:,C) - // 2
(A,C)

/way be described as follows. For each extension

(E) 0->C-> X^I(A)-+0

the element &(E) is the characteristic element 6sj (see xi,9) of the exact

sequence

(S) Q-+C^ X-+A-+K-*

obtained by joining (E) with the exact sequence

(L) 0->/(A)-> A-> #->().
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PROOF. We recall thaty HomA (C,C) is the identity map C -> C and

that (5g is the iterated connecting homomorphism. Thus

by the definition of the map ( 1).

4. EXTENSIONS OF GROUPS

Consider two groups W and (not necessarily commutative, and

written multiplicatively). An epimorphism

will be called an extension over IT. The extension is called inessential if

there exists a group homomorphism M: II -> W with/w = identity.

The kernel of/(i.e. the set of all \\ W with/vv
= 1) is an invariant

subgroup C of W. The mapping (u',r) -> urn1
" 1 of J4

7 X C into C defines

operators of W on C. If C is abelian, then C (written additively) is a left

^-module, and since the elements of C C W operate trivially, we find that

C is a left O-module satisfying

( 1 ) XC = U'CH'" 1 C C, H' W, X = fw IT.

Conversely, if n operates on C so that (1) holds, C is necessarily abelian.

DEFINITION. Let II be a (multiplicative) group and C a left II-

module. An extension over II with kernel C is a sequence

where W is a (multiplicative) group, / is a group epimorphism, g is a

monomorphism of the additive structure of C into the multiplicative

structure of W, the image of g is the kernel of/, and

(2) g(XC)
=

H'^COU'-
1 C C, H' W9 X=fW II.

Two extensions () and (') over II with kernel C are equivalent if

there exists a group homomorphism k: W -* W such that the diagram

W

W
is commutative; k is then necessarily an isomorphism.
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The set of all equivalence classes of extensions over II with kernel C will

be denoted by S(n,C).

With the group II and the left Il-module C given, consider the

supplemented algebra Z(H) (with the unit augmentation). We shall

consider the set F(Z(I1),C) of equivalence classes of extensions over Z(U)
with kernel C. Such an extension is an exact sequence

(F) C-^F--Z(n)
where F is a Z-algebra, J is an epimorphism of algebras, g is a mono-

morphism of abelian groups, and

(3) y(gc) = J(Ac), (gc)y = g(c(el)), c c C, y c F, A -/y e Z(FI).

PROPOSITION 4.1. Let (F) be an extension as above. The set W of
elements w F with fw e II is a group under the multiplication defined

by that of the ring F. Iff denotes the map W^> II induced by f and

g: C-> W is given by gc= gc + 1, then the sequence

(2) C-^W-^U
is an extension over II with kernel C.

PROOF. Clearly W is closed under multiplication, is associative and

has a unit element, namely the element 1 F. To show that w W has

an inverse, choose v c W such that/(w)/(r) = 1 -^f(v)f(w). Since the

elements 1 wv and 1 vw yield zero in Z(I1), there exist elements

clf c2 C with g c
t
=-= 1 wv, C2 ^ 1 vw. The second of the rela-

tions (3) then yields (1 wv)w = 1 wv, (1 vw)w 1 vw. This

implies

w(\ v(w 1))
=

(1 wv)w + wv 1 wv -f- wv 1

(1 v(w l))w = (1 vw)w + vw 1 vw + vw 1

which shows that w has an inverse. Thus W is a group.
It is clear that/: W -^ H is a group epimorphism whose kernel is the

image of g. Since

(gCl)(gC2)
- (g Cl + l)(gC2 + 1) =<?! + ca + 1

=
(C1 + ^2) + 1 --

(<?! + C2)

it follows that g is a homomorphism of the additive structure of C into

the multiplicative structure of W. Finally for c C, w e W, x fw we

have, using (3)

w(gc)w
1 = w(gc)w-

1 + 1 = g(xc)w~
l + 1 = g(xc) + 1 = g(xc).

This proves (2) and concludes the proof.
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Proposition 4. 1 assigns to each extension (F) an extension (2). Clearly

if (F) and (F') are equivalent, then so are the corresponding extensions (2)

and (2'). There results a mapping

<p: F(Z(n),C)->2(n,C).

THEOREM 4.2. The mapping y> establishes a \-\-correspondence between

the set F(Z(II),C) and the set 2(11,C). The inessential extensions (2)

form one equivalence class, corresponding to the inessential class in

F(Z(H),C).

PROOF. We first show that if two extensions (F) and (F') yield two

equivalent extensions <p(F) and <p(F'), then (F) and (F') are equivalent. To
do this, we shall give a complete description (up to an equivalence) of any
extension (F) using the extension (2) <p(F).

We have the commutative diagram

Q \y
*

, J|

II

with jw = w 1 , inx = x 1 . The map j may be factored as follows

where iw(w) = w 1 and k is a homomorphism of Z-algebras defined by

k(w) = w. We obtain a commutative diagram

C -^-> W n

r -
z(n>

Let C /VgC and let C .Z(W) (resp. C . 1(W)) denote the
jet

of all

linear combinations of elements cw (resp. c(w 1)) for c c C, w e W.

Then c . Z( ^K) is precisely the kernel of/*, while C . /(W) is, by virtue of

the second relation (3), in the kernel of k. There results a commutative

diagram

>C Z(W)/C./(W) Z(II) -0

! , I- , I

o >c-^ r -^ z(n) -o
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We can now show that / is additive. Indeed we have

tw&i+ '2)
=

(gci)(gc2)
-

1 = (gCl
-

1) + (gc*
-

1) + (gCl
-

I)(gc2
-

1)

-
0-

Since the last term is in C . I(W), we obtain that /(c1+r2)=/c1+/c2 . The

kernel of/' is C ,Z(W)jC . I(W) and this is precisely the image of /.

Finally / is a monomorphism since g = k'l is one. Thus the top row is an

exact sequence ofZ-modules. Since the lower row is exact by hypothesis,
k' is an isomorphism.

This shows that C . I(W) is the kernel of k which was a homomorphism
of Z-algebras. Thus C . I(W) is a two-sided ideal of Z(W) (this could be

seen directly). Consequently k' is an isomorphism of Z-algebras.
We now see that the top row of (4) is an extension (F ) described

entirely in terms of the extension (S) and equivalent with (F). This

proves our assertion.

We now show that (F) is inessential if and only if (S) -

<p(F) is

inessential. Suppose (F) is inessential and let u : Z(U) -> F be a homo-

morphism of Z-algebras such that fu= identity. The induced group

homomorphism u: H-*W then satisfies fu = identity. Conversely

given a group homomorphism u\ n -* W with fu= identity, the

homomorphism ku* : Z(II) -> F shows that (F) is inessential.

There remains the proof that q> maps F(Z(F1),C) onto X(FI,C).

Given an extension (S) over II with kernel C, choose a function M: H->W
such that/w

=
identity and u(l) = 1. Then each element of W may be

written uniquely as a product (gc)(ux) with c e C, x U ; we shall denote

this element by (c,x). Then the unit element of W is (0,1) and

gc= c,l),

Let us find the product of two elements (c^x^ and (c2,*2). Using (2)

we have

To calculate (wxjXwjtg) we observe that this element has the same image in

II as u(xiX^. Thus there is a unique element a(xltx2) C such that

Since g maps the additive structure of C into the multiplicative structure of

W9 we have the final result

(5)
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Because of the choice w(l) = 1, we have a(x^\) = = a(l,x2). We
shall treat a as a 2-cochain on the normalized complex N(T[) with

coefficients in C.

Let us express the fact that the multiplication given by formula (5) is

associative. We have

In order that the two results coincide it is necessary and sufficient that

)
=

i.e. that 6a(x lyx 2tx3) = 0. We thus find that a is a 2-cocycle of the

complex N(U) - yv(Z(H)^).

We now use this cocycle a to construct an extension

(F) C-^r-^ZOl)

with r = C + Z(I1), gc = (c,0), /(c,A)
= A, and with multiplication

given by formula (3) of 3 as

It is clear that if we apply <p to this extension (F) we find exactly the

extension (X) with which we started, with multiplication given by (5).

This concludes the proof of 4.2.

REMARK. Our results so far may be summarized in the following

diagram

in which all the maps are 1-1 correspondences and the square is commuta-

tive (in the sense that the composition of any four consecutive maps is the

identity). The preceding proofshows that the map (pco: //2(n,C)->S(II,C)

is obtained by assigning to each cocycle a e Z2
(W(II),C) the extension (S)

given by formula (5). This is the familiar method of describing group
extensions by means of "factor sets." The composition &Q was described

in 3.3. For a discussion of the composition

see Exer. 3.
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5. EXTENSIONS OF LIE ALGEBRAS

Let I) and g be Lie algebras over a commutative ring K. An epi-

morphism of Lie algebras

will be called an extension over g. The extension is called inessential if

there exists a Lie algebra homomorphism u: g ->
1)
with fu = identity.

The kernel C of/ is an ideal in I). The mapping y c-> [j>,c] of

f) C into C defines C as a left l)-module, because of Jacobi's identity

If the Lie algebra C is abelian, then the structure of C as a left f)-module

induces on C the structure of a left g-module:

(1) xc--=ly 9c] 9 CC,yf),x=fyQ.

Conversely, if C carries the structure of a left g-module satisfying (1), then

C is an abelian Lie algebra.

DEFINITION: Let g be a /f-Lie algebra and C a left g-module. An
extension over g with kernel C is an exact sequence

(2) C-^^g
where I) is a ^-Lie algebra, /is a Lie algebra epimorphism, g is a mono-

morphism of AT-modules, and

(2) g(xc)
=

[>>,c] for c C, ; I),
x = fy g.

Two extensions (X), (X') over g with kernel C are equivalent if there

exists a K-Lie algebra homomorphism k: !)-> I)' such that the diagram

I)

is commutative; & is then necessarily an isomorphism.
The set of all equivalence classes of extensions over g with kernel C will

be denoted by S(g,C).

We shall always suppose that the Lie algebra g is /f-free. As we have

seen in xm,3.3 this permits us to identify g with a /C-submodule of the

enveloping algebra g
e

. With g
c and a left g

e-module C given, consider the

set F(g
e
,C) of equivalence classes of extensions over g

e with kernel C.
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Such an extension is an exact sequence

where F is a Jf-algebra, J is an epimorphism of tf-algebras, ~g
is a mono-

morphism of /^-modules, and

(3) y(g c) = g(fa\ (gc)y = g(c(el)) c c C, y F, A =/y g,

PROPOSITION 5.1. Lef (F) 6e 0/1 extension as above. The set I) of
elementsy c F with fy g is a Lie algebra over K with the bracket operation

[y^y*]
= yiV* y*y\- Jiff

denotes the map f\ f)
-* g induced by f, and

g: C ->
I) is defined by g, then the sequence

(S) C-^^^-g
is an extension over g with kernel C.

PROOF. If Jy\
= x^ fy 2

= x2 for x
l9
x2 c g, then /(y vy2 ^2^^

= X!^2 x2x l ; this last term is equal to [x^Xg] because of the relations

in the enveloping algebra g'. Thus Vij2
~

y%yi $* so ^at ^ is closed

under the bracket operation. Thus 1) is a K-Liz algebra. Since fg 0,

it follows that g maps C into I) and its image is the kernel of/. Relations

(3) with y v, A -- x give y(gc) g(xc) and (gc)y 0, which implies

[j,c] y(gc) (gc)v g(xc). This proves (2) and concludes the

proof.

Proposition 5.1 assigns to each extension (F) an extension (). Clearly

if (F) and (F') are equivalent, then so are the corresponding extensions

(X) and ('). There results a mapping

?: F(g',C)->S(g,C)

defined whenever g is A'-free.

THEOREM 5.2. The mapping <p establishes a \-\-correspondence

between the set F(g',C) and the set S(g,C). 77?^ inessential extensions (X)

form one equivalence class, corresponding to the inessential class in F(g',C).

PROOF. We first show that if two extensions (F) and (F') yield two

equivalent extensions y(F) and <p(F'), then (F) and (F') are equivalent. To
do this, we shall give a complete description (up to an equivalence) of any
extension (F) using the extension (S)

~
We have the commutative diagram
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wherey is given by inclusion and i
fl
is the natural injection of

cj
into g

e
. The

mapy may be factored as follows

where a is the natural injection of
I)

into its tensor algebra and b is a

^-algebra homomorphism. Since b is zero on all elements of the form

y\ y2
~

y* y\
~~ LVi^L we find a factorization

ofy, where ^ is the natural injection and A: is a AT-algebra homomorphism.
There results a commutative diagram

. i

Let C = i^gC. The kernel of/* is then, by xm,1.3, the ideal C . I)'.

We shall also consider the A^-module C . /(I)) where 7(1)) is the augmentation
ideal of If. In virtue of the second relation (3), C . 7(1)) is in the kernel of

k. There results a commutative diagram

/\ ^i - - < - " *

(4)
1

. 1' .
I* a \ f \

f\
^-f

*
1-1 ______ e A

The kernel of /' is C .
l)

e
/C . 7(1)) which is precisely the image of /.

Finally / is a monomorphism since g" k' / is one. Thus the top row is an

exact sequence of /T-modules. Since the lower row also is exact, this

implies that k' is an isomorphism.
This shows that C . 7(1)) is the kernel of k which was a homomorphism

of AT-algebras. Thus C . 7(1)) is a two-sided ideal of If (this could be seen

directly). Consequently k' is an isomorphism of /^-algebras.

We now see that the top row of (4) is an extension (F ) described

entirely in terms of the extension (X) and equivalent with (F). This

proves our assertion.

We now show that (F) is inessential if and only if (2) = <p(F) is inessen-

tial. Suppose (F) is inessential and let u : Q* -> F be a homomorphism of
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AT-algebras such that fu = identity. The induced Lie algebra homo-
morphism u: g -> I) then satisfies fu = identity. Conversely given a Lie

algebra homomorphism u: g->l) with fu = identity, the tf-algebra

homomorphism kit* : cf ~> T shows that (F) is inessential.

There remains the proof that
<p maps F(cj%C) OAI/O S(g,C). Consider

an extension () over g with kernel C. Since 9 is /f-free we may assume

that, as a /i-module, f) is the direct sum C + g with

gc =

The bracket in I) then necessarily has the form

[(ci,0),(c0)] =

flfx^xj) c C.

The first relation expresses the fact that C is an abelian Lie algebra, the

second and the third conditions follow from (2), while the last one

expresses the fact that / is a Lie algebra homomorphism. Combining
these relations we obtain

(5) K^XiUcj.**)] = ( *2<a + *iC 8 + a(xl9x^ 9 [xl9x 2]).

Let us now express the conditions that the bracket operation in C + g

given by (5) satisfies the axioms of a Lie algebra. The tf-bilinearity of the

bracket implies the /C-bilinearity of a(x1,x2). The condition [(c,.v),(c,x)]
=

is equivalent with a(x,x) = 0. Thus a(x 1 ,x
>

2) is an alternating bilinear

function, and we may regard a(x l9x2) as a 2-cochain of the complex
V(Q) of xm,7. Let us now express the Jacobi identity. We have

Permuting cyclically and adding we find that the sum is zero if and only if

= 0.

Since a is alternating, this is equivalent with 6a(xl9x29x^)
= 0. Thus a is

a 2-cocycle.



308 EXTENSIONS CHAP. XIV

By xin,8.1, there exists a cocycle a of the normalized standard complex

N(cf,e) which induces a on the subcomplex F(g). With this cocycle a let

us construct the extension

(F) C-^T-^g'

with F = C + 9% gc = (c,0), /(c,jc)
= x, and with multiplication given

by the formula (3) of 3 as

In particular, for xl9x2 e g we obtain

(c^XiXc^Xjj) = (x^2 + d(xl9x2) 9 X1x2).

If we compute the bracket of (c^x^ and (c2,x2) and recall that a(xl9x2)
=

a(xi*x2)
""

0(*2,*i), we find precisely formula (5). This shows that if we

apply <p to the extension (F) we find exactly the extension () with which

we started. This concludes the proof of 5.2.

REMARK. The remark at the end of 4 may be repeated here with H
and N(H) replaced by g and

EXERCISES

1. Consider an extension of A-modules

(E) Q-+C-+X-+A-+Q

and the connecting homomorphisms

QB : Horn (C,C)-* Ext1
(A,C)

&'E : Horn (A 9A)-+ Ext1 (A,Q

Show that
'

Ei + QBj= where i Horn (A 9A) and j Horn (C,C) are

identity maps. [Hint: use Exer. vi,18.]

2. Given a A-algebra A and a two-sided A-module C, introduce a

Baer multiplication in the set F(A,C) of 2. Show that the correspondence
established in 2. 1 carries the Baer multiplication in F(A,C) into the addition

in# 2
(A,C). Carry a similar discussion for the sets 2(I1,C) and 2(g,C) of

4 and 5.

3. Let II be a group and C a left II-module. Consider a group
extension

(S) C-^W-^U
and an extension of left Z(II)-modules

(E) +-?- X-
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We shall say that (2) and (E) are related if there is a map k: W-+ X
satisfying

(w!>v2)
=

k\Vi + (fw^kwt)

and such that the following diagram is commutative

c W '-+ n

C-- *->/(!!)

where in(jc)
= x 1 (x e II). Show that (S) and () are related if and

only if (X) and (E) correspond to the same class of F(Z(II),C) under the

correspondences

r.

established in 3 and 4, i.e. if and only if (X) = (prj~
l
(E).

4. Let g be a K-Lie algebra which is tf-free, and C a left g-module.

Consider a Lie algebra extension

(S) C 1,^9

and an extension of left g'-modules

() C^A'^/Cg) 0.

We shall say that (S) and () are related if there is a map k :
1)
-> X

satisfying

and such that the following diagram is commutative:

c-^i>-^ fl

where
9
denotes the natural map. Show that () and () are related if

and only if (X) and () correspond to the same class of F(g',C) under the

correspondences

established in 3 and 5, i.e. if and only if (S) = i

5. Let

(E) C-^-JIT-'-X <)
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be an exact sequence of (left) A-modules, where A is a A>algebra. Assume
that A is /f-projective. Then A <8>K A is a projective A-module; let N
be the kernel of/?: A A -> A defined by setting

Choose a #-homomorphism u: A-*X such that <pu identity, and

consider the commutative diagram- N->AA~-?-+A ---0

>C-J X -1-+A -0

with exact rows, /being defined by setting

v is induced by/, and i denotes the identity map of A.

Show that the image of v c HomA (W,C) under the connecting homo-

morphism HomA (A^C)-^ ExtA (/*,C) is the characteristic class of the

extension ().

[Hint: identify X with A + C by using the map

x -

6. Consider an extension over A with kernel C:

(F) C-^T--A
in the sense of 2. Let /r and IA be the maps

defined by /r(y) = y 1 1 y*, /A(A) = A 1 1 A*. Let / be

the sub-#-module of 7(F) generated by the elements (gc)u and u(gc)

(c C, u 7(F)); show that / is a two-sided F-module, using (2) of 2.

Let X /(F)/7 be the quotient which is now a two-sided A-module; and

let k be the natural epimorphism J(T)-+ X. Then the map /: /(F)
-^ J(A) induces a : X->J(A). Define ;

= fc/r : F-> ^ and /?
=

yg : C -> J^.

Show that a and /? are homomorphisms of two-sided A-modules, and that

the bottom row of the commutative diagram

(F) C T A

l< I 'A

() >C
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is exact. Thus we obtain a mapping

ry: F(A,C)->(J(A),C)

which to each extension (F) over A with kernel C associates an extension

(E) of Ae-modules.

Assume now that A is /f-projective, and prove that the following

diagram is anticommutative

F(A,C) Hz
(A,C) -

ExtU/(A),C),

where and eo are the correspondences of 1.1 and 2.1, and & is the

connecting homomorphism corresponding to the exact sequence

> J(A) > A* - - A > 0.

[Hint: use the standard complex and proceed as in the proof of 3.1.]

7. Let A be a A'-projective A'-algebra, and let C be a two-sided

A-module. Consider an extension over A with kernel C

(F) C T-'-A

and an extension of two-sided A-modules

() C - X -
a
-

J( A) > 0.

We shall say that (F) and (E) are related if there is a map k: F-> X
satisfying

and such that the following diagram is commutative:

C _JL^ Y _U A

C * >J(A)

where /A(A) --= A 1 1 A*. Show that (F) and (E) are related if

and only if their classes in F(A,C) and (7(A),C) correspond to each other

under the correspondence i] of Exer. 6.

8. Let Q be a Lie A'-algebra and C a (left) g-module. In the direct sum
C + g we introduce a Lie algebra structure by setting
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There results an extension

(2) C-^C+g-^g
with the maps g and h defined in the obvious way. Show that this exten-

sion is the inessential extension in 2(g,C). Show that each Lie algebra

homomorphism u\ g-> C + g satisfying hu = identity, is of the form

ux = (<px,x) where <p: g -> C is a crossed homomorphism. Note that the

above is valid without the assumption that g is /f-free.

9. Apply the above exercise to the case when g = L(M) is the free Lie

algebra of a AT-module M (xm, Exer. 5). Show that for any (left) L(M)-

module C, every A-homomorphism M -> C admits a unique factorization

; vM L(M) C, where 9? is a crossed homomorphism. [Hint : Consider

the Lie algebra homomorphism L -> C + L(M) which when composed
with C + L(M) -> L(M) gives the identity.]

10. Formulate exercises analogous to Exer. 8 and 9 for groups. Here

M will be an arbitrary set, and L(M) will be replaced by the free group

generated by the elements of A/.

1 1 . Let/: F -> A be an epimorphism of A-algebras, A being a supple-

mented algebra with e: A -> K. For a left A-module A, we shall say that

a A-homomorphism
a: T-+A

is a crossed homomorphism with respect to/(or simply an /-crossed homo-

morphism) if

We shall say that F isprojective with respect tofif, for any epimorphism of

left A-modules

g: A->A\

any /-crossed homomorphism a": F->y4" may be factored a" ==
ga,

where a: F -> A is an /-crossed homomorphism.
Let now C be a left A-module. Assuming that an extension of algebras

(F) C->F->A

corresponds to an extension of left A-modules

(E) 0-

under the correspondence t] of 3.1, show that F is projective with respect

to/, if and only if A" is a projective A-module.

12. Let/: W-> II be a homomorphism of groups. We shall say that

W is f-projective if, given any Il-epimorphism g: A ,> A" of left II-

modules, and any crossed homomorphism (rel. to/) a": W-* A'\ there

exists a crossed homomorphism (rel. to/) a: W -> A with get
= a".
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Let now C be a left II-module. Assuming that a group extension

(2) C W-^H
and an extension of left IT-modules

(E) 0->C-> X^/(ll)-*0

are "related" (cf. Exer. 3), show that J^ is/-projective if and only if X is a

projective Z(fl)-module.

13. Let /: F-> n be an epimorphism of groups, F being a free

group, and R Ker/. Let [R,R] denote the commutator subgroup of R;
then [R,R] is an invariant subgroup of F. Show that, in the induced exact

sequence

the group F] [R*R] is /'-projective (in the sense of Exer. 12).

14, Formulate the analogue of Exer. 12 for Lie algebras. Consider

a Lie algebra epimorphism /: L(A/)-> g with kernel I). Show that

is an ideal in F) and in L(M\ and that in the extension

(S)

with /' induced by /, the Lie algebra L(M)/\t)M is /'-projective.

[Hint: use Exer. 9.]

15. Consider a group extension

c -w-^n
and let /= o^VHE) c //2

(I1,C) be the cohomology class determined by

(2). Consider the homomorphisms

(1) H*(U, Horn (C,D)) ->

(la) HAH,D')-H9(I1 9 D' D), />n

given by the products h -> h U / and h' -> h' n /. The Fl-operators on

Horn (C,Z)) and D' C are given by

(jc/)c
- x/(x-V), /e Horn (C,Z>),

x(rf' c) =-= d'x~ l
jcc.

The cup- and cap-products are those of xi,8, (8) and (8).

Prove that if W is /-projective, then (1) and (\a) are isomorphisms for

p > 0, while for p = we have exact sequences

Homn (W,D) -> Homn
-
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where Homn (W,D) denotes the module of crossed homomorphisms
W-> D with respect to /, and D' n W is the group generated by pairs

d' co with relations (d( + c/g) <8> co =
c/i

co + d OJ - [Hint: pass to

the sequence (): 0-> C-> J!f->/(n)-0 related to (), consider the

sequence -> C -> A" -> Z(II) -> Z -> in which X is II-projective, and

apply xi,9.5.]

Apply the above result to the sequences given in Exer. 13.

16. Formulate exercises analogous to Exer. 13 and 15 for Lie algebras.

17. Let (2): C * W II be a group extension with W being /-

projective and with FI finite of order r. Let / e //2(II,C) be the correspond-

ing cohomology class. Using Exer. 15 and xn, Exer. 14, prove that / has

order r.

18. Consider a diagram of A-modules and A-homomorphisms

A '
> A > A "

L
>C C >C" -0

with exact rows. It is asked whether a homomorphism/: A -> C can be

found so as to give commutativity in this diagram. A necessary condition

is the commutativity of

dc'

d
v
*

for any A-module D and any integer n. In particular, taking D = C'

n 0, we have a necessary condition

withy Horn (C' 9C
f

) denoting the identity map.
Is this last condition sufficient?

Give the dual procedure.
19. Let A be an abelian group with a finite torsion group tA. Show

that tA is a direct summand of A. [Hint: use VH, 6.2.]



CHAPTER XV

Spectral Sequences

Introduction. This chapter is devoted to a purely algebraical study of

spectral sequences, which arise whenever a complex is given with a filtration

(i.e. a sequence of subcomplexes ordered by inclusion). In particular,

every double complex gives rise to two spectral sequences ( 6). The

applications will be presented in Chapters xvi and xvn. In all these

considerations the multiplicative structure is left aside (see exercises).

Spectral sequences arose in connection with topological investigations

concerned with fiber bundles (Leray, C.R. Acad. Sci. Paris, 222 (1945),

1419-1422). The main applications are still in the domain of algebraic

topology.
The notion of a spectral sequence was first algebraicized by Koszul

(C.R. Acad. Sci. Paris, 225 (1947), 217-219); our exposition involves some

modifications. The theory could equally well be presented using the

"exact couples" of Massey (Ann. of Math. 56 (1952), 363-396).

1. FILTRATIONS AND SPECTRAL SEQUENCES

Afiltration Fof a module A is a family of submodules {F
p
A},p running

through all integers, subject to the conditions

(1) O F*A D Fp+lA D - - -

(2) U F*A - A.

It is convenient to set F*A -- and F-"A = A. We also sometimes

lower the index by setting FPA - F~ PA.

With each module A with a filtration F we associate a graded module

EQ(A) defined by

Suppose that A is a module with differentiation d and a filtration F

compatible with d, i.e. such that

d(F*A)CF*A.

The inclusion FPA C A induces a homomorphism

H(FP
A) -> H(A)
315
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whose image we denote by FP
H(A). In this way we obtain a filtration, also

denoted by F, of H(A).
We are particularly interested in the associated graded module

E (H(A)). It is the direct sum of the modules

E$(H(A)) == F*H(A)IF+
1
H(A).

In what follows, we shall frequently encounter commutative diagrams

A. - A. A.
v n

in which the row is exact.

LEMMA 1.1. The map 77 defines an isomorphism

Im <p/ Im <p' C2 Im y.

Indeed we have Im <p/ Im q>'
= Im q>/ Ker rj

which is mapped by 77

isomorphically onto Im (779?)
= Im y>.

If we apply this lemma to the diagram

H(A) > H(A/F+ 1
A)

we obtain an isomorphism

(3) Eg(H(A)) ** Im (H(FA)

We define

- Im (H(FA) -

= Im (H(A/F*A) -> H(FA/F+ 1
A))>

Applying 1.1 to the diagram

~H(

i

H(A/F*A) > H(F"A/FV+
1
A)

we obtain an isomorphism

(4)
*
04) Im (H(F*A)
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Combining this with the isomorphism (3) we obtain

(5) Eg(H(A))

We denote by E^A) the graded module ^PE^(A)\ it is isomorphic with

the graded module E (H(A)) associated with H(A).
We shall now introduce modules Z*(A), B*(A) and E*(A) which, in a

sense that will be specified later, approximate the modules Z*,(A), Bp
n(A)

and EP
QO(A). We define for each r ;> 1

Z*(A) = Im (H(FpA/Fp+
r
A) -> H(FA/F*+1

A))

B?(A) = Im (H(F*-*+*AIF*A) -> H(FPA/F^ 1
A))

E*(A) - Zf(A)/B>(A).

Setting r = oo and using the conventions F30
/* = 0, T7

- 00^ = A we find the

previous definitions. We have the inclusions

C B* C Bf+i C C B CZ^ C - - - CZ?+1 CZ? C -

Further since A/FPA is a direct limit of FP~T+1
A/FPA and since the functor

H commutes with direct limits, we have

In general, it is not true that Z, is the intersection n Z^.

Applying 1.1 to the diagrams (in which we write F* for FP
A)

/n\r'ir-")I \

we obtain isomorphisms

Z/Z +1 w Im (H(F
p
/F

p+ r
)
-

which yield an isomorphism

(6) <5f": ZttZ?+lf

We define the homomorphism

^: E?(A)-E?
+r

(A)
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as the composition

E* - ZflBf Z?/Z?+i
-^ B+[IB*+

r

It follows that

(7) Ker </* = Z*+1/* Im </* =

Thus in the diagram

E?-'(A) *(/!) ?
+
'G4)

we have

Im d>~' = B?+1IB> C Zf+1/5? - Ker d?

which yields the natural isomorphism

Ker dfl Im </-' Z?+1/B?+1 - f
"
+1(>T).

Therefore if we introduce the graded modules

and the endomorphisms dr of
"

r(^) defined by d? we obtain:

THEOREM 1.2. For each r^ 1, fAe endomorphism dr of Er(A) is a

differentiation of degree r. The graded homology module H(Er(A)) relative

to the differentiation dr , is naturally isomorphic with Er}l(A).
For r-1 we have f-0 and f = Zf = H(F*/F*+

l
). Since

Eg = Fp
/F*+

l we find that if we denote by </ the differentiation induced

in E = ^^ by the differentiation d of ^, then H(E ) IB Thus the

theorem remains valid also for r = 0.

An alternative description of
c/,? may be obtained as follows. Applying

1.1 to the diagram

H(Fp/F*+
r
)

\ \
we obtain an isomorphism (for 1 < r^ oo)

(8) /"(/<) w Im (H(F'/F*+
r
) -> H(F*-

r+ l
/F*+

1
)).

From the commutative diagram
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we obtain a homomorphism

Im 9?f -> Im gf
+ r

which when combined with the isomorphisms (8) yields d
P

. If r = 1 then

9?f is the identity and so is the isomorphism (8). Thus we see that df is

simply the connecting homomorphism H(FP
/F

P+1
) -> H(FP+1

/F
P+2

) from

the exact sequence -> FMIF
P+2 -> FP

/F
P^ -> FP

/F*+
1 ~> 0.

The sequence of graded modules 2(/4), E3(/0> . . . , with the differentia-

tions dfr c/3 , ... and the isomorphisms H(Er(A)) <& Er^(A) (r ^> 2) is

called the spectral sequence of the module with differentiation A corre-

sponding to the filtration F. The reason for not including E(A) into the

spectral sequence will appear later.

2. CONVERGENCE

We shall now investigate the problem of the sense in which the spectral

sequence 2 , E3 , . . . approximates the module En(A) ^ E (H(A)).

The filtration F is said to be weakly convergent if

(1) ZW)-= OZ?(X).

We shall now show how in the case of a convergent filtration, the

spectral sequence "determines" the module E^< which is its "limit."

Consider any term Ek of the spectral sequence. I n we have the following

relations :

Thus in order to show that the sequence Ek , Ek+l , . . . determines
,

it

suffices to show how the modules

can be reconstructed from the spectral sequence. If r = k, these terms

reduce to Eg and 0. For r > k we first observe that Z*\B\ is in the kernel

of the operator dr . Further, the natural homomorphism y> mapping

Z(E
P
) onto Ef+l and which has 5f+1/B| as kernel, satisfies

This yields a recursive description of the desired modules.
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We shall now derive two characterizations of weakly convergent
filtrations. Applying 1.1 to the diagram

H(F*/F*+
r
)

/ \ \
H(FP

)
-

we obtain an isomorphism

(2) Zf(A)IZ^(A) ** Im (H(Fp/F
p+r

) -> H(FP+1
))

where the latter homomorphism is obtained by composition

H(Fp/Fp+'}->H(Fp+
r
)-+H(F

p
+i). Since (1) is equivalent with nZ?/Z^=0

we obtain:

PROPOSITION 2.1. In order that thefiltration F be weakly convergent it

is necessary and sufficient thatfor eachp the intersection of the images of the

homomorphisms
H(FpA/Fp+

r
A) -> H(F+ 1

A) r I> 1

be zero.

We define

R9 = O Im (H(F+T
A) -> H(FP

A)) r > 1

R-" = n F*H(A) = O Im (H(F*A) -> H(A)).
p P

The homomorphisms H(FP+1A) -* H(F*A) and H(FP
A) -> H(A) induce

homomorphisms

PROPOSITION 2.2. The filtration F is weakly convergent if and only if

each Rp+1 -> Rp
is a monomorphism.

PROOF. Consider the diagram

H(Fp+ l
)

/ \ \
H(F*/F

p+r
)
-

and let x Rp+l
. Then x is in the image of H(Fp+r), and it follows that

x is in the image of H(FP/FP+T
) if and only if the image of x in Rp

is zero.

We thus obtain the relation

fr^
Im (H(Fp/Fp+

r
)

Thus 2.2 follows from 2.1.
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We shall say that the filtration F of A is convergent if it is weakly

convergent and

(i.e. /*~" =
0). If we consider the homomorphism

u: H(A) -+ Lim H(A)IFH(A)

defined by up \ H(A) -> H(A)/F*H(A), we find that tf"
00 = Ker M. Thus

for a convergent filtration, u is a monomorphism. We shall say that the

filtration F of A is strongly convergent, if it is weakly convergent and if u

is an isomorphism. Clearly a strongly convergent filtration is convergent.
In addition we can also consider the homomorphism

v: UmH(A)/FpH(A)-*UmH(A/F>>A)

induced by
vp : H(A)IF'H(A)->H(A/F*A).

Since each v p is a monomorphism, it follows that v is a monomorphism.
It can be proved that if Rp = for all

/?,
then v is an isomorphism.

3. MAPS AND HOMOTOPIES

Let/: A-*A' be a map of modules with differentiation, and let

filtrations of A, A' compatible with the differentiations be given. We say

that /is compatible with the filtrations if

f(F
p
A) C FPA'.

Such a map clearly induces homomorphisms

/*: Er(A)-+Er(A')

/*: E9(A)^E.(A')

and drf* =f*dr where dr denotes the differentiation both in Er(A) and

Er(A
f

).

If/and g are two such maps, we define a homotopy s: f~ g of order

<I k as a homomorphism s: A -+ A' satisfying

ds + sd=g-f, s(F*A) C F+*A'.

PROPOSITION 3. 1 . Ifs:f~gisa homotopy oforder <^ fc, thenf* = ^*,

/i-rt^/r^ft*/^^*-
PROOF. The fact that/* g* is trivial and well known. To show

that/
* = g* for k < r < oo we utilize the natural isomorphism (8) of 1.
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We consider the commutative diagram

H(FA/F*+
r
A)

-^-

where the vertical maps are induced by the map g f: A -> A'. In view

of (8) of 1 it suffices to show that /3<x
= if k < r <: oo. Let then

x F*A be such that dx F*+rA. Since

gx fx sdx + dsx

and sdx F*+r-*A' and j* F^M' we have

dsx e F^M', sx f- r+M'.

This expresses the fact that gx fx yields the zero element of

THEOREM 3.2. Letf: A * A' be a map ofmodules with differentiations

and with filtrations compatible withf. Iffor a certain index k,f*: Ek(A)

-* Ek(A) is an isomorphism then the same holdsfor everyfinite index r ^j_ k.

If thefiltrations are weakly convergent, thenf^: Eao(A)-> E^(A')alsoisan

isomorphism. Finally, if the filtrations are strongly convergent then

/* : H(A) -> H(A') also is an isomorphism.
PROOF. Since/j.* is an isomorphism and commutes with the differentia-

tion operators dk in Ek(A) and Ek(A
f

) it follows that/A
*

+1 also is an iso-

morphism. Thus/r
*

is an isomorphism for all finite r -> k. The weak

convergence conditions of F and F f

imply then that /^ also is an

isomorphism.
Since the homomorphisms

FP~1
H(A)/FPH(A) -> Fp- l

H(A')/F
p
H(A')

are isomorphisms for all/?, it follows by recursion that the homomorphisms

are isomorphisms for all/7 and all r ^ 1. It follows that

H(A)IFH(A) -> H(A')IF>H(A')

is an isomorphism. Therefore in the commutative diagram

H(A) Lim H(A)IFH(A)

H(A') 7+ Lim H(A')/F
pH(A

f

)
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g is an isomorphism. If the filiations are strongly convergent, then u and
u' are isomorphisms and thus/* also is an isomorphism^

For the last argument it suffices to assume that the filtration of A is

strongly convergent while the filtration of A' is convergent. Indeed u is

then an isomorphism while u is a monomorphism. Since g is an iso-

morphism, it follows that gu is an epimorphism so that u is an epimorphism.
Thus u' is an isomorphism and the filtration ofA

'

also is strongly convergent.

4. THE GRADED CASE

Suppose that A is a complex (i.e., A is graded and the differentiation

d of A has degree 1). We then require that each module FPA of the

filtration of A be homogeneous, i.e., that FPA be the direct sum of the

submodules A p+q O FPA. We introduce the notations

FPA = FPA P+ Q

The module E$(A) may be identified with the direct sum ^Eg
>Q
(A), so that

q

the module E (A) is doubly graded

EQ(A) = IEg'
g
(A).

P4

Similarly the module EG(H(A)) is bigraded by the modules

As in 1 we define for 1 ?>_ r <! oo

Z(A) == Im

B(A) = Im

Ef*(A) = Z*

Each of the modules E*(A) may be identified with the direct sum

so that Er(A) is doubly graded. The isomorphism E(A)

*f E$*(H(A)) still holds. The differentiation operator dr : Er -*Er is

composed of homomorphisms

i.e. rfr has bidegree (r,l
-

r). In all these bigraded modules the first

degree,/?, is called the degree of thefiltration, the second degree, q, is called

the complementary degree \ p + q is the total degree.
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Sometimes to avoid negative numbers we find it convenient to lower

the indices using the rule

T,
= ;-*-.

The differentiation then becomes

"?, Ep tq
-> J_r>a+r_i

and has bidegree ( r,r 1).

The filtration F of the complex A will be called regular if for each n

there exists an integer u(n) such that

(1) Hn
(F*(A)) = for p > u(n).

We shall show that (1) implies

(2) ZF(A) = Zy(A) for r>p + q+l)-p.
Indeed, from (2) of 2 (in graded form) we have

Zf*(A)IZy(A) ** Im (/p+*(F*/F"+
r
) ->

This last homomorphism admits a factorization

and the term in the middle is zero ifp + r > u(p + q + 1). This proves

(2).

In 2 we introduced the notion of a strongly convergent filtration by

requiring that the homomorphism
u: H(A) -> Urn H(A)IF*H(A)

be an isomorphism. In the graded case we may consider the homo-

morphisms
un \ Hn

(A) -> Lim H(A)/FpH n
(A).

If u is an isomorphism so is each of un ; the converse is false. But for

our purpose it suffices that each un be an isomorphism; therefore, in

the graded case, we shift to this weaker definition of strong convergence.
The last part of Theorem 3.2 remains then valid in the graded case,

provided the map has degree zero.

PROPOSITION 4.1. A regular filtration of a complex A is strongly

convergent.

PROOF. (2) implies that the filtration is weakly convergent. We must

now verify that for each n

un : Hn
(A) -> Lim Hn

(A)/FH
n
(A)

is an isomorphism. Since FpHn
(A) is the image of Hn

(F*A) -> Hn
(A) 9

it follows from (1) that F*Hn
(A) = for p > u(n). Thus un is an iso-

morphism.
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For a regular filtration we can give a better interpretation of the way in

which the spectral sequence (Er(A)} "tends" to E^(A) as "limit." Indeed,

for r > u(p + q + 1) p we have the relations

B c B! c c ay cz = - - = zfh = z

and B = U B. There results a direct sequence of groups and

epimorphisms

(3) JEM -*tfi--
with J* as direct limit. Each homomorphism in (3) is given by the

spectral sequence, since

= Efl Im d*-r '

5. INDUCED HOMOMORPHISMS AND EXACT SEQUENCES

Let A be a complex with a filtration F. We shall derive certain

homomorphisms and exact sequences involving the terms of the spectral

sequence of F9 the modules E*?(A) and Hn
(A). We shall abbreviate the

notation and write **, H* 9 etc. instead of E(A\ Hn
(A), etc.

PROPOSITION 5.1. E =
implies E = /or all s> r (s^ oo).

Indeed since 5f'
? = Zf'

7
it follows that the modules

are all equal.

PROPOSITION 5.2. Let r < s <^ oo ; !/? = 0/or u + t; =
/) + ^ 1,

/> s <u^p r, then B =
J?f

iff
. TVtere re^wto a monomorphism

PROOF. Take an integer / such that r ^ t < s. By (7) of 1 we have

= Im rff-'

Since *-+-! = 0, thus by 5.1, f
-'--! = 0, so that rff-'-'+'-i

=
and /?f4?!

= Jf^ If ^ = oo, the same conclusion follows from B*g
= y up*.

PROPOSITION 5.2a. Letr<s<Lco. IfE?'
9= Oforu+v= p + q+l,

p + r^u<p + s, and if moreover s is finite or the filtration is weakly

convergent, then Z = Zft9
. There results an epimorphism E -* E* -9

.

The proof is dual to the preceding one, when s is finite. If 5 is infinite

and the filtration is weakly convergent, we have Z = O Zf * and this

concludes the proof.

By combining 5.2 and 5.2a, one obtains conditions for E*'q *& E**q

(r<s^ oo).
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PROPOSITION 5.3. If E
u
^
n"u = Qforu<p, then FpHn = Hn

. There

results an epimorphism Hn -> E%
n ~p

.

PROOF. The conditions imply FuHn = Fw+1//w for u<p. Since

Hn =(jFuHn
9 we have Hn =FpHn

. Since E%n ~* ** FpHn
/Fp+lHn

,

the conclusion follows.

PROPOSITION 5.3a. If the filtration is convergent and E^
n ~' u =

for

u'>p 9 then Fp+ lHn = 0. There results a monomorphism E*n~p -* H*.

PROOF. The conditions imply F
UH" Fv+lH n for u > /?.

Since the

filtration is convergent we have O FHHn = 0, so that F*+ lH n = 0. Since

n-;p ^ FpHn
IF

p+lHn
, the conclusion follows.

COROLLARY 5.4. //" f/ie filtration is convergent and %
n~u = /or

w^/?, thenH" &E%n-p
.

More generally we have

PROPOSITION 5.5. If the filtration is convergent and, for some integers

n, p and k (k> 0), we have E u
^
n ~ u

Ofor u ^ p,p + k, then there is an

exact sequence
-* + *- 1-'-* -> //

n -* i
n ~p -> 0.

PROOF. The homomorphism Ep^ n-p~k -> Hn
is defined by 5.3a and

and has Fp+kHn as image. The homomorphism H n -> ^
n~ JI

is defined by
5.3 and has F*+ lHn as kernel. Since O^E^n ~ u^FuH n

/F
u+lHn

for

p<u<p + k,il follows that Fp^ 1//
n = Fp+kH n

.

PROPOSITION 5.6. (a) IfE?
9 = 0/or M + r =-= /i

- \,u<p r,and

for u + i; = n, M < />,
f/zere w a homomorphism

(1) Hn ->**-*.

(b) //* //?e filtration is convergent and E?*
v ~

/or w + ^ n + 1 ,

w I> p + r, andfor u -\- v n, u> p, there is a homomorphism

(2)
**-* -> //".

(c) If (a) and (b) feo^/? AoW, then (I) and (2) 0re reciprocal isomorphisms.
PROOF, (a) follows from 5.1, 5.3 and 5.2. Similarly (b) follows from

5.2a, 5.1 and 5.3a. Finally, (c) follows from 5.1, 5.2 and 5.2a, and 5.4.

PROPOSITION 5.7. If the filtration is convergent, and if E?
tV ==

for

u + v= n, u =p and ^p k (k > 0, given)

u + v n + 1, u^p + r

u + t?= n 1 , u^.p k r,

the following sequence is exact
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PROOF. By 5.5, we have an exact sequence

-> E%n ~p ->Hn -> -*.n-iH-* -+ o.

Moreover, 5.2a yields an epimorphism Ep 'n " p -> E%
n ~p

, and 5.2 yields a

monomorphism
-*" -"**-> *-*.*- *+*. This concludes the proof.

We shall now give a new series of propositions. First we define a

generalization of the homomorphism

d: E ^Ep *-r >q- r+ l
.

DEFINITION: Given a finite integer s > r, suppose that
r

tt>v for

and for

w + *'
~
p + q , p <u<,p + s r.

We define a homomorphism r/: E -* E**-'*- 1 as the composition
M JU 7M JL P+-t+i _^U 7>4-*,7-+i^ Where ft is ^, and y and a are

defined because of 5.2 and 5.2a.

LEMMA 5.8. IfEf
'^- 1 --

(r < j < ex/), vr? Aare //?^ e.vac/ sequence

(3)
--

Efft
-> Ef *

Ef+''*-'+
l

.

PROOF. By 5.1, E*-M+'- 1 =- 0, thus rfP-^+-i -. 0, and consequently

?!
-

- B*. Thus ^ = ZMJB. and this last module is the kernel of

d. by (7) of 1.

PROPOSITION 5.9. If thefiltration Is weakly convergent, and
if,for some

integer s ^ r, Er

M>r
Qfor

u + v^p + q\, w^/> r,

andfor
u -1- r -= p + q, p -* u<Lp + s r,

andfor
u + r =-=

/? + q + 1 , p + r^u--p+s,
then we hare the exact sequence

(II)

PROOF. Since r
l>
-- - f|+8~ 1

0, we can apply lemma 5.8. Thus we

have the exact sequence (3). But E, ^ t<? and E/'
7 ^ E/

7 -*

by 5.2 and

5.2a. Moreover, by 5.2, we have a monomorphism Ep+8 ''l
~8+ l-+Ep+*' <l

~s+ l
.

Thus (3) yields an exact sequence

Finally, by 5.3 we have an epimorphism Hp+q -> Eg;
7

. This yields the

exact sequence (II).
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PROPOSITION 5.9a. If the filtration is convergent, and
if, for some

integer s^>r, E = Ofor

u + v = p + q+l,
andfor

u + v = p + q, p + r

andfor
u + v = p + q 1, p s^u<Lp r,

then we have the exact sequence

(III) Jgy-M+t-1
-^-, E P.Q--- ffP+Q.

The proof is dual to the preceding one.

It is now possible to combine the cases in which exact sequence such as

(I), (II) or (III) hold. For example:
THEOREM 5.10. Assuming that r I> 1, let p and p' be two integers such

that p p' ^1 r. If thefiltration is convergent and E?'
v = Ofor u -

p,p' 9

then we have an exact sequence

. . .
__^. J?P>np > ftn ^ J?p',np' > P,n+l-p > //+! > P'*n+l-p' > . . .

THEOREM 5.11. Assuming that r I> 2, let q and q be two integers such

that q' </!> r 1. If the filtration is convergent and r
Uft> = for

v ^ q,q', then we have an exact sequence

- -> E?~q 'q -+ Hn -> E-"''9
'

-> n+1 ~
-+ Hn+l ->

THEOREM 5.12. Assume that the filtration is convergent and that

E$'
q =Qifp<Qorq< 0. Assume further that E q

Ofor < q < n

(n > 0). We then have isomorphisms

and an exact sequence

-> f -^ //

PROOF. The isomorphisms follow from 5.6(c). The exact sequence
follows from 5.7, 5.9 and 5.9a.

The dual result is

THEOREM 5.12a. Assume that the filtration is convergent and that

E*
q =Qifp<Qorq<0. Assume further that E^q =QforQ<q<n

(n > 0). We then have isomorphisms

*
<* #.

and an exact sequence

on "^ Hn "^ ^n0 ~> 0-
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To conclude, we list a number of special cases needed in the sequel.

Case A. H(FAIFP+1
A) = for p < 0. Then ?

-q = for p <
(r <1 oo), and 5.6(a) yields the homomorphisms

H n -* 'n
.

Case B. H+Q
(F

PA) --- for q < 0. The filtration is regular (and
thus convergent), E = for q < 0, (r <i oo), and 5.6(b) yields the

homomorphisms

Case C H(FAIF*+ 1
A) = for

/? < and HP+(F*A) = 0forq<0.
The filtration is regular, ?'

7 = for /? < and for # < (r <I oo), we
have the homomorphisms

J.O _> //" _^ 0,n

and the exact sequence

0_. 171,0 _. t/l _. rO.l _. r-2,0 . /L/2>
-2

~~^ ** "^ ^2 "~^ *-2 "^ "

There are three dual cases.

Case A'. H(FPA) for p > 0. The filtration is regular,

Er

p tq
-- for p < (r <^ oo) and we have homomorphisms

IT 2 _. I/
^-O.n

"^ "w

Case B'. H(F*AIF>+ 1
A) -- for

</
> 0. Then

;,<----
for

^ <; (r <C oo ) and we have homomorphisms

Case C'. H(F*A) - Ofor/7 > Oand H P+(FPAIF^ 1

A) ^Oforq > 0.

The filtration is regular, E r

pq
~ for

/; < and for ^ < (r <I oc), we
have the homomorphisms

r2 . LJ _. c-2

^-O,/!
"^ n n

"^
^-w.O

and the exact sequence

"2 *
l,0

->
fo.l ->//!-> ?P

-> 0.

We shall consider two more cases:

Case D^. //^ (/(FM) -- for 9 < A- and HP+ Q
(F

PAIFP+1A)= for

9 > /r + 1 The filtration is then regular and 5. 1 1 yields the exact sequence

----* *-** -> /fw -> ^
-*'- 1 ^ ! -v -**!-*

CaseEfr
. H(F*AIF*+

l

A)=-Qforp<k and

The filtration is then regular. By 5.2 and 5.2a, we have 2 , and

5.5 yields an exact sequence

-> j+
1 - n-fc- 1 -> H n -> ?"-* -> 0.
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The homomorphisms obtained in cases A, B, A',B,' will be called edge

homomorphisms. The exact sequences obtained in cases C and C" will be

called the exact sequences of terms of low degree.

So far we have dealt with spectral sequences connected with a specific

complex with a filtration. In the applications that will be given in the

next two chapters, the situation will be somewhat different. We shall

encounter situations in which the complexes and the filiations will be

constructed with a large degree of arbitrariness. It will however turn out

that the homology modules of these complexes, the filiations of these

homology modules, and the spectral sequences involved will be "inde-

pendent" of the choices involved in the construction of the complexes.
Because of this it will be necessary to develop a notation and termin-

ology which will allow us to handle spectral sequences without explicit

reference to the complex and its filtration from which the spectral sequence
results.

Let ^B be a doubly graded module and ^Dn a graded module. We
shall use the notation

BJ><=> Dn

p

to say that there exists a complex A with a regular filtration F such that

H n
(A) is isomorphic with D n for all H, and such that the terms E$q

(A) of

the spectral sequence of the filtration F are isomorphic to B l) *q
. We

indicate the degree of the filtration under the arrow, because when the

terms Bp 'q have an explicit (and sometimes complicated) form it may be

impossible to tell which of the two integers involved is the degree of the

filtration and which is the complementary degree.

6. APPLICATION TO DOUBLE COMPLEXES

Let A = ZA v ' fl be a double complex with differentiations d
l and d2 , as

defined in iv,4. With this double complex, there is associated a (single)

complex with total differentiation d and homology modules H n
(A).

We introduce the bigraded module H
}(A) which is the homology

module with respect to the differentiation d^ We regard H^A) as a

double complex with differentiation d
l
-= and with d2 induced by the

differentiation d2 in A. Similarly we define the double complex Hu(A)
which is the homology of A with respect to d2 . We may thus also con-

sider the modules H^H^A) and H^H^A), bigraded by Hfi
qH

t(A) and

Hft9
Hu(A) respectively.

We introduce two filiations F
l (the firstfiltration) and Fn (the second

filtration) as follows

= Z ZA, Fit* = Z
r^p q s^q p
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These filiations regarded as filtrations of the (single) complex associated

with A are compatible with the total differentiation operator d. There

result two filtrations of H(A) and two spectral sequences which we call

the first and the second spectral sequence of the double complex A. The

term E of the first spectral sequence will be denoted by I. The term

E?
>q of the second spectral sequence will be denoted by II?

>P
; the switch of

indices is justified by what follows. The module H(A) with its graduation
and two filtrations, and the two spectral sequences will be called the

invariants of the double complex A.

The module F?A/F{
J+1A may be identified with ^AM . Thus the

<7

module I associated with A by the filtration F
l may be identified with A

itself. The differentiation operator in I is then easily seen to be given by
the homomorphism d?'q . Consequently, the homology module of I i.e.

the module l l may be identified with Hn (A).

The differentiation operator d}l of lj (i.e. of the term E^A) for the

first filtration) is the connecting homomorphism for the homology modules

of the exact sequence

-^ Ff+
l

/Ff
+ * -> Ff/Ff

r2 -> /7Y/7
H l -> 0.

Let h Hff(A) be an element of bidegree (p<q) of HU(A)< and let a c A
be an element representing .v. Then rf.2.v so that dx d^x. It

follows that the connecting homomorphism H(F[!Ff+
l

) -> H(Ff+
l

/Ff+
2
)

is induced by d^ Thus if \ l and H {l(A) are identified it follows that the

differentiation d
ltl

of \
l coincides with the differentiation d

l of H{l(A).

There results the identification

(0 IrfX)- //i//nM).

This identification is compatible with the double gradings of the modules

involved.

To compute the initial term E2 of the spectral sequence for the second

filtration we resort to the following trick. We introduce the transposed
double complex *A defined by

The double complexes A and iA have the same associated single

complex A. Further, the second filtration of A is the first filtration of '4.

Thus the required term 2 *s #i"ii('^) s latter term coincides with

the transposed of the bigraded module HuHi(A). Thus if we denote by
II 2 the transposed of the term 2 for the filtration Fu of A we obtain

(2) l\ 2(A) =
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This is the reason why earlier in defining II?'
7 we transposed the degree of

the filtration and supplementary degree.

A map/: A -> A' of double complexes is always compatible with the

filiations /i and Fn . It therefore induces maps of the respective spectral

sequences.
PROPOSITION 6.1. Two homotopic maps of double complexes induce the

same maps of the invariants.

PROOF. Let/,g: A -> A' be the maps in question and let (.flfja):/~ g
be a homotopy as defined in iv,4. There results a total homotopy s in the

associated (single) complexes. This homotopy is of order <ll with

respect to the filiations F
l
and Fn . Thus 3.1 implies that/ and g induce

the same homomorphisms l^A) ->1(A') and ll(A)-+ \\*(A') for

Incidentally, the above fact is the main reason for defining the spectral

sequence as beginning with the term 2 , rather than with the term El (or

even with the term composed of FPA/FP+1A).

We shall derive various relations between the modules !*, I If* and

Hn
(A) of a double complex A under the assumption that some terms A

are zero. All the results follow from those of 5.

Case 1. A = if q < 0. The filtration F, is regular. We are in

Case B for the filtration Fl and in Case A for the filtration Fn . There

result edge homomorphisms

IS' -* Hn -> US'

Case 2. A ptQ = if p < or q < (i.e. the double complex A is

positive). Both filiations are regular and we are in Case C. We obtain

edge homomorphisms
I*,0 ^ fjn ^ ]]n,0

and exact sequences for terms of low degree

-+ ij.o ^ //i -> ig.i _> ]|.o ^ 7/2

^ Hg.i ^ //i _> ni,o

Case 3. AM for ^ 7^ 0,1. Both filtrations are regular, FT is in

Case D and Fu is in Case E. We thus obtain exact sequences

//w -> IIS' -> 0.



7] A GENERALIZATION 333

Case 4. A = for p ^ 0,1 or q ^ 0,1. The sequences above

collapse to the exact sequences

and the isomorphisms

Ij-
1
** H 2 a* ll\'

1
.

The above cases were geared towards applications to cohomology and

right derived functors. For applications to homology and left derived

functors, we need four dual cases. These can be most conveniently
stated using the principle of lowered indices:

A A~v>-q l
r __ i-p.-ff IK _ II-P.-Q fj _ //-n

^P.Q A ' lPA~~ l
r >

IJ
p,

J r "n n

We then consider

Casel': A
Ptq
=0 if<j<0

Case 2': A
PtQ
=0 if

/? < or q < 0.

Case3': A
PtQ
= ifq^OJ.

Case 4': ^ = ifp ^ 0,1 or q ^ 0,1.

The conclusions in these cases are obtained from the cases 1-4 by

lowering indices and reversing all arrows. The only difference is that

in Case T it is the filtration Fu that is regular.

REMARK. If the first differentiation operator dl in A is zero then we
have Ht(A) = A and

H(A) = HU(A) = HMA) = //u //i04).

The module H(A) is then bigraded and coincides with I 2 and II 2 . All the

differentiation operators in the spectral sequences are zero. Further, in

Case 1, the composite map IS*
-> Hf is the identity map.

7. A GENERALIZATION

We shall indicate here a more general setting in which the tneory of

spectral sequences may be developed. This generalization is particularly

interesting for geometrical applications (see below).

We shall assume that for each pair of integers (p,q) such that

oo<^/7<l<7^oo a module H(p,q) is given. We shall write H(p)
instead of //(/?,oo) and we shall write H instead of //( 00,00).
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Given two pairs (p,q) 9 (p',q') such that p^p, q^q' (notation:

(p 9q)
<

(p',q')) we shall assume that a homomorphism

(1)

is defined.

Given any triple (p,qs) such that o <!/? <I
<y <I r<^ oo we shall

assume a connecting homomorphism

(2) d: H(p 9q)-H(q9r)

is defined.

The above three primitive concepts are subjected to the following

axioms

(SP.l) H(p 9q)
-> H(p 9q) is the identity.

(SP.2) If (p 9q) <L (//,?')^ (/>>") then the diagram

H(p'jf) ->

is commutative.

(SP.3) If (/7,?,r) ^ (p',q'S) then the diagram

H(p,q)
--

is commutative.

(SP.4) For each triple (p,qs) the sequence

H(p,r)

is exact.

(SP.5) For a fixed q the direct system of modules

H(q,q) -> H(q
-

1,

has //( 00,9) as direct limit (under the mappings H(p,q)->H( oo,0.
From (SP.l) and (SP.4) we deduce that //(/?,/?)=0. From (SP.3) we

deduce that (2) admits a factorization

(2')

This indicates that we could postulate (2) only with r oo and define (2)

in general using (2'). Axioms (SP.3) and (SP.4) may then be weakened by

replacing r by oo. It can be shown that the weaker system of axioms

implies the stronger one.
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Usually the modules H(p,q) will be graded. It is then assumed that

(1) is a map of degree zero while (2) has degree 1.

Example 1. Let A be a module with differentiation rfand filtration F.

Define H(p,q)
---- H(FP

/F") where F~ - A, F00 - 0. For (/?,<?)<;(/?',?')we
have a natural map FP

'/F"' Fp/F
(i which induces (1). For each triple

(p,qs) we have an exact sequence

-- > F*IF
r -v py/rr __> fpffv _> o

which induces (2). Axioms (SP.l) (SP.5) are readily verified. This is

the case studied earlier in the chapter.

Example 2. Let A' be a topological space and {X
p
} a family of sub-

spaces defined for all integers p such that Xp C Xp+ l
. We set X~* = 0,

X* --- X and define

where H"(X\XP
) is the /?-th cohomology of the pair (X

Q,XP
) with respect to

some fixed cohomology theory. The maps ( 1 ) and (2) are then the induced

homomorphisms and the coboundary operations of the cohomology theory.

Axioms (SP.l) (SP.4)are consequences of usual properties of cohomology

groups. Axiom (SP.5) is not valid in general, but depends on the spaces
involved and the cohomology theory that is being used.

Example 3. In the situation of example 2 set

using the relative homologv groups of the pair (X~ P,X~Q
).

We now return to the abstract situation governed by the axioms

(SP.l)-(SP.S) and define

F*H Im (//(/>)
> H)

Zp
-Im(//(/i./i+r)->//(^+l))

Bf -- 1m (//(/i
- r + U/>)

-> H(p,p + 1))

E? - Zf.'B?

where 1 < r < oo, - -oo < p < oo. It follows readily that FPH is a

filtration of //. All the results of 1, 2, 4, 5 now carry over without any

change. The questions studied in 3 require some care.

We consider two systems \H(p<q)} and (H'(p^)} with homomorphisms
(1) and (2). A map/of the first system into the second is a family of maps

(p,q): H(p,q) -> H'(p,q) which properly commute with (1) and (2).
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Clearly/induces maps/
*

: Er
-> E

r

'

for 1 <I r^ oo. Ifg is another map
of {H(p 9q)} into {//'(/?,?)} then we say that / and g are k-equivalent,

k ^> 0, (notation/~g) if the composition

//(/?,<?)
-^

//'(/?,?) //'(/>
-

*,f
-

k)

is zero for all
(/?,?),

where y = (^<7) ~f(p^)- As an analogue of 3.1 we

prove that/~# implies/* g* for r > k. As in the proof of 3.1 we

must show that the composition

//(/>,/> + r)
^>

H'(p.p + r) //'(/;
- r + !,/> + 1)

is zero. This, however, is immediate, since the second map can be factored

as follows

H'(p 9p + r) -> H'(p -k9p + r-k)-> H'(p
- r + I 9p + 1).

This argument, incidentally, gives a new proof for 3.1. The remaining
results of 3 carry over without change.

To conclude we observe that the exact sequences

---->H(p + !)-

taken for all finite integers/) may be recorded in a single diagram

C

(3)

where C=^ pH(p) 9 El j>H(p*P + 1). Diagram (3) is an

cow/?fe in the sense of Massey (Ann. of Math. 56 (1952), 363-396, 1952).

This again provides an alternative exposition of spectral sequences.

EXERCISES

1. Let A and A' be two AT-algebras, and F= A <g)K A'. Let A

(resp. A', A") be a A-complex (resp. A'-complex, resp. F-complex).

Suppose we are given a map of F-complexes

9>: A K A'->A"

such that ^ maps F*(A) F>'(/O into FP+P'M").
Show that the homomorphism a: H(A) H(A')-> H(A") induces

maps
f*: E$(H(A))

compatible with the gradings.
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2. Using isomorphism (4) of 1, give another definition of the map
<p

p>p
'

of Exer. 1, by defining maps

which induce maps of

Bl(A) Z*(A') and Z*>(A)

into B*+*(A').

Show that the maps

$*>': E(A) E*(A')-+E>+*(A')

may be obtained by "passing to the limit" from maps

?r': Ef(A) E*'(A')-

obtained by defining maps

Define now on Er(A) Er(A') a differentiation dr by setting, for a E?(A),

a'E?(A'\
dr(a 0') - (drd) a' + (~\Ya

show that the maps yf
%11

'

are compatible with the differentiations of

Er(A) Q Er(A') and Er(A"). Passing to homology, the maps

h

are precisely the maps ql'f'i (by using the natural isomorphisms H*(Er(A))

^^ *-*r 4-1V /* ^^^ \^r\^ // ^^ ^* r -- I \^ /* *"* \"r^ '/ ^^ f-4-1 \^ //*

3. Let ,4 be a graded A'-algebra with a differentiation satisfying

ci(aa')
= (tld)a + ( \Ya(da) p = deg. a.

Then, taking A ~ A' A^, >!' /<" =- A, apply Exer. 1 and 2 to the

present situation.

4. Let {/!""}, (X '*'*'}, {A"'-
1

} be three double complexes. Consider

the double complex

with differentiation operators (\ and <5 2 defined as in iv,4. Assume we are

given a map of double complexes

Consider the first filtration on {A}, {A'*''*
1

'} and {A"*'*}; show that

Exer. 1 and 2 may be applied to corresponding spectral sequences. The

same result applies for the second filtration.
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5. Let A be a double complex with differentiation operators dl and d2 .

Denote BI
= Im d^ Zl

= Ker </lt and show that these are double com-

plexes in which the first differentiation operator is zero. Similarly
introduce BU(A) and ZU(A). Consider the doubly graded module

C(A) = Z,(A) Zn(A) = Z(ZU(A)) -

Clearly C(A) = A O Z(y<). Define the maps in the diagram

C(A) = ZL(Zn(A))

where A: and /are defined by inclusions 5,(^) C ^, C(/0 C /I, while # is

defined by the natural homomorphisms Zn -> //n and Zl
-> //x . Show

that g is a map of doubly graded groups, while k and/are compatible with

both and the first and the second filtration. We denote by

/i: C(A) -> IJtA) = 2 FfH(A)IFF+
l

H(A)
p

the induced map of the associated graded groups. Similarly we may
introduce/n , ^ and kn .

6. With the notations as above, establish the equivalence of the follow-

ing two propositions:

(a) If a,b A and d^a ^= d2b, d2a = 0, then there is c c A such that

d^d^c
= dta.

(a') g is an epimorphism.

Assuming that the above conditions hold, show that:

(i) f(FfC) - FfH(A) 9 /(FfiC) - F&HW.
00 //i and/n are isomorphisms.

(iii) the first filtration of A is weakly convergent and satisfies Z^(A)
= Z2(A).

All the differentiation operators in the first spectral sequence of A are

then zero and one obtains an isomorphism <p: /^(A) & H^H^A)).
This isomorphism satisfies 9^ -= ^ = g. [Hint to (i): if a 2 A "+'-'

is a rf-cycle, then a is rf-homologous to some element of 2 Cpf
'"-*;

O^r^r

proof by induction on r.]

7. With the notations of Exer. 5 show that an element u C(A) is in

the kernel of g if and only if there exist elements b,c c A such that

u= dib + d2c, d2b = 0. Establish the equivalence of the following
conditions :
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(b) If a A is such that d^a = 0, then there exist elements b,c c A

satisfying d^a d^b + d2c, djb 0.

(6') g(Z(B l (A)))
- 0.

Assuming that the above conditions hold, prove:

(iv) Ker g - Z(Bl(A)) + Ker / [Hint: prove Ker / C Ker g and

Kcr/pCZ(fl,M))+Ker/].

(v) k(H(B}(A))) C

(vi) AT,
--- 0.

(vii) ImkC
P

(viii) If the filtration F1
of A is convergent, then k = 0.

8. Assume that in the double complex A conditions (a) and (6) of

Exer. 6 and 7 are both satisfied. Establish the exact sequence

~- H(A) -'- H^H^A))

where / gf
1

, and show that the maps are compatible with both filtra-

tions. In particular, A'j and l
}

^~ y: I^iX) ^ H^H^A)).
Show that if A'

~ then both filtrations of H(A) are those obtained

from the double grading of H
l
H

ll(A) using the map 7"
1

.

Establish the equivalence of the following conditions:

(c) A----0;

(d) The filtration F
}
of A is convergent.

9. Suppose that the double complex A is the direct limit of double

complexes Aa such that for each index a:

(1) /l a satisfies condition (b) of Exer. 7;

(2) the filtration F
{
of /4 a is convergent.

Then condition (b) holds in the complex A and the map k : //(BjO*))-*//^)

is zero. If moreover A satisfies condition (a) of Exer. 6, then / is an iso-

morphism H(A) (*> Hi(Hu(A)), which is compatible with both filtrations.



CHAPTER XVI

Applications of Spectral Sequences

Introduction. In v,8, we have considered functors of several variables

and have studied the relations between the derived functors and the partial

derived functors. Our results there were rather incomplete, because a

complete treatment of the problem requires the use of spectral sequences

(see 1).

These spectral sequences arise each time we have an associativity rela-

tion of the type

Horn (A, Horn (B,C)) & Horn (A B,C).

There result two spectral sequences with essentially the same "limit,"

and with terms E2 given by

Ext* (A, Ext* (,C)), Ext9
(Tor,, (A,B),C).

This method provides a large number of spectral sequences. Among
others, spectral sequences are obtained for the homology of a group, an

invariant subgroup and the quotient group, as well as for the homology
of a Lie algebra, an ideal and the quotient algebra.

9 is a modest attempt to show how these spectral sequences can be

applied to various problems in topology involving groups of operators.

1. PARTIAL DERIVED FUNCTORS

Let T(A 9C) be a functor covariant in A and contravariant in C. In

addition to the right derived functors RnT we shall consider the partial

right derived functors R^T and RfaT obtained by regarding one of the

variables as active and the other one as passive. According to v,8 we then

obtain natural maps

(1) R
(I)
T-+ RnT> BfaT-* R

n
T.

Let X be an injective resolution of A and Fa projective resolution of C.

As described in iv,5, T(X9 Y) is then a double complex. An argument
similar to the one given in v,3 shows that the invariants of this double

complex are independent of the choice of the resolutions and are functors

of A and C. The homology module of T(X, Y) clearly is RT(A 9C).

340
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Using the method of xv,6 for computing the initial terms of the spectral

sequences we find

so that

I 2
--= H

With the double grading indicated we have

(2)

and similarly

(3)

Since the double complex T(X, Y) is positive, both filiations are regular

and we thus have

(4) R^K^T^R^
(5) RfaRfaT=*RT.

The above spectral sequences give rise to edge homomorphisms and exact

sequences for terms of low degree. It will be convenient to assume that

T is left exact so that RQT= R^T= R^T= T. Then the edge homo-

morphisms are

(6) K(i)T~* WT, R&)T-* *
nT

while the exact sequences take the form

(8) -> R }

(}}
T- > R lT-> R^R^T-* RfT-> R*T

(9) ->
Rl* }

T-> R 1T-+ R>)R
l

(l)T-> R& }
T-> R2T.

We shall now show that the homomorphisms (1) and (6) coincide.

To this end we consider the (single) complex B = T(X,C) and define the

filtration F of B by FPB ^B" for n ^ p. The augmentation maps
define a map T(X,C)-*T(X,Y) which maps the filtration F into the

filtration F
l
of the complex T(X, Y). There results a commutative diagram

EJ'() ->//"(*)

I I

For the filtration FofB we find (^) = * and E^(B) = ^(5) - //
w
(5)

=
Jlj^TX^C). The upper horizontal map is thus the identity and so is the

left vertical map. It follows that the lower horizontal map and the right

vertical map coincide. These are precisely the two maps Rf^T-* R
nT

given in (6) and (1).
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We can now give a short alternative proof of the fact established in

v,8 that for a right balanced functor T, (1) are isomorphisms. Indeed, T
being right balanced we have Rg

(^T(A,C) for q > and A injective.

Therefore RfaRfaT= for q > 0. Thus the first spectral sequence

collapses and yields R^T ** Rn
T.

The discussion generalizes easily to the case when A and Ceach represent
a set of variables, some of which may be covariant and some contravariant.

Similar results may be obtained for left derived functors. The

sequences (4) and (5) become

(4a)

(5a) - v

2. FUNCTORS OF COMPLEXES

Let T(A,C) be a right balanced functor covariant in A and contra-

variant in C. We shall consider here the case when A is a complex and C
is a module. Given a projective resolution Y of C, we obtain a double

complex T(A 9 Y). The invariants of this double complex are independent
of the choice of Y and are functors of A and C

We introduce the notation <Mn
T(A,C) for the homology module

Hn
(T(A, Y)). Next, we have HU(T(A, Y)) - RT(A,C) so that

(1) I'<-= HP(R
Q
T(A,C)).

Since H((T(A 9 Y))= H*(T(A 9 Yq)) 9
and since the functor T(A<YQ) is

exact for Y
Q projective, it follows from iv,7.2 that we may identify

H(T(A,YQ}) with T(HP(A),YQ). Thus Hf(T(A 9 Y)) - T(H*(A) 9 YQ).
Consequently applying 7/n we obtain

(2) Hf -- K*T(H*(A) 9C)

The double complex T(A, Y) falls into the case I of xv,6 so that we have

the edge homomorphisms I^'
-> H n ->

II^' which in this case become

(3) Hn
(T(A,C)) -> 3$n

T(A,C) -> T(H"(A) 9C).

PROPOSITION 2.1. The composition of the homomorphisms (3) coincides

with the homomorphism

a': H n
(T(A,C))-*T(H

n
(A\C)

o/iv,6.1a.

PROOF. Let a denote the composition of the homomorphisms (3).

Clearly a is natural relative to maps A -> A' of complexes. In view of

iv,6.1a it therefore suffices to show that a is the identity if A has zero

differentiation. In this case the double complex T(A,Y) has the first

differentiation zero. Thus, by the final remark of xv,6, a is the identity.
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In all the applications that we shall encounter in this chapter, the

complex A will be positive. In this case the double complex T(A, Y) also

will be positive and both filtrations will be regular. Thus we obtain

(4)

(5) RqT(H*(A)) => 3t*T(A,C).

A similar discussion can be carried out when A is a module and C is a

(positive) complex. Using an injective resolution X of A we obtain a

double complex T(X,C) in which we regard the degree of C as the first

degree and the degree of X as the second. This yields modules 0ln
T(A 9C)

= H n
(T(X,C)) and spectral sequences

(4')

(5')

Both these cases are special cases of the more general situation considered

in chapter xvn in which both A and C will be allowed to be complexes.

Quite analogous results are obtained for left balanced functors. The

details are omitted.

3. COMPOSITE FUNCTORS

As a preparation for the later sections we shall consider here a functor

(1) T(A,C) - U(A,V(C)) - V\V'(A))

represented in two different ways as a composite functor.

We first consider the case when U and U' are both right balanced,

contravariant in the first variable, covariant in the second variable,

V is covariant and left exact while V is covariant and right exact. Then T
is left exact, contravariant in the first variable, and covariant in the second.

We wish to compute R^R^T(A,C) and RfaRfaT(A,C).
If in (I) we replace A by a projective resolution Xand C by an injective

resolution 7, (1) yields a double complex. We have

where the isomorphism is given by the map a' of w,6.1a, applied to the

functor U(XP,C) which is exact since Xp is projective and U is right

balanced. Consequently we find



344 APPLICATIONS OF SPECTRAL SEQUENCES [CHAP. XVI

Thus we have a spectral sequence

(2) R*U(A,Rq
V(C)) ;>

Rn
T(A,C).

In the same way we have a spectral sequence

(3) Rq
U'(LvV'(A))^ Rn

T(A C).

The spectral sequences (2) and (3) yield edge homomorphisms

(4) Rn
U(A,V(Q) -

(5) Rn
U'(V'(A),Q -

(6) R*T(A 9C)

(7) Rn
T(A,C)-*U'(Ln V'(A),Q.

We shall show how these homomorphisms can be computed. We have

and it follows from 1 that (4) coincides with the natural homomorphism

R*i)T-> R
nT. Similarly (5) may be identified with the natural homo-

morphism RfaT^>R
n
T.

Next we consider the composition of (4) and (7)

(8) R n
U(A,V(C))-> U'(L*V'(A) 9 C).

We have

R n
U(A,V(C))= H(U(X,V(C))-.H(U'(V'(X) 9C))

V'(L n V'(A\C) - U'(Hn(V'(X)\C)

and it follows from 2.1 that (8) coincides with the homomorphism a' of

iv,6.1a. The composition of (5) and (6) can be computed similarly.

We also note here the exact sequences for terms of low degree that

result from (2) and (3)

(9) 0->R 1
U(A 9 V(C))-*R 1T(A,C)^ U(A,R 1

V(C))

-> R*U(A,V(C))-^ R*T(A,C)

(10) Q-*R1
U'(V'(A),C)-+ R l

T(A,C)-> U'(L^V'(A\C

),Q-+ R2
T(A,C)

We shall also have occasion to consider the case when in (1) all the

functors are covariant, U and U' are left balanced and V and V are right
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exact. We then take projective resolutions X and Y of the variables A
and C. The invariants of T(X, Y) yield spectral sequences

(2a) LPU(A,LQV(Q) ^ L n T(X, Y),

(3a) ^l/Up^'MXC) ^>
LnT(X, Y).

These yield edge homomorphisms

(4a) L H7X^,C)->Ln (/M,K(C)),

(5a) L nrM,C)-> L H U'(V'(A) 9C) 9

(6a)

(7a)

The rules for computing these homomorphisms are similar to the previous
case. The exact sequences for terms of low degree are

(9a)

(lOa) L 2T(A,C)-+L2U'(V'(A),C)-+U'(L l V'(A).C)->

4. ASSOCIATIVITY FORMULAE

We shall use the term "associativity formulae" for the type of iso-

morphisms established in n,5 and ix,2.

We begin with the situation described by the symbol (AA_r <AB^Cr.<r)

where A, F and il are tf-algebras. The identification of ix,2.2 yields two

expressions for the functor

(1) T(A.C)= HomAgr 04, Homv(fi,C)) = Hom r^vM <^A fl-O-

We are thus exactly in the situation described in 3 with

K(C) Horn v (,C), y'(A) -- A A B.

R<>y(C) - Exa (B,C), L,V'(A) = Tor;) (A.B).

Now assume that P is A'-projective, and let A" be a A F-projective
resolution of A, and Y a F X-injective resolution of C. It then follows

from ix,2.4 and ix,2.4a that X is also a A-projective resolution of A and Y
is a X-injective resolution of C. Consequently the spectral sequences (2)

and (3) of 3 become (if F is /C-projective) :

(2) Ext* r M, Exit (,C))

(3)
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Assuming that

Tor (A,B) = = Ext (,C) for n > 0,

both spectral sequences (2) and (3) collapse, and we obtain

(4) ExtA(g)r (A, Hom L (,C))

This is a generalization of ix,2.8a.

If we replace A by A and F by A*, then the spectral sequence (3)

collapses and (2) becomes

(5) H*( A, ExtS; (,Q) y> Extras (*,C)

in the situation (A#v ACv) and under the assumption that A is A^projective.

This generalizes ix,4.3.

We now replace (A,F,) by (AT,F,2<) and (A,B 9C) by (F,S,C) with

C a two-sided F (g) X-module. Assuming that F is A^projective, it

follows that Pe also is AT-projective so that the spectral sequences (2) and

(3) apply. They become

Since F is /T-projective, the second sequence collapses to the isomorphism

Rn
T(r,C) * Extfr L)

. (F X,C) - //
N
(F S

f C).

Thus we obtain the spectral sequence

(6)

under the assumption that F is /T-projective.

In view of x,2.1, the spectral sequence (6) applies also to the case when

F and 2 are supplemented /^-algebras provided both F and X are A'-

projective. However a stronger result may be obtained by directly

substituting A = A = B = K in (2) and (3). Then (3) collapses and (2)

becomes

(7) Extf, (K, Ext<2 (AT,C))^ Exinr^ (AT,C), r _ SC

under the assumption that F is AT-projective.

There is an analogous discussion for homology. We consider the

situation (AA_T9ABZ9r^C) and, using the identification of ix,2.1, define

(la) T(A 9C) - A A r (B ^ C) = (A A B) r0 C.
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Then, under the assumption that F is tf-projective, we obtain the spectral

sequences

(2a) Tor* r
(A, Toif (fi,C)) ^>

L nT(A,C)

(3a) Tor[~ (Tor* M,),C) ^>
L W 7(^,C).

If TorA (/*,) =-. - Tor^ (,C) for n > 0, then both (2a) and (3a)

collapse and we obtain

(4a) TorA r
(A,B Q s C) ** Torr ~

(/I A ,C)

which is a generalization of ix,2.8.

If we replace C by X and F by X*, then (2a) collapses and (3a) becomes

(5a) //(, Tor;) (A,B))
^> Tor^

-*
(A,B)

in the situation (v/lA ,ABv) and under the assumption that is /C-projective.

We now replace ( A,f,X) by (AfSe
,K) and (/f,,C) by (/4,A,F) with A

a two-sided A Cv F-module. Assuming that F is /C-projective, the sequence

(2a) collapses and (3a) becomes

(6a) H^H^A)) => Hu(\ G l\A).

For supplemented algebras we obtain similarly

(7a) Tor[ (Torp
x
(A<K).K) => Tor^

r
(A,K) AA.r

under the assumption that F is tf-projective.

5. APPLICATIONS TO THE CHANGE OF RINGS

We apply the results of 4 to obtain more detailed results for the

"change of rings" as discussed in 11,6 and vi,4. We assume a ring

homomorphism
<r- A->F

and adopt the various notations introduced in n,6. We shall treat A and

F as Z-algebras and apply the results of 4.

Case 1. (4A ,Ar r , rC). Then (la) of 4 with (A,F,S) replaced by

(A,Z,F) reduces to

(l)i T(A,C) - A A C - A
lv} r C

The spectral sequence (2a) of 4 collapses to the isomorphisms Tor (A,C)
*& L nT(A,C). Thus the spectral sequence (3a) of 4 yields

;^ (A,Q.
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The edge homomorphisms are

,D r C -

The homomorphism (3) x coincides with the homomorphism /1>n
of vi,4.

IfTor (A,T) for p > 0, then (2) l collapses and (3)! is an isomorphism.
We thus obtain a new proof of vi,4.1.1.

Case 2. (/4 r ,rFA ,AC). Then (la) of 4, with (A,r,2) replaced by

(F,Z,A) reduces to

)
- >l r (MC) - > A C.

The spectral sequence (3a) of 4 collapses to the isomorphism Tor (A,C)
* LnT(A,C). Thus (2a) of 4 yields

(2)2 Tor (X, Tor*

The edge homomorphisms are

(3)t

(4),

The homomorphism (3) 2 coincides with the homomorphism /2n of vi,4.

If Tor^ (F,C) =0 for q > 0, then (2) 2 collapses and (3) 2 becomes an

isomorphism. We thus obtain a new proof of vi,4.1.2.

Case 3. (A^,rrA , rC). Then (1) of 4 with (A,F,X) replaced by

(A*,Z,r*) reduces to

(1)3 T(A 9C) - HomA (A,C) - Homr (A^C).

The spectral sequence (2) of 4 collapses to the isomorphisms ExtA (/4,C)

** Rn
T(A,C), so that the spectral sequence (3) yields

(2)3 Extfr (Tor^ (r,^),C) ^> Ext^ (A 9C).

The edge homomorphisms are

(3)3 EMl( {, }A,C)->E*ll(A,C)

(4)3 Ext^ (X,C)
- > Homr

The homomorphism (3)3 coincides with the homomorphism /3 n of vi,4.

If Tor (r,A) = for p > then (2)., collapses and (3)3 becomes an

isomorphism. We thus obtain a new proof of vi,4.1.3.

Case 4. (rA^rr ,AC). Then (1) of 4 with (A,r,S) replaced by

(r*,Z,A*) reduces to

T(A,C) = Homr (A^C) - - HomA
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The spectral sequence (3) of 4 collapses to the isomorphisms ExtA 04,C)
m RH

T(A,C), so that the spectral sequence (2) yields

(2)4 Extf M, ExtA (r,C)) ^>
ExtA (A,C).

The edge homomorphisms are

(3)4 Ext?, (A^C) -> ExtA (A,C)

(4)4 Ext^ (AiC) -> Hom r M, ExtA (F,C)).

The homomorphism (3)4 coincides with the homomorphism /4 tft
of vi,4.

If Ext\ (F,C) --= for q > 0, then (2)4 collapses and (3)4 is an isomorphism.
We thus obtain a new proof of vi,4.1.4.

6. NORMAL SUBALGEBRAS

Let A and F be supplemented AT-algebras and consider a /^-algebra

homomorphism
r. A->r

compatible with the augmentations. In F we may consider the left ideal

F. /(A) generated by the image of /(A) under ?. We shall say that the

map (f>
is (right) normal if the left ideal F. /(A) is also a right ideal. If 9?

is normal then F. /(A) is a two-sided ideal contained in /(F). Therefore

F/F. /(A) is again a supplemented /^-algebra which will be denoted by

T//(f). From the exact sequence -> /(A)
- A -> K-> we deduce the

exact sequence
F A /(A)->F-vF GA A:->0

where F is regarded as a right A-module. Since F. /(A) ^ lm(F A 7(A)

-> F) it follows that F//^ may alternatively be defined by

r//? =-- F A A-.

THEOREM 6.1. If the map 7: A -> F ij (r/^/?/) normal and if F,

regarded as a right A-module, is A-projectire, then setting i F//y H'^

the spectral sequences

(1) Extfi (A, EK\ (K<C))
-

(la) Tor^ (Tor^ (A,K),C) Tor,V

The operators of r//<p on ExlA (AT,C) JAIC/ Tor^ (>T,A:) will be defined below.

PROOF. With ii ^-- F//y we consider the situations
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These are cases 4 and 1 of the change of rings corresponding to the natural

map if : F -> ii. Thus the spectral sequences (2)4 and (2) x yield

(2) Ext& (A, Extt (Q,C)) => ExtJ, (A 9C),

(2a) Tor (Tor[ (^,ii),C) ^>
Tor (X,C).

Since F is right A-projective, vi,4.1.3 and vi,4.1.2 imply isomorphisms:

Ext'f, (Q,C) = Ext], (F A #,C) ^ ExtA (ff,C),

TorJ
1

(A,0) = Tor[ M,F A K) Tor* (^,AT).

This introduces left ^-operators in ExtA (K,C) and right i2-operators in

Tor^(/4,/0- Carrying out the appropriate replacements in (2) and (2a)

we obtain (1) and (la).

In most interesting applications A will be a subalgebra of F and 9? will

be the inclusion map. In this case we say that "A is normal" instead of

*V is normal" and write F//A instead of F//y.

Consider an invariant subgroup 77 of a group II. Then Z(TT) is a

subring of Z(FI). For x c FF, y e TT we have

x(y
~

1) (xyx~
l

I)AT, (y
~

\)x
-

x(x~
l

yx 1).

This shows that Z(U) . I(TT) /(TT) . Z(O), and thus Z(TT) is a normal sub-

algebra ofZ(O). It is further clear thatZ(0)//Z( TT)=T Z(\l)O nZ- Zdl'n).

Since Z(II) is 7r-projective it follows that 6.1 applies and we obtain

spectral sequences

(3) Exlfllw(A,H'(ir,Q) ^> ExtJ, M,C), (ii/^iiQ,

(3a) Tor^(//,(7r,/l),C) ^> TorJ/ (^,C), (^n^ii/.O.

Taking /4 = Z in (3) and C --=- Z in (3a) we obtain

(4) H'dlWfaC))^ //
W
(H,C), UC,

(4a) H9(UI^H^A))^ HH(ILA), Au .

The sequence (4) is that of Hochschild-Serre (Trans. Am. Math. Soc. 74

(1953), 110-134).

As a second example consider an ideal I) of a Lie algebra g over K, and

assume that I) and g/l) are A^-free. Take

A - If, F -
fl', 12 -=

Then we have the natural maps
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It follows from xm,4. 1 that F regarded as a right A-module is free. In

particular qp is a monomorphism which may be regarded as an inclusion.

In xin, 1.3 we have studied the kernel of the epimorphism y and have

proved that its kernel is the left ideal T. /(A) (which coincides with

/(A).T). This proves that the subalgebra A of T is (both left and right)
normal and that ti = T//A. It follows that 6.1 applies; we obtain

spectral sequences

(5) Ext (,4,//
f

'(f),C)) y* Ext^ (A,C) (fl/^'ftC)

(5a) Tor (//g(M),O ^> Totf (A,C) (>U/f>C)-

Taking A K in (5) and C = K in (5a) we obtain

(6) tfp({j/f),//(I),C)) => //"(g,C),
fl
C

The sequence (6) is that of Hochschild-Serre (Ann. of Math. 57 (1953),

591-603).

7. ASSOCIATIVITY FORMULAE USING DIAGONAL MAPS

We shall consider a supplemented A'-algebra A together with a diagonal

map D: A~* A Q A and an antipodism o>: \-* A* satisfying condi-

tions (i)-(vi) of xi,8. In the situation (A >4,A fl,AC) we may use the identifica-

tion of xi,8.1 to obtain two representations for the functor

(1) T(A<C) = HomA (/^, Horn (^,C7)) HomA (/4 B^C).

Thus applying the procedure of 3 we obtain spectral sequences

(2) Exl (^, Ext" (,C)) y> /?'T(^,C),

(3) E\i\ (Tor ;, (/4,5),C) ^> /?'T(X,C).

Here ExtQ
(B,C) and Torp (/i,j5) are regarded first as left A A*- and

A A-modules and then converted into left A-modules using the maps
E: A -v A > A* and D: A -> A A. We recall that Ext" and Torp

stand for Ext'^, Tor
;f .

Assuming that Tor p (A,B) = for p > the spectral sequence (3)

collapses and (2) becomes

(4) Ext (A, Ext" (,C)) =>
Ext;!, (A ^,C).

In particular, for A -- - K we obtain

(5) Ext (A:, Ext" (B,C)) => ExtA (,C).
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If further Ext* (,C) = for q > then (5) collapses to the isomorphism

(6) Exi
n
A (K9 Horn (B,Q) **

A similar discussion applies to homology. In the situation (A\^\B^C)
we use xi,8.1a to define

(la) T(A,Q =A A (BC) = (A B) A C.

This yields spectral sequences

(2a) Tor* (A, Tor, (fl,C)) ^ L,t7V,C),

(3a) Toif (Tor p (/f ,fl),C) ^>
L nT(A,C).

If Tora (,C) = for
</
> 0, then (2a) collapses and (3a) becomes

(4a) Tor* (Tor, (A,B),C) => Tor^ (/J,^ C).

In particular, for C = /C we obtain

(5a) Tor (Tor, (A,B),K)^ Tor (A,B).

If further Torp (A,B) = for
/? > 0, then

(6a) Tor^ M 5,^) ^ Tor^ (A 9 B).

The considerations of this section arc applicable to groups and to Lie

algebras; we only need to replace A by Z(\\) or by cf.

8. COMPLEXES OVER ALGEBRAS

Let A be a /f-projective supplemented /f-algcbra. We shall consider

a positive complex C composed of left A-modulcs and in which the

differentiation is a A-homomorphism. To the functor

where A is a left A-module, we apply the considerations of 2. The

spectral sequences (4
;

) and (5') of 2 then give

Extft

If we take A = K and denote 3t n
T(K9C) by JT

n
(A,C) we obtain

(1) //P(A,//"(C)) ^>
JfW

(A,C)

(2) H(H*(A,C)) > JfT n
(A,C).
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We recall that in virtue of the definition of ^? rTwe have

:/T n(\,C)- //"(HomA (*,<?))

where Xis a A-projective resolution of K and HomA (X,C) is regarded as

a double complex.
PROPOSITION 8.1. If // f/

(C) -=-
for <jr

7^ 0, then we hare the spectral

sequence

(3) //<(//'(A,C), ^> //(A,//(C))).

Indeed, in this case the spectral sequence (1) collapses to the iso-

morphisms JT"(A,C) ^ //"(A,//(C)).

PROPOSITION 8.2. If C is weakly injective, then we have the spectral

sequence

(4) //"( A,//
fl

(C)) y*
//

M(HomA

Indeed, in this case 7/p(A,C)
-- for

/?
> so that the spectral

sequence (2) collapses to isomorphisms ,# "(A,C) ^ //''(//(A,C))

PROPOSITION 8.3. //'///P conditions 0/8.1 a/?d 8.2 r^ simultaneously

verified then

(5) //"(A,//(C)) ^ //"(HomA (^C)).

This result may be interpreted as follows. The complex C may be

called a weakly injective resolution of //(C). The isomorphism (5)

then generalizes the usual rule for computing //"(A,//(C)) using an injec-

tive resolution of //(C).

Similar considerations apply to homology. We denote by A a

negative right A-complex and consider the functor

T(A,C)-^A A C

where C is a left A-module. In particular, taking C K, we obtain

spectral sequences

(la) H,(Hj(A,A))^jr n(A 9A)

<2a) Hg(A,Hp(A))f>JT n(A,A)

where

Jf' n(A,A)=HH(A A X)

for any A-projective resolution X of K.
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PROPOSITION 8. la. // HP(A) for p > 0, then we have the spectral

sequence

(3a) H,(Hq(li,A)) ^ H n(A,H(}(A)).

PROPOSITION 8.2a. If A is weakly projective, then we hare the spectral

sequence

(4a) Hq(AMp(A)) ^> H(A A K).

PROPOSITION 8.3a. If the conditions oj 8. 1 a and 8.2a are simultaneously

verified then

<5a) Hn(AM(}(A)) ** Hn(A A *).

We shall apply the above results to the case A Z(F1) where II is a

group with unit augmentation. We consider a negative I [-complex X.

Thus (using lower indices) Xn
- for n 0.

THEOREM 8.4. If X is weakly projectile then for any left \\-module C
we have the spectral sequence

(6) //"(II,//"(Hom ( jr,C))) 7- //"(Homn

whilefor any right ll-module A \ve hare

(6a) Hp(llHQ(A A-)) ^> 7/,,M r, ^).

We recall that s Ft operates on Horn (X,C) and A i .V as follows

For the proof, we first observe that, by x,8.5, Hom(Ar

,C) is weakly

injective and A X is weakly projective. Thus 8.2 and 8.2a yield

//p
(II,//''(Hom ( JT,C)) ^>

w(Homn (/f, Horn (A^,C))

Hp(HH(l(A & X))=> H n((A r:. *) G n /C).

Since by associativity relations

Homn (AT, Horn (X,C)) a* Homn (A^,C)

M X) Qn K**A G n ^
the spectral sequences (6) and (6a) follow.

The spectral sequence (6) was first indicated by H. Cartan and

J. Leray (Colloque Top. Alg., Paris, 1947, pp. 83-85) for the case when

IT is a finite group, and by H. Cartan (C.R. Acad. Sci. Paris 226 (1948),

303-305) for the general case.

In the next section we shall give a number of topological applications of

theorem 8.4.
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9. TOPOLOGICAL APPLICATIONS

Lei .- be a topological space on which a group II operates on the left.

We shall assume that the operators of FT are proper^ i.e. that for each

point .Y f there is a neighborhood U such that

U O .fl/~= for 5 ell, s-^ 1.

In particular, for s / 1, the transformation s: if ?f admits no fixed

points.

We shall denote by //'H , the space obtained from ,

JT by identifying
each point ,v with its images sx, s IT. If we assume that . is arcwise

connected, then ./' is a regular covering of ,'fn and the fundamental group
of //' may be identified with an invariant subgroup of the fundamental

group of //'u . The factor group is then the group II.

Let A' denote the total singular complex of the space JT. Clearly X
has left ll-operators and, since the transformations of II on 3* have no

fixed points, X is II-free.

Given a right Il-module A and a left Il-module C we may consider

the homology and cohomology groups

H
tl(.r\A) ff,,(A :,-A'), f/

M
(^;C) -= //"(Horn (r,C)).

The operators of II on A and Care not used in this definition. However,

they are used (together with the operators of II on X) to convert Hn(*\A)
into a right Il-module and H"(.f\C) into a left Il-module.

The modules A and C may also be regarded as local coefficient systems
on the space ,'/Yi and can be used in defining the homology and cohomology

groups

with local coefficients. It is well known that we have natural isomorphisms

Since X is Fl-free, we may apply theorem 8.4. We thus obtain spectral

sequences

(1) H(HM\\C)) //%rn ;C),

(la) HJ

We shall now examine various applications of these spectral sequences.
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Application 1. Assume that X is pathwise connected and that for

some integer n

(2) H\%\C) =-0 for -; q < n.

Then //(^T;C) -= C. By xv,5.12, the spectral sequence (1) gives

isomorphisms

(3) H\aru ;C) ^ //"(II,C), q ^ n,

and an exact sequence

(4)

For analogous homology results we assume that X is pathwise con-

nected and that

(2a) #<,(#* ;/4)
^ for < q < n.

Then H^(9C\A) yJ.and using xv,5.12a we obtain isomorphisms

(3a) HJi3Tu \A) ** //,,(IU) q<n
and the exact sequence

(4a) Hn+l(Vu iA) -> Hn , ^A)- [//("M)]n

->//,X^n;^)^//,xn,/o-^o.

These results include various results of Eckmann (Comment. Math.

Heir. 18 (1945), 232-282), Eilenberg-MacLane (Proc. Nat. Acad. Sci.

U.S.A. 29 (1943), 155-158; Trans. Am. Math. Soc. 65 (1949), 49-99;

Ann. of Math. 51 (1950), 514-533) and Hopf (Comment. Math. Helv. 17

(1944), 39-79). Not included are the results of Eilenberg-MacLane

dealing with the invariant k"+ l

(see Exer. 9). The knowledge of this

invariant yields a complete determination of H n
(9Cu \C) and H n (3^n ',A)

rather than the partial information contained in the exact sequences (4) and

(4a).

Application 2. Assume that FI is cyclic infinite with generator s.

Then a Il-projective resolution of Z is given by

o z(n )
-!> z(n)

- z > o

where d is multiplication by s 1. It follows that

//(II,C) = Cn , H l
(U,C) - Cn , //"(n,C) = for/? > 1

HQ(H,A) = An , H^A^A 11
, H^ll.A) = for/?>l.
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Therefore in the spectral sequences (1) and (la) non-zero terms occur only

for/;
= 0, 1 and case E of xv,5 applies. We thus obtain exact sequences

-> [H-*(ar',A)]u ~* H n
(Orn ;A) ~> [//"( ;A)]

U ->

o --> [H^ar'9A)]n -> tfn(srn,A) -> [//n. 1(ar^)]
n -> o

For a direct proof see Serre (Ann. of Math. 54 (1951), 503).

Application 3. Assume that SC is an w-dimensional manifold which is

acyclic, i.e.

HAP ;Z) - Z, //,(#* ;Z)
- for q > 0.

The Euclidean Az-space is an example of such a manifold. It follows from

the Kunneth relations (vi,3.1 and vi,3.1a) that

// (#*;C) - C /W;C) - for q >

HJiX\A) - A, HQ(&;A) - for q >

for any coefficient group. This can also be deduced from the fact that

the singular complex X of SC is a Z-projective resolution of Z.

The spectral sequences (1) and (la) collapse, therefore, to the iso-

morphisms

Since #"H is an A7-dimensional manifold, we have Hp
(3 n \C) = for/? > n.

Therefore

/HH,C)--0 forp>n

for all coefficient modules C. This means that (cf. x,6.2)

dim^(n) Z ^ dim Z(IT) < /?.

If further .<Tn is compact, then //w(n,Z2) ^ H^SC^Z^ ^ 0, and thus

Z dim

This imposes severe limitations upon the groups II that can operate

properly on SC. In particular, all finite groups (except for II {!}) are

excluded (see xn, Exer. 2).

Application 4. Assume that SC ~ S 7'

is the w-sphere. Since SC is

compact and II operates properly, it follows that II must be finite. If n

is even, then because of well known fixed point theorems every element

s II, s ^ 1 must reverse the orientation of Sn
. Therefore either
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II = {1} or II = Z2 . Eliminating this not too interesting case, we may
assume that n is odd. Then each element s e II preserves the orientation

of Sn
. Further

)= C

HQ(S
n
;A) = A for 9- 0,

and the remaining groups are zero. In the spectral sequence (1) and (la)

non-zero terms are obtained only for q 0,. Thus xv,5.11 implies the

exact sequences

Since 5ft is an w-dimensional manifold, we have

H(S?i ;C) = =
//.(5ft M) for / n.

The exact sequences above thus yield the isomorphisms

), <; ? < n

//(II.C) //t+rjfl(n,C), / >

,/r> / > o.

We now consider the complete derived sequence // r/

(II,C) of xn,2. We
have the natural isomorphism H l

(U,C) //"+2(I1,C). Since H and

//rwfl are left satellites of 7/ 1 and #"+2 there results an isomorphism
H"+ l(H 9C) ^ H(Il,C). Therefore the finite group II has period
n + 1, in the sense of xn,ll. We have seen in xn,ll that this imposes
severe limitations on II. It is an open question whether every finite

group II with period n + 1 (n odd) can operate properly on Sn
.

10. THE ALMOST ZERO THEORY

Let II be a group and X a negative (left) O-complex (i.e. Xn
=- for

n < 0) and A an abelian group. An ^-dimensional cochain/: Xn
-> A is

called I\-finite if for every x Xn we have f(sx) for all but a finite

number of elements s II. The Il-finite cochains form a subcomplex

Horn (X,A) of Horn (X,A).

With each Il-finite cochain/: Xn >A we associate the cochain

/' Homn (*w,Z(ri) A) given by

/'jc=
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Here Z(II) g) A is regarded as a left O-module using the left II-

operators of Z(FI). Conversely any /' has the form f'x = ^ s (5,jc)

tell

and we may define/by setting fx g(l,x). It is now clear that we obtain

an isomorphism

(1) Horn (JM) ** Homn (X,Z(Tl) ><).

If A' is a projective II-resolution of Z, then we define

(2) H n
(H,A) - //"(Horn

These are the cohomology groups of in the "almost zero theory"; they

were considered by Eckmann (Proc. Nat. Aca. ScL U.S.A. 33 (1947),

275-281, 372-376; 39 (1953), 35-42). Combining this with (1) we obtain

ff
n
(Il 9A) <* H n

(U 9Z(H) A).

This reduces the "almost zero theory" to the usual cohomology theory of

groups.
We now drop the assumption that X was a II-projective resolution of

Z and assume only that X is weakly projective. Then 8.4 may be applied

to yield the spectral sequence

(4) //p(Il,//(Hom (A-,Z(I1) ,4))) => //"(Horn (A',/!)).

Assume now that, for each /?, the II-module Xn is IT-free on a finite base

{a w a). The elements san^ for 5 II, form a Z-base for Xn . A cochain/:
Xn

-> ,4 is It-finite if and only if/faff,,,,) except for a finite number of

pairs G?,a). Thus the Il-finite cochains coincide with the finite cochains

on X relative to the system of cells .7
Mffll

. Thus the spectral sequence

(4) becomes

(4') //(IT,//"(Hom (\\Z(U) A))) => &'(X9A)

where %>"(X,A) is the cohomology group of X based on finite cochains.

These considerations may be applied in the following topological

situation. Let 3C be a topological space with IT as a group of left

operators. Assume further that a cellular decomposition of is given
which is invariant under the operations of II and such that no cell is

transformed onto itself except by the element 1 of II. We finally assume

that 3CU is compact. If we denote by X the I [-complex of the chains

of the cellular decomposition of #", we find that each Xn is Il-free on a

finite base. Therefore $"(X,A) is the cohomology group based on the

finite cochains of the cell complex. This group, denoted by $"(3r 9A) 9 is
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known to be independent of the choice of the cell decomposition, and is

known as the "cohomology group of 2 with compact supports." The

spectral sequence (4') may now be rewritten as

(4") //*(n,//<(<r,z(n) A))*

EXERCISES

1. In the situation (A.s/4,5r.L ,ACr) where A, F and S are /T-algebras,

define the isomorphism

HomA02: (A, Hom r (fl,C)) ** Homr0s (, HomA (A,C))

and derive appropriate spectral sequences.

2. Show that the homomorphism p of vi,5 is an edge homomorphism in

one of the spectral sequences of 4. Use this to generalize vi,5.1.

3. Show that the maps Uy and Oy of xi,9 are edge homomorphisms in

two of the spectral sequences of 7. Use this to generalize xi,9.2.

4. Prove vi,3.5, vi,3.5a and vi, Exer. 14 using the spectral sequences
of 4 and Exer. 1 .

5. Let 9? : A -> F be a ring homomorphism and let 4 be a left F-module.

Show that

l.w.dimA A <L l.w.dimA F 4 l.w.dim r A,

l.inj.dimA A <I r.w.dimA F + l.inj.dim r A,

l.dimA A fC l.dimA F + l.dim r A.

6. Let A be a ^f-projective supplemented algebra. Let C be a positive

complex, composed of left A-modules and in which the differentiation is a

A-homomorphism. Assuming that

//"(C) for < q <r n,

define an exact sequence

*
//"(

[Hint: use the spectral sequence (1) of 8.]

Give a dual statement.

7. Let S and S' be two H-dimensional spheres (n odd), with the cyclic

group n of order p operating on X and on 9C' (p odd prime). Let / be a

continuous mapping 3C'-> SE' compatible with the operations of n.

Then, using Exer. 6, define a commutative diagram
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Assume now that II operates properly on 3C\ then, using
//w+1(#\i;zf)=^ and Exer. 6 (or the exact sequence (4) of 9), prove
that v is an isomorphism. Using the diagram (A), show that the homo-

morphism/" does not depend on the choice of the mapping/. In other

words, the "degrees" of any two mappings #-> 3C
1

(compatible with II)

are congruent mod. p.

8. Let 9C be a connected topological space, with a group II operating
on SC\ assume that

H
g(3T)

-= for < q < n.

A" denoting the singular complex of 3C, show that

//"(Horn;, (*,//())) -- < q < n

//"( Homz (*,//(#"))) --- Hom

Applying Excr. 6, define a homomorphism

y: Hom
rf (

Let / denote the identity map: H,,(&) -> If (.?). Then y(/) is the

Eilenbcrg-MacLanc invariant

Let ?l" be another space satisfying the same conditions, with the same

group n operating on ,

Jf. Let / be a continuous mapping 9C-*3C'

compatible with the operations of II. Show that the corresponding

homomorphism

maps the invariant kn41 of .'#' into the invariant fe'
wfl of .#".

Using the invariant fe"
M

give a new proof of the final result of Exer. 7.



CHAPTER XVII

Hyperhomology

Introduction. In Chapterv a resolution of a module A was defined to

be a complex with suitable properties. If A itself is a complex the resolu-

tion must be defined as a double complex satisfying rather strong condi-

tions (1). Given a functor T of one variable, a complex A and a resolu-

tion X of A , it turns out that the invariants of the double complex T( X) are

independent of the choice of X and yield the "hyperhomology invariants"

of T(A). There result two spectral sequences with essentially the same
"limit" and with terms E2 given by

Hp(R
f

'T(A)) and (RT)(H*(A)).

Similar results hold for functors of any number of variables.

The spectral sequences obtained may be regarded as a general solution

of the problem partially solved earlier by the Kunneth relations (iv,8 and

vi,3).

1. RESOLUTIONS OF COMPLEXES

In the sequel we shall have to consider modules, complexes and double

complexes all in the same context. The following conventions will

simplify matters. Given a double complex A and an integer/?, we denote

by A pt * the complex B defined by B'1 A and the second differentiation

operator d2 of A. Similarly A*-'1
is the complex C defined by Cp ^- A Pt

and the first differentiation operator r/x of A. We shall refer to A*** and

A* t<l as the/Mh row and ^-th column of A, respectively. The differentiation

operators of A yield maps

tQ

For each double complex A we defined in xv,6 the double complexes
HL(A) and HU(A). The double complex H^A) is obtained by taking

homology modules with respect to the first differentiation operator in A.

Thus in //T(>0 the first differentiation operator is zero and the second one is

induced by d2 . In Hn(A) it is the other way around. Clearly

Hfi*(A) = H(A*'*), H?*(A) = H(A*>)
362
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In quite the same way we define the double complexes

B[(A), Z,(A\ Z[(A)

and similar double complexes with I replaced by II.

As in v,l, a module A will be regarded as a complex with A Q = A,

A n = for n -=f- 0. A complex A will as a rule be regarded as a double

complex such that A** --- A p
, A = for q ^ 0. Thus A*'* = A and

the given complex appears as a 0-th column in the double complex.

Let A be a complex. A
left double complex X over A consists of a

double complex X such that X for q > 0, and of an augmentation

map : X-* A. The augmentation actually is given by the map e: A"*'

-> /I such that the composition A'**" 1 -> A
r**-> X is zero.

Let/: v4 -> /T be a map of complexes and let X, X' be left double

complexes over A*A' with augmentations ,
e

1

. A map F: X-> X' such

that z'F fe is called a ma/? over f.

Let A" be a left double complex over the complex A. There result the

following left complexes:

(l) p A over /P

(2), Zf'*(Jf)overZ*(yO

(3), Z
I'"'*(A')overZ''>(X)

(4), Uf'*(*) over *(/)

(5), *;**(*) over *'*(/!)

(6) p //?*(*) over //P04)

We shall say that X is a projective resolution of the complex A if for all /7,

(l)-(6) are projective resolutions.

PROPOSITION 1.1. If for all
/>, (4) and (6) 0re projective resolutions,

then X is a projective resolution of A.

PROOF. Since (4)^ and (5) p are naturally isomorphic, it follows that

(5),, is a projective resolution. The sequences -> (4) p
-> (2) p

-> (6) p
-> 0,

0->(6)p ->(3)p ->(5) p ->0 being exact, it follows from v,2.1 that (2) p

and (3)0 are projective resolutions. For the same reason the exactness of

the sequence 0-> (4) p
-

(l) p
-> (3) p

-> implies that (l) p is a projective

resolution.

PROPOSITION 1 .2. Each complex has a projective resolution. If X and

Y are projective resolutions of complexes A and C, andf: A -> C is a map,
then there is a map F: A'-> Y over f. If F,G: X-* Y are maps over

homotopic mapsf.g: A-+C then F and G are homotopic (in the sense of
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PROOF. Let A be a complex. For each p select projective resolutions

X*-B and XP >H of BP
(A) and //*(/*). By v,2.2 we may find for each p an

exact sequence
- xp *B -> X** -> XpJ{ ->

where A'"-* is a projective resolution of ZP
(A). Applying v,2.2 again we

obtain exact sequences

-> X*-z -> XptA -> XP+1 >
B -

where XP>A
is a projective resolution of /R We define X to be the

doubly graded module with XP *A as the /Mh row. The first differentiation

operator dl is defined by composition

The second differentiation J2 is defined for each row XP 'A as the differentia-

tion in XptA with the sign ( l)
p

. Then d^ + d^ = and X is indeed

a double complex. The augmentation A' > A is defined by the augmenta-
tions X**A -+A P

. For this double complex X, the complexes B^*(A)
and //f *(A) are isomorphic with X* E and Ar/) - 7/

. Thus it follows from

1.1 that Xis a projective resolution of A.

Let A'and Y be projective resolutions of the complexes A and C and let

/: ,4 -> C be a map. Consider the maps

/'*: 5p(^)^^(C), f p >z
: Z*(A)-+Z*(C) 9 f p 'H

: HP
(A) >HP

(C)

induced by/. By v,1.2 there exist maps

over/*'
5
and/

p '
H

. By v,2.3, there exist maps

ovcrf
p 'z such that the diagrams

-
Jf'*(^) -> Zf *(*) -> //f-*(^) ->

I I I
o -> '

*( y) -> z'-*( r) -> //*( y) -> o

are commutative. Applying v,2.3 again we find maps

over/
39 such that the diagrams

-* Zf *(X) -> ^'* -> ^p 1
'*(A

r

)
->

i I ;
o -> z *( y> - yp-* -> ^ +!*( y) -> o
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are commutative. It follows that the diagrams

,*-1. yjH-1.*
rfi

are commutative. Thus the maps Fpt *
yield a map T7 : X -> Y over

/ as desired.

Finally let F,G: X-> Y be maps over/,g : A -> Cand lets: /~#bea
homotopy. By v,1.2 there exist maps Sp'*: Xp>* -> y*+i* over

,y
p

: /P-^C7^ 1
. The maps S/My

yield a homomorphism 5: X ^ X of

bidegree (1,0), which commutes with the augmentation and anticommutes

with the second differentiation. Setting

we find that J: X-> Y is a map over g and that (5,0) is a homotopy
F~J. It thus remains to be shown that the maps C and J over the same

map g are homotopic.

In each of the rows Xpt *
9 Y***, Bf'*(X)c\c.< we consider the differentia-

tion operator given by ( 1)V2 . By v,1.2 we may choose homotopies,

Then v,2.3 yields a homotopy

which properly commutes with the above two. Applying v,2.3 we obtain

homotopies
^p,*. y;,* rw

(J-7>.*

which commute with the above. The maps ( \)
pTpt *

yield a homo-

morphism T: X-> Y of bidegree (0,1) and such that

d^T + Tdi -- 0, </27 + Tc/2
- G - J.

Thus (0,7) is the desired homotopy J ~ G. This concludes the proof
of 1.2.

A right double complex over a complex A is a double complex X such

that X = for q < and an augmentation map f: A-> X. The

definition of an infective resolution of A and the formulation and proof of

the analogue of 1 .2 are left to the reader.
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PROPOSITION 1.3. Let Abe a complex such that A n =
for some set N

of integers. Then theprojective resolution X ofA and the infective resolution

YofA may be chosen so that Xn 'q = and Yn 'Q
0/or all indices q and all

integers n e N.

This is a direct corollary of the construction of X given in the proof
of 1.2.

PROPOSITION 1 .4. Let A be a ring such that for some integer n the

functor Extw+1 is zero. Thenfor any A-complex A the projectile resolution

X and the injective resolution Y may be chosen so that X*>Q = and

y* =-. for
| q |

> .

PROOF. The condition Extn+1 implies, by vi,2. 1 and vi,2. 1 a, that all

A-modules have projective (injective) dimension <ji. Thus all projcctive
and injective resolutions of A-modules may be chosen of dimension <I/i.

Thus the conclusion of 1.4 again follows from the construction given in

the proof of 1.2.

2. THE INVARIANTS

Consider the (additive) functor T(A,C) covariant in A, contravariant in

C, where A is a A^module, C is a A 2-module and T(A,C) is a A-module.

Let A be a A^complex and A' an injective resolution of A, and let C be a

A 2-complex with a projective resolution Y. Then T(X, Y) is a quadruple

complex. We pass from this quadruple complex to a double complex by

grouping (see iv,4) the first and the third index and the second and the

fourth index. Thus

T"-\X, Y) = 2T(X**', Yp^, Pl +pt
--=

p, to + ?,
-

q.

The differentiation operators d l and d2 on T(X, Y) are defined on

We shall show in a moment, that the invariants of the double complex
T(X, Y), consisting of the graded module "H n

(T(X, K)), its two filiations,

and the two spectral sequences belonging to these two filiations, are

independent of the choice of the resolutions of A and C. We shall refer to

these as the "cohomology invariants of the functor T and the complexes
A and C" or, by abuse of notations, as the cohomology invariants of

T(A,C). The module H*(T(X, Y)) will be written as 9tT(A 9C) and will be

called the /Mh hypercohomology module of T(A,C).
Consider another pair A\ C' of complexes and their resolutions A", Y'.

Given maps/,/!: A-*A' and g,g^ C'->C, we can find maps /%/v.
A"-> X', G,Gi\ y'-> Y over/i/i, g,g l respectively. These induce maps
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J= 7XF,<7), /! = 7YFlfGy of the double complex T(X, Y) into 7XA", 7')-

Thus J and Jl induce maps of the invariants of these double complexes.

Suppose now that we have homotopies /~/!, g
~

g^ Then by 1.2 we
also have homotopies F~ Fl9 G ~ G^ As was shown in iv,4, this yields
a homotopy J^Jl

and therefore by xv,6.1, J and J1 yield the same

homomorphisms of the invariants of T(X, Y) into those of T(X', Y').

The above reasoning yields the following conclusions. The invariants

of T(A,C) as defined above are independent of the choice of the resolutions

of A and C; maps/: A -> A', g: C' > C induce a map of the invariants

of T(A,C) into those of T(A' ,C'); homotopic maps/~/i, g
~

gl induce

the same maps of the invariants. Thus the invariants of T(A,C) may be

regarded as a functor covariant in A 9 contravariant in C and invariant with

respect to homotopies.

We now proceed with the computation of the initial terms TJ'
7
, II.J

f* of

the two spectral sequences associated with T(A,C). By xv,6 this amounts

to computing the doubly graded modules

HMtnX, y, HUHL(T(X9 Y))

where X is an injective resolution of A and Y is a projective resolution of C.

We begin by computing H{][T(X, Y)). Since in //,, only the second

differentiation operators are used, we may concentrate our attention on a

fixed row Xpi'* of X and a fixed row Y
Pt^ of Y. Then

Hff(T(X9 Y)) - ^ H*(T(X**> y^,*)).
PI~* P*^P

Since X Tt *
is an injective resolution of A r and Y

s * is a projective resolution

of C
s
we find

We thus find

(1) H

or equivalcntly

The differentiation operators on both sides of (T) coincide. Since

//(//*) is precisely the module of degree (/?,^) ofH1
Hn we obtain

(2) !*= H'(WT(A 9 C)).

We now proceed with H
}(T(A,C)). Since only the first differentiation

operators are employed in computing Hl we may limit our attention to

fixed columns X*"*, Y* of X and Y. Then

Hf*(T\X,Y))== 2



368 HYPERHOMOLOC Y [CHAP. XVII

Since X**\ Z(X**), 'B(X**) 9 . . . , H(X*-^) are all composed of injective

modules, the complex X**q*
splits. Similarly Y*^ splits. Therefore by

iv,7.4 the maps a and a' are defined and are isomorphisms. This leads to

the identification

\Y)= 2

Combining the last two formulae we obtain

(3) //rfTx*, y -

The differentiation operators on both sides coincide and are both given

by the second differentiation operators. Since H^X) is an injective

resolution of H(A) and H^ Y) is a projective resolution of //(C), we may
apply (1) to (3). We find in this way the terms HffHl9 i.e. the terms II?'* as

(4)

We recall here that in the notation for the second spectral sequence, the

second index q indicates the degree of the filtration. In (2) the degree of

the filtration is
/?.

The case of two variables considered above was only an example. The

discussion applies to any number of variables provided all covariant

variables are resolved injectively and contravariant variables are resolved

projectively.

There is a dual discussion for homology invariants based on projective

resolutions of covariant variables and injective resolutions of contra-

variant variables. The homology invariants of T(A,C) consists of hyper-

homology modules &nT(A,C) possessing two filiations, and of two

spectral sequences beginning with the terms

<2a) I
7V

(4a) II*,,

where the filtration degree in (2a) is p while in (4a) it is q.

3. REGULARITY CONDITIONS

As above let A and C be complexes, A" an injective resolution of A and

Y a projective resolution of C. Since A'' = and Y
Ptq
= for 9 < 0,

it follows that

P^A; r) = o for q < o
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where T is a functor covariant in the first variable and contravariant in the

second. Therefore the first filtration is regular. Thus, by xv,6 (Case 1),

we have the edge homomorphism

which becomes the homomorphism

(1) Hn
(RT(A,C)) -> 3tn

T(A 9C).

As for the second filtration, it need not be regular, but nevertheless by
xv,6, we have the edge homomorphism,

Q

which yields

(2) .

PROPOSITION 3.1. The composition of the homomorphisms (1) and (2)

coincides with the homomorphism

a' : H(R1\A 9C)) -> RQT(H(A\H(Q)

o/iv, 6. la, applied to the left exact functor R
Q
T.

PROOF. Let a be the composition of ( 1 ) and (2). Clearly a is natural.

In view of iv,6.1a it therefore suffices to show that a is the identity if A and

C have differentiation zero. In this case the resolutions X and Y may be

constructed simply by choosing resolutions for the modules A p and C
and letting the first differentiation operators be zero. Thus T(X,Y) will

have the first differentiation operator zero. The fact that a is the identity

follows from the final remark of xv,6.

In practice, we shall not be able to say much about the cohomology
invariants of T(A^C) unless we know that the second filtration also is

regular. We have no general criteria for this, but the following two cases

include all the situations actually encountered.

Case 1. The complex A is bounded from below (i.e. A p for p
sufficiently small) and the complex C is bounded from above (i.e. Cp

for p sufficiently large). Then by 1.3, the resolution X of A may be

chosen with Xp<"

for/? small and Y may be chosen with Yp'" for p

large. Therefore since T(X, Y) - ^T\X^^Yr^\p l + p^ = p 9 ql +g^
=--

</,
it follows that Tpt

(X, Y) = for/? sufficiently small. In this case the

second filtration of T(X, Y) is regular.

Case 2. Suppose that the rings A l and A 2 over which the nodules A
and C are given are such that ExtJ^ 0, Ext?\2

for q sufficiently large.

Then, by 1 .4, the resolutions X and Y may be chosen so that X =
Y for

|
q | sufficiently large. It follows that T(X, Y) = for

| q \

sufficiently large. In this case the second filtration is regular.
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In the sequel, when considering the cohomology invariants we shall

automatically assume that we are in one of these two cases. We thus

have the sequences

(3) H*(K*T(A,C)) ^> M"T(A,C)

(4) 2 Rq
T(H**(A) 9

H
Pz(C))^>!#"T(A,C)

PI+PI-P

called, respectively, the first and the second cohomology spectral sequences

ofT(A,C).
If we assume that R*T(A,C) = for q > 0, then the sequence (3)

collapses and (4) becomes

(5) 2 RT(H*>(A),H,2(C))f>H(R<>T(A,C)).

If we assume that A is an acyclic right complex over a module M and C
is an acyclic left complex over a module N* then (4) collapses and (3)

becomes

(6) H*(IVT(A.C)) j>
R

If further R"T(A,Q = for q > then (6) yields

(7) H"(R
Q
T(A,C)) ** R"T(M,N).

This generalizes the rule for expressing the derived functors R"T using

resolutions of the variables.

We now briefly state the corresponding facts for homology invariants.

If A" is a projective resolution of A and Kan injective resolution ofC then

Tp Q(X, Y) = for q < and the second filtration T(X* Y) is regular. We
have the edge homomorphisms

which give

PROPOSITION 3. la. The composition of the above two homomorphisms
coincides with the homomorphism

a: LQT(H(A)M(Q)^H(L T(A,C))

of iv,6.1.

In the sequel, in order to assume the regularity of the first filtration we
shall automatically assume that we are in one of the following two cases:

Case la. The complex A is bounded from below, while the complex
C is bounded from above.
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Case 2a. The same as case 2.

In either of these two cases we have the sequences

(3a)

(4a) I
PI+PI-P

called, respectively, the first and the second homology spectral sequences
of T(A,C).

4. MAPPING THEOREMS

PROPOSITION 4.1. The natural transformation t: RT-> T induces an

isomorphism of all the cohomology invariants of R
Q
T(A,C) onto those of

T(A,C).

PROOF. In view of xv,3.2 it suffices to verify the conclusion for the

initial terms of the spectral sequences (the regularity conditions of 3

being tacitly assumed). This, however, is clear, since by v,5.3 t induces

isomorphisms R1RQT ^ RQT.

The above proposition shows that Tand flrhave the same cohomology
invariants. Thus without any loss of generality, we may assume that T is

left exact.

PROPOSITION 4.2. Let f: A -> A\ g: C' -> C be maps of complexes
such that the induced mappings

H(RT(A,C))~>H(RT(A',C))

RT(H(A)M(C))-+RT(H(A'\H(C'))

are isomorphisms. Thenfand g induce isomorphisms ofall the cohomology
invariants ofT(A,C) onto those ofT(A',C).

This is an immediate consequence of xv,3.2.

THEOREM 4.3. Letf: A -> A\ g:
'

-> C be maps of complexes which

induce isomorphisms H(A)-+ H(A'). //(C')-* H(C). Let T be a left

exact functor such that Rq
T(A,C) = - RQ

T(A\C')for q > 0. Then, if

the regularity conditions of 3 are satisfied, fandg induce an isomorphism

H(T(A<C))-+H(T(A\C)).

*

PROOF. Since RQ
T(A,C) = for q > 0, the first spectral sequence of

T(A,C) collapses and reduces to an isomorphism H n
(T(A,C)) Rn

T(A,C).

Thus the second spectral sequence yields

The same holds with A,C replaced by A',C. Since /and g induce iso-

morphisms of the terms on the left, the conclusion follows from xv,3.2.

We leave to the reader the statement of analogous propositions for

homology invariants.
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5. RUNNETH RELATIONS

We shall suppose here that the functor T is left exact and satisfies

(1) RnT=0 forn>\.

We are in Case 3 of xv,6. Thus the first spectral cohomology sequence

yields the exact sequence

which can be conveniently recorded as the exact triangle of graded modules

with the degrees of 7, p, d being 2, 0, 1 respectively.

The second spectral cohomology sequence yields exact sequences

-> nn-i.1 _^ gtT-* II
W ' ->

which can be recorded as the exact sequence

R1
T(H(A),H(C)) -^ &T(A,Q -1* T(H(A)M(C))

with <r, T having degrees 1, 0.

We already know from 3.1 that the composition rp is the homo-

morphism a': H(T(A,C))-^ T(H(A)M(Q). It can be shown by a similar

argument that the composition da coincides with the homomorphism
a: Rl

T(H(A),H(C))-> H(R 1T(A)) which is defined since, by (1), the

functor R1T is right exact.

In sum all the information available can be recorded in a single diagram-> R 1
T\H(A),H(C))-^ &T(A,C)-^ T(H(A)MQ)--

(2) J

H(T(A,Q)

in which the top row and center triangle are exact, and the remaining two

triangles are commutative.

Suppose now that for some integer n we have

(3) H k
(R

l
T(A,C)) =0
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Then p yields an isomorphism

p: Hn
(T(A,Q) * n

T(A,C)

so that the top row of the diagram yields the exact sequence

(4) 2 R lT(H(A),HQ(C))-^H
n
(T(A,C))^ 2 T(H(A),HQ(C))-+0

p+q^n-l

where ft'
= p~

l
o.

THEOREM 5.1 . JfT is a left exactfunctor (cor. in A, contrav. in C) such

that RnT= Ofor n > 1 and if A and C are complexes such that (3) holds,

then we have the exact sequence (4).

In particular the theorem may be applied to the functor HomA (A,C)
where A is a hereditary ring. We obtain

COROLLARY 5.2. If A is a hereditary ring and A and C are complexes
such that

H k
[Exi\ (A,C)] = for k = n - 1, n - 2,

then we have the exact sequence

* 2 ExtA (HP(A)M
Q
(C))

-^ 7/"(HomA (A,Q)

To obtain analogous results for homology invariants we assume that T
is right exact and satisfies L nT = for n > 1. In diagram (2) we then

replace &t by 2 y R l

by Lj, we interchange a and a' and reverse all arrows.

We obtain:

THEOREM 5. 1 a. IfTis right exact (cov. in A , contrav. in C) and satisfies

L nT = Ofor n > 1, and if A and C are complexes such that

then we have the exact sequence

(4a)
> 2 T(Hp(A),H

Q(C))*Hn(T(A,C))

COROLLARY 5.2a. If A is a hereditary ring and A and C are complexes
such that

Hk (Tor (A 9C)) =0 for k = n - 1, n - 2

then we have the exact sequence

(5a) 0-> 2 Hv(A)^Hq(C)-+Hn(Aj,C)
n

~> I
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In stating 5.1 and 5. la we tacitly assumed that the regularity conditions

of 4 are satisfied. This is no longer necessary in 5.2 and 5.2a since the

ring A is supposed hereditary, so that we are in Case 2 of 3.

The reader should compare these results with those of iv,8 and vi,3.

6. BALANCED FUNCTORS

THEOREM 6.1. Let T be a right balancedfunctor (cov. in A, contrav. in

C), X an infective resolution of a complex A, and Y a projective resolution

of a complex C. Then the maps

T(X,C) -^ T(X, Y) ^- T(A, Y)

induced by the augmentations, yield isomorphisms between the cohomology
invariants ofT(A,C) and the invariants of the double complexes T(X,C) and

PROOF. Since the regularity conditions of 3 are tacitly assumed, it

suffices, in view of xv,3.2, to establish the isomorphisms of the initial terms

of the spectral sequences. We shall limit our attention to //, the proof for

f being quite analogous.
We begin by considering the operator //,,. Since only the second

differentiation operator is involved, we may concentrate on a single row

Xp * of X and a single row Yf^ of Y. Then

Hff(T(X, Y)) = ^
Pl+P2^P

, Y)) - V H*(T(A">, r ,)).

Since X**'* is an injective resolution of A Pl
, while Y

p^+ is a projective
resolution of C^ and the functor T is right balanced, the two terms of the

right hand side coincide with R (IT(A P
^C^. We thus obtain

(1) H^T(X9 Y))^HU(T(A,Y)).

Applying H}
to both sides we obtain the equality of the initial terms in

the first spectral sequences.
Before we proceed with the second spectral sequences we establish :

LEMMA 6.2. If T is right balanced and C is a complex such that both

Bn
(C) and H n

(C) are projective for all n then for any complex A the map

a': HT(A,C)^T(H(A\H(Q)
is an isomorphism.

To prove the lemma we first observe that all the modules C n
, Zn

(C),

Z"'(C), B"(C) 9 B' n
(C) and Hn

(C) are projective. If we therefore denote
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by i^V the category consisting of these modules and all their homo-

morphisms into one another, we find that all exact sequences
->/)'-> D -> D" -> in Jf(< split. Thus if we regard T as a functor

defined only if the second variable is in^r , we find that T is exact with

respect to the second variable. Since all modules in J(c are projective
and T is right balanced, it follows that T is also exact with respect to the

first variable, provided the second variable is in ^r . Thus it follows

from w,7.2 that a' is an isomorphism.
We now return to the proof of 6. 1 and apply the operator //r We find

a commutative diagram

- "

A'),//!( Y)) .- T(H(A),Hi( Y))
n"

We assert that the vertical maps are isomorphisms. Indeed, since only
the first differentiation operator is involved we may replace Y by one of

its columns K*-". Since B J

\ Y** q
) and W\ y*-) are both projective

modules, the conditions of 6.2 are satisfied and therefore the vertical maps
in the diagram are isomorphisms. Applying Hn to the diagram we obtain

the commutative diagram

//n/^rt AT, Y)) <~- HUH {(T(A, Y))

!( Y))) ^ Hn(1\H(A),H} ( Y)))

in which the vertical maps are isomorphisms. Since H^X) is an injective

resolution of H(A) and //,( Y) is a projective resolution of H(C) it follows

from (1) that the lower horizontal map also is an isomorphism. This

concludes the proof.

TmoRi-M 6. la. Let T he a left balancedfunctor (cor. in A, contrav. in

C), X a projective resolution ofa complex A, and Y an injective resolution of
a complex C. Then the maps

induced by the augmentations* yield isomorphisms between the cohomology
invariants ofT(A.C) and the invariants of the double complexes T(X,C) and

T(A,Y).

It should be noted that 6.1 justifies the notation yf"T(A<C) used in

xvi,2; these modules are indeed the hypercohomology modules of T(A,C).

Similarly the module J? "(A,M) of xvi,8 is the hypercohomology of



376 HYPERHOMOLOGY [CHAP. XVII

7. COMPOSITE FUNCTORS

We apply the concepts developed in this chapter to study a composite
functor V TU where for simplicity we assume that U is a covariant

functor of one variable defined for A-modules whose values are F-modules,

and T is a covariant functor of one variable defined for F-modules.

Given a A-module A, choose an injective resolution X of A and let

Y= U(X). We consider the cohomology invariants of T(Y) and intro-

duce the notation W"= (R
Q
T)U. Then

We thus obtain

(1)
p

(2) KT(R*V(A)) => T(U(X)).

Further it is clear that since the functor R"Tis invariant under homotopies,
the module 3tn

T(U(X)) is independent of the choice of the injective resolu-

tion A' of A.

Both spectral sequences are in the case 2 of xv,6 and therefore we have

the edge homomorphisms

RnT(RU(A))+3en
T(U(X))--*RT(R

n
U(A)).

If T is left exact, then RT- T and W - (R*T)U = V. We thus obtain

a homomorphism y<p

(3) Rn
V->T(R

n
U).

If T is exact, both spectral sequences collapse, and <p and y become

isomorphisms. Thus (3) is then an isomorphism.
Assume now that U is exact. Then the second spectral sequence

collapses to an isomorphism R n
T(U(A)) & 3tuT(U(X)) and the first

spectral sequence then becomes

This yields edge homomorphisms

Rn
((RT)U)-+ (R

n
T)U-+ R((R

n
T)U)
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and the exact sequence of terms of low degree :

0-> R l
((R

Q
T)U)-* (R

lT)U-> R"((R
l

T)U)-> R\(R<>T)U)-* (R
2T)U

which for T left exact becomes

(R*T)U.

Similar considerations apply to left derived functors and to functors

with a larger number of variables of various variances.





Appendix: Exact Categories

by David A. Buchsbaum

Introduction. Throughout this book, the authors dealt with functors

defined on categories of modules over certain rings and whose values

again were modules over a ring. It will be shown here that the theory may
be generalized to functors defined on abstract categories that will be

described below, and whose values are again in such abstract categories.

The advantages of such an abstract treatment are manifold. We list a few :

(1) The dualities of the type

kernel cokernel

projective injective

Z(A) Z'(A)

that were observed throughout the book may now be formulated as

explicit mathematical theorems.

(2) In treating derived functors, it suffices to consider left derived

functors of a covariant functor of several variables; all other types

needed may then be obtained by a dualization process.

(3) Further applications of the theory of derived functors are bound to

show that the consideration of modules over a ring A will be insufficient.

Rings with additional structure such as grading, differentiation, topology,
etc. will have to be considered. With the theory developed abstractly,

these generalizations are readily available.

The following treatment has some points in common with that of

MacLane (Bull. Amer. Math. Soc. (1950), pp. 485-516). No proofs will

be given here; they will be found in a separate publication.

1. Definition of exact categories. An exact category j/ is given

by the following four data :

(i) a collection of objects A ;

(ii) a distinguished object O, called the zero object;

379
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(iii) an abelian group H(A,B) given for any two objects A,Bjtf. The

elements <p H(A,B) will be called maps. We shall frequently write

9?: A -> B instead of <p
e H(A,B). The zero element of any of the

groups H(A,B) will be denoted by 0;

(iv) a homomorphism H(B9C) H(A,B)-+ H(A,C) given for each triple

of objects A , B, C c &/. The image ofy <g> q> in //(^ ,C) will be denoted

by yy and will be called the composition of y and <p. The primitive

terms (i)-(iv) are subjected to four axioms:

AXIOM I. If a: A->B, p: B-* C, y: C-> D then y(#x) = (y/3)a.

AXIOM II. //(<D,0>)
= 0.

AXIOM III. For each A sj there is a map eA : A -> A such that

eA fi
=

/5 for each /?: B-> A, and yea = y for each y\ A -> C.

It is easy to verify that H(A,Q>)
= = //(<1M) for all A j/ and that the

identity map eA of AXIOM III is unique.
A map q>: A -> B will be called an equivalence if there exists a map

9?': B-* A such that 9/9?
=

^, 999?'
= e^. It is easy to see that <p' is

unique; we write 93'== 9?"
1

. Clearly <p~
l

is also an equivalence and

(9?-
1
)-

1 =
<p. if y: B-> C is another equivalence, then yy also is an

equivalence and (y^)"
1 = 9?~V~

1
-

DEFINITION. Jfe $/?<*// say that the pair ofmaps

a
.4 * C

has property (E) if thefollowing three conditions hold:

(1) /?a=0.
(2) (/'a' : A '

-> J9 flc/ /?a'
= 0, //ze/? rAere exists a unique y: A '

-> A with

a' = ay.

(3) T/'/S' : B -> C '

flwrf /?'a
= 0, /A^n /Aere ex/ste a MW/^W^ ^ : C -> C '

H'//A

AXIOM IV. For any map a: A -* ^ there exist objects K, /, /', F and

maps

such that

(4) a =
(5) is an equivalence

(6) K "A-^-I has property (E)

(7) r-^B-^F has property ().
THEOREM 1 : If
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also satisfy (4)-(7) then there exist unique maps #, /j, f , a> such that the

diagram
<3 T * ff

K -- A --- 1 -- 1'-- B-- F

*1 I- I- I

1

I- I-
K dl A Tl / ' V "i R "' PA!-* A- 7

l
--

1. /!
--> a-1. /*!

is commutative. The maps %, ft, , co are equivalences.

2. Exact sequences. In view of Theorem 1, we shall call the pairs

(K9d), (7,r), (/',*) and (f the kernel, coinage, image and cokernel of a.

The sense in which these notions are uniquely associated with a is clear

from Theorem 1 .

A sequence

A
am .

an-l

^m-*^m+l
-' ' * --

*^n /W + 1 < t

is now called exact if it satisfies the usual condition :

Ker a,
= Im a^ m < q < n.

The following two theorems are crucial.
a

THEOREM 2. The maps A B C have the property (E) ifand only

if the sequence

THEOREM 3. /I map 0: A-> B is an equivalence ifand only if

is exact.

Monomorphisms and epimorphisms are now defined in the usual way.
With this done it is possible to establish the usual lemmas encountered

when dealing with exact sequences. In particular, the "5 lemma", i,l.l

may now be proved.

3. Duality. For each exact category s/ we define the dual category
ifl/* as follows. The objects of **/* are symbols A* with A c s#\ the zero

object of j/* is <D* ; the group H(A*,B*) is defined as H(B,A)\ for each

map <p : B -> A in s/ we denote by 9?* : A * -> B* the corresponding "dual"

map in ja/*. The composition in s/* is given by y>*(p*
=

(<pyO*-

It is now a trivial matter to verify that ja/* is an exact category.

Clearly (jaf*)* ** sf.

Given any diagram of objects and maps in s&, we obtain a dual diagram
in ja/*, with the maps reversed. It is clear that the dual of a commutative
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diagram is commutative, and that the dual of an exact sequence is exact.

The dual of a monomorphism is an epimorphism and vice versa.

As an illustration as to how one can utilize the dual category, we discuss

the "5 lemma" 1,1.1. In the hypothesis, a certain commutative diagram
with exact rows is given. Then there are two conclusions (1) and (2). It

is easy to see that conclusion (2) is precisely conclusion (1) applied to the

dual diagram. Thus (2) is actually a consequence of (1) and vice versa.

Suppose now that A is a ring. The totality of all left A-modules and

A-homomorphisms (with the usual composition) forms an exact category^A . In this category, H(A 9B) HomA (A,B). However, the dual

category *^* admits no such concrete interpretation. This explains the

fact that the duality principle could not be efficiently used, as long as we

were restricted to categories concretely defined, in which the objects were

sets and the maps were maps of those sets.

Another use of the dual categories is the following. Let T(A,C) be an

additive functor defined on the exact categories $4 and # and with values

in an exact category Q. Suppose that T is covariant in A and contra-

variant in C. Then replacing # by *J?*, the functor T is converted into a

covariant functor in both variables. Another procedure consists in

replacing stf and Q by jtf* and Si*.

A few remarks are needed concerning exact categories intended to

represent graded groups, graded modules over a graded ring, etc. If only

maps of degree zero are considered, then no change in the description of

abstract categories is needed. If we wish to consider maps of all degrees,

then it is necessary to assume that H(A,B) is graded and that the composi-
tion of homogeneous maps adds the degrees. Axiom IV is assumed only
for homogeneous maps, and they are the only ones for which the notions of

kernel, image, exactness, etc. are defined. In defining the dual stf* of such

a graded exact category, we set Hn
(A*,B*) H~ n

(B,A) =- Hn(B,A).

This is in keeping with the general principles of iv,5.

4. Homology. An object with differentiation in an exact category 30

is a pair (A,d) consisting of an object A jtf and a map d\ A - A with

dd= 0. The definition of Z(A), Z\A\ B(A\ B\A) and H(A) then takes

place essentially as in iv,l. The same holds for the definition of the

connecting homomorphisms and the exact sequences of iv,l.l.

The self-duality of the definition of H(A) may now be stated in terms of

the dual object (A*,d*) in the category j/*. We have

Z(A*) = [Z\A)}* 9 B(A+) = (B'(A)}*

Z'(A+) = [Z(A)]* 9 B'(A*) = [B(A)]*
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In discussing complexes, we avoid direct sum considerations and there-

fore define a complex in A as a sequence

----- A n'1-> A n

with dn+ ldn - 0.

We may mention that for each exact category j/, the objects (A 9d) with

differentiation may themselves be converted into an exact category 3/d .

This is the analogue of the construction of the ring of dual numbers

P = (A,rf) of iv,2. Similarly the complexes in A may be treated as objects

in an exact category $JC .

5. Direct sums. So far we have carefully avoided any use of direct

sums and products. We see no way of discussing infinite direct sums and

products in an exact category /. A finite direct sum ( direct product)

may be defined as follows. A family of maps

where a belongs to afinite set of indices, is a direct sum representation of A
if

= for ft

This of course does not guarantee the existence of a direct sum of given
factors. For this purpose we introduce

AXIOM V (Existence of direct sums.) For any two objects A^ A 2 s4

there is an object A &/ and maps

'* p*

A^
> A * A x a = 1, 2

which yield a direct sum representation of A.

It can then be proved that the direct sum of any finite number of

factors exists and is essentially unique (up to equivalences).

Using this axiom it is possible to discuss double (and multiple) com-

plexes A
~

{A
ptQ
^d^d2 } provided that for each n only a finite number of the

objects A p>q with p + q
= n is different from <t>. It is then possible to

assign to each such double complex an essentially unique complex, and

thus define H n
(A).

It is now also possible to duplicate the discussion of iv,6 and iv,7

concerning the homomorphisms a and a' for functors of any number of
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variables. Note that for functors of one variable, the discussion does not

utilize Axiom V.

6. Projective and injective objects. An object P jtf is called

projective if any diagram

P

i
A -> A" -> O

in which the row is exact, may be imbedded in a commutative diagram

P

\

Similarly, Q sf is called injective if any diagram

O-> A' -> A

i

Q

in which the row is exact, may be imbedded in a commutative diagram

Q

The two notions are dual in the sense that P stf is projective if and only if

P* stf* is injective.

For further work we need the following axioms :

AXIOM VI (Existence of projectives). Given A jtf there is an exact

sequence O->A/->P->X-O with P projective.

AXIOM VI* (Existence of injectives). Given A stf there is an exact

sequence O -> A -> g -> 7V-> O with Q injective.

The axioms are clearly dual to one another.

With Axiom VI assumed, propositions 2.1 (restricted to finite sums),

2.4 and 2.5 of Chapter I may be established. Similarly, if Axiom VI* is

assumed, the dual propositions 3.1, 3.4 and 3.5 of Chapter i automatically

follow. The same applies to the discussion of v,l, v,2, and xvn,l.

We are now ready to discuss satellite functors and derived functors.
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Let T be a covariant functor defined on an exact category stf satisfying

Axioms V and VI with values in an exact category @t (with no axioms

beyond I-IV). We can then define the left satellite functor S^T
1

of T. To
define the right satellite functor, we assume that si satisfies Axiom VI*

instead of VI. We then define the covariant functor T* : jtf* -> 38* and

set

All the main results of Chapter HI, can be duplicated.

The derived functors L nTand R HT are handled similarly, except that

now T may be a covariant functor of any number of variables.

The requirement that all variables be covariant is made entirely to

simplify the notation ; the contravariant variables may always be replaced

by their duals.

7. The functors Ext". For each exact category <stf, the functor

H(A,C) may be regarded as a functor contravariant in A, covariant in C and

with values in the exact category^ of abelian groups. This functor is left

exact ; for a fixed AQ < s4', H(A Q,C) is exact if and only if A Q is projective;

for a fixed C j/, //M,C ) is exact if and only if C is injective. Thus

//(/*,C) is right balanced.

If j/ satisfies Axioms V and VI, then Ext'
1

(/4,C) may be defined as the

right derived functor with respect to the variable A (i.e. using a projective

resolution of A), If A satisfies Axioms V and VI* then injective resolu-

tions of C may be used to define Ext" (A\ If A satisfies Axioms V, VI

and VI*, either or both may be used.

The discussion of dimension in vi,2 can be carried over mutatis

mutandis. The global dimension of an exact category st is the highest

integer n for which Ext n
(/4,C) ^ 0. A category has global dimension

zero if and only if H(A,C) is exact, i.e. if all elements of j/ are projective

(or injective). This takes the place of semi-simple rings.

8. Other applications. We should like to mention here some

applications of exact categories which step outside the framework of this

book.

The axiomatic homology and cohomology theories of Eilenberg-

Steenrod (Foundations of Algebraic Topology, Princeton, 1952) may be

defined using an arbitrary exact category s/ as the range of values of the

theory. Thus, replacing s/ by .*/* replaces a homology theory by a

cohomology theory, and vice versa. This duality principle simplifies the

exposition of the theory. Furthermore, the uniqueness proof (he. c/V.,

Ch. iv) remains valid for such generalized homology and cohomology
theories.
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The Pontrjagin duality for discrete and compact abelian groups

readily shows that the category # of compact abelian groups is the dual

of the category Jt of discrete abelian groups. Thus we conclude that #
satisfies Axioms V, VI and VI*. In fact, in #, the injectives are the

toroids (since the only discrete abelian projectives are the free groups);

and the projectives in # are those compact groups whose character groups
are divisible.
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N

DN
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F
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allowable family, 154

antipodism, 222, 269, 351

associative algebra: 162ff; cohomology
of, 169; dimension of, 176; direct

product of, 1 72 ; enveloping algebra of,

167; graded, 164; homology of, 169;

homomorphism of, 162; normal homo-
morphismof, 349; normalized standard

complex of, 176; normal subalgebra
of, 350; projective, with respect to

map, 312; standard complex of, 175

augmentation: 75; epimorphism, 143;

ideal, 143; module, 143; idempotent,
221; unit, 188; zero, 188

augmented ring: 143; cohomology of,

143; homology of, 143; map of, 149

bi-graded module: 60; associated graded
module of, 60; bihomogeneous element
of, 60; bihomogeneous submodule of,

60; homomorphism of, 60; negative
homomorphism of, 60; positive homo-

morphism of, 60

characteristic element, 227

complex: 58; homomorphism of, 59;

injective resolution of, 365; left, 75;

acyclic left, 75; projective left, 75;

projective resolution of, 363 ; right, 78 ;

acyclic right, 78; injective right, 78;

split, 70
connected sequence of functors: 43;

map of, 45; multiply, 87; homo-
morphism of multiply, 87

connecting homomorphism, 43, 334
contravariant ^-extension, 29
covariant ^-extension, 29
crossed homomorphism: 168,270; prin-

cipal, 169, 270; principal, with respect
to map, 312

Dedekind ring, 134

derived sequence of map, 101

diagonal map: 211,351; associative, 212;
commutative, 212; commutative of a
Lie algebra, 275

divisible element, 127

dimension: 109 fT; injective, 111; .left

global, 111; projective, 109; right

global, 111; weak, 122
double complex: 60; first spectral

sequence of, 331; homomorphism of,

61; invariants of, 331; left, 363;

right, 365; second spectral sequence
of, 331

dual category, 381

duality theorem: 249; integral, 250

edge homomorphisms, 330

epimorphism, 4
exact category, 379
exact sequence: 4; of terms of low

degree, 330; normal, 79; normal form
of, 79; split, 5

extension of ring of operators, 163

extensions: 289 ff; Baer multiplication
of, 290; characteristic class of, 290;

equivalent, 289, 293, 299, 304; in-

essential, 293, 299, 304; split class of,

290

faithful set, 154

filtration: 315 ff; compatible with differ-

entiation, 315; complementary degree
of, 323; convergent, 321; degree of,

323; regular, 324; strongly convergent,
321; total degree of, 323; weakly
convergent, 319

functor: 18 ff; additive, 19; contra-

variant, 18; covariant, 18; derived,

83; left derived, 84; right derived, 83;
derived sequence of a, 102; exact, 23;
half exact, 24; left balanced, 97; left

exact, 24; partial derived, 94; right
balanced, 96; right exact, 24

graded module: 58; homogeneous com-

ponent of, 58; homogeneous sub-

module of, 58; homomorphism of, 58;

negative, 58; positive, 58

graded ring: 146; graded module over

a, 154

389
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groups: 189ff; cyclic, 250; finite, 232 ff;

complete derived sequence of a finite,

235; complete resolution for a finite,

240; free abelian, 193; free, 192;

generalized quaternion, 253; pro-

ject!ve, with respect to map, 312

hereditary ring, 13

homomorphism: 3; coimage of, 3;

cokernel of, 3; direct family of, 4;

compatible with filtration, 321 ; image
of, 3; kernel of, 3

homotopy: 54, 59, 61, 72; contracting,
214; of order ^,321

hypercohomology module, 366

hyperhomology module, 368

injective resolution: 78; of a complex,
365

invariant elements, 170, 183

inversible ideal, 132

isomorphism, 4
iterated connecting homomorphism, 44

Lie algebra: 266 ff; abelian, 268;

cohomology of, 270; constants of

structure of, 286; enveloping algebra
of, 267; homology of, 270; representa-
tion of, 267

local ring, 147

mapping theorem, 150

maximal generator, 260

module: 3; bimodule, 22; direct sum
of, 4; direct product of, 4; divisible,

127; flat, 122; free, 5; injective, 8;
with differentiation, 53; map of with

differentiation, 54; projective, 6;

proper, 154; semi-simple, 11; simple,
11; torsion-free, 127; torsion, 127;

weakly injective, 198, 199; weakly
projective, 197, 199

monoid: 148, 187ff; augmented, 188;
free abelian, 193; free, 148, 192;

ring of a, 148

monomorphism, 4

natural equivalence, 20

Noetherian ring, 15

norm homomorphism, 232

opposite ring, 109

period, 261

/^-primary component, 258

products: 202 ff; cap-pairing, 212; cap-

product, 211; cup-pairing, 212; cup-

product, 211; modified, 224, 247;
modified of second kind, 229

projective resolution: 75; split form of,

214

proper operators, 355

Pruferring, 133

reduction theorem, 227

restriction homomorphism, 254

ring of dual numbers, 56

satellites: 33 ff; left, 36; right, 36

semi-hereditary ring, 14

spectral sequence, 319

stable element, 257

supplemented algebra: 182ff; coho-

mology of, 182; homology of, 182;

homomorphism of, 184

tensor product: 21; skew, 164

torsion element, 127

total differentiation operator, 61

transfer homomorphism, 254




















