
Proc. Natl. Acad. Sci. USA
Vol. 86, pp. 3000-3002, May 1989
Mathematics

Biregular classification of Fano 3-folds and Fano manifolds of
coindex 3

(Grassmann variety/vector bundle/K3 surface/homogeneous space/extremal ray)

SHIGERU MUKAI
Department of Mathematics, Nagoya University, Nagoya 464, Japan

Communicated by Michael Artin, November 30, 1988

ABSTRACT The Fano 3-folds and their higher dimension-
al analogues are classified over an arbitrary field k C C by
applying the theory of vector bundles (in the case B2 = 1) and
the theory of extremal rays (in the case B2 ' 2). An n-dimen-
sional smooth projective variety X over k is a Fano manifold if
its first Chern class cl(X) E H2(X, Z) is positive in the sense of
Kodaira [Kodaira, K. (1954) Ann. Math. 60, 28-48] (or am-
ple). If n = 3 and cl(X) generates H2(X, Z), then either (i) X is
a complete intersection in a Grassmann variety G with respect
to a homogeneous vector bundleE on G: the rank ofE is equal
to codimcX and X is isomorphic to the zero locus of a global
section ofE, (ii)X is a linear section of a 10-dimensional spinor
variety X12 C Pk5, or (iii) X is isomorphic to a double cover of

k, a 3-dimensional quadric Qk, or a quintic del Pezzo 3-fold
V5 C Pk. If n = 4 and c1(X) is divisible by 2, then X 0 C is
isomorphic to (a) a complete intersection in a homogeneous
space or its double cover, (b) a product of P1 and a Fano 3-
fold, (c) the blow-up of Q4 C P5 along a line or along a conic,
or (d) a Pl-bundle compactifying a line bundle on P3 or on Q3
C p4.

This is a report on my study of Fano manifolds. The de-
tails will be published elsewhere.
For a projective variety X C P, a complete intersection X

n P C P of X C P and linear subspace P of P is called a
(linear) section ofX C P. The main subject of this report is
the smooth projective variety X C P which satisfies the fol-
lowing equivalent conditions:

(i) X C P has a smooth curve section C C P embedded by
the canonical linear system IKc I, and

(ii)X C P is linearly normal and the first Chern class cl(X)
is cohomologous to dimX - 2 times the cohomology class of
hyperplane sections.

This type of projective variety was first considered by G.
Fano (cf. ref. 1), who studied them by the method of double
projection from lines and gave a birational classification over
C in the 3-dimensional case. In this report, I shall give a
biregular classification in an arbitrary dimension 2 3 over an
arbitrary field of characteristic zero (Theorem 2). For this
purpose the theory of vector bundles on a K3 surface (2) is
applied in the case the second Betti number BA(X) is equal to
one (Section 2). This method enables us to develop a canoni-
cal description of Fano 3-folds (of the first species) as sub-
varieties of Grassmann varieties (Section 1) and leads to an
interesting relation between Fano 3-folds of genus 12 and
classical projective geometry (Theorem 5).
A compact complex manifoldX is a Fano manifold if cl(X)

is positive in the sense of Kodaira (21). The greatest integer
which divides c,(X) is called the index ofX and the complete
linear system IHI with rH - -Kx is called the fundamental
linear system ofX. The coindex ofX is defined by dimX - r
+ 1 (see refs. 3-5 for discussion of Fano manifolds of coin-

dex <2). IfX is a Fano n-fold of coindex 3, then the integer g
= '/2(H') + 1 is called the genus and the fundamental linear
system IHI is of dimension n + g - 1. In the case B2(X) = 1,
the classification of Fano manifolds of coindex 3 is reduced
to that of varieties with canonical curve sections under the
following assumption:

Conjecture (ES) Every Fano manifold of coindex 3 has a
smooth member in its fundamental linear system.

In the case B2(X) - 2, the Fano manifolds of coindex 3 are
classified by applying the theory of extremal rays (Section
4).

Section 1. Variety with a Canonical Curve Section

A surface with a canonical curve section is of type K3. A
smooth projective variety X2g-2 of dimension n 2 3 over k in
a projective space Pk+n-2 is an F-manifold over k if it satis-
fies the equivalent conditions i and ii above. An F-manifold
X C P is ofthefirst species if the Picard group PicX is gener-
ated by the restriction of the tautological line bundle. I first
give examples of F-manifolds of the first species.
For a vector space U. denote the Grassmann variety of s-

dimensional subspaces of U by G(s, U) and the projective
space G(1, U) by P*(U). G(s, U) is a projective variety in
P*(AU) by the Plucker coordinate. The following two exam-
ples have been known classically.

(g = 8): If U is a k-vector space of dimension 6, then the
Grassmann variety G(2, U) C P*(AU) is an 8-dimensional F-
manifold of genus 8 over k.

(g = 6): If U is of dimension 5, then a smooth hyperquad-
X6 ~~~~~~~~~~~~2Pric section X10 C P0 of the cone of G(2, U) C P*(AU) = P9

is a 6-dimensional F-manifold of genus 6.
In the latter case, the F-manifold is a double cover of G(2,

U). Its isomorphism class depends on the multilinear form F
2

E 52(AUV) on U which defines the branch locus. F-mani-
folds are obtained from Grassmann varieties for other values
of g, too.
Example 1. Consider vector spaces and varieties over C.
(g = 9): Let U be a 6-dimensional vector space with a non-

degenerate skew-symmetric bilinear form F. All the 3-di-
mensional subspaces W of U with F(W, W) = 0 form a
smooth 6-dimensional subvariety x16 of degree 16 in G(3,

3
U) C P*(AU).

(g = 10): Let U be a 7-dimensional vector space with a
nondegenerate (see Remark 1) skew-symmetric 4-linear form
F. All the 5-dimensional subspaces W with F(W, W, W, W)
= 0 form a smooth 5-dimensional subvariety X58 of degree

5
18 in G(5, U) C P*(AU).

(g = 12): Let U be a 7-dimensional vector space and F,,
F2, and F3 be three linearly independent skew-symmetric bi-
linear forms on U. Let X be the subvariety of G(3, U) C

3
P*(AU) consisting of 3-dimensional subspaces W with F,(W,
W) = F2(W, W) = F3(W, W) = 0. If the subspace F1 A UV +
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F2 A Uv + F3 A Uv ofAU' contains no vectors of the form
fl A f2 A f3 # 0, fl, f2, f3 E U', then Xis a smooth 3-
dimensional subvariety X22 of degree 22.
THEOREM 1. (i) In each case ofExample 1, the linear enve-

lope ofX2,g)2 g = 9, 10, 12, and n(g) = 15 - g, is isomorphic
to p13 and the projective variety X2g(g)2 C P'3 is an n(g)-di-
mensional F-manifold of the first species (over C) ofgenus
g.

(ii) Let U be a 9-dimensional vector space with a nonde-
generate symmetric bilinear form F and S be the space of
spinors ofF (cf. ref. 6). All the 4-dimensional subspaces W
ofU with F(W, W) = O form a smooth 10-dimensional sub-
variety X120 in G(4, U), called a spinor variety. X12 embedded
in P*(S) = p15 by the spinor coordinate is an F-manifold of
the first species of genus 7.
Remark 1. In each case 7 - g < 10, the F-manifolds X2g _2

in Theorem I are homogeneous spaces (7). This is less obvi-
ous in the case g = 10. If U is a 7-dimensional vector space,

3 4
then AU (=AU') contains an open GL(U)-orbit. If F is
nondegenerate, i.e., belongs to the open orbit, then the sta-
bilizer group GF contains an algebraic group of type G2 as its
connected component (cf. ref. 8). The F-manifold X58 is ho-
mogeneous with respect to GF.
The isomorphism class of X2g(g)2 depends only on the vec-

tor space M spanned by a multilinear form F(g # 12) or by
multilinear forms F1, F2, and F3 (g = 12). [n(g) is equal to g
for g = 6, 8 and n(7) = 10.] Hence we can denote it by >g(U,
M). (We understand M = 0 in the case g = 8.) If U is a k-
vector space and ifM is defined over k, then so is the variety
>Lg(U, M). In the case g # 7, we obtain an F-manifold >g(U,
M) C pg+n(g)-2 over k. In the case g = 7, an F-manifold
>g(U, M) C PIk over k is obtained if, in addition, the space of
spinors S is defined over k.
THEOREM 2. Let X C P be an F-manifold of the first spe-

cies ofgenus g - 6 over afield k C C. Then there exist a k-
vector space U and a space M of multilinear forms on U
such that X C P is isomorphic to a linear section ofYig(U, M)
c pj+n(s)-2
Remark 2. (i) An F-manifold of genus < 5 is a complete

intersection of hypersurfaces.
(ii) For Fano 3-folds of genus 6 over C, the theorem is

proved independently by Gushel (9).
The following is an easy consequence of the result of Is-

kovskih (10) on the anticanonical linear system.
PROPOSITION 1. Let X be a Fano n-fold of coindex 3 with

B2(X) = 1. Under the assumption (ES), thefundamental lin-
ear system JHI is base point free and X satisfies one of the
following:

(i) HI is very ample and the image of(IHI is an F-manifold
of the first species, or

(ii) the morphism (FIHI:X + pg+n-2 is a finite morphism of
degree 2 onto Pr (g = 2) or onto a hyperquadric Qn in P"+1 (g
= 3).
The conjecture (ES) is a theorem of Shokurov (11) in the

case dimX = 3 and has been proven by Wilson (12) for Fano
4-folds of index 2 and with B2 = 1. Hence, Proposition 1 and
Theorem 2 completely classify Fano 3-folds of the first spe-
cies and Fano 4-folds of index 2 and with B2 = 1.

Section 2. Classification by Means of Vector Bundles

An F-manifold has a smooth surface section of type K3.
THEOREM 3. Let S be a K3 surface whose Picard group

Pic S is generated by an ample line bundle L with (L2) = 2g
- 2. Thenfor every pair ofpositive integers (r, s) with rs =g,
there exists a stable vector bundle E ofrank r, cl(E) = cl(L),
and x (E) = r + s which satisfies the following:

(i) H'(S, E) = H2(S, E) = 0 and E is generated by global
sections,

(ii) every stable vector bundle E' on S with the same rank
and the same Chern class as E is isomorphic to E (cf. corol-
lary 3.5 of ref 2), and r r

(iii) the natural linear mapping Xr:A H°(S, E) -- H°(S,A
E) 1H°(S, L) is surjective.
For a vector space V, denote the Grassmann variety of r-

dimensional quotient spaces of V by G(V, r) and the projec-
tive space G(V, 1) by P*(V). By Theorem 3, we obtain a
morphism (DIEI from S to the g-dimensional Grassmann vari-
ety G(V, r) such that sg*El% = E for every (r, s) with rs = g,
where V = H°(S, E) and % is the universal quotient bundle
on G(V, r). We also obtain the embedding T = P*(Xr):
P*(HO(S, L))c-+ P*(AV). Let Ir-i be the kernel of the natural

r-1 r1
linear mapping Xr,1: A V-- H°(S, A E). Then P = Im AI is
a linear subspace of P = P*(AV/Iri1 A V) C P*(AV). We
obtain the following commutative diagram:

(IEI:S -) G(V, r) n P C G(V, r)
n

gf:P*(H°(L))
n
r

P C P*(AV)
THEOREM 4. Let S, L, g, and E be as in Theorem 3.
(i) If (r, s) = (2, 4), (3, 3), (5, 2), or (3, 4) and g = rs, then

the intersection G(V, r) n P C P is an n(g)-dimensional F-
manifold >g and (DIEI(S) C P is its linear section.

(ii) If (r, s) = (2, 3) and g = 6, then (DIEI(S) is a hyperquad-
ric section ofthe intersection ofV5 = G(V, 2) n p c P Pp6.
Remark 3. (i) The intersection G(V, r) n P C P is not com-

plete but >Lg is a complete intersection in G(V, r) with respect
to the vector bundle A% 89 IA,.

(ii) Ifg = 7, then there exists a rank 5 vector bundle E with
cl(E) = 2c,(L) which satisfies the properties i and ii of Theo-
rem 3. The kernel of the natural homomorphism 52H0(S, E)
-+ H°(S, 52E) is generated by a nondegenerate symmetric
tensor o. E and o- induce an isomorphism between S and a
linear section of the 10-dimensional spinor variety associated
to (H°(S, E), a-).

(iii) Among other values, (r, s) = (4, 5) is interesting. For
every general (polarized) K3 surface (S, L) with (L2) = 38,
(IE1 is an isomorphism from S onto the intersection G(V, 4)
n P C P Pp20. It is easily deduced from this fact that the
moduli space of polarized K3 surfaces of genus 20 is unira-
tional.
Let X C P be as in Theorem 2. By ref. 13, X 0 C has a

surface section S with Picard number one. The vector bundle
E on S in Theorem 4 extends to a vector bundle E onX0 C.
This vector bundle E is stable and has property ii of Theorem
3. By this uniqueness property, E is defined over k. This is a
key of the classification over k. The Grassmann embedding
ofX by E yields Theorem 2.

Section 3. Fano 3-Fold of Genus 12 and a Generalized
Grassmann Variety

A Fano 3-fold V22 of the first species of genus 12 was first
found by Iskovskih (14). Unlike other F-manifolds of the
first species, V22 is not isomorphic to a complete intersection
of hypersurfaces in a homogeneous space or to its double
cover. But V22 has rich geometric structures: It relates with
the classical theory of polar polygons (cf. section 57 of ref.
15) and nets of quadrics. Let C be a plane curve of degree d
and F(X, Y, Z) = 0 be its defining equation. A set of n lines
l,:fj(X, Y, Z) = 0 1 c i s n, is a polar n-side ofC if there
exists a set of constants a,, . . ., an E C such that F = ,g l
aifd'.
THEOREM 5. (i) The variety ofpolar 3-sides of a smooth

conic is a smooth quintic del Pezzo 3-fold in P6.
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(ii) Assume that a quartic curve C has no polar 5-sides (see
sections 57 and 77 ofref. 15). Then the variety P6(C) ofpolar
6-sides ofC is a Gorenstein Fano 3-fold ofgenus 12. IfC has
no complete quadrangles as its polar 6-sides, then P6(C) is
smooth and of the first species. The mapping C - P6(C)
gives a birational equivalence between the moduli spaces of
quartics C and of 3-folds V22.
Remark 4. If the quartic curve C is a double conic, then

the variety of its polar 6-sides is a very special V22 with an
action of Aut C = SO(3, C). This variety was earlier found
by Mukai and Umemura (16) as a smooth equivariant com-
pactification of SO(3, C)/(icosahedral group).

In Section 2, we embedded V22 into a Grassmann variety
by a rank 3 vector bundle E, applying Theorem 3 to (r, s) =
(3, 4). Applying the theorem to (r, s) = (2, 6), we obtain a
rank 2 vector bundle F on V22, too. The pair of two vector
bundles E and F leads us to another classification of V22.
Instead of H0(V22, E), we consider V = Hom (E, F), which is
a vector space of dimension 4. We obtain the natural homo-
morphism

(A) V®E-PF.
Let 91 be the PGL(V)-equivariant compactification of the va-
riety of twisted cubics in P*(V) constructed in ref. 17. On 9!,
there exist a rank 2 and a rank 3 vector bundles 9; and Z and
a (universal) exact sequence

(S) VQZ--.

We obtain the unique morphism (,: V22 -f 9! with
IE,p(,si1) = (A). (This justifies calling 9! a generalized Grass-
mann variety.)
THEOREM 6. Let V22 be a Fano 3-fold ofthefirst species of

genus 12 and let 9! be as above. Then there exists a net N of
quadrics in P*(V) such that V22 is isomorphic to the closure
ON C 9 of the variety of twisted cubics defined by three
quadratic forms perpendicular to N. N is uniquely deter-
mined up to GL(V) by the isomorphism class of V22.
Remark 5. The correspondence between N and 9N in The-

orem 6 is compatible with that in Barth (18): If the net N is of
rank 2, then 9N is singular and is an anticanonical model of a
P'-bundle over P2 associated to a rank 2 stable vector bundle
with c1 = 0 and c2 = 4.

Section 4. Classification by Means of Extremal Rays

Among the simplest examples of Fano manifolds of coindex
3 are the products P1 x M of P' and Fano 3-folds M of even
index. They are called Fano 4-folds of product type. There
are exactly nine deformation types of them corresponding to
the nine deformation types of M: P3, V7, W, P1 X P1 X P1,
and Vd (1 c d c 5), where Vd is a Fano 3-fold of index 2 and
(-KV)3 = 8d and W is a divisor of bidegree (1, 1) on P2 X P2
(see refs. 4, 5, 10).
Example 2. The following are Fano manifolds of coindex 3

and of genus g.
1. (g = 7): a double cover of P2 X P2 whose branch locus is

a divisor of bidegree (2, 2)
2. (g = 9): a divisor of P2 X P3 of bidegree (1, 2)
3. (g = 11): P3 x P3
4. (g = 11):P2 xQ3
5. (g = 12): the blow-up of a smooth 4-dimensional quadric

Q4 C P' along a conic not contained in a plane in Q4

6. (g = 13): the flag variety of Sp(2) [or equivalently, of
50(5)]

7. (g = 14): the blow-up of P5 along a line
8. (g = 16): the P1-bundle P(CQ ED OQ(1)) over Q3 C P4
9. (g = 21): the Pl-bundle P(Cp ($ Cp(2)) over P3
For each Fano manifold X in Example 2, the fundamental

linear system 1HI is very ample and the image of (FIHI is an F-
manifold, which we call the fundamental model of X.
THEOREM 7. Let X be a Fano manifold of coindex 3, of

dimension -4, and with B2 2 2. IfX is not a Fano 4-fold of
product type, then X is isomorphic to a linear section of the
fundamental model of a Fano manifold in Example 2.

IfX is a Fano manifold, then the cone NE(X) of effective
(algebraic) 1-cycles on X is spanned by a finite number of
extremal rays (see ref. 19). For the proof of Theorem 7, the
following classification of extremal rays on 4-folds plays an
essential role.
THEOREM 8. Let R be an extremal ray ofa smooth projec-

tive 4-fold. Assume that R is of index -2; that is, there exist
a divisor D and an integer r 2 2 with (Kx + rD.R) = 0. Let f
= contR:X -- Z be the contraction morphism ofR (see ref.
20).

(i) Ifdim Z = 4, then f is birational and contracts a divisor
to a point or to a smooth curve C. In the latter case, Z is
smooth and f'1 is the blowing up with center C.

(ii) Ifdim Z s 3, then Z is smooth and the genericfiber X,
off is a Fano manifold of index .2 over the function field
k(71) of Z.
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