ON CYCLES AND COVERINGS ASSOCIATED TO A KNOT

LILYA LYUBICH AND MIKHAIL LYUBICH.

ABSTRACT. Let \mathcal{K} be a knot, G be the knot group, K be its commutator subgroup, and x be a distinguished meridian. Let Σ be a finite abelian group. The dynamical system introduced by D. Silver and S. Williams in [S],[SW1] consisting of the set $\operatorname{Hom}(K, \Sigma)$ of all representations $\rho : K \to \Sigma$ endowed with the weak topology, together with the homeomorphism

 $\sigma_x : \operatorname{Hom}(K, \Sigma) \longrightarrow \operatorname{Hom}(K, \Sigma); \ \sigma_x \rho(a) = \rho(xax^{-1}) \ \forall a \in K, \rho \in \operatorname{Hom}(K, \Sigma)$

is finite, i.e. it consists of several cycles. In [L] we found the lengths of these cycles for $\Sigma = \mathbb{Z}/p$, p is prime, in terms of the roots of the Alexander polynomial of the knot, mod p. In this paper we generalize this result to a general abelian group Σ . This gives a complete classification of depth 2 solvable coverings over $S^3 \setminus \mathcal{K}$.

CONTENTS

1.	Introduction	1
2.	Case of a two-bridge knot	2
3.	Linear matrix recourence equations	3
4.	Main result for a general knot	4
5.	Least common multiple	5
6.	Pullback τ^* on the space of coverings over X_{∞}	6
7.	Coverings of finite degree	7
8.	<i>p</i> -adic solenoids	9
References		10

1. INTRODUCTION

Let \mathcal{K} be a knot, X be the knot complement in S^3 , $X = S^3 \setminus \mathcal{K}$, X_{∞} be the infinite cyclic cover of X, and X_d be the cyclic cover of X of degree d.

Let G be the knot group, K be its commutator subgroup, and Σ be a finite group. Let x be a distinguished meridian of the knot. The dynamical system introduced by D. Silver and S. Williams in [S] and [SW1] consisting of the set $\text{Hom}(K, \Sigma)$ of all representations $\rho : K \to \Sigma$ endowed with the weak topology, together with the homeomorphism σ_x (the shift map):

 $\sigma_x : \operatorname{Hom}(K, \Sigma) \longrightarrow \operatorname{Hom}(K, \Sigma); \ \sigma_x \rho(a) = \rho(xax^{-1}) \ \forall a \in K, \rho \in \operatorname{Hom}(K, \Sigma).$

is a shift of finite type ([SW1]). Moreover, if Σ is abelian, this dynamical system is finite, i.e. it consists of several cycles ([SW2],[K]). In ([L]) we calculated the lengths of these cycles and their lcm (least common multiple) for $\Sigma = \mathbb{Z}/p$, p prime,

Date: January 11, 2013.

in terms of the roots of the Alexander polynomial of the knot, mod p. Our goal is to generalize these results to an arbitrary finite abelian group Σ . This gives a complete classification of solvable depth 2 coverings of $S^3 \setminus \mathcal{K}$. (By a solvable covering of depth n we mean a composition of n regular coverings $M_0 \to M_1 \to \ldots \to M_n$ with corresponding groups Γ_i , such that $\Gamma_0 \triangleleft \Gamma_1 \triangleleft \ldots \triangleleft \Gamma_n$ and Γ_{i+1}/Γ_i is abelian.)

Let $\Delta(t) = c_0 + c_1(t) + \ldots + c_n t^n$ be the Alexander polynomial of the knot \mathcal{K} , and B - tA its Alexander matrix of size, say, $m \times m$, corresponding to the Wirtinger presentation. From [L] we know that

(1.1)
$$\operatorname{Hom}(K, \mathbb{Z}/p) \cong (\mathbb{Z}/p)^n \quad \text{where } n = \operatorname{deg}(\Delta(t) \mod p).$$

It turns out that the same result is true for a target group \mathbb{Z}/p^r :

(1.2) $\operatorname{Hom}(K, \mathbb{Z}/p^r) \cong (\mathbb{Z}/p^r)^n \quad \text{where } n = \operatorname{deg}(\Delta(t) \mod p).$

In section 2 we give a proof of (1.2) for two-bridge knots. In section 3 we prove a general result about solutions of the recurrence equation

(1.3)
$$Bx_j - Ax_{j+1} = 0$$

where $x_i \in \mathcal{X}$, \mathcal{X} and \mathcal{Y} are finite modules, and $A, B : \mathcal{X} \to \mathcal{Y}$ are module homomorphisms. We then use this result in section 4 to prove (1.2) for an arbitrary knot. In section 5 we describe the set of periods and calculate their lcm for target group $\Sigma = \mathbb{Z}/p^r$, based on similar results for the target group \mathbb{Z}/p , obtained in [L]. We then generalize these results for any finite abelian group Σ .

In section 6 we describe the relation between the shift σ_x on $\operatorname{Hom}(K, \Sigma)$ and the pullback map τ^* corresponding to the meridian x, on the space of regular coverings over X_{∞} . In section 7 we construct a regular covering $p: N \to X_d$ with the group of deck transformations Σ , corresponding to a surjective homomorphism $\rho \in \operatorname{Hom}(K, \Sigma)$ with $\sigma_x^d \rho = \rho$, and prove that any regular covering of X_d with the group of deck transformations Σ can be obtained in this way. We conclude the paper by formulating our results in terms of p-adic representations of K and associated solenoids and flat principal bundles.

2. Case of a two-bridge knot

Let $\Delta(t)$ be the Alexander polynomial of a two-bridge knot \mathcal{K} and n be the degree of $\Delta(t) \mod p$. Since the Alexander polynomial is defined up to multiplication by $t^k, k \in \mathbb{Z}$, and has symmetric coefficients, we can write

$$\Delta(t) = pd_k t^{-k} + \dots + pd_1 t^{-1} + c_0 + c_1 t + \dots + c_n t^n + pd_1 t^{n+1} + \dots pd_k t^{n+k} t^{n+k}$$

where c_i, d_i are integers and $c_0 = c_n$ is not divisible by p. Similarly to the Theorem 9.1 in [L] we can prove that $\operatorname{Hom}(K, \mathbb{Z}/p^r)$ is isomorphic to the space of bi-infinite sequences $\{x_i\}_{i \in \mathbb{Z}}, x_i \in \mathbb{Z}/p^r$, satisfying the following recurrence equation mod p^r :

$$(2.1) pd_k x_{-k+j} + \dots pd_1 x_{-1+j} + c_0 x_j + c_1 x_{j+1} + \dots + c_n x_{n+j} +$$

 $+pd_1x_{n+1+j} + \ldots + pd_kx_{n+k+j} = 0$

From [L] we know that $\operatorname{Hom}(K, \mathbb{Z}/p) \cong (\mathbb{Z}/p)^n$ where $n = \operatorname{deg}(\Delta(t) \mod p)$. The same is true for target groups \mathbb{Z}/p^r .

Theorem 2.1. Hom $(K, \mathbb{Z}/p^r) \cong (\mathbb{Z}/p^r)^n$ where $n = \deg(\Delta(t) \mod p)$.

Proof. We will prove that $x_0, x_1, \ldots, x_{n-1} \in \mathbb{Z}/p^r$ uniquely determine the sequence $\{x_i\}_{i \in \mathbb{Z}}, x_i \in \mathbb{Z}/p^r$, satisfing equation (2.1). The proof is by induction. For r = 1, given $x_0, x_1, \ldots, x_{n-1} \in \mathbb{Z}/p$, x_n is uniquely determined mod p by the equation

(2.2)
$$c_0 x_0 + c_1 x_1 + \ldots + c_n x_n = 0 \pmod{p}$$

So, $x_0, x_1, \ldots, x_{n-1} \mod p$ uniquely determine the whole sequence $\{x_i\}_{i \in \mathbb{Z}} \pmod{p}$, satisfying (2.1). This proves the base of induction.

Suppose the statement is true for r. Fix $x_0, x_1, \ldots, x_{n-1} \mod p^{r+1}$ and let $\{x_i\}_{i \in \mathbb{Z}}$ be the sequence satisfying equation:

$$(2.3) \ pd_k x_{-k} + \ldots + pd_1 x_{-1} + c_0 x_0 + c_1 x_1 + \ldots + c_n x_n + \ldots + pd_k x_{n+k} = 0 \ \text{mod} \ p^r.$$

It is uniquely determined mod p^r , by induction assumption. But then all the terms of (2.3) except $c_n x_n$ are determined mod p^{r+1} . So x_n and hence the whole sequence $\{x_i\}_{i\in\mathbb{Z}}$ is uniquely determined mod p^{r+1} by $x_0, x_1, \ldots, x_{n-1} \mod p^{r+1}$. \Box

3. LINEAR MATRIX RECCURENCE EQUATIONS

Theorem 3.1. Let \mathcal{X}, \mathcal{Y} be two finite modules of the same order, over the same ring R. Let $A, B : \mathcal{X} \longrightarrow \mathcal{Y}$ be modules homomorphisms such that ker $A \cap \ker B = 0$. Consider the following recurrence equation:

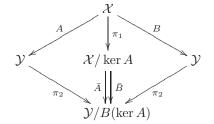
(3.1)
$$Bx_j - Ax_{j+1} = 0$$

Then $\mathcal{X} = \mathcal{V} \oplus \mathcal{A} \oplus \mathcal{B}$, where $\mathcal{V} = \{v \in \mathcal{X} : \text{there exists a bi-infinite sequence} \dots v_{-1}, v_0 = v, v_1, \dots, \text{ satisfying equation (3.1), } \}$

 $\mathcal{A} = \{a \in \mathcal{X} : \text{ there exists an infinite sequence } \dots, a_{-1}, a_0 \text{ satisfying (3.1) and } a_{-i} = 0 \text{ for sufficiently large } i \}.$

 $\mathcal{B} = \{b \in \mathcal{X} : \text{ there exists an infinite sequence } b_0 = b, b_1, b_2, \dots, \text{ satisfying}(3.1) \text{ and } b_i = 0 \text{ for sufficiently large } i.\}$

Proof. The proof is by induction in the order of \mathcal{X} and \mathcal{Y} . Consider a diagram :



where by definition, π_1 and π_2 are factorization maps; $[x] = \pi_1(x)$; and

$$\overline{\mathcal{A}}([x]) = \pi_2 \circ A(x), \quad \overline{\mathcal{B}}([x]) = \pi_2 \circ B(x).$$

This diagram is not commutative, but its left- and right-hand triangles are commutative. Note that $\mathcal{X}/\ker A$ and $\mathcal{Y}/B(\ker A)$ are modules over R of the same order, since B is injective on ker A.

Suppose that the statement of the theorem is true for $\mathcal{X}/\ker A$ and operators \bar{A} and \bar{B} :

(3.2)
$$\mathcal{X}/\ker A = \bar{\mathcal{V}} \oplus \bar{\mathcal{A}} \oplus \bar{\mathcal{B}},$$

where all the sequences in definition of $\bar{\mathcal{V}}, \bar{\mathcal{A}}, \bar{\mathcal{B}}$ satisfy the equation:

(3.3)
$$B[x]_i - A[x]_{i+1} = [0].$$

Then we will prove that

$$(3.4) \mathcal{X} = \mathcal{V} \oplus \mathcal{A} \oplus \mathcal{B},$$

Take any $u \in \mathcal{X}$. By induction assumption [u] = [v] + [a] + [b], where $[v] \in \overline{\mathcal{V}}$, $[a] \in \overline{\mathcal{A}}$, $[b] \in \overline{\mathcal{B}}$. We find lifts v, a, b of [v], [a], [b] to \mathcal{V} , \mathcal{A} , \mathcal{B} respectively. Let $\ldots, [v_{-1}], [v_0] = [v], [v_1], \ldots$ satisfy $\overline{B}[v_i] - \overline{A}[v_{i+1}] = [0]$, $i \in \mathbb{Z}$. Take any lift $\ldots, y_{-1}, y_0, y_1, \ldots$ Then $By_i - Ay_{i+1} = x_i \in B(\ker A)$. So $x_i = Bw_i$ for some $w_i \in \ker A$. Then

$$B(y_i - w_i) - A(y_{i+1} - w_{i+1}) = 0.$$

So $v_i = y_i - w_i$ satisfy (3.1) and $v = v_0 \in \mathcal{V}$ is a desired lift of [v].

Similarly, for $[a] \in \overline{\mathcal{A}}$ there exists a sequence $\ldots, [a]_{-1}, [a_0] = [a]$, satisfying (3.3) with $[a]_{-i} = [0]$ for $i \geq N$. As before, we can find a lift $\{a_{-i}\}_{i\geq 0}$, satisfying $Ba_{-i} - Aa_{-(i-1)} = 0$. Note that $a_{-i} \in \ker A$ for $i \geq N$. We have

$$B \cdot 0 = Aa_{-N}$$

But then the sequence $\ldots, 0, 0, a_{-N}, a_{-(N-1)}, \ldots, a_0$ also satisfies (3.1), so $a = a_0 \in \mathcal{A}$ is a desired lifting.

We repeat the same argument to prove that [b] has a lift $b \in \mathcal{B}$. If $\{[b_i]\}_{i\geq 0}$ satisfies (3.3) and $[b_i] = 0$ for $i \geq N$, we find a lift $\{b_i\}_{i\geq 0}$ satisfying(3.1). Since $b_i \in \ker A$ for $i \geq N$, and $Bb_i - Ab_{i+1} = 0$, we have also $b_i \in \ker B$ for $i \geq N-1$, hence $b_i = 0$ for $i \geq N-1$, since by assumption $\ker A \cap \ker B = 0$. So $b = b_0 \in \mathcal{B}$ is a desired lift. Since $\pi_1(u) = \pi_1(v + a + b)$, $u = v + a + b + \tilde{a}$, where $\tilde{a} \in \ker A$ and so $\tilde{a} \in \mathcal{A}$. The step of induction is done.

Since we can interchange the roles of A and B, it remains to prove the statement of the theorem in the case when A and B are monomorphisms and hence are isomorphisms, since $|\mathcal{X}| = |\mathcal{Y}|$. In this case any element $x \in \mathcal{X}$ has a bi-infinite continuation $x_i = (A^{-1}B)^i x$, satisfying(3.1). The theorem is proven. \Box

4. MAIN RESULT FOR A GENERAL KNOT

In this section we prove that the Theorem 2.1 holds for any knot. Let B - tA be the Alexander matrix of a general knot \mathcal{K} arising from the Wirtinger presentation of the knot group G. Here A, B are $m \times m$ matrices with elements $0, \pm 1$.

Theorem 4.1. Dynamical system $(\text{Hom}(K, \Sigma), \sigma_x)$ is conjugate to the left shift in the space of bi-infinite sequences $\{y_j\}_{j \in \mathbb{Z}}, y_j \in (\Sigma)^m$ satisfying recurrence equation

$$(4.1) By_i - Ay_{i+1} = 0.$$

For the target group \mathbb{Z}/p this result is proven in [L], Theorem 4.2. For a general abelian group Σ the proof is identical.

We can apply theorem (3.1) for modules $(\mathbb{Z}/p^r)^m$ and linear operators $A, B : (\mathbb{Z}/p^r)^m \to (\mathbb{Z}/p^r)^m$ given by matrices A and B to get

(4.2)
$$(\mathbb{Z}/p^r)^m = \mathcal{V}_r \oplus \mathcal{A}_r \oplus \mathcal{B}_r,$$

where $\mathcal{V}_r = \{y \in (\mathbb{Z}/p^r)^m : \text{there exists a bi-infinite sequence} \dots, y_{-1}, y_0 = y, y_1, \dots, \text{ satisfying equation (4.1)}\},$

 $\mathcal{A}_r = \{a \in (\mathbb{Z}/p^r)^m : \text{there exists an infinite sequence } \dots, a_{-1}, a_0 = a \text{, satisfying } (4.1) \text{ and } a_{-i} = 0 \text{ for sufficiently large } i \},$

 $\mathcal{B}_r = \{b \in (\mathbb{Z}/p^r)^m : \text{there exists an infinite sequence } b = b_0, b_1, b_2, \dots, \text{ satisfying}$ (4.1) and $b_i = 0$ for sufficiently large i }. We will use the uniquiness of continuatuion that follows from the finiteness of $\operatorname{Hom}(K, \Sigma)$ for a finite abelian group Σ (see Proposition 3.7 [SW2] and Theorem 1 (ii) [K]). If $\{x_i\}_{i\in\mathbb{Z}}$ and $\{y_i\}_{i\in\mathbb{Z}}$ satisfy (4.1), then $x_0 = y_0$ implies $x_i = y_i \forall i$. In particular, for $a \in \mathcal{A}_r$, $a \neq 0$, there is no infinite continuation to the right, satisfying (4.1), and for $b \in \mathcal{B}_r$, $b \neq 0$, there is no infinite continuation to the left, satisfying (4.1). (Otherwise we would have two bi-infinite sequences: $\ldots, 0, 0, \ldots, a_0, a_1, \ldots$ and $\ldots, 0, 0, \ldots$) So $\operatorname{Hom}(K, \mathbb{Z}/p^r)$ being isomorphic to the space of be-infinite sequences satisfying (4.1), is isomorphic to \mathcal{V}_r .

Since the only decomposition of $(\mathbb{Z}/p^r)^m$ as a direct sum of three groups is

$$(\mathbb{Z}/p^r)^m \cong (\mathbb{Z}/p^r)^{n_r} \oplus (\mathbb{Z}/p^r)^{l_r} \oplus (\mathbb{Z}/p^r)^{m_r}$$
 with $n_r + l_r + m_r = m$,

it follows from (4.2) that $\mathcal{V}_r \cong (\mathbb{Z}/p^r)^{n_r}$. Consider the projection:

$$(\mathbb{Z}/p^{r+1})^{m} = \mathcal{V}_{r+1} \oplus \mathcal{A}_{r+1} \oplus \mathcal{B}_{r+1}$$

$$\downarrow^{\pi}$$

$$(\mathbb{Z}/p^{r})^{m} = \mathcal{V}_{r} \oplus \mathcal{A}_{r} \oplus \mathcal{B}_{r}$$

Clearly $\pi(\mathcal{V}_{r+1}) \subset \mathcal{V}_r$, $\pi(\mathcal{A}_{r+1}) \subset \mathcal{A}_r$, $\pi(\mathcal{B}_{r+1}) \subset \mathcal{B}_r$. It follows that n_r is the same for all r. Since from Theorem 5.5 [L] it immediately follows that $n_1 = \deg(\Delta(t) \mod p)$, we have proven the following theorem:

Theorem 4.2. For any knot, $\operatorname{Hom}(K, \mathbb{Z}/p^r) \cong (\mathbb{Z}/p^r)^n$, where $n = \operatorname{deg}(\Delta(t) \mod p)$.

5. Least common multiple

Proposition 5.1. The dynamical system $(\text{Hom}(K, \mathbb{Z}/p^r), \sigma_x)$ is isomorphic to (\mathcal{V}_r, T_r) , where $T_r = (A|\mathcal{V}_r)^{-1}(B|\mathcal{V}_r)$.

Proof. Restrictions $A|\mathcal{V}_k$ and $B|\mathcal{V}_k$ are isomorphisms, since ker $A \in \mathcal{A}_k$ and ker $B \in \mathcal{B}_k$. Also $A\mathcal{V}_k = B\mathcal{V}_k$ since every element $v \in \mathcal{V}_k$ has continuation to the right and to the left: there exist v_{-1} and v_1 such that $Bv_{-1} = Av$, $Bv = Av_1$. So $T_r : \mathcal{V}_r \to \mathcal{V}_r$ is well defined, and since T_r is conjugate to the left shift in the space of sequences satisfying equation(1.3), the formula $T_r = (A|\mathcal{V}_r)^{-1}(B|\mathcal{V}_r)$ is obvious.

In [L] we calculated the set of periods of orbits and their lcm for dynamical system $(\text{Hom}(K, \Sigma), \sigma_x)$ with $\Sigma = \mathbb{Z}/p$ in terms of orders and multiplicities of the roots of $\Delta(t) \mod p$. Now we find the lcm and the set of periods for $\Sigma = \mathbb{Z}/p^r$.

Theorem 5.2. Let $d_r = lcm$ of periods of orbits of $(\text{Hom}(K, \mathbb{Z}/p^r), \sigma_x)$. Then either $d_i = d_1 \forall i$, or $\exists s \ge 1$ such that $d_1 = \ldots = d_s$, and $d_{s+i} = d_1 p^i$.

Proof. The following diagram commutes:

$$\dots \xrightarrow{\pi} \mathcal{V}_{k+1} \xrightarrow{\pi} \mathcal{V}_{k} \xrightarrow{\pi} \dots \xrightarrow{\pi} \mathcal{V}_{1}$$

$$\begin{array}{c} T_{k+1} \\ T_{k} \\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ \end{array} \xrightarrow{\pi} \mathcal{V}_{k+1} \xrightarrow{\pi} \mathcal{V}_{k} \xrightarrow{\pi} \dots \xrightarrow{\pi} \mathcal{V}_{1}$$

Let $\mathcal{V} = \varprojlim \mathcal{V}_k, \ \mathcal{V}_k \subset (\mathbb{Z}_p)^m$, where \mathbb{Z}_p is the set of p-adic numbers, and $T: \mathcal{V} \to \mathcal{V}$, $T = \varprojlim T_k$. We will use the same notations for module homorphisms and their matrices in the standard basis. Let E_r , E denote the identity isomorphisms of $(\mathbb{Z}/p^r)^n$ and $(\mathbb{Z}_p)^n$ respectively. We have $T_1^{d_1} = E_1$, so either $T^{d_1} = E$, and then $T_r^{d_1} = E_r \ \forall r$, or $T^{d_1} = E + p^s A$ for some $s \in \mathbb{Z}$, $s \ge 1$, and not all elements of matrix A are divisible by p. In the later case $T_i^{d_1} = E_i, i = 1, \ldots, s$. Since

$$T^{d_1 \cdot k} = (E + p^s A)^k = E + kp^s A + C_k^2 p^{2s} A^2 + \dots + p^{s \cdot k} A^k,$$

we have $T^{d_1p} = E + p^{s+1}A_1$, where not all elements of A_1 are divisible by p, and, by induction, $T^{d_1p^i} = E + p^{s+i}A_i$, $\forall i \ge 1$, where not all elements of A_i are divisible by p. Then $T^{d_1p^i}_{s+i} = E_{s+i}$ and the statement of the theorem follows. \Box

Proposition 5.3. Let $Q_r \subset \mathbb{N}$ be the set of all periods of $(\operatorname{Hom}(K, \mathbb{Z}/p^r), \sigma_x)$. Then $Q_r \subset Q_{r+1}$.

Proof. If $\{x_j\}_{j\in\mathbb{Z}}, x_j \in \mathbb{Z}/p^r$ is a sequence satisfying recurrence equation (4.1) mod p^r with period d, then $\{px_j\}_{j\in\mathbb{Z}}, px_j \in \mathbb{Z}/p^{r+1}$ satisfies (4.1) mod p^{r+1} and has the same period.

Now we turn to a general finite abelian group Σ , which is isomorphic to a direct sum of cyclic groups:

$$\Sigma = \bigoplus_{i \in I} \mathbb{Z}/p_i^{r_i}, \ I \subset \mathbb{N}.$$

Then

$$\operatorname{Hom}(K,\Sigma) = \bigoplus_{i \in I} \operatorname{Hom}(K,\mathbb{Z}/p_i^{r_i}) = \bigoplus_{i \in I} (\mathbb{Z}/p_i^{r_i})^{n_i}, \text{ where } n_i = \operatorname{deg}(\Delta(t) \operatorname{mod} p_i),$$

and the original dynamical system is the product of dynamical systems:

$$(\operatorname{Hom}(K,\Sigma),\sigma_x) = \bigoplus_{i \in I} (\operatorname{Hom}(K,\mathbb{Z}/p_i^{r_i}),\sigma_x).$$

Taking sums of orbits with different periods, we obtain the following proposition:

Proposition 5.4. (i) Let d_i be lcm of periods of orbits of $(\text{Hom}(K, \mathbb{Z}/p_i^{r_i}), \sigma_x)$. Then lcm of periods of orbits of $(\text{Hom}(K, \Sigma), \sigma_x)$ is $lcm\{d_i, i \in I\}$. (ii) Let Q_i be the set of periods of orbits of $(\text{Hom}(K, \mathbb{Z}/p_i^{r_i}), \sigma_x)$. Then the set of periods for $(\text{Hom}(K, \Sigma), \sigma_x)$ is

$$Q = \{lcm\{q_i, i \in I\}, q_i \in Q_i\}.$$

6. Pullback τ^* on the space of coverings over X_∞

Let $p_{\infty}: X_{\infty} \longrightarrow X$ be the infinite cyclic covering over the complement of the knot, and let $\tau: X_{\infty} \to X_{\infty}$ be the deck tansformation corresponding to the loop x. We will now give a geometric description of the transformation σ_x earlier defined algebraicly.

Let us remind the pullback construction. Let $P: E \to B$ and $f: Y \to B$ be two continuous maps. $\Gamma_P = \{(e, b) : e \in E, b \in B, P(e) = b\} \subset E \times B$ is the graph of P. We have $\operatorname{id} \times f : E \times Y \to E \times B$. Then, by definition, the pullback of P by f, $f^*(P): (\operatorname{id} \times f)^{-1}\Gamma_P \to Y$ is the projection onto the second coordinate. We have $(\operatorname{id} \times f)^{-1}\Gamma_P = \{(e, y) : e \in E, y \in Y, P(e) = f(y)\}$. The projection of this set onto the first coordinate, \tilde{f} , is the lift of f, since the following diagram commutes:

$$\begin{array}{c} (e,y) & \xrightarrow{\tilde{f}} e \\ f^{*}(P) \bigvee & \bigvee P \\ y & \xrightarrow{f} f(y) = P(e) \end{array}$$

Note that if P is a (regular) covering then so is $f^*(P)$.

Let $a \in X_{\infty}$, $p_{\infty}(a) = x(0)$ and let $p : (M, y) \to (X_{\infty}, a)$ be the covering corresponding to a group $\Gamma \subset \pi_1(X_{\infty}, a)$, so that $p_*(\pi_1(M, y)) = \Gamma$. Let $p' : (M', y') \to (X_{\infty}, \tau^{-1}a)$ be the pull back of p by τ . It is a covering corresponding to the group $\tau_*^{-1}\Gamma \subset \pi_1(X_{\infty}, \tau^{-1}a)$. Then $\tau : X_{\infty} \to X_{\infty}$ lifts to a homeomorphism $\hat{\tau} : M' \to M$ such that $p \circ \hat{\tau} = \tau \circ p'$.

$$(M', y') \xrightarrow{\hat{\tau}} (M, y)$$

$$\downarrow^{p'} \qquad \qquad \downarrow^{p}$$

$$(X_{\infty}, \tau^{-1}a) \xrightarrow{\tau} (X_{\infty}, a)$$

Let \tilde{x} be the lift of x to X_{∞} connecting $\tau^{-1}a$ to a. If \hat{x} is the lift of \tilde{x} to M' beginning at y' and ending at y'', then $p' : (M', y'') \to (X_{\infty}, a)$ is the covering corresponding to the group $\tilde{x}^{-1}(\tau_*^{-1}\Gamma)\tilde{x} \subset \pi_1(X_{\infty}, a)$.

Let \mathcal{C} denote the space of all coverings of X_{∞} up to the usual equivalence. Let \mathcal{G} be the space of conjugacy classes of subgroups of $\pi_1(X_{\infty}, a) \approx K$. There is one-to-one correspondance between \mathcal{C} and \mathcal{G} . In what follows we will not distinguish notationally between a covering and its equivalence class, and between a subgroup and its conjugacy class.

The pullback transformation $\tau^* : \mathcal{C} \to \mathcal{C}$, corresponds to the map $\tilde{\gamma} : \mathcal{G} \to \mathcal{G}$, $\tilde{\gamma} : \Gamma \mapsto \tilde{x}^{-1}(\tau_*^{-1}\Gamma)\tilde{x} \subset \pi_1(X_\infty, a), \forall \Gamma \subset \pi_1(X_\infty, a)$, which turns into the map γ acting on the subgroups of $K \subset \pi_1(X, x(0))$: $\gamma(\Gamma) = x^{-1}\Gamma x, \forall \Gamma \subset K$.

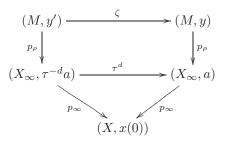
Regular coverings of X_{∞} correspond to normal subgroups $\Gamma \subset K$, which in turn correspond to representations $\rho \in \operatorname{Hom}(K, \Sigma)$ such that ker $\rho = \Gamma$, in various groups Σ . The corresponding map on the space $\operatorname{Hom}(K, \Sigma)$ is σ_x , where $\sigma_x \rho(\alpha) = \rho(x\alpha x^{-1})$. Indeed, if $\Gamma = \ker \rho$, then $x^{-1}\Gamma x = \ker \sigma_x \rho$. In summary we can say that the shift σ_x in the space $\operatorname{Hom}(K, \Sigma)$ defined algebraicly corresponds to the pullback action of the deck transformation τ in the space of regular coverings over X_{∞} .

7. Coverings of finite degree

Theorem 7.1. There is one-to-one correspondence between the surjective elements $\rho \in \text{Hom}(K, \Sigma)$ such that $\sigma_x^d \rho = \rho$ and regular coverings $p : N \to X_d$ with the group of deck transformations Σ .

Proof. Let ρ satisfy the condition of the theorem. Take a covering $p_{\rho}: M \to X_{\infty}$ corresponding to ker ρ . Since $\sigma_x^d \rho = \rho$, this covering coincides with its *d*-time pullback: $\tau^{*d} p_{\rho} = p_{\sigma_x^d \rho} = p_{\rho}$. We can lift τ^d to $\zeta: M \to M$ so that the following

diagram commutes:



If $\rho : K \to \Sigma$ is onto then $\Sigma \cong K/\ker \rho$ acts on M in the standard way: if $\alpha \in \pi_1(X_\infty, a)$ is a loop and $\tilde{\alpha}$ is its lift to M starting at y, it ends at $\rho(a)(y)$. Clearly the action of Σ commutes with ζ . So Σ acts on the space of orbits of ζ , $N = M/\zeta$. These orbits project onto orbits of τ^d . Since $X_\infty/\tau^d = X_d$, we obtained a regular covering $p : N \to X_d$.

Now we prove that any regular covering over X_d with the group of deck transformations Σ can be obtained in this way: namely, for any covering (that is convinient to denote by) $p_2 : N \to X_d$ with Σ as the group of deck transformations, $\exists \rho \in \operatorname{Hom}(K, \Sigma)$ such that $\sigma_x^d(\rho) = \rho$ and the covering $\varepsilon_2 : M \to X_\infty$ corresponding to the subgroup ker ρ , such that $N = M/\zeta$, ζ being a lift of τ^d . Consider a diagram

where p_2 is a regular covering with a group of deck transformations Σ , and p_1 is an infinite cyclic covering with the generator τ^d . Let us consider the pullback of p_2 by p_1 . Let $M \subset N \times X_{\infty}$, $M = \{(a, x) | p_2 a = p_1 x\}$. Then we have two covering maps ε_1 and ε_2 , $\varepsilon_1(a, x) = a$, $\varepsilon_2(a, x) = x$, such that the following diagram commutes:

For $y \in X_{\infty}$, $(a_1, y), (a_2, y), \ldots, (a_s, y)$ are all preimages of y under ε_2 , where a_1, a_2, \ldots, a_s are all preimages of $x = p_1(y)$ under p_2 , and $(a, y_1), (a, y_2), \ldots$, are all preimages of $a \in N$ under ε_1 , where y_1, y_2, \ldots are all preimages of $p_2(a)$ under p_1 .

Since τ^d is a generator of the group of deck transformations of p_1 , $\zeta = (\mathrm{id}, \tau^d)$ is a generator of the group of deck transformations of ε_1 , while $\{(\sigma, \mathrm{id}) | \sigma \in \Sigma\} \cong \Sigma$ is the group of deck transformations of ε_2 .

For any $\beta \in K$ let β be its lift to M starting at $(y_0, \beta(0))$ and ending at $(y_1, \beta(0))$, where $y_0, y_1 \in N$. There exists a unique $\sigma \in \Sigma$ such that $\sigma y_0 = y_1$. Take $\rho(\beta) = \sigma$. It is easy to see that $\beta \in \ker \rho$ iff $x^d(\tau^d \circ \beta)x^{-d} \in \ker \rho$. So, $\ker \rho = \ker \sigma_x^d(\rho)$. Since we can think of ρ as the homomorphism $\rho : K \to K/\ker \rho \cong \Sigma$, we have $\sigma_x^d(\rho) = \rho$.

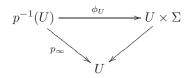
8

8. *p*-ADIC SOLENOIDS

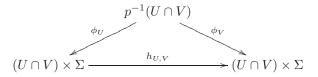
The above results can be summarized in terms of solenoids fibered over manifolds X and X_{∞} .

Let us have a family of coverings $p_n : S_n \to B$, n = 0, 1, 2..., over the same *m*-dimensional manifold *B*. We say that they form a *tower* if there is a family of coverings $g_n : S_n \to S_{n-1}$ such that $p_n = p_{n-1} \circ g_n$. In this case we can form the *inverse limit* $S = \lim_{n \to \infty} S_n$ by taking the space of sequences $\bar{z} = \{z_n\}_{n=0}^{\infty}, z_n \in S_n$ such that $g_n(z_n) = z_{n-1}$. Endow S with the weak topology. It makes the natural projection $p_{\infty} : S \to B, \bar{z} \mapsto z_0$, a locally trivial fibration with Cantor fibers (as long as deg $p_n \to \infty$). Moreover, S has a "horizontal" structure of *m*-dimensional lamination. If it is minimal (i.e., if all the leaves are dense in S), it is called a *solenoid* over B.

If all the coverings p_n are regular with the group of deck transformations Σ_n , then S is a flat *principal* Σ -*bundle* over B with $\Sigma = \varprojlim \Sigma_n$. This means that (i) $p_{\infty} : S \to B$ is a locally trivial fibration with fiber Σ : $\forall b \in B, \exists U \subset B, U \ni b$ and a homeomorphism ϕ_U such that the following diagram commutes:



(ii) If $U \cap V \neq \emptyset$ and $h_{U \cap V}$ is defined by commutative diagram



then $\exists a = a_{U,V} \in \Sigma$, such that $h_{U,V}(b,\sigma) = (b,\sigma+a)$. In this case Σ acts on S preserving fibers, so that for all $\alpha \in \Sigma$ the following diagram commutes:

(we consider the case of an abelian Σ).

Given a principal flat Σ -bundle and a point $b \in B$, we can consider the monodromy action of $K = \pi_1(B, b)$ on the fiber $p_{\infty}^{-1}(b)$. Each element $\gamma \in K$ acts as a translation by some $\rho(\gamma) \in \Sigma$. (Let us cover the immage of γ by neighborhoods U_0, U_1, \ldots, U_n from the definition of flat principal Σ -bundle, such that $U_i \cap U_{i+1} \neq \emptyset$, $U_n = U_0$. The monodromy action of γ on $p^{-1}(b) \approx \Sigma$ is the translation by $\rho(\gamma) = \sum_{i=0}^{n-1} \alpha_{U_i, U_{i+1}}$). This action gives us a representation $\rho : K \longrightarrow \Sigma$.

Vice versa, given a representation $\rho: K \to \Sigma$, we can construct a flat principal Σ -bundle over B by taking the suspension of the K-action. The suspension space S is defined as the quotient of $\Sigma \times \tilde{B}$, where \tilde{B} is the universal covering of B, by the diagonal action of $K: (\sigma, y) \sim (\sigma + \rho(\alpha), \alpha(y)) \, \forall \sigma \in \Sigma, y \in \tilde{B} \text{ and } \alpha(y)$ being the application of $\alpha \in K \cong \pi_1(B, b)$ to y. Indeed, it is easy to see that if we choose

a base point $y \in \pi^{-1}b \subset \tilde{B}$, then the elements of $p_{\infty}^{-1}b \subset S$ can be "enumerated" by elements of Σ , and that conditions (i) and (ii) in the definition of a flat principal Σ -bundle are satisfied.

Thus, the space $\mathcal{C}(\Sigma)$ of principlal flat Σ -bundles over $B \pmod{a}$ natural equivalence) is identified with the space of representations $\rho: K \to \Sigma$.

In the case of $B = X_{\infty}$ and $\Sigma = \mathbb{Z}_p$, where $\mathbb{Z}_p = \varprojlim \mathbb{Z}/p^r$ is the group of p-adic numbers, the space $\mathcal{C}(\mathbb{Z}_p)$ of flat principal \mathbb{Z}_p -bundles (mod natural equivalence) is identified with the space of *p*-adic representations $\operatorname{Hom}(K, \mathbb{Z}_p)$. To the bundle

$$\mathbb{Z}_p \xrightarrow{p_{\infty}} \mathcal{S}$$

corresponding to a representation ρ , there are associated \mathbb{Z}/p^r -bundles

$$\mathbb{Z}/p^r \longrightarrow S_r$$

$$\begin{array}{c} & & \\ & &$$

corresponding to homorphisms $\rho_r: K \to \mathbb{Z}/p^r$, where ρ_r is the composition

$$K \xrightarrow{\rho} \mathbb{Z}_p \xrightarrow{\pi} \mathbb{Z}/p^r$$
,

 π being the natural projection. Clearly, S_r form a tower of coverings and $S = \lim_{r \to \infty} S_r$.

Note that S_r is connected iff $\rho_r : K \to \mathbb{Z}/p^r$ is onto. In the case when all ρ_r are onto, S is a solenoid over X_{∞} . If for some r, ρ_r is not onto, S_r is disconnected.

The pullback action of the deck transformation τ on $\mathcal{C}(\mathbb{Z}_p)$ corresponds to the σ_x -action in Hom (K, \mathbb{Z}_p) .

The latter space is a finite dimensional \mathbb{Z}_p -module. Let us endow it with the sup-norm. Then any invertible operator $A : \operatorname{Hom}(K, \mathbb{Z}_p) \to \operatorname{Hom}(K, \mathbb{Z}_p)$ becomes an isometry. Since $\operatorname{Hom}(K, \mathbb{Z}_p)$ is compact, A is almost periodic in the sense that the cyclic operator group $\{A^n\}_{n \in \mathbb{Z}}$ is precompact. The closure of this group is called the *Bohr compactification* of A (see [Lyu]). Theorem 5.2 provides us with a description of this group for σ_x :

Theorem 8.1. The Bohr compactification of the operator

$$\sigma_x : \operatorname{Hom}(K, \mathbb{Z}_p) \to \operatorname{Hom}(K, \mathbb{Z}_p)$$

is the inverse limit of the cyclic groups \mathbb{Z}/d_n where the d_n are the least common multiplies described by Theorem 5.2.

We can also consider solvable coverings over the knot complement X described in §7. Taking their inverse limits, we obtain various solenoids over X.

References

- [K] B.P. Kitchens, "Expansive dynamics on zero-dimensional groups," Ergodic Theory and Dynamical Systems 7 (1987), 249-261. MR 88i:28039
- [L] L. Lyubich, "Periodic orbits of a dynamical system related to a knot," Knot theory and its ramifications, v.20 N3 (2011), p411-426,
- [Lyu] Yu.I. Lyubich. Introduction to the theory of Banach representations of groups. Birkahäuser.

- [S] D.S. Silver, "Augmented group systems and n- knots," Math.Ann. **296** (1993), 585-593. MR **94***i*:57039
- [SW1] D.S. Silver and S.G. Williams, "Augmented group systems and shifts of finite type," Israel J. Math. 95, (1996), 231-251. MR 98b:20045
- [SW2] D.S. Silver and S.G. Williams, "Knot invariants from symbolic dynamical systems," Trans.Amer.Math.Soc. V351 N8 (1999), p3243-3265,S 0002-9947(99)02167-4