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Abstract. We study the parameter space of unicritical polynomials fc : z 7→ zd + c. For complex
parameters, we prove that for Lebesgue almost every c, the map fc is either hyperbolic or infinitely
renormalizable. For real parameters, we prove that for Lebesgue almost every c, the map fc is either
hyperbolic, or Collet–Eckmann, or infinitely renormalizable. These results are based on controlling
the spacing between consecutive elements in the “principal nest” of parapuzzle pieces.
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1. Introduction

In this paper we are concerned with the dynamics of unicritical polynomials

fc : z 7→ zd + c, (1.1)

where d ≥ 2, both on the real line (for real values of c) and on the complex plane (in the
general case).

Until recently, the dynamical theory of the quadratic family (d = 2) was developed
much deeper than its counterpart for the higher degree unicritical polynomials (see [H,
M2, L1, S], [L3]–[L5], [AM1]). The reason was that the quadratic maps possess some
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very special geometric features that distinguish them from their higher degree cousins.
Recently, new tools have been developed [KL1, KL2, AKLS] that opened an opportunity
to bring the higher degree case to the same level of maturity as the quadratic one.1 In this
paper that deals with the at most finitely renormalizable case, combined with forthcoming
notes (see [AL]) dealing with the infinitely renormalizable case, we intend to accomplish
this goal.

For d ≥ 2 fixed, let M = Md = {c ∈ C : the Julia set of fc is connected} be
the corresponding Multibrot set. The dynamics when c /∈M is always trivial, so we are
mostly concerned with the description of the dynamics for c ∈ M. When d is odd, the
real dynamics is trivial for all c ∈ R, since fc is a homeomorphism, so when discussing
real dynamics we will always assume that d is even. In this case, for c ∈M ∩ R, fc is a
unimodal map.

In what follows, various properties of a map fc will also be attributed to the corre-
sponding parameter c. For a real c, the map fc (and the parameter c itself) are called

• regular if fc has an attracting periodic orbit;
• infinitely renormalizable if there exist periodic intervals of an arbitrarily large (mini-

mal) period;
• Collet–Eckmann if there exist C > 0 and λ > 1 such that

|Df n(c)| ≥ Cλn, n = 0, 1, 2, . . . .

Such a map has a unique absolutely continuous invariant measure with strong statistical
properties.

We can now formulate our main result on the real dynamics:

Theorem 1.1. For almost every c ∈ Md ∩ R, the map fc is either regular, or Collet–
Eckmann, or infinitely renormalizable.

Remark 1.1. In [MN], Martens and Nowicki described a bigger class of unimodal maps
that have an absolutely continuous invariant measure. In [L4], it was proved that for al-
most every real c ∈ M2, the quadratic polynomial fc is either regular, or Martens–
Nowicki, or infinitely renormalizable. The Martens–Nowicki property was then replaced
in [AM1] with the much stronger Collet–Eckmann property, thus providing us with The-
orem 1.1 in the quadratic case.

Remark 1.2. With Theorem 1.1 in hand, we can go further, in the same way as in the
quadratic case, to show that the whole fine statistical description of the dynamics of real
quadratic maps [AM1], [AM3] is valid in the higher degree case as well.

Remark 1.3. In the forthcoming notes, the above result will be complemented by showing
that the set of infinitely renormalizable parameters inMd∩R has zero Lebesgue measure.
(In the quadratic case, this was proved in [L5].)

1 See also [Sm, KSS, BSS2] for recent advances in the higher degree case that use different tools.



Parapuzzle of the Multibrot set 29

To stress the difference between the quadratic and the higher degree cases, let us
mention one consequence of Theorem 1.1. Recall that a wild attractor for a unimodal map
is a measure-theoretic attractor (in the sense of Milnor [M1]) which is not a topological
attractor. There are no wild attractors in the quadratic family [L2], but they do exist for
a sufficiently high even criticality d [BKNS]. Moreover, if d is large enough, the set of
parameters c ∈Md ∩ R for which the wild attractor exists contains a Cantor set.

Corollary 1.2. For any even criticality d , the set of parameters c ∈Md ∩ R for which
the wild attractor exists has zero Lebesgue measure.

Remark 1.4. One can show (using the estimates of this paper) that for large even d, the
set of parameters c ∈Md ∩ R for which the wild attractor exists has positive Hausdorff
dimension.

Remark 1.5. In [BSS2], it was proved that for almost every c ∈ Md ∩ R, the map fc
admits a physical measure,2 which is either supported on an attracting periodic orbit, or
absolutely continuous (but fc is not necessarily Collet–Eckmann), or is supported on a
uniquely ergodic Cantor set coinciding with the postcritical set (this possibility contains
strictly the infinitely renormalizable case and the case of wild attractors).

The set of non-regular, non-infinitely renormalizable real parameters does have posi-
tive Lebesgue measure [J], [BC]. The situation is quite different for complex parameters:

Theorem 1.3. For almost any c ∈ C, the map fc : z 7→ zd + c is either hyperbolic or
infinitely renormalizable.

This result was proved for quadratic maps by Shishikura (see a sketch in [S]; see also
[AM2] for a proof closer to this paper). We actually prove the following estimate:

Theorem 1.4. Let fc be a non-renormalizable map with all fixed points repelling.3 Then
c is not a density point of Md .

Again, the last two results are more surprising in the case d > 2: while all the quadratic
maps in question have the Julia set of zero area ([L1], [S]), it is conceivable that there exist
higher degree non-renormalizable unicritical polynomials with the Julia set of positive
measure. So, in the quadratic case the phase-parameter dictionary works in the natural
way: zero area of Julia sets of the class of maps under consideration translates into zero
area of the corresponding set of parameters. On the other hand, in the higher degree case,
the phase-parameter correspondence is more subtle.

An important special feature of the quadratic maps essentially exploited in the previ-
ous work is the decay of geometry of the principal nest (see [L3, L4, AM1]). In this paper
we demonstrate that, though in the higher degree case this property fails in general, it is
satisfied for almost all non-regular non-infinitely renormalizable parameters. This is the
key to all of the above results.

2 A measure µ is called physical if the Birkhoff averages of Lebesgue almost all orbits converge
to µ.

3 The result still holds under the assumption that fc is not infinitely renormalizable, and has all
periodic orbits repelling. The argument for this generalization (which is more subtle than the usual
application of the renormalization operator) is indicated in Remark 6.1.
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1.1. Notations

• Dr = {z : |z| < r}, D = D1, T = ∂D.
• If S is a hyperbolic Riemann surface, let distS be the hyperbolic metric in S (with the

usual normalization, so that in the upper-half plane H we have distH(i, ai) = |log a|,
a > 0). The diameter of a subset X ⊂ S with respect to distS will be denoted diamS X.
• K(f ) is the filled Julia set of f .
• J (f ) = ∂K(f ) is its Julia set.
• Dil(h) stands for the dilatation of a quasiconformal map h.
• mod(A) stands for the modulus of the annulus A.
• Pullbacks of an open topological disk V under f are connected components of
f−1(V ).
• Pullbacks of a closed disk V are closures of pullbacks of intV .

2. Holomorphic motions and a phase-parameter lemma

Let 3 ⊂ C be a Jordan disk. A holomorphic motion over 3 (with base point λ0 ∈ 3) of
some set Z ⊂ C is a family of injective maps hλ : Z → C, λ ∈ 3, such that for every
z ∈ Z, the “trajectory” (or the “orbit”) λ 7→ hλ(z) is holomorphic in λ and hλ0(z) = z.
Given such a holomorphic motion, we let Zλ = hλ(Z).

The central result in the theory of holomorphic motions is the λ-lemma. It consists
of two parts: extension and quasiconformality. The Extension Theorem (in its strongest
version due to Słodkowski [Sl]) says that a holomorphic motion hλ : Z → C over
a Jordan disk 3 can always be extended to a holomorphic motion ĥλ : C → C of
the whole plane over the same 3. The Quasiconformality Theorem (Mañé–Sad–Sullivan
[MSS]) states that each ĥλ is quasiconformal and

log Dil(hλ) ≤ dist3(λ0, λ).

We say that a holomorphic motion hλ : Z → C is continuous up to the boundary if
the map (λ, z) 7→ hλ(z) extends continuously to 3̄ × Z. A holomorphic motion hλ of a
Jordan curve T over3which is continuous up to the boundary will be called a tubing of T
over 3. Under these circumstances, a diagonal to the tubing is a holomorphic function ψ
in a neighborhood of 3̄ satisfying the following properties:

(D1) For λ ∈ 3, ψ(λ) belongs to the bounded component of C \ Tλ, and for λ ∈ ∂3,
ψ(λ) ∈ Tλ.

(D2) For any λ ∈ ∂3, the point ψ(λ) has only one preimage γ (λ) ∈ T under hλ|T .
(D3) The holomorphic motion of a neighborhood of γ (λ) in T admits an extension over

a neigborhood of λ.
(D4) The graph of ψ crosses the orbit of γ (λ) transversely at ψ(λ).
(D5) The map γ : ∂3→ T has degree 1.

Remark 2.1. Note that properties (D3) and (D4) imply that γ : ∂3 → T is continuous,
so that (D5) makes sense.
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Given a set Z contained in the closed Jordan disk bounded by T , we say that a holo-
morphic (and continuous up to the boundary) motion Hλ of Z over 3 fits the tubing of T
if for every λ ∈ 3, we have Hλ(z) = hλ(z) for z ∈ Z ∩ T , while Hλ(z) /∈ hλ(T ) for
z ∈ Z \ T .

Lemma 2.1. Let hλ : Z→ C be a holomorphic motion over a Jordan disk3 continuous
up to the boundary that fits a tubing of a Jordan curve T . Let ψ be a diagonal to this
tubing. Then for each point z ∈ Z there exists a unique parameter λ = χ(z) ∈ 3 such
that hλ(z) = ψ(λ). The map χ : Z → 3̄ is continuous and injective. Moreover, if
z ∈ intZ and hχ(z) is locally K-quasiconformal at z then χ is locally K-quasiconformal
at z.

Proof. Without loss of generality, we can assume that 3 is the unit disk with base point
at the origin. By assumptions (D3)–(D4), γ : ∂3 → T is a local homeomorphism. By
(D5), it has degree 1, so that it is a homeomorphism. Letting χ |(Z ∩ T ) = γ−1, we see
that the first assertion is valid for z ∈ Z ∩ T .

Let z ∈ Z \ T . By applying an appropriate family of affine changes of variable, we
can reduce the considerations to the case when hλ(z) = 0, λ ∈ D̄.

Let us consider a torus T2
0 = T× T ⊂ T× C. Let us deform it in T× C as follows:

Hr : T2
0 → T2

r , (λ, z) 7→ (λ, hrλ(z)), λ ∈ T, z ∈ T , 0 ≤ r ≤ 1.

Since the motion of the origin fits the tubing of T , the deformations never cross the core
circle T× {0}.

Let us consider a family of curves ψr : T→ C, ψr(λ) = hrλ ◦γ (λ), 0 ≤ r ≤ 1. Note
that the graph of ψr is a curve in T2

r obtained by applying the homotopy Hr to the graph
of ψ0. Since the T2

r are disjoint from the core circle, the curves ψr never pass through the
origin and hence have the same winding number around it. Since ψ0 = γ , by (D5) this
winding number is equal to 1. But ψ1 = ψ |T by definition of γ (D2). By the Argument
Principle, ψ has a single root in D, which proves the first assertion.

Any point λ ∈ 3 has at most one preimage under χ since the maps hλ are injections.
A point λ ∈ ∂3 has only one preimage χ−1(λ) = γ (λ) by (D2) and the assumption
that the motion of Z fits the tubing of T . The graph of χ is the set of solutions (z, λ) of
hλ(z) = ψ(λ), which is clearly closed in Z ×3, so χ is continuous.

Local quasiconformality of χ follows from the λ-lemma (see Corollary 2.1 of [L4]).
ut

We will often encounter the situation when Z contains an annulus A, and we want to
obtain a lower bound on mod(χ(A)). A trivial bound

mod(χ(A)) ≥ K−1 mod(A), where K = sup
λ∈3

Dil(hλ|A),

will sometimes be sufficient. However, since the dilatation of the holomorphic motion
can blow up as λ→ ∂3, it will not cover all of our needs. Then we will make use of the
following generalization of Corollary 4.5 of [L4].
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Lemma 2.2. Under the above circumstances, let X ⊂ Z \ T , let Uλ be the bounded
component of C \ Tλ, and let U = Uλ0 . Then:

(1) There exists a δ0 > 0 such that if diamUλ Xλ < δ ≤ δ0 for every λ ∈ 3 then
diam3 χ(X) < ε(δ),4 where ε(δ)→ 0 as δ→ 0.

(2) Assume that X is connected and diamU X ≤ M . Assume also that for some K > 1
and for every λ ∈ 3, the map hλ : X → C extends to a K-qc homeomorphism
U → Uλ. Then diam3 χ(X) ≤ C = C(M,K).

Proof. (1) It is enough to consider the case where X consists of two points. By a holo-
morphic change of coordinates (λ, z) 7→ (λ, φλ(z)) where φλ : C→ C is affine, we may
assume that Xλ = {0, 1} for all λ ∈ 3. If diamUλ Xλ is small, then D2R ⊂ Uλ for some
large R > 1 and all λ ∈ 3. Let h̃ be the holomorphic motion of T ∪ DR obtained by
setting h̃λ(z) = hλ(z) for z ∈ T and h̃λ(z) = z for z ∈ DR . Notice that h̃ also fits the
tubing and χ̃(X) = χ(X).

Since h̃ is holomorphic in DR , χ̃ = ψ−1 : W̃ → 3 is also holomorphic on DR .
Hence mod(χ̃(DR \ D)) = 1

2π logR and

diam3(χ(X)) ≤ diamχ̃(DR) χ̃(X) = O(1/R).

(2) We will use the uniform equicontinuity of K-qc maps with respect to the hyper-
bolic metric: For any K-qc map φ : S → S̃ between hyperbolic Riemann surfaces,

dist(x, y) < η ⇒ dist(φ(x), φ(y)) < δ(K, η),

where δ(K, η)→ 0 as η→ 0.
Let us select η = η(K) so that δ(K, η) < δ0, where δ0 comes from the first statement.

We can coverX byN = N(η,M) setsX1, . . . , XN of hyperbolic diameter in U bounded
by η. Then the first statement is applicable to eachXi , so that diam3 χ(Xi) < ε0 = ε(δ0).
Since X is connected,

diam3 χ(X) ≤
∑

diam3 χ(Xi) < Nε0,

and we are done. ut

We will need one lemma on lifting of a holomorphic motion by a family of branched
coverings.

Lemma 2.3. Let hλ : Z → Zλ be a holomorphic motion over a pointed disk (3, λ0),
and let fλ : U ′λ → Uλ be a holomorphic family of branched coverings of degree d such
that Uλ ⊃ Zλ.5 Let � b 3 be an open Jordan disk containing λ0 such that for λ ∈ �,
the sets Zλ do not contain the critical values of fλ. Then hλ over � lifts by fλ to a
holomorphic motion h′λ continuous up to the boundary.

4 On the other hand, one can show that the statement is false for large δ.
5 We assume (as part of the definition of a “holomorphic family”) that

⋃
Uλ and

⋃
U ′λ are open

subsets of C2.
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Proof. Each orbit Z(z) = {(λ, hλ(z)) : λ ∈ 3} ⊂ C2 of the motion hλ lifts to a variety
Y (z) = {(λ, z) : (λ, fλ(z)) ∈ Z(z)} which properly projects to 3 with degree d. Since
for λ ∈ �, Zλ does not contain critical values of fλ, these varieties are unbranched over
� and hence form a holomorphic motion h′λ : Y → Yλ over it. All we need to show is
that it is continuous up to the boundary of �.

It is enough to show that for any compact K ⊂ Y , the family {λ 7→ h′λ(y)}y∈K
is uniformly equicontinuous over �. Let yn ∈ K , σn ⊂ �, σn an arc of diameter at
most 1/n, and let Bn = {h′λ(yn) : λ ∈ σn}. We must show that the diameter of Bn shrinks
to 0. We may assume that yn → y ∈ K and σn → λ ∈ � in the Hausdorff topology.
Then, for any ε > 0, for large n, Bn lies within the ε-neighborhood of f−1

λ (hλ(fλ0(y))).
Since f−1

λ (hλ(fλ0(y))) has at most d elements and Bn is connected, this implies that Bn
has diameter at most 2dε, as desired. ut

3. Puzzle and parapuzzle

3.1. Parameter and dynamical Böttcher coordinates

The basic dynamical theory of the unicritical family z 7→ zd + c (see [Sc1]) is similar to
the basic theory of the quadratic family (see [DH1, M3]). For further reference, we recall
here the main objects of the theory and set up notations.

The (dynamical) Böttcher function Bc conformally conjugates fc near∞ to z 7→ zd .
The Green function Gc = log |Bc| extends harmonically to C \ K(fc). Its level sets
{Gc = ξ} are called (dynamical) equipotentials Edyn

ξ = Edyn
ξ (c). They form an invariant

foliation with singularities at the precritical points (at each singularity, the equipotential
looks locally like the intersection of d lines). Let

1c = {z : Gc(z) > Gc(0)}.

It is the maximal neighborhood of∞ saturated by the equipotentials on which the folia-
tion is non-singular.

The gradient lines of Gc coming from infinity are called (dynamical) external rays.
They form a foliation of C \K(f ) slit along the gradient lines emerging from the critical
points of the Green function. The argument (“angle”) of Bc is constant on each ray. The
ray of angle θ is denoted by Rdyn

θ = R
dyn
θ (c).

If the Julia set of f is connected, the Böttcher function extends analytically to the
whole basin of infinity, C \K(fc), and maps it conformally onto C \ D.

Otherwise, Bc extends analytically to the domain 1c, and maps it conformally onto
C \ Dρ(c), where ρ(c) = eGc(0) > 1. In this case, the function

BM(c) = Bc(c) (3.1)

is well defined and is called the (parameter) Böttcher function. It provides us with the
Riemann mapping C \M→ C \ D. This basic relation between the dynamical and pa-
rameter Böttcher coordinates/Riemann mappings is the foundation of the phase-parameter
correspondences for the unicritical families of polynomials.
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The (parameter) equipotentials and external rays, Epar
ξ and Rpar

θ , are the level sets
and the gradient lines of the parameter Green function GM(c) = log |BM(c)|. They
form two (non-singular) orthogonal foliations on C \M. By basic relation (3.1),

• c ∈ Epar
ξ iff c ∈ Edyn

ξ (c);

• c ∈ Rpar
θ iff c ∈ Rdyn

θ (c).

(In each line, the first and the last “c” stand for the parameter, while the intermediate one
stands for the critical value.)

Let

F = {(c, z) ∈ C2 : z ∈ C \K(fc)}, ∆ = {(c, z) ∈ C2 : z ∈ 1c};

these are open sets in C2. Let us also consider the critical set

C− = {(c, z) ∈ F : ∃n ≥ 0, f nc (z) = 0};

it is an analytic subvariety in F. The Böttcher function

B : ∆→ C \ D, (c, z) 7→ Bc(z),

is a local holomorphic submersion, so that its level sets form a holomorphic foliation of ∆.
Moreover, this foliation is transverse to the vertical foliation of C2, and thus determines
a local holomorphic motion near any point (c, z) ∈ ∆.

Pulling this foliation back by the fiberwise dynamics f : (c, z) 7→ (c, fcz), we obtain
a holomorphic foliation on F with singularities on C−. It determines a local holomorphic
motion near any point (c, z) ∈ F \ C− that we call the Böttcher motion.

We say that some holomorphic motion over parameter domain matches the Böttcher
motion or respects the Böttcher coordinate if on the basin of infinity it coincides with the
Böttcher motion. Such a motion preserves the external angles and heights of the points in
the basin of infinity.

3.2. Transversality to the diagonal

Let C1 = {(c, c) : c ∈ C \M}.

Lemma 3.1. Near any point (c, c) ∈ C1, the Böttcher motion is well defined and is trans-
verse to C1.

Proof. The Böttcher motion is well defined since C1∩C− = ∅. It is transverse to C1 since
the Böttcher function B|C1 is non-singular (as it conformally maps C1 onto C \M). ut

Let c0 be a Misiurewicz parameter, i.e., there is a repelling periodic point a0, of period q,
such that f nc0

(0) = a0 for some n ≥ 1, assumed to be minimal with this property. There
are finitely many (and at least two) dynamical rays Rdyn

θi
(c0) landing at c0. Through a

neighborhood of c0, the Böttcher motion of these dynamical rays is well defined (see
Lemma B.1 of [GM] and Lemma 2.2 of [Sc1]). Their common landing point p(c) is
just the analytic continuation of c0 as a preperiodic point (that is, p(c) is the solution of
f n−1
c (z) = f

n−1+q
c (z) near c0).
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Lemma 3.2 (compare [vS]). Let c0 be a Misiurewicz parameter as above. Then the
curve c 7→ p(c) is transverse to the diagonal c 7→ c at c0.

Proof. Let us consider one of the dynamical rays Rdyn
θi
(c) landing at p(c) which moves

holomorphically under the Böttcher motion hc = B−1
c ◦ Bc0 . By the basic dynamical-

parameter relation, {c : c ∈ Rdyn
θi
(c)} is a parameter ray Rpar

θi
landing at c. Moreover,

the map γ : c 7→ h−1
c (c) is a homeomorphism from Rpar

θi
to Rdyn

θi
(c0). But if the curves

c 7→ p(c) and c 7→ c had tangency of order d ≥ 1 at c0 then each point on Rdyn
θ (c0)

would have d + 1 preimages under γ (compare Lemma 9.1 of [ALM])—contradiction.
ut

3.3. Parabolic wakes

LetA stand for the set of parameters c for which the map fc : z 7→ zd+c has an attracting
fixed point αc. In the quadratic case, it is a domain bounded by the main cardioid of the
Mandelbrot set. In the higher degree case,A is a domain bounded by a Jordan curve with
d − 1 cusps.

The setM \A is disconnected. The closures of the connected components ofM \A
are called (parabolic) limbs of M. Each limb L intersects A at a single point called the
root r = rL of the limb. The map fr has a parabolic fixed point with some multiplier
e2πip/q. There are two parameter external rays landing at the root. Their union with r
divides C into two (open) connected components: the one containing L \ {r} is called a
parabolic wake W =WL (see [DH1, M3, Sc1]).

For c ∈ L, the map fc has a unique dividing fixed point αc. There are q external rays
Rdyn
i (c) landing at this point which are cyclically permuted by fc with combinatorial

rotation number p/q. This configuration of q rays, together with the α-fixed point, moves
holomorphically over the whole parabolic wake W . We let

00
= 00(c) =

⋃
Rdyn
i (c).

Given some height ξ > 0, let W(ξ) stand for the domain obtained by truncating the
parabolic wake W by the parameter equipotential Epar

ξ of height ξ . For c ∈ W(dξ), the
Yoccoz puzzle pieces Y 0

j = Y 0
j (c) of depth 0 are obtained by taking the closure of the

connected components of C \ (00(c) ∪ {αc}) truncated by the dynamical equipotential
Edyn
ξ (c) of height ξ (where the piece containing 0 is also denoted Y 0). This configuration

of q puzzle pieces moves holomorphically over W(dξ).
Since fc(0) 6∈ 00(c)∪Edyn

ξ (c) for c ∈W(ξ), the fc-preimages of the rays 00(c)move

holomorphically overW(ξ), and so do f−1
c (Edyn

ξ (c)) = Edyn
ξ/d and the fc-preimages of αc.

The closures of the components of C \ f−1
c (00(c) ∪ αc) truncated by the equipotential

Edyn
ξ/d (c) are called Yoccoz puzzle pieces of depth 1, and are denoted Y 1

j (where the one
containing 0 is also denoted Y 1).

We now fix some height ξ (say, ξ = 1): the moduli bounds in what follows will
depend on this choice, but it will not be explicitly indicated.
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3.4. Satellite copies of M

Let

ML = {c ∈ L : f qn(0) ∈ Y 1, n = 0, 1, 2, . . . }.

This set is canonically homeomorphic to M, and is called a satellite copy of the Multi-
brot set (see [DH2, Sc2]). The maps fc with c ∈ ML \ {rL} (and the corresponding
parameters c) are called satellite renormalizable.

3.5. Decorations and Misiurewicz wakes

Removing the satellite copy from the limb L disconnects it into countably many compo-
nents, each attached to ML at a Misiurewicz parameter c∗ such that f nq

c∗ (0) ∈ f
−1
c∗
(α)

\ {α} for some n > 0. The closures of these sets are called decorations.
There are q rays landing at c∗, dividing C into q− 1 Misiurewicz wakes and the com-

ponent containing ML \ {c∗}. The above number n is called the level of the Misiurewicz
wake and the corresponding decoration.

For c in the Misiurewicz wake, the level n is determined as the minimal natural num-
ber n such that f nq

c (0) belongs to some Y 1
j (c) 6= Y

1(c). LetOn
k stand for the Misiurewicz

wakes truncated by the parameter equipotential of height ξ/dqn. Obviously, truncated Mi-
siurewicz wakes are compactly contained in the corresponding truncated parabolic wake
W(dξ), and the Misiurewicz wakes attached to different roots have disjoint closures.

Define

�n
=W(ξ/dnq−1) \

⋃
m<n

⋃
k

Om
k .

It is an open Jordan disk containing On
k .

For the further understanding of the wakes, we need to go deeper into the puzzle.
The Yoccoz puzzle pieces of depth n are the pullbacks of Yoccoz puzzle pieces of

depth 0 under f n. The puzzle pieces of depth n will be denoted by Y nj , where the la-
bels j stand for the angles of the external rays that bound Y nj . They form a tiling of the
neighborhood of K(f ) bounded by the equipotential of height ξ/dn.

We also let Y n stand for the critical puzzle piece of depth n, i.e., Y n 3 0, while Y nv
stands for the puzzle piece containing the critical value.

We call �n the parapuzzle piece of depth nq, containing ML. The closure of the
Misiurewicz wake On

k will also be called a parapuzzle piece of depth nq + 1. We will
now give a construction of the “parapuzzle pieces of depth n ≥ nq+ 2” so that they will
be the closures of the parameter domains over which the puzzle pieces of depth n move
holomorphically (with the same “combinatorics”). Moreover, they will form a tiling of
the Misiurewicz wake, appropriately truncated.

Lemma 3.3. Fix some Misiurewicz wake O = On
k ⊂ W . Then all the boundaries of

puzzle pieces up to depth qn move holomorphically over �n, while the boundaries of
puzzle pieces of depth qn+1 move holomorphically overO. All these motions provide us
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with tubings overO respecting the Böttcher coordinate. The critical value c 7→ c = fc(0)
is a diagonal of the tubing of ∂Y qn

v over On. Moreover, for any c ∈ O,

mod(Y nq(c) \ Y nq+1(c)) ≥ δ(O) > 0. (3.2)

Proof. Since for c ∈ �n, the critical orbit f kc (0), k = 0, 1, . . . ,qn, does not cross the
rays Rdyn

i (c) and the equipotential Edyn
ξ (c), the configuration of Yoccoz puzzle pieces up

to depth qn moves holomorphically over �n c O.
Similarly, for c ∈ O, the critical value f qn+1

c (0) does not cross the rays Rdyn
i (c)

and the equipotential Edyn
ξ (c) either, so that the puzzle pieces of depth qn + 1 move

holomorphically over O. By Lemma 2.3, this motion is continuous up to the boundary
of O.

We see that the boundary of each puzzle piece up to depth qn+ 1 provides us with a
tubing over O. This tubing respects the Böttcher coordinate as it is induced by it.

Let us consider the puzzle piece Y qn
v (c)moving holomorphically over�n

⊃ O under
the Böttcher motion hc. It is bounded by two arcs of external rays with some angles θ+
and θ− (landing at the same point a = a(c) such that f qna = α), and an arc of the
equipotential Edyn

ξ/dqn . By the basic relation (3.1), the Misiurewicz wake O is bounded by
two arcs of external raysRpar

θ±
(landing at the Misiurewicz root c∗ such that f qn

c∗ (c∗) = α)
and an arc of the equipotential Epar

ξ/dqn . Moreover, the parameter-phase map

γ : ∂O→ ∂Y qn
v , c 7→ h−1

c (c),

carries a parameter c ∈ ∂O \ {c∗} to the dynamical point γ (c) ∈ Y qn
v \ {a} with the

same Böttcher coordinates. This shows that the map c 7→ c satisfies properties (D1), (D2)
and (D5) of the diagonal to the tubing of ∂Y qn

v over O. It satisfies (D3) and (D4) by the
discussion in §3.2.

Since the holomorphic motion h over O extends to �n,

mod(Y 0(c) \ Y 1
j (c)) ≥ δn > 0, c ∈ O, (3.3)

for any non-critical puzzle piece Y 1
j contained in Y 0. Since

f qn : Y qn(c) \ Y qn+1(c)→ Y 0(c) \ Y 1
j (c), c ∈ O,

is a covering of degree d (for an appropriate non-critical puzzle piece Y 1
j ), we obtain

(3.2). ut

3.6. Puzzle motion over the parapuzzle

Let
0n = 0n(c) = f−n(00) \ f−(n−1)(00).

Thus,0n is the “new” ray boundary of the puzzle pieces of depth n (which is not contained
in the ray boundary of the puzzle pieces of depth n− 1).
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We say that f has well defined combinatorics up to depth n if 0 belongs to the interior
of a puzzle piece of depth n. Note that for c ∈ W(ξ/dq) with combinatorial rotation
number p/q, combinatorics is well defined up to depth q+ 1.

There are three ways the combinatorics can fail to be well defined at level n:

• The Julia set J (f ) is connected and f n(0) = α. Such maps will be called α-Misiure-
wicz.
• The Julia set is disconnected and the critical value f n(0) has height ≥ dξ . This situa-

tion will be essentially avoided by appropriate shrinking of the parameter domains.
• The Julia set J (fc) is disconnected and f n(0) ∈ 00. In this case, there are d rays in
0n that land at a precritical point. We call such precritical points pinching points of
depth n (if n is the minimal integer with this property). Note that the pinching points
of depth n belong to the interior of the puzzle piece of depth n− 1 (since by definition,
they do not belong to f−(n−1)(00)).

The combinatorics of f up to depth n (provided it is well defined) is the label of the
puzzle piece of depth n− 1 containing the critical value.

As we saw in §3.5, all the maps fc, c ∈ O, have well defined combinatorics up to
depth qn (and moreover,O is the maximal domain on which this is the case). We will now
tile O (truncated by appropriate equipotentials) according to the deeper combinatorics of
the puzzle.

Lemma 3.4. The set of parameters c ∈ O with the same combinatorics v up to depth n ≥
qn + 1 is an open Jordan disk bounded by the rays and equipotentials with the same
angles and heights as the puzzle piece Y n−1

v containing the critical value. The closure of
this disk, Ynv , is called the parapuzzle of depth n with combinatorics v. The boundaries
of puzzle pieces of depth n provide us with Böttcher tubings over Ynv that fit the tubings
of the boundaries of puzzle pieces of depth < n containing it. The critical value ψ : c 7→
c = fc(0), c ∈ Ynv , is a diagonal to the tubing of ∂Y n−1

v . The parapuzzle pieces of depth n
tile the Misiurewicz wake O truncated by the equipotential of height ξ/dn−1.

Proof. Assume inductively that the statement is true up to depth n (where the base of
induction is provided by the closed Misiurewicz wake O = Yqn+1, see Lemma 3.3).
Consider one of the parapuzzle pieces, Y = Ynj ⊂ O, and let us show how to tile its
truncation by parapuzzle pieces of depth n+ 1.

Let us consider the boundary of a puzzle piece X = Y nk contained in Y n−1
v . By the

induction assumption, it provides us with a tubing over Y that fits the tubing of ∂Y n−1
v ,

and ψ is a diagonal to the latter. Hence we can apply Lemma 2.1 and obtain an embed-
ding χ : ∂X → Y . The closed disk bounded by this Jordan curve is our parapuzzle X
of depth n + 1. Moreover, the map ψ is the diagonal of the tubing of ∂X over X . Prop-
erties (D1), (D2) and (D5) of the diagonal follow directly from the construction, while
properties (D3) and (D4) follow from the discussion of §3.2.

Since ∂X moves under the Böttcher motion and the diagonal ψ is the identity c 7→ c,
the phase-parameter map χ : X → X respects the Böttcher coordinates. Hence the
external angles and the heights of the rays and equipotentials forming ∂X are the same as
those of ∂X.



Parapuzzle of the Multibrot set 39

Let us now consider the puzzle pieces Y n+1
k of depth n + 1. Since fc(0) 6∈ ∂Y nj (c)

for c ∈ X and any j , these puzzle pieces move holomorphically over intX (obviously,
respecting the Böttcher coordinates). This motion is continuous up to the boundary by
Lemma 2.3. Let us show that it fits the tubing of the boundary of the puzzle piece of
depth n (and then inductively, of all smaller depths) containing it. Indeed, let Y n+1

l ⊂ Y nk ,
and let ζ ∈ ∂Y n+1

l \ ∂Y nk . Then ζ ∈ 0n+1, and since ∂Y n+1
l moves under the Böttcher

motion, hc(ζ ) ∈ 0n+1(c) for any c ∈ X . Hence hc(ζ ) 6∈ f−nc (00(c)), while the latter set
contains ∂Y nk (c). This provides us with the desired tubings of depth n+ 1 over X .

Finally, the puzzle pieces Y nk tile the puzzle piece Y n−1
v truncated by the equipotential

of height ξ/dn and their simultaneous motion over Y fits the tubing of ∂Y n−1
v . Applying

Lemma 2.1 once again, we conclude that the corresponding parapuzzle pieces X = Yn+1
k

tile the puzzle piece Y truncated by the equipotential of height ξ/dn. ut

The parapuzzle piece of depth n containing a point c in its interior will also be denoted
Yn(c) (or Yn when the choice of the base point c is self-evident or non-essential). For
instance, for c ∈ O = On

k , we have

Ynq
= �n, Y1+nq

= On
k .

For c ∈ intYn, let Ln = Ln,c : Dn → Y n be the first landing map to the critical
puzzle piece Y n. For n ≥ nq + 1, its domain Dn = Dn(c) consists of disjoint puzzle
pieces W n

i = W n
i (c) each of which is univalently mapped by Ln onto Y n. Note that

C \ intDn is a forward invariant set, and intDn contains a dense subset of the filled-in
Julia set K(f ).

Lemma 3.5. For n ≥ nq+ 1, the set C \ intDn moves holomorphically over intYn. This
motion is equivariant, i.e., hc ◦ fc0 = fc ◦ hc, and respects the Böttcher coordinate.

Proof. We fix some base parameter c0 ∈ Yn, and let f = fc0 , Y n = Y n(c0), etc.
Let us first show that the boundary of each domain W = W n

i moves holomorphically
over intYn. Let Ln|W = f l . Then W has an itinerary (µ0, . . . , µl−1, µl = 0), where
µm 6= 0 for m < l, satisfying the property

fm(W) ⊂ Y nµm , m = 0, . . . , l.

For c = c0, the restrictions f |Y nµm are univalent and

f (Y nµm) ⊃ Y
n
µm+1

, m = 0, . . . , l − 1.

Since the puzzle pieces Y nµ move holomorphically over intYn, the same property is valid
for all c ∈ intYn. Now, the repeated application of Lemma 2.3 shows that the boundaries
of all fm(W), m = l − 1, . . . , 0, move holomorphically over intYn as well.

By Lemma 3.4, for c ∈ intYn, fc(0) ∈ intY n−1
v (c). Thus 0 ∈ intY n(c) ⊂ intDn(c),

and this implies that all precritical points are contained in intDn(c). Hence the Böttcher
motion is well defined on C\ (intDn∪K(fc)) (which is a dense subset of C\ intDn). By
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the λ-lemma, this Böttcher motion extends to the whole set C \ intDn, and this extension
matches the previously constructed motion of

⋃
i ∂W

n
i . The conclusion follows. ut

We let h(n)c be the motion of C \ intDn over Yn described in Lemma 3.5.
We say that a puzzle piece Y = Y kµ(c0) persists over depth n if the boundary ∂Y kµ(c)

moves holomorphically over intYn respecting the Böttcher coordinate. By Lemma 2.3, if
n ≥ 1 + qn, this motion is continuous up to the boundary of Yn and hence provides us
with a tubing over Yn = Yn(c0). For instance, any puzzle piece Y nµ persists over depth n.

We say that a puzzle piece Y kµ is subordinate to depth n if it is not properly contained
in any domain W n

i .

Lemma 3.6. Let n ≥ nq+ 1. If a puzzle piece Y = Y kµ is subordinate to depth n, then it
persists over depth n. Moreover, its motion fits the tubing of the boundary of any bigger
puzzle piece Z = Y lν over Yn.

Proof. The first assertion follows from Lemma 3.5 since the boundary of Y kµ is contained
in C \ intDn.

Let us verify the second assertion. Since “fitting” is a transitive property, it is sufficient
to check it for two consecutive depths, l = k − 1. We may assume that k > n, since for
k ≤ n the result follows from Lemma 3.4. Let us consider a puzzle piece Y ′ = f k−n(Y )
of depth n, and letZ′ = f k−n(Z). The latter is a puzzle piece of depth n−1 containing Y ′.

Let hc be the motion of C \ intDn from Lemma 3.5. Since it is equivariant up to the
boundary of Yn, we have

f k−nc (hc(∂Z)) = hc(∂Z
′), c ∈ Yn. (3.4)

By Lemma 3.4, ∂Y ′ provides us with a tubing over Yn that fits the tubing of ∂Z′. By
(3.4), this property lifts to imply that the tubing of ∂Y fits the tubing of ∂Z. [Indeed, if
z ∈ ∂Y ∩ intZ then fc0(z) ∈ ∂Y

′
∩ intZ′. Since the tubing of ∂Y ′ fits the tubing of ∂Z′,

hc(f
k−n
c0

(z)) = f k−nc (hcz) does not belong to hc(∂Z′) for c ∈ Yn. By (3.4), hcz does not
belong to hc(∂Z).] ut

A critical puzzle piece Y n is called a child of a critical puzzle piece Ym (m < n) if the
map f n−m : Y n→ Ym is unicritical.

Corollary 3.7. Assume that for some n ≥ nq+1 and k ≥ 1, the map f k|Y n is unicritical
(e.g., Y n is a child of some puzzle piece Ym and k ∈ [1, n − m]). Then the motion h(n)

provides us with a tubing of ∂f k(Y n) over Yn, and the critical value c 7→ f kc (0) is a
diagonal to this tubing.

Proof. The first assertion follows from Lemma 3.6 since the piece f k(Y n) is subordinate
to depth n. The second assertion follows from Lemma 3.4 for k = 1. Applying the family
of univalent maps f k−1

c : fc(Y n(c))→ f k(Y n(c)), we obtain it for any k. ut

If f and f̃ have the same combinatorics up to depth n, a (Böttcher marked) pseudo-
conjugacy (up to depth n) between f and f̃ is an orientation preserving homeomorphism
H : (C, 0)→ (C, 0) such that H ◦ f = f̃ ◦ H everywhere outside intY n, and which is
the identity near infinity with respect to the Böttcher coordinates.
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Remark 3.1. By Lemmas 4.2 and 4.3 of [AKLS], if c and c̃ have the same combinatorics
up to depth n, and there exists a K-qc homeomorphism (intY n(c), 0) → (intY n(c̃), 0)
which is the identity on the boundary with respect to the Böttcher coordinates, then fc
and fc̃ are K-qc pseudo-conjugate (up to depth n).

3.7. Combinatorics of children

If f does not have well defined combinatorics of all depths, then either the Julia set of f
is disconnected or the critical point is eventually mapped to the repelling fixed point α.
Otherwise, we have critical puzzle pieces of all depths. In this case, we say that f is
combinatorially recurrent if the critical point returns to all critical puzzle pieces.

Given a critical puzzle piece Y n, let RY n be the first return map to Y n. The compo-
nents of the domain of RY n are puzzle pieces, which are mapped by RY n onto Y n, either
univalently (if the component is non-critical), or d-to-1 (if the component is critical). Let
m(Y n) be the infimum, over all components D of the domain of RY n , of mod(Y n \D).

If f is combinatorially recurrent, then every critical puzzle piece has a child. These
kids are ordered by “age”: a child Y k is “older” than a child Y l if Y k ⊃ Y l (and thus
k ≤ l). Note that the first child Y k of Y n coincides with the critical component of the
domain of RY n .

A combinatorially recurrent map is said to be primitively renormalizable if there exists
a critical puzzle piece Y n such that the critical point never escapes its first child Y k under
iterates of RY n : {RjY n(0) : j ≥ 1} ⊂ Y k . In general, we will say that a map f is non-
renormalizable if it is neither satellite nor primitively renormalizable.

A child Q = Y q of V = Y v is called good if f q−v(0) is contained in the first child
U = Y u of V . In this situation, K = Y q−v+u is a child of U called the friend of Q. Note
that f q−v : Q \K → V \ U is a covering map of degree d .

The favorite child of V is the oldest good child Q that appears after the first child U .
One can see that the depth of the favorite child is the smallest integer q > v such that
f q−v(0) belongs to the first child U and the orbit {f i(0)}q−vi=1 passes through the annulus
V \ U (see the discussion preceding Lemma 2.3 of [AKLS]). If f is combinatorially
recurrent and non-renormalizable, then every critical puzzle piece has a favorite child.

3.8. Phase-parameter transfer

We will now apply Lemmas 2.1 and 2.2 to two dynamical situations that will often appear
in what follows.

Lemma 3.8. Let us consider four levels s < t ≤ u < w, where u ≥ nq + 1, such that
Y u is a child of Y s and f u−s(Yw) is contained in some connected component W = W t

i

of the first landing map to Y t . Assume that

(1) mod(Y s(c) \W(c)) > δ for any c ∈ Yu;
(2) fc and fc̃ are K-qc pseudo-conjugate up to depth t for any c, c̃ ∈ Yu.

Then mod(Yu \ Yw) > ε(K, δ).
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Proof. Notice that Y s and W are subordinate to depth u, and c 7→ f u−sc (0) is a diag-
onal to the tubing of ∂Y s over Yu. The first assumption implies that diamY s (c)W(c) <

M = M(δ) and the second assumption implies that the maps h(t)c |(∂Y s ∪ ∂W) haveK-qc
extensions to the whole complex plane, c ∈ Yu. Application of the second statement of
Lemma 2.2 gives the result:

mod(Yu \ Yw) ≥ mod(Yu \ Ydepth(W)+u−s) > ε(K, δ). ut

Lemma 3.9. Let us consider four puzzle pieces K ⊂ Q ⊂ U b V of respective depths
k > q ≥ u > v ≥ nq+ 1. Assume that U is the first child of V , Q is a good child of V ,
and K is the friend of Q. Let K ⊂ Q ⊂ U b V be the corresponding parapuzzle pieces.
Then

mod(Q \K) > ρ(mod(V \Q))mod(V \ U),

where ρ : R+→ R+ is an increasing function.

Proof. Let A = V \ U . Since this annulus persists over U , all the maps

fc : A→ f (A), c ∈ U ,

are coverings of degree d .
By Corollary 3.7, the puzzle piece f (U) (and of course, f (V )) persists over V , so

that, the boundary of the annulus f (A) moves holomorphically under hc = hvc . Let us
extend this motion to the whole annulus f (A) (using the same notation for the extension).
By Lemma 2.3, this motion lifts to a holomorphic motion Hc of A over intU continuous
up to the boundary. For any z ∈ A\∂V and c ∈ U , hc(f (z)) /∈ ∂f (V ), henceHc(z) /∈ ∂V .
Thus, the motion of A fits the tubing of ∂V over U .

Let us now consider a unicritical family f q−vc : Q(c)→ V (c) overQ and a unicritical
family f q−vc : K(c) → U(c) over K. By Corollary 3.7, the critical value c 7→ f

q−v
c (0)

is a diagonal to the corresponding tubings: of ∂V over Q and of ∂U over K. Hence the
corresponding phase-parameter map χ : V → Q maps the annulus A onto the annulus
Q\K. By Lemma 2.1, the dilatation of this map is bounded by the dilatation of the motion
Hc overQ, which is equal to the dilatation of hc|f (A) overQ. By the λ-lemma, the latter
is bounded by ρ(mod(V \Q)), which implies the desired estimate. ut

4. The favorite nest and the principal nest

4.1. The favorite nest

Let Q0
= Y nq. Let Qi+1 be the favorite child of Qi , and let P i be the first child of

Qi . Let qn and pn be the depths of these puzzle pieces, i.e., Qn
= Y qn , P n = Ypn . Let

kn = qn + pn−1 − qn−1 and Kn
= Y kn . Note that

f qn−qn−1 : (Qn,Kn)→ (Qn−1, P n−1).

By Proposition 2.4 of [AKLS], we have

mod(Qn
\ P n) > δ(O), n ≥ 0. (4.1)
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This implies in particular that

mod(Qn
\Kn) =

1
d

mod(Qn−1
\ P n−1) >

1
d
δ(O), n ≥ 1. (4.2)

Let us also consider the corresponding parapuzzle pieces:Qn = Yqn , Pn = Ypn , and
Kn = Ykn .

Theorem 4.1. There exists δ>0, depending only onO, such that for n≥2, mod(Kn
\P n)

> δ, mod(Kn \ Pn) > δ, and for n ≥ 3, mod(Qn \Kn) > δ.

Proof. We start with the first and second estimates. The map f qn−qn−1 is unicritical
on Qn; all the more, it is unicritical on P n. It follows that pn − qn ≥ qn − qn−1, and
hence the puzzle piece

D = f qn−qn−1(P n) ⊂ P n−1

is a component of the first landing map toQn. It follows that f pn−1−qn−1(D) is contained
in a component of the first return map to Qn−1. In particular

mod(Kn
\ P n) =

1
d

mod(P n−1
\D) ≥

1
d2 m(Qn−1)

≥
1
d3 mod(Qn−2

\ P n−2) ≥
1
d3 δ(O), (4.3)

where the last estimate follows from (4.1), while the previous one follows from Lemma
2.2 of [AKLS]. This proves the first estimate of the lemma.

For the second estimate, let us define s < t < u < w as follows: s = pn−1, t =
qn, u = kn, w = pn. Then (4.3) implies that condition (1) of Lemma 3.8 is satisfied.
Condition (2) of Lemma 3.8 is satisfied by Theorem 4.4 (and Remark 4.1) of [AKLS].
Applying Lemma 3.8, we get the conclusion.

For the third estimate, let s < t < u < w be as follows: s = qn−1, t = kn−1, u = qn,
w = kn. Then f u−s(Yw) = f qn−qn−1(Kn) = P n−1 is contained in Kn−1, which is a
(trivial) component of the first landing map to Kn−1. By (4.2), condition (1) of Lemma
3.8 is satisfied.

Furthermore, mod(Kn−1
\Qn) ≥ mod(Kn−1

\ Pn−1) ≥ δ by the previous estimate.
By Remark 3.1 and the λ-lemma, this implies that condition (2) of Lemma 3.8 is satisfied
with K = K(O). The conclusion now follows from Lemma 3.8. ut

4.2. The principal nest

Let V 0
= Y nq. The principal nest starting at V 0 is the nest V 0

⊃ V 1
⊃ · · · obtained

by taking V i+1 as the first child of V i . Let vi be the depth of V i , i.e., V i = Y vi . Let
V i = Yvi stand for the corresponding parapuzzle pieces. By Corollary 3.7, ∂V i provides
us with a tubing over V i+1 with diagonal c 7→ f

vi+1−vi
c (0).

Let gi = gi,c = RV i . If the critical point returns to V i+1, we let si = si(c) be the
smallest k ≥ 0 such that gk+1

i (0) ∈ V i+1. (In other words, si +1 is the first return time of
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the critical point back to V i+1 under the iterates of gi .) If si = 0 (that is, gi(0) ∈ V i+1),
we say that the return to V i is central.

The map gi+1 = f
vi+2−vi+1 : V i+2

→ V i+1 admits a unicritical “Koebe extension”

gi+1 = gi+1,c : Vi+2
→ V i, where Vi+2

= Y vi+2−vi+1+vi ≡ Y vi+2 ⊂ V i+1.

(Note that Vi+2 is a good child of V i .) By Corollary 3.7, ∂V i provides us with a tubing
over the parapuzzle V i+2

≡ Y vi+2 with diagonal c 7→ f
vi+2−vi+1
c (0).

Lemma 4.2. We have the estimates

mod(V i+1
\ V i+2) ≥

1
d
(mod(V i \ V i+1)+ sim(V i)), (4.4)

mod(V i+1
\ V i+2) ≥ mod(V i+2

\ V i+2) > ρ(mod(V i \ V i+1))mod(V i \ V i+1). (4.5)

Proof. Let Dj = Y dj , 1 ≤ j ≤ si + 1, be the pullback of V i under gji , so that

V i+1
= D1

⊃ · · · ⊃ Dsi+1
= Vi+2. (4.6)

Notice that the Dj are all children of V i .
For 1 ≤ j ≤ si , f dj−vi (Dj+1) is a non-central component of Dom gi . It follows that

mod(V i \ f dj−vi (Dj+1)) ≥ m(V i). Since

f dj−vi : Dj \Dj+1
→ V i \ f dj−vi (Dj+1)

is a covering of degree d , we have

mod(Dj \Dj+1) ≥
1
d

m(V i), 1 ≤ j ≤ si . (4.7)

Moreover, f vi+2−vi+1 : Vi+2
\ V i+2

→ V i \ V i+1 is a covering of degree d as well.
Hence

mod(Vi+2
\ V i+2) =

1
d

mod(V i \ V i+1). (4.8)

Putting (4.7), (4.8) together with the Grötzsch inequality, we get (4.4).
Applying Lemma 3.9 to the nest V i+2

⊂ Vi+2
⊂ V i+1

⊂ V i , we obtain

mod(V i+2
\ V i+2) > ρ(mod(V i \ V i+2))mod(V i \ V i+1).

Since V i+1
⊃ V i+2, (4.5) follows. ut

Define 0 = i0 < i1 < · · · to be the sequence of levels such that for j > 0 the return to
ij − 1 is non-central, i.e., gij−1(0) 6∈ V ij .

Lemma 4.3. Let ij−1 ≤ s < ij . Then we have the estimates

mod(V ij \ V ij+1) ≥
1
d

mod(V s \ V s+1),

mod(V ij \ V ij+1) > ρ(mod(Vs \ Vs+1))mod(V s \ V s+1).
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Proof. Let n be the first moment such that f n(0) ∈ V s \ V s+1, and let m > 0 be the first
moment such that f n+m(0) ∈ V s+1. Then Q = Y vs+n+m is the favorite child of V s .

We have Q ⊃ V ij+1 since V s ⊃ V ij and n+m is not great than the first return time
to V ij . A similar argument gives f n+m(V ij+1) ⊂ V s+1. Hence

mod(Q \ V ij+1) ≥
1
d

mod(V s \ V s+1).

Since Q ⊂ Y vs+n = V ij , the first statement follows.
The second statement follows from Lemma 3.9 applied to the nest

K ⊂ Q ⊂ V s+1
⊂ V s,

where K is the friend of Q (since f n+m(V ij+1) ⊂ V s+1 implies V ij+1
⊂ K). ut

Lemma 4.4. If V ij−1
⊂ Qn and V ij+1 is defined then V ij+1

⊂ Qn+1.

Proof. Recall that qn+1 = qn + m where m is minimal with fm(0) ∈ P n and {f k(0) :
1 ≤ k ≤ m}∩Qn

\P n 6= ∅. Clearly V ij ⊂ P n, so we just have to show that {f k(0) : 1 ≤
k ≤ vij+1−vij }∩Q

n
\P n 6= ∅, as this implies qn+1 = qn+m ≤ vij+m ≤ vij+vij+1−vij .

Let k ≥ 1 be minimal such that f k(0) ∈ Qn
\ P n. Then k = l0(pn − qn) for some

l0 > 0, and RlQn(0) ∈ Y
qn+(l0−l)(pn−qn) \ Ypn+(l0−l)(pn−qn), 1 ≤ l ≤ l0.

Since R
V
ij−1(0) /∈ V ij , we also have RQn(0) /∈ V ij , so that V ij ⊂ Y qn+(l0−1)(pn−qn).

This clearly implies that RlQn(0) /∈ V
ij , 1 ≤ l ≤ l0, so vij+1 − vij ≥ k, as desired. ut

Theorem 4.5. There exists δ > 0, depending only on O, such that

(1) mod(V ij \ V ij+1) > δ,
(2) mod(V ij \ V ij+1) > δ.

Proof. By Lemma 3.3, the first statement holds for j = 0. Since V0
= Ynq

= �n and
V1
⊂ Ynq+1

= O, we have mod(V0
\ V1) ≥ mod(�n

\ O) = δ(O), so the second
statement also holds for j = 0.

By Lemmas 4.4 and 4.3, it is enough to show that for every n ≥ 3 such that Qn+1 is
defined, if k ≥ 0 is maximal such that V k ⊃ Qn then

mod(V k+1
\ V k+2),mod(Vk+1

\ Vk+2) > δ.

Note first that since P n and V k+2 are the first children of Qn and V k+1 respectively,
we have V k+2

⊂ P n. Recall the definition of Kn given at the beginning of Section 4.1:
Kn
= Y qn+pn−1−qn−1 . If V k+1

⊃ Kn, then

mod(V k+1
\ V k+2) ≥ mod(Kn

\ P n) and mod(Vk+1
\ Vk+2) ≥ mod(Kn \ Pn).

If Kn
⊃ V k+1, then mod(V k \ V k+1) ≥ mod(Qn

\ Kn) and mod(Vk \ Vk+1) ≥

mod(Qn \Kn), so by Lemma 4.2,

mod(V k+1
\ V k+2) ≥

1
d

mod(Qn
\Kn),

mod(Vk+1
\ Vk+2) > ρ(mod(Qn \Kn))mod(Qn

\Kn).

In either case, the result follows from Theorem 4.1. ut
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Remark 4.1. In [L3], [L4], it is shown that if d = 2 then one has better estimates

(1) mod(V ij \ V ij+1) > (j + 1)δ,
(2) mod(V ij \ V ij+1) > (j + 1)δ.

Remark 4.2 (Beau bounds). It follows from the arguments in [KL1], [KL2], [AKLS],
and this work that there exists δ > 0 (depending on the degree, but not on O) such that
for every j sufficiently large (depending on O) one has

(1) mod(V ij \ V ij+1) > δ,
(2) mod(V ij \ V ij+1) > δ.

5. Slow recurrence

If c ∈ M is not combinatorially recurrent then either c has a non-repelling fixed point,
or fc is satellite renormalizable, or fc is semi-hyperbolic (that is, its critical point is non-
recurrent and belongs to the Julia set). It is well known that the set of semi-hyperbolic
parameters has zero Lebesgue measure. Indeed, in [RL] a more precise version of the
following is proved:

Theorem 5.1. If c ∈ M is a semi-hyperbolic parameter then c is a Lebesgue density
point of the complement of M.

In particular, almost every parameter in some Vn+1 is either in the complement of M
or is combinatorially recurrent. For real parameters, the corresponding statement has
been proved in [Sa]: the set of semi-hyperbolic parameters c ∈ M ∩ R has zero one-
dimensional Lebesgue measure. We will now concentrate on the analysis of combinatori-
ally recurrent parameters.

Remark 5.1. A proof that the set of semi-hyperbolic parameters has zero Lebesgue mea-
sure can also be obtained along the lines of the approach we follow for combinatorially
recurrent parameters given below.

5.1. Positive probability of slow recurrence

Lemma 5.2. For any δ > 0 and λ > 0 there exist ε = ε(d, δ) and K = K(d, δ, λ) with
the following property. Assume that for some parapuzzle piece Vn,

mod(Vn \ Vn+1) > δ and mod(V n(c) \ V n+1(c)) > δ, c ∈ Vn+1.

Then for every c ∈ Vn+k+3 such that sn+i ≥ (1+ i)K , i = 0, 1, . . . , k, we have:

(1) mod(V n+i \ V n+i+1) > max{ε, (i − 1)λ},
(2) mod(Vn+i \ Vn+i+1) > max{ε, (i − 2)λ},
(3) mod(Vn+i+2

\ Vn+i+2) > max{ε, (i − 1)λ},

for i = 0, 1, . . . , k + 1.
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Proof. The inequalities mod(V n+i+1
\ V n+i+2) ≥ 1

d
(1+ sn+i)m(V n+i), given by (4.4),

and m(V n+i+1) ≥ 1
d

mod(V n+i \ V n+i+1), given by Lemma 2.2 of [AKLS], imply the
estimate mod(V n+i \ V n+i+1) > δi(1 + i), where δ0 = δ, δ1 = δ/d, and infi≥1 δi goes
to infinity with K (given δ and d fixed). The first estimate follows.

Together with (4.5), it implies the rest. ut

Given a sequence of disjoint sets Xn, n ≥ 0, on a probability space V , we let Xn =⋃
k<nX

n, X ≡
⋃
k≥0X

k . Below we will make use of the following general formula:

1− P(X) =
∏
n≥0

(1− P(Xn |V \ Xn)) (5.1)

(where P stands for probability or conditional probability). Indeed, letting An = V \ Xn,
A ≡

⋂
n≥0A

n
= V \X, we have A0

⊃ A1
⊃ · · · ⊃ A, and

P(A) =
∏
n≥0

P(An+1
|An) =

∏
n≥0

P(V \Xn |V \ Xn),

which yields (5.1)

Lemma 5.3. Assume that for some parameter c0,

mod(Vn \ Vn+1) > δ, mod(V n \ V n+1) > δ.

Let Znr ⊂ Vn+1 be the set of parameters which are not combinatorially recurrent. Fix
some K > 0 as in Lemma 5.2, and let Zsr ⊂ Vn+1 be the set of combinatorially re-
current parameters for which sn+k ≥ (1 + k)K , k ≥ 0.6 Then P(Zsr ∪ Znr |Vn+1) >

ε(δ, d,K) > 0.

Proof. We can assume that K is larger than the K(δ, d) given by Lemma 5.2. Let tk =
(1+ k)K , and let X = Vn+1

\ (Zsr ∪Znr). For k ≥ 0, 0 ≤ j < tk , let Xk,j ⊂ X be the set
of all c ∈ X such that sn+i ≥ ti , 0 ≤ i < k and sn+k = j . Notice that X =

⊔
(k,j)X

k,j .
We order the pairs (k, j) lexicographically. As above, let

Xk,j =
⋃

(k′,j ′)<(k,j)

Xk
′,j ′ .

Notice that for c ∈ Xk,j , we have

Vn+k+2(c) ∩ Xk,j = ∅ (5.2)

while
Vn+k+2(c) ∩Xk,j ⊂ Vn+k+2(c). (5.3)

Indeed, for c̃ ∈ Vn+k+2(c), we have sn+i(c̃) = sn+i(c) ≥ tn+i for i < k, while sn+k(c̃) ≥
sn+k(c) = j , with equality attained iff c̃ ∈ Vn+k+2(c).

6 Label “sr” stands for “slow recurrent”.
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Together with (5.1), (5.2) gives us

P(Znr ∪ Zsr |Vn+1) = 1− P(X |Vn+1) =
∏
(k,j)

(1− P(Xk,j |Vn+1
\ Xk,j ))

≥

∏
(k,j)

(1− sup
c∈Xk,j

P(Xk,j |Vn+k+2(c)).

It is thus enough to prove an estimate such as

P(Xk,j |Vn+k+2(c)) ≤ e−(1+k)ε, c ∈ Xk,j ,

for some ε = ε(δ, d). But this follows from (5.3) and the estimate

mod(Vn+k+2(c) \ Vn+k+2(c)) ≥ (1+ k)ε

of the previous lemma. ut

Remark 5.2. The above proof can be easily refined as follows. One can define Zsr as
the set of combinatorially recurrent parameters c ∈ Vn+1 for which the sequence sn+i
satisfies sn, sn+1, sn+2 ≥ K and sn+i+1 ≥ 2sni for i ≥ 2 (thus displaying “torrential
growth” in the terminology of [AM1]). We would still obtain P(Znr ∪ Zsr |Vn+1) > ε.

Let S ⊂ M be the set of combinatorially recurrent parameters c such that sn,
mod(Vn(c) \ Vn+1(c)) and mod(V n(c) \ V n+1(c)) grow at least linearly with n.

Let Zr be the set of combinatorially recurrent non-renormalizable parameters in M.

Corollary 5.4. For c ∈ Zr, there exist parapuzzle pieces Vn+1(c) of arbitrarily small
diameter such that P(M \ S |Vn+1(c)) < 1− δ, with δ = δ(O).7

Proof. For c ∈ Zr, the sequence ij in Theorem 4.5 is infinite. By the Rigidity Theorem
of [AKLS] (or directly from Theorem 4.5), the parapuzzle pieces V ij (c) shrink to c. We
can now apply Lemma 5.3 with n = ij , which implies the statement (since by Theorem
5.1 combinatorially non-recurrent parameters in Vn+1 are almost surely outside M). ut
In order to exploit the previous corollary, we will need the following “Density Points Ar-
gument”. Let us consider a measurable set X ⊂ C such that for almost every x ∈ X there
exists a sequenceXn(x) ⊂ C of measurable sets containing x such that diamXn(x)→ 0.
Assume that any two Xn(x), Xm(y) are either nested or disjoint. Then lim P(X |Xn(x))
= 1 for almost every x ∈ X. This is a particular case of the standard generalization of the
Lebesgue Density Points Theorem (which assumes that the family {Xn(x)}x,n satisfies
the Besicovitch Covering Property), and can also be seen as a direct consequence of the
Martingale Convergence Theorem.

Corollary 5.5. For almost every c ∈M, either fc has an attracting fixed point, or fc is
renormalizable, or c ∈ S.
Proof. It is enough to show that S has full Lebesgue measure in Zr. For fixed n, the para-
puzzle pieces Vn(c̃) define a partition of Zr. Since the Vn(c) shrink to c for any c ∈ Zr,
we can apply the Density Points Argument, which implies that lim P(Zr \ S |Vn(c)) = 1
for almost every c ∈ Zr \ S. But by Corollary 5.4, this cannot happen for c ∈ Zr. ut

7 Actually δ > 0 does not depend on c, not even via the Misiurewicz wake: see Remark 4.2.
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5.2. Real parameters

Our entire discussion goes through for real parameters as well, without changes. However
there are no parameters in Vn+1

∩ R \M, so that we can state the following stronger
version of Corollary 5.4:

Corollary 5.6. There exists δ > 0 such that for c ∈ Zr ∩R, there exist parapuzzle pieces
Vn+1(c) of arbitrarily small diameter such that P(S |Vn+1(c) ∩ R) > δ.

Corollary 5.7. For almost every c ∈M ∩ R, either fc has an attracting fixed point, or
fc is renormalizable, or c ∈ S.

Parameters in S ∩ R have exponential decay of geometry, that is, the ratios λn between
the lengths of V n+1

∩ R and V n ∩ R satisfy λn < Ce−εn for some C, ε > 0. Hence

∑
λ

1/d
n <∞, (5.4)

and by the Martens–Nowicki Criterion [MN] the maps Pc, c ∈ S, are stochastic (that is,
they have an absolutely continuous invariant measure).

Remark 5.3. In [BSS1] it is shown that the decay of geometry (that is, λn → 0) already
implies the existence of an absolutely continuous invariant measure.

Corollary 5.8. The set of non-renormalizable stochastic parameters c ∈ M ∩ R has
positive Lebesgue measure.

Corollary 5.9. Almost every non-renormalizable parameter c ∈M∩R is either regular
or stochastic.

Remark 5.4. Corollary 5.8, in the case d = 2, was obtained in [J]. The generalization to
the higher degree case is well known (see [T, Theorem 2], which follows the approach of
[BC]). Our proof is rather different.

Corollary 5.9, in the case d = 2, was obtained in [L4] and is new in the higher degree
case.

6. Conclusion

By now, we have carried out all the extra work needed for the higher degree case: once we
know that the phase-parameter geometry almost surely decays (Corollaries 5.5 and 5.7),
the further argument is the same as in the quadratic case. For the reader’s convenience,
below we will briefly elaborate this statement.
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6.1. Real parameters

6.1.1. Collet–Eckmann property (Theorem 1.1). Standard renormalization considera-
tions reduce the analysis of exactly n-times renormalizable parameters with some fixed
combinatorics to the analysis of non-renormalizable parameters in a “Multibrot-like fam-
ily”. The analysis of Multibrot-like families is parallel to the one we have done (see [L4]
which deals directly, in the case d = 2, with Mandelbrot-like families), and one reaches
the same theorems, with the difference that all constants may depend on the geometry of
the Multibrot-like family under consideration.

Since a renormalizable map is Collet–Eckmann if and only if its renormalization
is, Theorem 1.1 follows from the statement that (in a Multibrot-like family) real non-
renormalizable parameters are almost surely either regular or Collet–Eckmann. In view
of Corollary 5.7, this is reduced to the following result:

Theorem 6.1. The Collet–Eckmann parameters have full (one-dimensional) Lebesgue
measure in S ∩ R.

This result follows from the statistical argument of [AM1]: as pointed out in Remark 2.1
of that paper, the statistical argument applies for any d to the set of parameters satisfying
the following properties:

• lim inf sn ≥ 1;
• exponential decay of the real phase geometry (meaning that the ratios of the lengths of

the real traces of V n+1 and V n decay exponentially);
• growth of the parameter moduli mod(Vn \ Vn+1).

All these conditions hold for non-renormalizable parameters c ∈ S (the exponential decay
of geometry follows from the linear growth of the phase moduli mod(V n \ V n+1)).

6.1.2. Further statistical properties. The statistical analysis of [AM1] and [AM3] goes
far beyond the Collet–Eckmann property, and gives a very detailed description of maps
in S ∩ R. As for the Collet–Eckmann property, it can be directly applied to the higher
degree case:

Theorem 6.2. For almost every c ∈ R such that fc is not regular or infinitely renormal-
izable:

(1) The critical point is polynomially recurrent with exponent 1:

lim sup
− ln |f nc (0)|

ln n
= 1.

(2) The critical orbit is equidistributed with respect to the absolutely continuous invariant
measure µ:

lim
1
n

n−1∑
i=0

φ(f iλ(0)) =
∫
φ dµ

for any continuous function φ : I → R.
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(3) The Lyapunov exponent of the critical value, lim 1
n

ln |Df n(f (0))|, exists and coin-
cides with the Lyapunov exponent of µ.

(4) The Lyapunov exponent of any periodic point p contained in suppµ is determined
(via an explicit formula) by combinatorics (more precisely, by the itineraries of p
and of the critical point).

6.2. Zero area (Theorem 1.3)

Again, by renormalization considerations, Theorem 1.3 reduces to the statement that (in
a Multibrot-like family) almost every non-renormalizable parameter is regular. In view of
Corollary 5.5, it is thus enough to prove the following statement:

Theorem 6.3. The set S has zero area.

Proof. Fix an arbitrary c0 ∈ S and let Vn+1
= Vn+1(c0). For c ∈ Vn+1, let gn,c de-

note the first return map to V n under iteration by fc, and let V n∗ (c) be the component of
Dn(c) = Dom(gn,c) containing the critical value gn,c̃(0).8 Set

Vn+1
∗ = {c ∈ Vn+1 : gn,c(0) ∈ V n∗ (c)}

By the “Density Points Argument” of the previous section, it is sufficient to show that

lim sup P(S |Vn+1
∗ ) < 1. (6.1)

For c ∈ Vn+1, let Zn+1(c) be the union of the boundaries of the puzzle pieces that are
subordinate to depth vn+1 (and hence move holomorphically over Vn+1). Persistent puz-
zle pieces include all components of Dn(c). By Słodkowski’s Theorem, the holomorphic
motion of Zn+1 extends to a holomorphic motion h of the whole complex plane C.

The map ψ : c 7→ gn,c(0) is a diagonal to the tubing of ∂V n∗ over Vn+1
∗ , so h and ψ

give rise to a phase-parameter map χn : V n∗ → Vn+1
∗ . Since

mod(V n(c) \ V n∗ (c)) ≥ δn

for all c ∈ Vn+1, the first statement of Lemma 2.2 implies that mod(Vn+1
\Vn+1
∗ )→∞,

so by the λ-lemma, χn is γn-qc, where γn→ 1.9

Given two measurable sets X ⊂ Y and a bi-measurable injection φ : Y → C, we let

Pφ(X |Y ) = P(φ(X) |φ(Y ))

be the φ-pullback of the conditional probability. Let γ > 1. Given a Jordan disk V and a
measurable set X ⊂ D, let us define the γ -capacity Pγ (X |V ) as follows:

Pγ (X |V ) = sup Pφ(X |V ),

8 In what follows we let Dn = Dn(c0), and use the similar convention for other objects moving
over Vn+1.

9 This kind of rules relating the dynamical and parameter objects are described in [AM2] as the
phase-parameter relation. For most purposes, one can use these rules axiomatically.
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where φ ranges over all γ -quasiconformal homeomorphisms V → φ(V ) b C. Clearly,
the γ -capacity is a conformal invariant. Let αn = Pγ (Dn |V n).

For n > 0, the setDn is “uniformly porous” in V n in the following sense: There exist
K > 0, µ > 0 and η > 0 such that any component W of Dn is contained in the nest of
two topological disks, W ⊂ W ′ ⊂ W ′′ ⊂ V n, such that:

• mod(W ′′ \W ′) ≥ µ;
• W ′ is a K-quasidisk;
• P(Dn |W ′) ≤ 1− η.

To obtain such a nest, take the return map gn = gn,c : W → V n, extend it to a branched
covering ĝn : W ′′ → V n−1 of degree d or 1, and let W ′ be the pullback by ĝn of a big
intermediate quasidisk U , V n b U b V n−1. Since Dn−1 is not dense in U (once U is
sufficiently large), the Koebe Distortion Theorem implies that Dn has a gap of a definite
size in W ′ (compare Lemma B.3 of [AM2]).

Uniform porosity implies that αn < 1 for n > 0 (making use of the Besicovitch
Covering Lemma).

Since gn,c : V n∗ (c) → V n(c) is a conformal map for c ∈ Vn+1, the connected com-
ponents of the set

1n(c) = (gn,c|V
n
∗ (c))

−1(Dn(c))

are puzzle pieces which are subordinate to depth n + 1 and hence 1n(c) is respected by
the holomorphic motion h. Moreover, for c ∈ S ∩ Vn+1, gn,c(0) ∈ 1n(c). It follows that
S ∩ Vn+1

∗ is contained in the image of 1n under the phase-parameter map χn : V n∗ →
Vn+1
∗ . Since this map is γ -quasiconformal for large n, P(S |Vn+1

∗ ) ≤ αn by definition of
capacity. Thus, to prove (6.1), it is enough to show that

lim supαn < 1. (6.2)

We will obtain this by means of the following simple statistical argument.
Let On+1

= (gn|V
n+1)−1(Dn). For each connected component W of On+1, we have

mod(V n+1
\W) ≥

1
d2 mod(V n−1

\ V n) ≥ δn. (6.3)

Call a component of On+1 critical if it contains 0 and precritical if its image under
gn contains 0. Let En+1 be the union of critical and precritical components. If sn = 0 (the
central return case) then En+1

= V n+2; otherwise En+1 consists of d + 1 puzzle pieces.
In any case, En+1 is the union of at most d+1 puzzle piecesWi ⊂ V

n+1, each satisfying
(6.3). It follows that

Pγ (En+1
|V n+1) ≡ εn+1 ≤ e

−δn. (6.4)

Furthermore, ifW is a connected component ofOn+1
\En+1 then g2

n : W → V n is a
conformal map, and g2

n(W ∩Dn+1) ⊂ Dn. It follows that if φ : V n+1
→ φ(V n+1) b C

is a γ -qc homeomorphism then for any such component W we have Pφ(Dn+1 |W) ≤ αn
(by the definition of capacity). Hence

Pφ(Dn+1
|On+1

\ En+1) ≤ αn,
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so that
Pφ(Dn+1

\ En+1
|V n+1) ≤ (1− Pφ(En+1

|V n+1))αn.

Thus,

Pφ(Dn+1 |V
n+1) = Pφ(En+1

|V n+1)+ Pφ(Dn+1 \ E
n+1
|V n+1)

≤ Pφ(En+1
|V n+1)+ (1− Pφ(En+1

|V n+1))αn

= αn + (1− αn)Pφ(En+1
|V n+1).

Taking the supremum over all φ under consideration, we obtain

αn+1 ≤ αn + (1− αn)εn+1,

so
1− αn+1

1− αn
≥ 1− εn+1 ≥ 1− e−δn,

which yields (6.2). ut

6.3. Porosity of M (Theorem 1.4)

If c is not combinatorially recurrent, then by Theorem 5.1, c is a Lebesgue density point
of the complement of M.

So, assume that c is combinatorially recurrent. By Theorem 4.5,
⋂
Yn(c) = {c}, and

by Corollary 5.4 and Theorem 6.3, lim inf P(M |Yn(c)) < 1. This is not enough, though,
to conclude that c is not a Lebesgue density point ofM, since the Yn(c) do not in general
have a bounded shape (where a set K ⊂ C is said to have C-bounded shape if it contains
a round disk of radius (1/C) diam(K)).10 However, the following lemma will allow us to
replace them with shrinking domains of bounded shape.

Lemma 6.4. For every δ > 0, there exists κ > 1 with the following property. Let D be a
Jordan disk and let x ∈ D. Then there exists r > 0 such that Dr(x) ⊂ D and for every
Jordan disk 1 ⊂ D that intersects both Dr(x) and ∂Dκr(x), we have mod(D \1) < δ.

Proof. Let ψ : (D, x) → (D, 0) be the Riemann map, and let r be the maximal radius
such that ψ(Dr(x)) ⊂ D1/2.

Notice that if B ⊂ D is a Jordan disk with mod(D \ B) ≥ δ and B ∩ D1/2 6= ∅,
then B ⊂ DR where R = R(δ) < 1.11 By the Koebe Distortion Theorem, ψ−1(DR) ⊂
Dκr(x). If 1 intersects Dr(x) and ∂Dκr(x), then ψ(1) intersects D1/2 and ∂DR , so that
mod(D \1) = mod(D \ ψ(1)) < δ. ut

Given ρ > 0, there exists n such that Vn ⊂ Dρ(c), mod(Vn \ Vn+1) > δ and
mod(V n \ V n+1) > δ. Then for some η = η(δ), we have mod(Vn+1

\ Vn+2(c̃)) > η and

10 One can show that the parapuzzle pieces corresponding to the puzzle pieces in the enhanced
nest constructed in [KSS] have a bounded shape, but this nest is less convenient for the statistical
arguments.
11 The optimal choice is to take R ∈ (1/2, 1) such that mod(D \ [1/2, R]) = δ.
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mod(V n+1(c̃) \ V n+2(c̃)) > η for every combinatorially recurrent parameter c̃ ∈ Vn+1.
Almost every c̃ ∈ Vn+1

∩M is combinatorially recurrent, and by Corollary 5.4 and The-
orem 6.3, P(M |Vn+2(c̃)) < 1− ε. By the previous lemma, there exists r > 0 such that
Dr(c) ⊂ Vn+1 and any Vn+2(c̃) intersecting Dr(c) is contained Dκr(c) for some κ > 1.
Let X ⊂ Dκr(c) be the union of all the Vn+2(c̃) intersecting Dr(c). Then

1− P(M |Dκr(c)) ≥ κ−2(1− P(M |X)) ≥ εκ−2.

Remark 6.1. Let us indicate how to generalize Theorem 1.4 to the finitely renormalizable
case. We cannot just argue via renormalization since it would only prove that a finitely
renormalizable parameter is not a density point of a copy of the Multibrot set contain-
ing it, and indeed a neighborhood of a satellite renormalizable parameter (with repelling
periodic orbits) contains non-renormalizable parameters belonging to infinitely many Mi-
siurewicz limbs.

This can be solved by constructing a different version of the puzzle and parapuzzle,
which is designed to be compatible with a fixed renormalization. Namely, one constructs
“adapted Yoccoz puzzle pieces of depth 0”, where instead of using the external rays land-
ing at the α-fixed point of fc, one uses the external rays landing at the orbit of the α-fixed
point of the renormalization of fc. Though the combinatorial description is different (see
[Sc2], [M3]), the whole geometric and statistical analysis can be carried out to obtain
Theorem 1.4 in the more general setting.
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