Conformal Geometry and

Dynamics of Quadratic Polynomials, vol I-11

Mikhail Lyubich






Contents

Preface

1.

Preliminaries: Topological background

Part 1. Conformal and quasiconformal geometry

Chapter 1. Conformal geometry

2. Riemann surfaces

3. Holomorphic proper maps and branched coverings
4. Riemann, Montel, Koebe

5.  Uniformization Theorem

6. Extremal length and width

7. Hyperbolic metric and Schwarz Lemma

8. Carathéodory boundary

9. Puzzle and pinched disk models

10. Appendix 1: Potential theory

Notes

Chapter 2. Quasiconformal geometry

11.  Analytic definition and regularity properties

12.  Geometric definitions

13.  Further important properties of qc maps

14. Measurable Riemann Mapping Theorem

15.  Onme-dimensional gs maps, quasicircles and qc welding
16. Removability

17. Holomorphic motions

18.  Moduli and Teichmiiller spaces of punctured spheres
Notes

Part 2. Complex and real quadratic family

19.

Glossary of Dynamics

Notes

Chapter 3. Dynamical plane I: basic objects

20. Holomorphic dynamics: Fatou and Julia sets
21. Periodic motions

22. Postcritical set as the global attractor

23. Remarkable functional equations

24. Periodic ray configurations

Notes

Notes to Chapter 3

95

o7

o7
106
110
115
119
133
146
152
163
173

175
175
183
189
195
206
215
217
223
230

233
234
275

277
277
293
311
312
330
345
345



CONTENTS

Chapter 4. Dynamical plane II: fine structures and models

25.
26.
27.

Hyperbolic maps
Parabolic maps
Other special classes

Notes to §§25-27

28. Quadratic-like maps and renormalization: first glance
29. Topological Dynamics on the Fatou set

30. Topological dynamics of real quadratic maps

31. Yoccoz puzzle and its Principal Nest

Notes

32. General combinatorial theory

Chapter 5. Parameter plane

33. Definition and first properties
34. Connectivity of M
35. Hyperbolic components of M
36. Structural stability
37. Limbs and wakes of the Mandelbrot set
38. Combinatorial Rigidity, MLC, and Density of Hyperbolicity
39. Thurston Realization Theorem
Notes
Chapter 6. Straightening, puzzle, and attractors
40. Straightening
41. External structure
42.  Quadratic-like families
43. QL families over complex renormalization windows
44. Complex a priori bounds: first results
45.  Geometry of Julia sets
46. Measurable Dynamics of real maps
47. Parapuzzle and its Principal Nest
48. More of topological and combinatorial fun
Notes

Help Center and Reference guide

49.
50.
o1.

Hints and comments to the exercises
Basic notation, terminology, and conventions
Index

Bibliography

347
347
368
377
384
385
399
405
427
446
446

461
461
467
475
486
493
511
519
927

529
529
538
545
556
569
978
586
604
618
625

627
627
646
655

689
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Preface
In the last quarter of XXth century the complex and real quadratic family
foizm 22 +c

was recognized as a very rich and representative model of chaotic dynamics. In
the complex plane it exhibits fractal sets of amazing beauty. On the real line,
it contains regular and stochastic maps intertwined in an intricate fashion. It
also has remarkable universality properties: you can see small pieces that look
exactly the same as the whole family. This Universality is related to a profound
Renormalization idea originated in the particle and statistical physics. Interplay
between real and complex worlds provides us with deep insights into both. These
ideas eventually led to a complete picture of dynamics in the real quadratic family
and a nearly complete picture in the complex family.

In this series of books we attempt to present this picture beginning from scratch
and supplying all needed background (beyond the basic graduate education). We
hope to fit it into four volumes dedicated to the following themes:

I: Background in Conformal and Quasiconformal Geometry;
IT: Basic Holomorphic Dynamics;

III: Complete Picture in the Real Quadratic Family;

IV: Advances in the MLC;

Several prominent ideas that will be highlighted throughout the book are rigid-
ity, puzzle, combinatorial models, topological & measure-theoretic attractors, geo-
metric bounds, and renormalization. Let us overview them in more detail.

Conformal and quasiconformal geometry. Volume I of the book contains a nec-
essary background in conformal and quasiconformal geometry. Main analytical
and topological tools of Holomorphic Dynamics are collected here in the form suit-
able for dynamical applications. Classical themes include principles of hyperbolic
metric and extremal length, the classical Uniformization Theorem, Measurable Rie-
mann Mapping Theorem (including holomorphic dependence on parameters), and
the Carathéodory boundary theory. More contemporary themes include a general
(non-dynamical) introduction to the theory of geodesic laminations, puzzles, thin-
thick decomposition for bordered Riemann surfaces, holomorphic motions (which
probably provides the biggest feedback from the contemporary Holomorphic Dy-
namics to Analysis), and elements of Teichmiiller theory.

Dynamics. Volume II is dedicated to the Basic Holomorphic Dynamics de-
veloped from the mid-XIXth century through the early 1990s (adapted for the
quadratic family).

Dynamical plane I: basic objects. Chapter 3 covers most of the classical lo-
cal theory and Fatou-Julia global theory: basic properties of the Fatou and Julia
sets, classification of periodic motions and the associated remarkable functional
equations. (These equations were one of the original motivations for the classical
theory). It is completed with a more contemporary material on the landing proper-
ties of rational external rays (preparing a foundation for the combinatorial theory
of Julia sets) and the Yoccoz Inequality for the multipliers of periodic points.
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FIGURE 0.1. Mandelbrot set M. It encodes in one picture all
beauty and subtlety of the complex quadratic family. Every point
¢ € M represents some Julia set J(f.). A handful of popular ones
is depicted.

Dynamical plane II: fine structures and models. Chapter 4 covers good part of
the dynamical theory developed in the 1980s. Central themes here are:

e Global dynamics of important special classes of maps: hyperbolic, parabolic, and
postcritically non-recurrent.

e Problem of local connectivity of Julia sets (“JLC Problem”) and building of their
precise topological models (Douady & Hubbard and Thurston).

e Idea of quadratic-like maps and their renormalizations. This theory was designed
by Douady & Hubbard as a tool of explaining presence of baby Mandelbrot copies
inside the Mandelbrot set. It became foundational for the Complex Renormalization
Theory which will be a central theme in the upcoming volumes.

e Sullivan’s No Wandering Domains Theorem, which completed description of the
dynamics on the Fatou set. The proof is based on the method of quasiconformal
deformations adapted by Sullivan from the Ahlfors-Bers Deformation Theory for
Kleinian groups. It supplied the first line in Sullivan’s Dictionary between the dy-
namics of rational maps and Kleinian groups, which was largely responsible (along
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FIGURE 0.2. Blow-ups of the Mandelbrot set.

with appearance of beautiful computer images of Julia sets and the Mandelbrot set)
for the spectacular revival of Holomorphic Dynamics after 60 years of stagnation.

e Topological structure of real quadratic maps. The topological exploration of
interval maps originated in the work of Sharkovskii in the 1960s. In the 1970s a
great interest to this area was sparked by the Milnor-Thurston Kneading Theory.
The topological /combinatorial theory was completed in the 1980s, due to the effort
of many researchers. Guchenheimer’s No Wandering Intervals Theorem and real
a priori bounds for solenoidal maps (due to Guckenheimer, Blokh-Lyubich and
Sullivan) are key geometric ingredients needed for this picture.

e Combinatorial theory of Yoccoz Puzzle, a powerful tool of contemporary Holo-
morphic Dynamics, followed by a discussion of various combinatorial models for
Julia sets.

Parameter plane. In Chapter 5 we pass to the parameter plane, introducing
the Mandelbrot set M which encodes in one picture the whole richness of the qua-
dratic family. After analyzing elementary properties of M, we prove first two break-
through results about it from the early 1980s: the Connectivity and the Multiplier
Theorems (due to Douady and Hubbard). A new remarkable tool, Quasiconformal
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Surgery, was introduced to the field along the lines. Then we proceed with the
following themes:

e Structural Stability Theory (by Mané-Sad-Sullivan and the author) and a quasi-
conformal classification of quadratic polynomials.

e Limb Decomposition of the Mandelbrot set. (Limbs are the pieces of M attached
to the main cardioid (clearly visible on the pictures) and to other hyperbolic com-
ponents of M.) It implies, in particular, that any abstract superattracting Hubbard
tree (which encodes certain combinatorial data) is realizable by some superattract-
ing parameter.

e Proof of the Milnor-Thurston Entropy Monotonicity Conjecture that gives the
first illustration of the power of complex methods in real dynamics.

e Discussion of central conjectures in this area and the interplay between them.
Most famous conjecture is known as MLC (local connectivity of the Mandelbrot
set). It is equivalent to the Combinatorial Rigidity Conjecture, which is very similar
in spirit to the Mostow-Thurston Rigidity Phenomenon in 3D hyperbolic geome-
try. In turn, these conjectures imply the Fatou Conjecture asserting that the set
of hyperbolic maps is dense in the quadratic family (which sounds particularly
prominent for the dynamics community). The real counterparts of these conjec-
tures were established in the 1990s: they are formulated in this section, but the
proofs are postponed until Vol III (except that we give a proof of Rigidity for real
Feigenbaum maps).

e A fundamental Thurston’s Realization Theorem (in the context of superattracting
quadratic polynomials). It allows one to realize (in an appropriate sense) any
topological self-map of S? that “looks like a superattracting quadratic polynomial”
as an actual quadratic polynomial. (An equivalent version of this result, in terms
of Hubbard trees, was mentioned above.)

Straightening, puzzle geometry, and attractors. Let us pass to Chapter 6, the
final chapter of the second volume.

One of the most fascinating features of the Mandelbrot set, clearly observed on
computer pictures, is the presence of the little copies of itself (“baby M-sets”), which
look almost identical to the original set (except for possible absence of the main
cusp). The complex renormalization theory is designed to explain this phenome-
non. We present the Douady-Hubbard theory of quadratic-like maps and complex
renormalization that justifies presence of the baby M-sets, and classify them. (The
geometric theory that explains why these babies have a universal shape will be de-
veloped in the forthcoming volumes.) Note that though this theory is widely known
and used, it has never appeared in a complete form (to the best of our knowledge).

Other themes covered in this chapter are:

e A proof of Yoccoz’s Theorem on local connectivity of the Julia sets for at most
finitely renormalizable maps with all periodic points repelling. A proof that these
Julia sets have zero area (due to Shishikura and the author).

e Measurable Dynamics of real quadratic polynomials developed by Blokh and the
author in the mid-1980s. The main outcome is that such a map has a unique
measure-theoretic attractor that attracts almost all orbits, and this attractor can
be of four possible types: an attracting or parabolic cycle, a cycle of intervals, a
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FiGURE 0.3. Baby M-set.

solenoid, or a wild Cantor attractor. (The problem of existence of the latter will
be discussed in the third volume).

In conclusion, we discuss properties of stochastic maps (i.e., maps that have an
absolutely continuous invariant measure (acim)), and give Misiurewicz’s condition
for stochasticity.

e Combinatorial Parapuzzle Theory. It provides us with a hierarchical structure
of the Mandelbrot set, leading to the partition of it into hyperbolic components
(accompanied with their boundaries), Yoccoz parameters, and infinitely renormal-
izable parameters. This sets the stage for further advances in the MLC Conjecture
(in the forthcoming volumes).

e We conclude this chapter by completing a proof of local connectivity of M at
the boundaries of hyperbolic components and describing a topological model for M
(which is homeomorphic to M as long as the latter is locally connected — this was
the original motivation for formulating the MLC Conjecture ).

This roughly constitutes the first two volumes of the series.

Projected volumes. In the third volume we plan to prove the Feigenbaum-
Coullet-Tresser Renormalization Conjecture (by Sullivan [S3], McMullen [McM2],
and the author [L12]), Density of Hyperbolic Maps in the real quadratic family
[L10, GS]J), and the Regular and Stochastic Theorem [L11, L13] asserting that
almost any real quadratic map is either regular (i.e., has an attracting cycle that
attracts almost all orbits) or stochastic (i.e., it has an acim that governs behavior of
almost all orbits). These results were obtained in 1990’s, but more recent insights,
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FIGURE 0.4. Real quadratic family f, : 2 — 22 + ¢ as a model
of chaos. This picture presents how the limit set of the orbit
{f™(0)}22, bifurcates as the parameter ¢ changes from 1/4 on
the right to —2 on the left. Two types of regimes are intertwined
in an intricate way. The gaps correspond to the regular regimes.
The black regions correspond to the stochastic regimes (though of
course there are many narrow invisible gaps therein). In the begin-
ning (on the right) you can see the cascade of doubling bifurcations.
This picture became symbolic for one-dimensional dynamics.

particularly by Avila, Kahn, Moreira, and Shen deepened and further advanced our
understanding of the phenomena (see [AKLS, AL1, ALS, AM1, AM2]|).

We plan to dedicate the fourth volume to recent advances in the MLC Conjec-
ture, mostly based on the work of Kahn and the author [K, KL1]-[KL3]|.

Interplay between Complex and Real worlds. Throughout this book, Real Dy-
namics is largely treated as a special R-symmetric case of Complex Dynamics.
While this gives an elegant view for the initial real theory (collected in vol II),
most of it can still be developed by purely real methods. This will not be the case
anymore for more advanced real theory that will be developed in vol III: most of it
will rely on complex methods in a crucial way.

Missing themes. Let us mention several important themes of Quadratic Dy-
namics that are not covered by this project.
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e Advanced topics of Neutral Dynamics: structure of Siegel and Cremer maps,
Parabolic and Siegel Renormalization Theories, see section “Neutral Phenomenon”
in the bibliography.

e Holomorphic Ergodic Theory: see selected references in the corresponding section
of bibliography, in particular, the book [PrU].

e Problem of Hausdorff dimension and Lebesgue measure of Julia sets and the
Mandelbrot set, see [Sh2, BC, AL3|.

However, our project may eventually expand in one of these directions...

Remarks on more general theories. Dynamics of quadratic polynomials is quin-
tessential for the one-dimensional dynamics, both complex and real. With luxury
of being globally holomorphic, it raises in the simplest (albeit, already highly non-
trivial) combinatorial setting, some of the deepest geometric problems. Much of the
further theory is modeled on this setting, though new very interesting phenomena
eventually emerge. Let us mention some of these developments (see Notes in the
main bulk of the book for further leads):

Much of the dynamical theory developed in Chapters 3-4 can be generalized
to polynomials of higher degree. In fact, some of it is needed even in the quadratic
case, as the iterates of f are higher degree polynomials. We formulate relevant
pieces of the theory as exercises.

Note, however, that the basic parameter theory (Chapter 5) is less amenable to
generalizations, since the parameter spaces of higher degree polynomials are higher
dimensional.

Even more generally, good part of the basic theory can be generalized to rational
maps, though the combinatorial theory is much less developed in this generality.
We touch on this theme only briefly (for instance, we need Blaschke products).
There is a plenty of contemporary introductory sources to this area: [Bel, BI,
CG, EL1, L1, M2, St] (with Milnor’s book [M2] being particularly popular).

Going further, one can study the dynamics of transcendental maps, but it
becomes technically very difficult quite fast. Nevertheless, it is a flourishing research
area, with an important feedback to the polynomial dynamics (see [EL1, Ber| for
introductory surveys and section “Transcendental Dynamics” in the bibliography
for further references).

In a different direction, one can also generalize much of the real theory to
smooth maps. In fact, we develop the theory for a class of real analytic maps which
is needed for the quadratic dynamics, but otherwise we do not pursue this direction
in depth. An interested reader can consult text books by Collet & Eckmann [CE]
and de Melo & van Strien [MvS].

Let us finally mention that various deep geometric issues (including local con-
nectivity and area problems, existence of wild attractors, density of hyperbolicity,
and regular or stochastic dichotomy) are degree-sensitive even in the unicritical case
z + 2% 4 ¢. However, our exposition in vol III is planned so that it can be easily
adapted for the general unicritical setting.

A major development in the general multimodal case was a proof in the 2000s
of Density of Hyperbolicity by Kozlovski, Shen and van Strien [KSS|. However,
the multimodal generalization of Regular or Stochastic Dichotomy still remains
unsettled.
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How the book can be used. This book is being designed as an “educational
monograph” in contemporary analytic one-dimensional dynamics, so it can be used
in many ways:

e As the first introduction to the analytic one-dimensional dynamics, complex and
real. Then the reader should begin with Chapter 3 consulting the background
material from vol I as needed.

e As an introduction to advanced themes of contemporary one-dimensional dynam-
ics for the reader who knows basics and intends to do research in this field. Such
a reader can go through selected pieces of Chapter 3 proceeding fairly fast to more
advanced topics.

e For a graduate class in topics of conformal and quasiconformal geometry illus-
trated with dynamical examples. This would cover vol I with selected pieces from
vol II.

e Of course, the book can also be used for reference.

As we have already mentioned, we have made an effort to collect all necessary
background in the user-friendly form. What we assume from the reader is just the
basic knowledge of real & complex analysis, and topology & geometry, roughly cor-
responding to the core graduate curriculum at a US University. For instance, the
following collection of text books covers most of the needed background: Munkres
[Mu1l] (Topology), Shabat [Shab] (Complex Analysis), Do Carmo [DoC] (Differ-
ential Geometry), Halmos [Hal] (Measure Theory), Kolmogorov and Fomin [KolF|
(Real Functional Analysis), and Spivak [Spiv, vol. 1] (Global Analysis).

Various remarks. a) The text is supplied with many “Exercises” and “Projects”.
Mostly, they constitute an intrinsic part of the discussion, an invitation to the
reader to think through some technical details or to develop a piece of the theory
him /herself (in the spirit of the book by I.M. Glazman and Yu.I. Lyubich [GL]
that develops an advanced theory as a carefully organized series of not so difficult
problems). More challenging exercises are called “Problems”. Open problems and
conjectures are marked as such.

e) There are very few references in the main bulk of the text. However, each
chapter (and some sections) are concluded with Notes supplying historical back-
ground, references, generalizations, and leads for further reading.

f) For the reader’s convenience, a list of notations (as well as some basic def-
initions) is provided at the end. Most of these notations and definitions are also
introduced in the main bulk of the book, but there are some exceptions.

g) The bibliography is roughly classified according to the topics: “Real One-
Dimensional Dynamics”, “General Holomorphic Dynamics”; etc., so it may take a
few extra seconds to scroll through several sections in order to find a desired refer-
ence. We hope this inconvenience would be compensated by an extra orientation
that such classification provides.

h) The numeration of the chapters and sections is uniform throughout the series
of volumes.

Acknowledgement. This project has been gradually developed since the
Furopean Lecture Series I gave in Copenhagen—St Petersburg—Barcelona in 1999.
Besides these lectures, it is based upon my graduate classes in Stony Brook and
Toronto since the early 1990s, as well as mini-courses in Trieste, Kyoto, and Cullera
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in the 2000s. Over all these years, I have received invaluable feedback from my col-
leagues, postdocs and students, and more recently, from anonymous referees. Some
specific acknowledgments are spread over the Notes throughout the book, but of
course, they are far from being complete. Special thanks a due to Sergei Gelfand
for his patient but persistent encouragement over the years.

I am grateful to Joshua Bowman and especially to Sabyasachi Mukherjee for
their help with computer pictures. I also thank the NSF and NSERC, as well as the
Sloan and Guggenheim Fellowships, for their support over various periods during
this time.

An abbreviated version of the book, available as “Six Lectures on dynamics of
quadratic polynomials ” [L3], reflects the status of the area through the 1990s. It is
summarized in the survey “The quadratic family as a qualitatively solvable model of
chaos” [L2]. Recent surveys “Forty years of unimodal dynamics: on the occasion of
Artur Avila winning the Brin prize ” [L4]| and “Analytic low dimensional dynamics:
from dimension one to two” [L5] give an updated overview of the area.

1. Preliminaries: Topological background

In this section we collect some preliminary material, mostly topological. It can
be reviewed briefly and then consulted as the corresponding objects and results
appear in the text.

In what follows, all topological spaces (except Banach spaces L>°(X)) are as-
sumed to satisfy the Second Countability Aziom, i.e., they have a countable basis
of open sets. We also assume that all topological spaces in question are metrizable,
unless otherwise is explicitly said. Recall that a compact space is metrizable iff it
satisfies the Second Countability Axiom (and iff it is separable), so in the compact
case our two conventions exactly match. We will also follow a convention that
compactness includes being Hausdorff.

1.1. First encounter with “wild” creatures.

1.1.1. Cantor set. The (1/3)-Cantor set was perhaps the first example of a
“wild fractal” object. This famous construction goes as follows. By removing from
the unit interval I = I° the middle open 1/3-subinterval, we are left with the union
of two closed intervals, I§ = [0,1/3] and I = [1/3,1]. By removing from each of
them the middle (1/3)-interval, we are left with the union of four closed intervals
I3, = 10,1/9], 1}, = [2/9,1/3], I}, = [2/3,5/9], and I, = [8/9,1]. Repeating
this procedure over and over again, we obtain a hierarchy of 2" intervals I7
en € {0,1}, of level n, naturally labeled by dyadic sequences of length n. Let

En?

"= |J 12 ., and K= ﬁ]l”.

E£1...€n n=1

EXERCISE 1.1. The (1/3)-Cantor set is a perfect totally disconnected set of zero
length.

This prompts an intrinsic definition of a Cantor set as a totally disconnected
perfect set.

EXERCISE 1.2. All Cantor sets are homeomorphic.



14 CONTENTS
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FIGURE 1.1. Hierarchy of intervals generating the (1/3)-Cantor
set.

One can generalize the classical Cantor construction in the following obvious
way. Consider a rooted tree 7 with the root v° and vertices of level n > 1 labeled

as v’ . , where each index &, runs through a finite set, and any two vertices
n n+1
v e, & vl o . are connected by and edge.

REMARK 1.3. For n = 0, this statement should be read as “v” is connected to
v} ”. Such a convention will be assumed without mentioning under similar circum-
stances throughout the book.

b

Let us associate to 7 a hierarchical family of closed intervals I _ C I° such
that the intervals of the same level are disjoint, while I, _ DI _ _ . Itis
also convenient to put an order on the range of each index &,,, and to assume that
for given (e1...€,-1), the correspondence ¢, — I _ is monotonic.

.€
Assume that

diam I . —0asn— o0

En
along any infinite branch (e1e9¢3...) of the tree. Then

oo

K = ﬂ U If?l...en

n=0¢1...ep

EXERCISE 1.4. Show that under the above circumstances, K is a Cantor set.

The tree T encodes the combinatorics of this Cantors set K.! We say that K
has an N—bounded combinatorics if the number of branches emanating from any
vertex of T to the next level is bounded by V.

EXERCISE 1.5. Any two Cantor sets K,K C R with the same combinatorics
T are topologically equivalent by a homeomorphism h : (R, K) — (R, K) respecting
the combinatorics, i.e., inducing id on the tree T .

lof course, a given Cantor set K can be encoded by various trees. but in practice K appears
together with the coding tree.
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FIGURE 1.2. Devil staircase.

We say that K has a C-bounded geometry if any interval I _ is C'—comparable
with all the intervals I . _  of the next leves and with all the gaps in between.
For instance, the 1/3—Cantor set has a 2—bounded combinatorics and 3—bounded
geometry.

Clearly, a Cantor set with a bounded geomerty has a bounded combinatorics,
but not necessarily the other way around. Interplay between combinatorics and
geometry for various fractal sets will be one of the main themes of this book.

1.1.2. Devwil’s Staircase. Let K C J be a compact subset of a closed topological
interval J. Connected components L; of J~\ K are called gapsin K, or complemen-
tary intervals of K. If any two gaps have disjoint closures (i.e. K does not have
isolated points) then we can consider the equivalence relation ~ on J by declaring
the closures l_/j to be equivalence classes, while other classes to be singletons. Then
the quotient J/ ~ is a topological interval as well, as the Devil ’s Staircase con-
struction shows.?> This is a continuous monotone function h : .J — I onto another
interval I whose fibers are the above equivalence classes (so, h is constant on the
gaps L;, while h(x) # h(y) if 2 ¢ y).

The inverse construction is called blow-up of points. Given any countable set
{z;} Cint I and a summable series € := ) ¢; < oo with £; > 0, one can “blow-up”
points x; to closed intervals Ej of length ¢; to obtain a new interval J of length
1+ &. The natural projection 7 : J — I is a Devil Staircase. Let I := J UL;.
Then the projection 7 : I — I is one-to-one over all points except the z;, where it
is two-to-one.

EXERCISE 1.6. Work out details of the Devil’s Staircase and blow-up construc-
tions.

EXERCISE 1.7. For the (1/3)-Cantor set K = K3,

2To avoid dependence on a particular choice of the hierarchy of intervals, we should allow
adjustments of the intervals IZ, _ ~ without changing their slices by K.

3This term usually applies to the case when K is nowhere dense, i.e., it is a Cantor set.
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a) The devil’s staircase can be constructed by means of the map
€ €
K —1, 237: HZQ—: where ¢, € {0,1}.
b) Its graph is affinely self-similar, namely, it is invariant under the transformation
1? — 12, quad(z,y) — (3z,2x) mod 1.

This devil’s staircase provides the standard example of a monotone function
whose derivative vanishes almost everywhere (so the Newton-Leibniz Formula fails
— 1o absolute continuity).

The above discussion applies as well to a topological circle in place of an interval.
Moreover, it can be also extended to a disk:

EXERCISE 1.8. Let f/j be a family of disjoint closed arcs on the unit circle T.
Consider an equivalence relation ~ on the unit disk D whose classes are L;j and
singletons. Then the quotient D/ ~ is a topological disk.

1.2. Local connectivity. Notion of local connectivity is crucial for Holomor-
phic Dynamics: it makes even fractal objects fairly “tame”.

1.2.1. Paths and arcs. A path and a curve in a topological space X mean the
same: a continuous map v of an interval (of any type) or a circle to X. In the latter
case we also refer to it as a closed curve or a loop. Abusing terminology, we often
refer to the image of v as a path/curve as well.

An arc is an embedding of an interval into X. A simple closed curve is the
embedding of the circle into X.

EXERCISE 1.9. Any path parametrized by a closed interval contains an arc with
the same endpoints.

Thus, path connectivity of a space X is equivalent to its arcwise connectivity.

1.2.2. Definition and basic properties. A topological space X is called locally
connected (“Ic”) at a point x € X if 2 has a local basis of connected neighborhoods.*
A space X is called locally connected if it is locally connected at every point.

EXERCISE 1.10. A space X is locally connected iff connected components of any
open subset U C X are open.

There is a convenient weaker notion: A space X is called weakly locally con-
nected at a point x € X if any neighborhood U > x contains a connected set P such
that 2 € int P. (Such spaces are also called connected im kleinen.) There is a subtle
difference between local connectivity and weak local connectivity at an individual
point, but fortunately it disappears globally:

EXERCISE 1.11. If a space is weakly locally connected (at every point) then it is
locally connected. However, a space can be weakly locally connected at some point
x without being locally connected at this point (see Figure 1.4).

For a metric space X, a lc modulus at € X is a function w : Ry — Ry,
w(e) = 0 as e — 0, such that if d(z,y) < e then there exists a connected set ¥
containing both = and y such that diamY < w(e). If w works for all points € X
then it is called lc modulus for X.

4According to our convention, these neighborhoods are open. Sometimes “local connectivity”
is defined in terms of closed neighborhoods, which corresponds to the notion of weak lc below.
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FIGURE 1.3. A topological comb is a typical cause for non-local-
connectivity. To establish non-local-connectivity of a subset set in
R2, chercher le peigne. Notice that this comb is path connected
and is locally connected at the corner point.

FIGURE 1.4. A witch’s broom is weakly locally connected, but not
locally connected, at the tip.

EXERCISE 1.12. Show that a metric space X is weakly lc at some point x iff it
has an lc modulus at this point. Conclude that a compact metric space X is locally
connected iff it has an lc modulus.

EXERCISE 1.13. a) Show that curves are locally connected.
b) More generally, the image of an lc continuum is an lc continuum.

PROBLEM 1.14. An lc continuum K C R"™ is arcwise connected.

A space X is called a path/arcwise locally connected at a point x € X if there
exists a path/arcwise lc modulus w(e) such that any point y € X which is e-close
to x can be connected to x with a path/arc of diameter less than w(e). As usual,
path/arcwise lc of the whole space means path/arcwise lc at every point.

EXERCISE 1.15. For the whole space, properties of being arcwise lc, path lc, and
locally connected are all equivalent.

EXERCISE 1.16. Let K be a compact subset of R™, and let J = 0K. If J is
locally connected then so is K.

Quite remarkably, local connectivity gives a characterization of curves:

THEOREM 1.17 (Hahn-Mazurkevich). Let X be a compact space. Then X is a
le continuum iff there is a space-filling curve vy : [0,1] — X (“Peano curve”).

PROBLEM 1.18. Prove this theorem.

1.3. Plane topology. A plane domain is a domain in C.

1.3.1. Hulls and their cellular approzimations. A Jordan curve 7 is a simple
closed curve in the 2-sphere S2. It is called polygonal if it is contained in R? and
composed of finitely many straight intervals.
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LeMMA 1.19 (Polygonal Jordan Theorem). A polygonal Jordan curve bounds
a domain P whose closure (the “polygon” P) is homeomorphic to D.

PROOF. Take a line L that does not pass through any vertex of v and is not
parallel to any edge of v. Components of v . L admit a checkerboard coloring,
depending on which side of L they lie. Since v & T, there is an even number of
intersection points between « and L. Hence L \ v admits a checkerboard coloring
such that both unbounded components are colored white. (This can be also done,
with an appropriate adjustment of the notion of checkerboard coloring, in the case
when L is allowed to pass through a vertex.)

Take now the foliation of all lines parallel to L and declare P to be the set of
black points of this foliation.

To see that P is a topological disk, triangulate it and carry induction in the
number of triangles. O

A compact subset K in R? is called full or non-separating if R2~ K is connected.
(Intuitively, K “does not have holes”). A full non-trivial continuum is called a hull.

A point z € 0K is called peripheral if it belongs to the boundary of some
component of int K.

A subset K’ of a hull K is called a subhull if it is a hull such that int K’ is the
union of some components of int K.

A compact set K C R? is called cellular if there exists a nest of closed topological
disks D; (where D; = int D;) shrinking to K:

(1.1) Di5Dy>--3K; [|Di=K.
PROPOSITION 1.20. Any hull K C R? is cellular.

PrOOF. For any e-neighborhood U of K, we can construct a polygonal Jordan
curve v C U \ K that bounds a polygon P containing K (for instance, by covering
K with a union of small grid boxes). We can then organize the corresponding
polygons into a nest P, 3 P> 3 ..., and take their intersection Py,. It is a compact
set containing K.

Let us show that P, C K. Take some a € R?~ K. Since K is a hull, there is a
path ¢ in R? \. K connecting a to co. It stays some positive distance away from K
and hence does not intersect the curves 9P, for n sufficiently big. It follows that §
does not intersect the polygons P, either, and in particular, a & Ps. (I

COROLLARY 1.21. If K C R? is a hull then there exists a continuous map
h : (R?,K) — (R2,0) whose restriction to R? ~ K is a homeomorphism onto
R2 \ {0}.

PRrROOF. Consider a cellular approximation (1.1) of K. Let A; := D;~D;, and
A; == A[27 0+ 271 Construct consecutively homeomorphisms 4; — A; matching
on the common boundaries. We obtain a  homeomorphism
Do~ K — D~ {0} that extends continuously to a desired map. O

Thus, the space obtained by collapsing a hull K C R? to a single point® is a
topological plane R2. Of course, we can also interpret this result on the sphere S2,
where a “hull” K C S? should be understood as a continuum with connected (and

5i.e., taking the quotient by the equivalence relation that identifies all points of K to a single

point.
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non-empty) complement S?~\ K. We see that the space obtained by collapsing such
a K to a point is a topological sphere S2.

Doing it inductively, we conclude:

PROPOSITION 1.22. Let K; C S? be a finite family of disjoint hulls. The space
obtained by collapsing each K; to a single point is a topological sphere S?.

1.3.2. Jordan Theorem. The following result gives an intrinsic characterization
of hulls in R? in terms of vanishing Alexander cohomology:

THEOREM 1.23. A continuum K C R? is a hull iff H} (K) = 0.

PROOF. It is enough to show that for r sufficiently small, any two r-chains C'
and C’ in K are discretely homotopic in K rel the endpoints. By Proposition 1.20,
any neighborhood of K contains a Jordan disk D D K. By Example 1.124, C' and
C' are discretely homotopic in D. The chains that appear in the course of this
homotopy can be projected to K with a small error, providing us with the desired
homotopy in K.

Vice versa, assume R? \ K contains a bounded component D. Then for a point
a € D, the interaction

$a(2,C) == arg(z/(), z, (€K, |z— (| <dist(a, K),

defines a non-trivial 1-cocycle on K (compare Example 1.125). |

Thus, being a hull is an intrinsic property of K, independent of the embedding
of K into the plane.

COROLLARY 1.24 (Jordan Theorem: weaker version). Any Jordan curve v C
R? separates the plane.

PROOF. Otherwise v would be a hull. Then Hj(v) = 0 contradicting Example
1.125. (]

PROBLEM 1.25. For a continuum K C R?, the rank of HX(K) is equal to the
number of bounded components of R? . K.

Putting this together with Example 1.125, we obtain:

JORDAN THEOREM. The complement of a Jordan curve v consists of two com-
ponents Dy and Do with the common boundary ~y.

These components are called (open) Jordan disks. Their closures D; = D; U~y
are called closed Jordan disks.

A closed curve v on a manifold S is called trivial if it is nul-homotopic, i.e.,
there is a continuous family of closed curves ¢, 0 < ¢t < 1, such that vy = v while
~1 is a single point x. A connected manifold S is called simply connected if any
closed curve on S is nul-homotopic. In other words, its fundamental group m (S, )
is trivial (which is independent of the choice of the base point x).

EXERCISE 1.26. Show that any open Jordan disk is simply connected.

When S? is realized as one-point compactification of R?, S? = R? U {oo}, and
a Jordan curve v lies in R2, then one of the corresponding Jordan disks is bounded
in R?, while another contains co. They are called the inner and outer Jordan disks
respectively. If a point z belongs to the inner Jordan disk, we say that “vy goes
around z” or “vy surrounds z”.
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1.3.3. Embedded trees. Let us orient the plane R?, and let X be a planar space
(i.e., X can be embedded into R?). Two embeddings, i; : X — R?, j = 1,2,
are called ambient equivalent if there is an orientation preserving homeomorphism
h: R? — R2 such that hoiy = is.

An (abstract) closed star S of valence q is q copies of the interval [0,1] glued
at 0. (In other words, it is a tree with q edges that have a common root of valence
q.) Similarly, we can consider an (abstract) open star S° by taking q rays [0, +00)
and gluing them at 0.

Recall from §50.2 that e(f) = €27,

EXERCISE 1.27. (i) Any properly embedded open star of valence q is ambient
equivalent to the standard open star
q—1
S = e(k/q) - [0, +00).

k=0

(ii) Any ambient self-homeomorphism h : (R?,S5,) — (R?,S%) of the standard
open star is the composition of a rotation by p/q, p € Z/9Z, and a homeomorphism
h: (R?, Sy) — (R2,S) preserving all the rays.

In particular, the rays of a properly embedded star are cyclicly ordered and
any ambient orientation preserving self-homeomorphism induces a rotation on this
ordered set. (See Appendix 1.11 on the notion of cyclic order.) Moreover, a proper
embedding of an open star is determined (up to ambient equivalence) by a cyclic
order on its rays. Note also that if the rays have distinct asymptotic slopes 6; € R/Z
at the root of S or at oo, the cyclic order of the rays coincides with the cyclic order
of the angles 6; (induced from R/Z).

Similarly,
q—1
Sst 1= U e(k/q) : [0’ 1]

k=0
provides a standard embedded model for closed stars. It provides us with a local
version of the above conclusion: the rays of an embedded star are cyclically ordered,
and any ambient orientation preserving local self-homeomorphism (near the start
vertex) induces a rotation of this ordered set. An embedded star is determined (up
to local ambient equivalence) by a cyclic order on the edges.

More generally, we can consider an abstract tree 72, and its embeddings into
the oriented plane R? up to the ambient equivalence. Any vertex v of 7% is the
root of the attached local star S2P* (comprising the edges e such that v € de).

EXERCISE 1.28. An embedding i : TP — R? is determined, up to ambient
equivalence, by a cyclic order on all the local stars S2Ps.
1.3.4. Finer structure of hulls.

EXERCISE 1.29. (i) If K is a hull, then any component of int K is simply
connected.

(ii) Let J be a compact subset of R?, and let U; be the bounded components of R2~.J.
Then K := JUUU; is a hull.

This procedure is called filling-in the holes of J.
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LEMMA 1.30. Let K C R? be a lc hull, and let U be a component of int K.
Take a z € K ~ U and connect it with an arc o« C K to some point in U. Let
Ta(2) = my.a(z) be the the first point of intersection of a with U. Then m,(2) is
independent of «.

PROOF. Assume we have two arcs a1 and as in K connecting z to U such that
(1 := T, (2) # Tay(2) =: (2. Without loss of generality we can assume that the «;
end at ;. Let (u, (1] be the maximal subarc of oy that contains ¢; and does not
cross ag, and let of = [u, (;] be the closed subarcs of the «; bounded by u and ¢;
(i = 1,2). Then u is the only common point of the latter arcs. Moreover, u & U.

Let us take some points wy,ws € U that are e-close to (1, (s respectively. By
Lemma 1.9 and Exercise 1.12, w; can be connected to the respective point (; by
an arc ; C K with diam~; < w(e). So, for £ small enough, ~; is disjoint from
8% = oy Uye and o is disjoint from 87 := o U~.

Applying Lemma 1.9 again, we can straighten the curves ¢ to arcs d; C 0,
connecting u to w;. Then w is the only one common point of these arcs as well.

Let us now connect wy to wy with an arc o C U disjoint from §; U 5 (except
for the endpoints).

The union of three arcs, 41, do and o, form a Jordan curve in K. Let D be
the open Jordan disk bounded by this curve. Since K is full, D C K. Moreover,
D intersects U, and hence U U D is contained in a component of int K, so D C U.
Hence u € U — contradiction. O

So, under the above circumstances we have a well defined projection:

(1.2) K —U.
EXERCISE 1.31. The projection my is continuous and locally constant on K~\U.
Together with Exercise 1.13 b), this implies:

COROLLARY 1.32. If K C R? is a lc hull and U is a component of int K then
U is a hull as well.

EXERCISE 1.33. Let K be a lc hull in R? whose complement has infinitely many
components D;. Then diam D; — 0.

An external neighborhood of a hull K C C is a set U \. K where U is a neigh-
borhood of K.
Further study of plane hulls will require analytic methods (see §9.2).

Let us conclude with a useful criterion that ensures that a piecewise homeo-
morphism is actually a homeomorphism.

EXERCISE 1.34. Let K and K be two compact subsets of C, and let D;, D; be
the components of their interior. Assume diam D; — 0 and diam ﬁi — 0 (which
holds automatically when K and K are lc hulls). Let h : K — K be a bijection
that restricts to homeomorphisms 0K — OK and c1D; — clD;. Then h is a
homeomorphism. Show by example that the shrinking condition for D; and D;
cannot be dropped.

A nowhere dense lc hull is called a dendrite.
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1.3.5. Accessibility. Let D C Chea simply connected domain whose boundary
contains more than one point. Let v :[0,1) — D be a curve. We say that ~ lands
at some point ¢ € 9D if y(t) — ( as t — 1. A boundary point ¢ € 9D is called
accessible from D if there is a curve v landing at (.

EXERCISE 1.35. The set of accessible points is dense in 0D.

Let vy and 71 be two curves in D landing at . We say that vy and v, represent
the same access to ¢ if they are homotopic in D rel ¢ (i.e., there is a family of curves
v :[0,1) = D, 7 € [0, 1], deforming vy to 71, all landing at ¢). Thus, an access at
¢ is a class of homotopic curves in D landing at (.

Note that there exist q accesses to a vertex of valence q of an embedded graph.

1.3.6. Disk isotopies rel boundary. The following basic topological fact shows
that in the disk isotopy classes rel boundary are determined by the boundary values.

ALEXANDER TRICK. Any two homeomorphisms ¢ and v of the closed unit disk

D that coincide on T = 0D are isotopic rel T. The same is true for the punctured
disk D*.

PROOF. Let us first consider the case ¢ = id, and hence ¢| T = id.
EXERCISE 1.36. Show that ¢ is isotopic rel T to a map fizing 0.

In what follows we assume that ¢(0) = 0. Let ¢y = id, while for ¢ € (0, 1], let

us define a homeomorphism ¢! : D — D as follows
P'(2) =tp(z/t) for €Dy = {2 : |2] <t}, ¢'(2) = z otherwise.
This is the desired isotopy.
The general case is reduced to 1 = id by replacing ¢ with ="' o ¢. 0

EXERCISE 1.37. Let K C T be a closed subset of the circle. Then two home-
omorphisms ¢ and v of the closed unit disk D that coincide on K are isotopic
rel K.

1.3.7. Annulus (cylinder) twists. Next, we will classify homeomorphisms of the
cylinder Cyl = (R/Z) x I up to homotopy rel the boundary. Let us consider the
standard twist

7:(0,z)— (0+z,x).

Notices that it pointwise fixes the boundary and it maps the vetrical interval {0} x I
to the spiral {z = 0}.

EXERCISE 1.38. (i) The twists ™, n € Z, represent distinct homotopy classes
of cylinder homeomorphisms rel 0 Cyl fixing the boundary pointwise.

(ii) Any cylinder homeomorphism which fixes the boundary pointwise is homo-
topic rel O Cyl to some twist 7™, n € Z.

Of course, this discussion can be immediately transported to any (compact)
topological annulus. We will use the same name and notation for the corresponding
topological twists.
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FIGURE 1.5. On the left-hand side picture, one equivalence class
is disconnected (consists of two points), on the right-hand side one,
it is not full (a circle).

1.3.8. Quotients of the sphere.

MOORE’S THEOREM. Let P be a partition of the sphere S2, and let X be the
corresponding quotient space. Then X is a topological sphere if and only if P is
closed and every non-singleton class of P is a hull.

See [Tim)] for a proof.

This is a deep topological result. However, its conclusion can be verified directly
in all occasions that we will encounter in this book. Figure 1.5 illustrates what can
go wrong if the conditions of the theorem are violated.

1.4. Zoo of wild creatures.

1.4.1. Koch snowflake. Let us consider an equilateral triangle A (viewed as a
polygonal curve). Divide each of its sides L; into three sub-interval and attach
an equilateral triangle to each of the three middle intervals I;; then erase the I;.
We obtain an 12-gon (the first level approximation to the snowflake). Again, divide
each of its sides into three sub-interval and attach an equilateral triangles to each of
the twelve middle intervals, erasing those intervals afterwards. We obtain a 48-gon
(the second level approximation to the snowflake). Proceed inductively and pass to
a limit (in the Hausdorff topology on the space of sets). The limiting set is called
the Koch snowflake S.

EXERCISE 1.39. (i) Justify existence of the limit. Parameterizing the approxi-
mating polygons in a piecewise linear way, show that the convergence holds in the
uniform topology on the space of curves.

(ii) Show that S is self-similar: Each piece S; attached to the intervals I; can be
affinely amplified to the piece of S attached A~ L.
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FIGURE 1.6. The Koch snowflake (on the right) and the 2nd order
approximation to it (on the left).

(iii) Show that the Koch snowflake is a nowhere differentiable Jordan curve (it does
not admit tangent lines anywhere).

1.4.2. Jordan curve of positive area. Take a sequence of numbers €, > 0, n =
1,2,..., with Y&, < co. Start with a standard annulus A°. Inscribe into it a
narrow oscillating annulus A! such that area A > (1 —¢;)area A°. Then inscribe
into A’ a much more narrow annulus A2 with much higher oscillating frequency rel
Al such that area A% > (1 — &;) area A'; etc.

EXERCISE 1.40. Show that this construction can be arranged so that in the end
we obtain a Jordan curve T := (| A™ of positive area.

1.4.3. Knaster continuum. Let us consider the standard (1/3)-Cantor set K C
[0,1]. It is the union of two “Cantor intervals” J := KN[0,1/3] and I := KN[2/3,1],
permuted by the reflection o : # — 1 — 2 with respect to 1/2. Let us connect each
pair of symmetric points z and o(z) (z € J) with the upper half-circle arc (see
Figure 1.8) .

Let us now decompose the Cantor interval I into the union of two Cantor
intervals of the next level, I = L'UR!, where L' := KN[2/3,7/9], R' := KN[8/9,1].
These intervals are permuted by the reflection g : I° — I° with respect to the
middle of I° = I. Connect each pair of symmetric points x and o¢(z) (z € L')
with the lower half-circle arc.

Let us now consider the rescaled Cantor intervals

=3 "m.00 rtt.=3 .t Rgrtl.=3". Rl n=0,1,2,....
Then
(oo}
K={oyul )1, 1m=r"""urtt

n=0
The intervals L™t! and R"*! are permuted by the reflection o, : I” — I™ with
respect to the middle-point of I"™. Connect each pair of symmetric points x and
on(z), z € L™, with the lower half-circle arc. The union of all these arcs constitute
the Knaster continuum.
A continuum is called indecomposable if it cannot be represented as the union
of two proper subcontinua.

EXERCISE 1.41. (i) The Knaster continuum K is connected but not path con-
nected. All path connected components of K, except one, are densely immersed real
lines (the exceptional component, through 0, is a densely immersed ray [0, +00)).
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FIGURE 1.7. A thin oscillating annulus occupying substantial area
(a local picture).

(ii) The Knaster continuum is indecomposable.

1.4.4. Pseudo-arcs. A continuum X is called hereditary indecomposable if any
subcontinuum of X is indecomposable. So, it does not contain any arcs.

A chainin X is a covering of X by a sequence of open sets, C = (Cy, Cy,...,C),
in such a way that C; N C; # 0 iff |i — j| < 1. If moreover, diamC; < ¢ for all
i = 0,...n, then C is called an e-chain. A continuum X is called chainable if it
admits an e-chain for any € > 0.

A pseudo-arc is a chainable hereditary indecomposable continuum.

Let us briefly outline a construction of a pseudo-arc. A chain D refines C if
the closure D; of any element of D is contained in some element C,, of C. Under
these circumstances, a chain D is crooked in C if for any elements C,,, C, of C
with m < n — 2, and any elements D;, D; of D such that D; N C,, # () and
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FIGURE 1.8. Knaster continuum.

D;NC, # 0, there exist elements Dy, C Cy,—q and D; C Cpqq, where it < k <1< j
ori >k >1>j. So, D oscillates in all scales associated with C.

We say that a plane chain R? “begins” at a € R? and “ends’at b € R? if the
first element of C contains a while the last element contains b.

EXERCISE 1.42. (i) Let e — 0 and let C* be a sequence of plane ej.-chains
beginning at 0 and ending at 1 such that C**! is crooked inside C*. Then (\C* is
a pseudo-arc.

(ii) Construct a pseudo-arc.

(iii) Show that a pseudo-arc is a nowhere dense hull.

Similarly, one can define and construct a pseudo-circle by using cyclic chains
C = (Ci)iez/nz in place of chains.

EXERCISE 1.43. Prove that a pseudo-circle divides the plane into two compo-
nents.

1.4.5. Lakes of Wada. Lakes of Wada is the union of three (or more) disjoint
topological disks in R? that share a common boundary. To construct such domains,
select a sequence &,, — 0 and start with three open topological disks DY, i = 1,2, 3,
in D, with disjoint closures. Then select an €1-net X7 in D \ UD?, and dig out
fjords from the DY that pass e;-close to each point of X;. Call these new disks
D} > D). Take now an ex-net X in D\ |J D} and and dig out fjords out of the

D} that pass e3-close to each point of Xs. Proceed inductively.

EXERCISE 1.44. Go through details of the above construction. Show that simi-
larly one can construct arbitrary many (including countably many) lakes of Wada.

1.4.6. Cantor bouquet. Let us consider a compact subset K C R? which is
the union of straight intervals Ty = [0,%p] e(d), 0 € R/Z (some of which may be
degenerate), with the following properties:

e the set © := {0 : tp > 0} is dense in R/Z (the corresponding points tg e(f) are
called tips of K);
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FIGURE 1.9. A partly crooked chain. It is crooked in the union of
any four consecutive rectangles. (The rectangles should be slightly
enlarged to form a chain.)

e for any 6 € © there exist sequences a,, 0 and S, \, 0 such that ¢, e(a,) —
toe(f) and tg, e(B,) — toe(d).

Let T := {tg e(0) }yco be the set of tips.

EXERCISE 1.45. (i) Construct a Cantor bouquet K ;
(ii) Show that K is path connected but not locally connected;
(i) Show that T is connected while T* := T ~ {0} is totally disconnected.

The last property makes 0 an explosion point for T.

1.5. Group actions and foliations.
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FicUre 1.10. A Cantor bouquet generated by dynamics of z —
Asin z (courtesy of Lasse Rempe-Gillen).

1.5.1. Groups actions. Let us consider a general action of a group G on a space
X (denoted G ~ X). A point a € X is called fized for the action if it is fixed
by some non-trivial element v € G, i.e., there exists v # id such that y(a) = a.
An action is called free if it does not have fixed points, i.e., all points are moved
under non-trivial elements of G, The space X is called homogeneous for G if G acts
transitively on X.

An action of a discrete group I' on a locally compact space X is said to be
properly discontinuous if any two points z,y € X have neighborhoods U 3 x, V 3 y
such that v(U) NV = for all but finitely many v € T".

EXERCISE 1.46. (i) The orbits of a properly discontinuous action are discrete.
(ii) The quotient of X by a properly discontinuous group action is a Hausdor(f
locally compact space.
(iil) Vice versa, if the quotient X/G is Hausdorff then the action is properly dis-
continuous.
(iv) Consider the Z-action on the punctured plans (R?)* generated by the linear
hyperbolic transformation f : (x,y) — (2x,y/2). Show that it is not properly dis-
continuous, albeit all its orbits are discrete in (R?)*.

The stabilizer (or, the isotropy group) Stab(Y') of a subset Y C X is the sub-
group {y € T' : 7(Y) = Y}. A set Y called completely invariant under some
subgroup G C T'if G = Stab(Y) and v(Y)NY = for any vy € ' \ G.

EXERCISE 1.47. For a properly discontinuous action, the stabilizer of any point
(or, more generally: of any compact subset) is finite.

A group element « is called primitive if it generates a maximal cyclic group.

Isometries of a metric space are also called motions (e.g., Euclidean motions,
hyperbolic motions, etc.).

Let us consider two group actions, G ~ X and G ~ X. Amap h: X — Y
is called equivariant (with respect to these actions) if there is a homomorphism
A: G — G (induced by h) such that

hoy=A(y)oh VyeQ@G.
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An equivariant homeomorphism h : X — X inducing an isomorphism A : G — G
is also called a conjugacy between the actions.

A connected set A C X is called a fundamental domain for a group action
G X if

o A is closed® and int A is dense in A;
e Y(int A)NA = () for any v € G;

e Jra)=x.
yeG

ProOPOSITION 1.48. For any properly discontinuous group action, there is a
fundamental domain.

The idea is to take a base boint 2, € X, to consider its orbit O := orb x, under
G, and to let

(1.3) A= {ye X : dist(y,zo) = dist(y,0) = Héigdist(y,x).}

Norice that since the orbits of a properly discontinuous action are discrete, dist(y, O)
is attained at finitely many points of O.

EXERCISE 1.49. Check that the set A (1.3) is indeed a fundamental domain.
A fundamental domain constructed in this way is called Dirichlet.

A fundamental domain gives a concrete idea of the quotient space X/G. Indeed,
X/G is obtained from A by identifying boundary points z, 2’ € OA related by the
group action: x’ = vz for some v € T'.

1.5.2. Foliations. A (topological) k-dimensional foliation F of an n-dimensional
manifold M is a partition of M into immersed k-dimenional subminafolds £, (called
the (global) leaves of F) such any point x € M has a neighborghood U with the
following property:

There is a homeomorphism ¢ from U onto D* x D™ ~* such that for any ¢t € D"~*
the pullback ¢~ (D* x {t}) is a component of L, N U for some leaf L,,.

Under these circumstances, U is called a flow box, ¢ is the corresponding foliated
local chart, L, NU is a local leaf or a plague.

A graph of a continuous function ¢ : D"~ % — DF is called a transversal in our
flow box. More genrally, a transversal to a foliation is a curve which is locally (near
any point x € T) is a transversal in some flow box.

If all the manifolds and the local charts involved are smooth/holomorphic, etc.,
then the foliation inherits the corresponding name. In the smooth setting, transver-
sals are assumed (with out saying) to be smooth and also transverse to the leaves
(in the usual smooth sense).

For instance, the fibers of a smooth map ¢ : M"™ — N" % between two mani-
folds form a smooth foliation k-dimensional away from the critical points of ¢ (by
the IFT). Trajectories of a differential equation 2’ = v(x) on a manifold M form a
smooth 1D foliation away from zertos (also called “singular points”) of the vector
field v (by the Straightening Theorem for ODE). On a 2D manifold M, we can also
consider a smooth 1D foliation whose leaves are tangent to a line field given by an

6807 A is not a “domain" in the usual sense, but this traditional abuse of terminology is
commonly accepted.
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equation w(z) = 0, where w = udu+wv dv is a 1-form (the line field and the foliation
live away from zeros of w).

In the above examples, if we keep critical /singular points or zeros of the corre-
sponding objects (functions/vector fields or differential forms) then we can still talk
about corresponding singular foliations (e.g., a foliation on “the whole M” given by
a smooth function ¢ : M — N has singularities at the critical points of ¢).

All of the above notes remain valid in the holomorphic category as well.

EXERCISE 1.50. Decsribe two singular foliations Rez™ = 0 and Im 2™ =0 on
C, m > 1. The same question for foliations Redz! =0 and Imdz! =0, 1 > 2.

Given two transversals, 71 and 7, in some flow box, we can consider a home-
omorphism h : 73 — T by sliding along the local leaves of the foliation. Such a
homeomorphism is called a holonomy. Given two transversals, 77 and 72, and a
path v lying in some leaf £ and connecting a point z; € 71 to xo € T3, we can
develop a local holonomy (T1,x1) --+ (T2.x2) along .

A transversal T is called global if it intersects each leaf of the foliation. Some-
times the self-holonomy to 7 can be represented by a nice transformation (called
the monodromy map):

EXERCISE 1.51. For a € R\ Q, sonsider the foliation of the torus T? = R? /7>
be the lines y = ax + ¢ with slope . Show thar all the leaves of this foliation are
dense in the torus.

1.6. Coverings.

1.6.1. Definition and first observations. In this section we summarize for reader’s
convenience necessary background in the theory of covering spaces.

Let E and B be topological manifolds (possibly with boundary), where B is
connected. A continuous map p : E — B is called a covering of degree d € 7 U{oo}
(with base B and covering space FE) if any point b € B has a neighborhood V' such
that

d
pil(v) = |_| Uia
i=1

where each U; is mapped homeomorphically onto V. The preimages p~!(b) are
called fibers of the covering. The inverse maps p;l : V. — U; are called the local
branches of p~!. Let us make a couple of simple observations:
e A covering of degree one is a homeomorphism;
e Restriction of a covering p : E — B to any connected component of F is also a
covering.
e If V is a domain in B, U = p~1(V) then the restriction p : U — V is also a
covering.

Coverings p : F — B and p’ : B/ — B’ are called equivalent if there exist
homeomorphisms H : E — E’ and h : B — B’ such that hop = p’ o H, i.e., the
following diagram

E 2
(1.4) pl Ly
B — B
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1s commutative.

1.6.2. Lifting. Given two coverings, p : E — B and p’ : E' — B’, and a
continuous map h : B — B’, a continuous map H : E — E’ is called a lift of h (via
p and p') if H makes diagram (3.2) commutative, i.e., hop = p’ o H. Under these
circumstances, h is called liftable via p and p’, or just (p, p’)—liftable. (In case when
E = B and p = id, the lift of h : B — B’ to E/ means a map H : B — E’ such
that p’ o H = h.) Similarly, one defines a lift of a homotopy.

Theory of covering spaces is based on the following fundamental property:

PATH LIFTING PROPERTY. Let v be a path in B that begins at b € B, and let
e € p~t(b). Then there is a unique lift 7 of v (i.e., po” = ~) that begins at e. If y
is homotopic to ' (rel the endpoints) then the corresponding lifts ¥ and 7' are also
homotopic rel the endpoints.

It implies, in particular, that the induced homomorphism
yZOo 7T1(E,6) — Wl(B,b)

is injective; let G = G, C m(B,b) be its image. If E is connected then replacing
e with another point in the fiber p~!(b) replaces GG with a conjugate subgroup. In
this way, to any covering p : E — B (with connected F) and a base point b € B,
we associate a subgroup of the fundamental group (B, b), up to conjugacy.

The Path Lifting Property implies a general

LIFTING CRITERION. A continuous map h : (B,b) — (B',V) admits a lift
H:(E,e) — (E',€), where e € p~1(b)) and €’ € p~1(¥'), if and only if

hi o pu(mi(E,e)) C pi(mi(E',€)).
In particular, if E is simply connected, then all maps h : B — B’ are liftable.
EXERCISE 1.52. Prove the Lifting Criterion.
In what follows we assume that E is connected.

1.6.3. Universal covering and monodromy. A covering is called Galois or reg-
ular if there is a group G acting freely and properly discontinuously on F whose
orbits are fibers of the covering. In this case B =~ E/G. The group G is called the
group of deck transformations, or the covering group for p.

Vice versa, if a group G acts freely and properly discontinuous on a manifold
E then the quotient B := F/G is a manifold, and the natural projection p : E — B
is a covering.

EXERCISE 1.53. Let # : X — X' be a regular covering with a group T' of
deck transformations. Let Y' C X' be connected, and let Y C X be a connected
component of m=1(Y"). Then'Y is completely invariant under the action of T.

A covering u : U — B is called Universal if the space U is connected and simply
connected. This covering is Galois, with the fundamental group m(7) acting by
deck transformations. Any manifold has a unique Universal Covering up to covering
equivalence.

REMARK 1.54. We suppress the base point in the notation for the fundamental
group, unless it can lead to confusion. (On most occasions, our statements are
invariant under conjugacies (inner automorphisms) in the fundamental group, and
hence are base point independent.)
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The Universal Covering allows us to recover any covering p from the a subgroup
I' ¢ m(B) as p: U/T" — B. Moreover, the universal covering factors through p
since p o ¢ = u, where ¢ : U — U/T. This provides us with a natural one-to-
one correspondence between classes of conjugate subgroups of 71 (B) and classes of
equivalent coverings p : E — B. Moreover, the covering p is Galois if and only if the
corresponding subgroup I' is normal. In this case, the group of deck transformations
of p is m (B)/T.

In particular, a simply connected manifold B does not admit any non-trivial cov-
erings: any covering p : ¥ — B with connected E is a homeomorphism. Putting
this together with the above observations, we obtain the following important state-
ment:

MONODROMY THEOREM. Ifp: E — B is a covering and V C B is a simply
connected domain, then p~*(V) is a disjoint union of domains U;, i = 1,...,d,
such that each restriction p : Uy — V is a homeomorphism. Thus, on any simply
connected domain there exist d well defined inverse branches pfl V=U;.

Given a base point b € B, there exists a natural monodromy action of the
fundamental group I' := 71 (B, b) on the fiber F':= 7~1(b). Namely, let an element
A €T is represented by a loop a in B based at b. Lift « to a path @ in E based
at some e € F. Then A(e) is defined as the endpoint of &. The stabilizer of this
action is the subgroup G, C I" corresponding to p (well defined up to conjugacy),
which gives yet another viewpoint on the relation between coverings over B and
subgroups of 71 (B).

REMARK 1.55. We see that the coverings over B are classified purely alge-
braicly, so the list depends only on the homotopy type of B.

EXERCISE 1.56. (i) For any d € Zy U {oo} there is a unique covering pq :
Eq — S' of degree d over the topological circle S*. The pq constitute the full list of
coverings (up to covering equivalence) over S*. Moreover, Eq ~ S for any finite
d, while Es = R (which is the universal covering). All these coverings are Galois.

(ii) Any homeomorphism h : S* — S' admits d lifts to a homeomorphism H : Eg —
E4. The lift is determined by the value H(e) (selected arbitrary in the appropriate
fiber) at any point e € Ey.

EXERCISE 1.57. Let f: St — St be a continuous map of degree d € 7 (i.e., f
induces the mi-endomorphism n +— d-n). Let e : R — St be the universal covering
for which the lattice Z C R serves as the group of deck transformations. By the
Lifting Criterion, f admits a lift F : R — R. Then the action of F is Z-equivariant:

Flz+1)=F(x)+d, zeR.

EXERCISE 1.58. Let p: E — B be a covering of degree d. Then there exists a
Galois covering q : L — B of degree at most d! that factors through p, i.e., ¢ = por
(where r : L — E is also (automatically) a Galois covering).

1.6.4. FEssential submanifolds. One says that a connected submanifold V' C
B (possibly with boundary) is essential in B if the induced (by the embedding)
homomorphism 7 (V) — m1(B) is injective. In other words, any non-trivial loop
in V remains non-trivial in B.
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PROPOSITION 1.59. Let u : U — B be the universal covering. If V C B is an
essential submanifold then any component 1% of u=1 (V) is simply connected. More-
over, the stabilizer T' of V in the group G of deck transformations is the covering
group for the restrictionp:V — V (and thus, T is isomorphic to (V).

ProoOF. By the above observations, restriction w : VosVisa covering. If 1%
was not simply connected, then there would be a non-trivial loop & in V. Then
the loop a = p.(&) would be non-trivial in V' (since p, is injective) but trivial in B
(since & is trivial in U).

Since p~1(V) is invariant under G, each deck transformation v : & — U per-
mutes the components of p~1(V). Hence for any v € G, V is either invariant under
~ or else v(V)NV = 0. Tt follows that the stabilizer I of V acts transitively on the
fibers of p| V, and the conclusion follows. (I

COROLLARY 1.60. Let v be an essential simple closed curve in B. Then each
lift 4 to the universal covering U is a topological line whose stabilizer is an infinite
cyclic group. Different lifts have conjugate stabilizers.

Thus, to each (oriented) simple closed curve in B we can associate a conjugacy
class in the fundamental group 71 (B) (the generators of the above stabilizers).

EXERCISE 1.61. There is a natural one-to-one correspondence between classes
of freely homotopic (oriented) closed curves (not necessarily simple) and conjugacy
classes in G = m(B).

LEMMA 1.62. Let V' be an essential submanifold in B. Then there is a covering
q: E — B with m(E) = 71(V) and such that one of the components U of ¢~ (V)
projects homeomorphically onto V.

PROOF. In the notation of Lemma 1.59, let E =4/T, U = VT O

Informally speaking, we unwind all the loops in B except those that are essen-
tially confined to V.

COROLLARY 1.63. Let~y C B be a non-trivial simple closed curve. Then there is
a covering space E with m (F) = Z containing a simple closed curve 4 that projects
homeomorphically onto .

1.7. Topological surfaces.

1.7.1. Definitions and examples.

DEFINITION 1.64. A (topological) surface S (without boundary) is a
two-dimensional topological manifold with countable base. It means that S is a
topological space with a countable base such that any z € S has a neighborhood
U > z homeomorphic to an open subset V of R2. The corresponding homeomor-
phism ¢ : U — V is called a (topological) local chart on S. Such a local chart assigns
to any point z € U its local coordinates (x,y) = ¢(z) € R

A family of local charts whose domains cover S is called a topological atlas on
S. Given two local charts ¢, : Uy — V7 and ¢ : Us — V5, the composition

P20 7 b1 (UL NUs) — do(Uy NTY)

is called the transition map from one chart to the other.
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FIGURE 1.11. A transition map between two local charts.

A surface is called orientable if it admits an atlas with orientation preserving
transition maps. Such a surface can be oriented in exactly two ways. In what
follows we will only deal with orientable (and naturally oriented) surfaces.

Unless otherwise is explicitly said, we will assume that the surfaces under con-
sideration are connected. The simplest (and most important for us) surfaces are:

e The whole plane R?; it is homeomorphic to the open unit disk D C R2.

e The unit sphere S? in R? (homeomorphic via the stereographic projection to the
one-point compactification of the plane); it is also called a “closed surface of genus
0” (in this context “closed” means “compact without boundary”).

e A cylinder or topological annulus Cyl = S* x (0,1). It can also be represented
as the quotient of the strip S = R x (0, 1) modulo the cyclic group of translations
z v+ z+n, n € Z. It is homeomorphic to any annulus A(r, R), as well as to the
punctured disk D* and to the punctured plane C*.

e The torus T? = T x T, also called a “closed surface of genus 1”. It can also
be represented as the quotient of R? modulo the action of a rank 2 abelian group
z— 2z +am+ fBn, (m,n) € Z?, where {a, 3} is an arbitrary basis in R2.

If we have a certain standard surface S (say, the unit disk or the unit sphere), a
topological S (say, a “topological disk” or a “topological sphere”) refers to a surface
homeomorphic to the standard one.

One can also consider bordered surfaces, or surfaces with boundary. The local
model for such a surface near a boundary point is given by a relative neighborhood
of a point (x,0) in the closed upper half-plane H. The orientation of a surface natu-
rally induces an orientation of its boundary (locally corresponding to the positively
oriented real line).

For instance, we can consider cylinders with boundary: S* x [0,1] or St x
[0,1). They will be still called “cylinders” or “topological annuli”. Cylinders without
boundary will be also called “open”, while cylinders of other type will be called
“closed” and “semi-closed” respectively. We will use the same notation, Cyl, for a
topological cylinder of any type.
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More generally, non-compact surfaces without boundary are called open. Com-
pact surfaces without boundary are called closed.

REMARK 1.65. We are bound to live with inconsistency in using the notion of
“open” and “closed”, reflecting different traditions of point-set and algebraic topol-
ogy. Hopefully, it will not lead to confusion.

1.7.2. New surfaces from old ones. There are two basic ways of building new
surfaces out of old ones: making holes and gluing their boundaries. Of course, any
open subset of a surface is also a surface. In particular, one can make a (closed)
hole in a surface, that is, remove a closed Jordan disk. A topologically equivalent
operation is to make a puncture in a surface. By removing an open Jordan disk (an
open hole) we obtain a surface with boundary.

If we have two open holes (on a single surface or on two different surfaces S;)
bounded by Jordan curves ~;, we can glue (or: paste) these boundaries together by
means of an orientation reversing homeomorphism h : v; — 75 (where orientation
of the ~; is induced from S;). We denote this operation by S; U, Ss. For instance,
by gluing together two closed disks we obtain a topological sphere: I Li;, D ~ S2.

EXERCISE 1.66. Justify the last assertion.

Combining the above operations, we obtain operations of taking connected sums
and attaching a handle. To take a connected sum of two surfaces S; and Sy, make
an open hole in each of them and glue together the boundaries of these holes. To
attach a handle to a surface S, make two open holes in it and glue together their
boundaries.

If we attach a handle to a sphere, we obtain a topological torus. If we attach
g handles to a sphere, we obtain a closed surface of genus g.

FUNDAMENTAL THEOREM OF 2D TOPOLOGY. Any orientable closed surface
S is homeomorphic to a surface of genus g. Moreover, the genus is a complete
topological invariant of a such a surface.

See e.g., [Mul] for a proof. Note that there are several ways to see that that
g is a topological invariant of a closed surface:

o Identify it with by /2, where b; = rk Hy(S) is the first Betti number of S.
e Characterize it as the maximal cardinality of a family of disjoint simple closed
curves 7y; on S with the property that by cutting S along these curves we obtain
a topological sphere with several holes. (Such a family can be obtained by taking
simple closed curves “going across (or along) the handles”.)

Topological surfaces are very flexible: one can move points around at will:

EXERCISE 1.67. (1) Let S be a (connected) topological surface with two config-
urations of N points marked in int S: x; and y;, © = 1,...,N. Then there exists a
homeomorphism h : S — S that moves x; to y;.

(ii) Make a similar assertion for boundary components of a bordered surface.
(iii) Let S be bordered, and let h be a homeomorphism of some boundary circles to

themselves. Then h extends to a homeomorphism of S.

We are now ready to classify all compact surfaces (closed or bordered):
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COROLLARY 1.68. Any orientable compact surface S with boundary is homeo-
morphic to a closed surface of genus g with N open holes removed. Moreover, the
pair (g, N) is a complete topological invariant of a such a surface.

PROOF. Let S has N boundary components ;. Each of them is a topological
circle. By attaching disks D; to the v; (“caps”), we obtain a closed orientable surface
S.

If two compact surfaces with boundary, S and S’, are homeomorphic, then
they have the same number N of boundary components, and the corresponding
closed surfaces S and S’ are also homeomorphic. Hence the pair (g, N) is a topo-
logical invariant of compact surfaces. Exercise 1.67(ii) implies that this invariant is
complete. O

Note that the first Betti number of a surface of genus g with N > 0 holes is
equal to 2g + N — 1.

COROLLARY 1.69. The closed topological disk is the only simply connected sur-
face with boundary. The closed topological cylinder is the only orientable compact
surface with m (S) ~ Z.

One says that a surface S (with or without boundary) has a finite topological
type if its fundamental group 71(S) is finitely generated (e.g., any compact surface
is of finite type). We will see later (Theorem 1.87) that it is equivalent to saying
that S is tame, i.e., is homeomorphic to a closed surface with finitely many open
or closed holes. Clearly such a surface admits a decomposition

S=cu| |Cyl,,

where C is a compact surface and the Cyl; are cylinders attached to some boundary
components of C. The set C = Cg is called the compact core of S. Note that it is
obviously a deformation retract for S. The cylinders Cyl; represent “tame ends” of
S. If a cylinder Cyl, is not closed, we can add the outer boundary to it. Doing this
to all such cylinders, we obtain the ideal circle compactification Sof S. (Compare
with §1.7.8 below.)

1.7.3. Triangulations. Recall that triangulation of a surface S is a tiling of S
by topological triangles (i.e., by closed topological disks with three marked points
on the boundary) such that any two triangles are either disjoint or share exactly one
vertex, or share exactly one side. In case of a bordered surface, a similar requirement
is imposed on any triangle A and any boundary circle v: if the intersection A N~y
is non-empty, then it is equal to an edge or to a vertex of A.

A triangulation is finite if and only if S is compact.

THEOREM 1.70. Any surface (with countable base) can be triangulated.

See [Mu2] for a proof. In fact, all surfaces that appear in Conformal Dynamics
(at least, in this book) are plane domains or their (branched) coverings, or a sphere
or a torus, when the Triangulation Theorem is a simple exercise. Note also that
the Triangulation Theorem is easy for smooth surfaces, in particular, for Riemann
surfaces (see Proposition 2.2 below).

Given a triangulation on S, a closed subset K C S is called simplicial if it is
composed of triangles.
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1.7.4. Euler characteristic. Let S be a compact surface (with or without bound-
ary). Its Euler characteristic is defined as

xX(8) =f—-e+v,
where f, e and v are respectively the numbers of faces, edges and vertices in any
triangulation of S. It is a topological invariant equal to the alternating sum of the
Betti numbers, so for a closed surface of genus g, we have: x(S) =2 — 2g.
The Euler characteristic is obviously additive for connected sums:

X(S1 Un S2) = x(51) + x(S2).

Since the cylinder T x [0, 1] has zero Euler characteristic, x(5) = x(Cg) for a tame
surface. (Recall from §1.7.2 that S is the ideal circle compactification of S and Cg
is the compact core of S). We can use this as a definition of x(S) in this case.

Making a hole in a surface drops its Euler characteristic by one; attaching a
handle does not change it. Hence x(S) =2 — 2g — N for a surface of genus g with
N holes (which also follows from the basic algebraic topology).

Note that the above list of simple surfaces is the full list of orientable surfaces
of finite type without boundary with non-negative Euler characteristic:

XR*) =1, x(5*) =2, x(Cyl)=x(T? =0.

1.7.5. Topological ends and compactification. A non-compact domain F C S
bounded by a simple closed curve v in S is called a fjord. A nest of fjords, Fy D
Fy D ..., is subordinated to a fjord F' if F,, C F for some n. A nest of fjords F), is
subordinated to another nest of fjords F/, if (F),) is subordinated to any F,. Two
nests are equivalent if each of them is subordinated to the other.

A nest (F},) is called escaping if

(1.5) (F. =0
A (topological) end E of S is a class of equivalent escaping nests of fjords.
LEMMA 1.71. Any non-compact Riemann surface S has at least one end.

PRrROOF. Let us triangulate S and exhaust it by an increasing nest of compact
simplicial subsets Ko C K1 C ..., |JK, = 5. One of the components of S \ K is
unbounded; call it Uy. The boundary of Uy is a polygonal curve contained in 0Kj.
Approximate it with a simple closed curve oy contained in Uy, and let Fyy = F,,, be
the unbounded component of S \ g contained in Uj.

Since the sets K,, exhaust S, there is a set K,, containing oy. Then one of its
complementary components, U, is contained in Fy. Approximating U, with a
simple closed curve o,, C Uy, we construct a new fjord F,, = F,,, C Fp.

Proceeding this way, we construct an escaping nest of fjords

F,,D>F, DO...
representing an end of S. O

COROLLARY 1.72. Any non-compact domain U C S with compact boundary OU
contains an escaping nest of fjords, Fo O Fy D ..., representing an end of S.

We let 975 be the set of ends of S and cI¥' § = SLUITS.  We call them
the topological end boundary and the topological end compactification respectively.
Endow cl” § with the following topology. For a fjord F, let U (F') be the union of
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F and the set of ends E represented by nests of fjords (F,) that are subordinated
to F. The family of sets U(F), together with the family of open sets of S, form a
base of neighborhoods of ¢l (S).

EXERCISE 1.73. Show that:
(i) This is indeed a base of topology.
(i) el S is compact and metrizable.
(iii) The boundary 0TS is totally disconnected.

(iv) The end compactification is topologically natural: any homeomorphism h : S —
S’ extends to a homeomorphism hy : cll S — ¢l S,

We say that a map f: S — S properly maps an end E of S to an end E’ of S’
if f(z) = E’ as z — E. In other words, f extends continuously to F by mapping
it to E'.

EXERCISE 1.74. Any proper map f : S — S’ extends continuously to a map
fr:cd?s —cf s,

1.7.6. Remark on a general framework for the notion of end. The above notion
of end can be embedded in a quite general framework as follows. Let S be a locally
compact topological space, and let F be a family of open non-precompact subsets
called fjords satisfying the following properties:

e The intersection of any two fjords is either precompact or contains a fjord;

e For any compact subset ) C S, there is a finite family of fjords F; such that
S~ UF} is a compact set containing Q.
For nests of fjords, define escaping, subordination, and equivalence as in §1.7.5.
Then we define an end E of F as a class of equivalent escaping nests of fjords.
We let 7S be the set of ends of S and cI” § = SUHFS. It is endowed with
a natural topology as above, which provides us with the F-end compactification of
S (associated with the family F).

EXERCISE 1.75. Check that c1” S is a compact topological space.

If S is a domain in some manifold S, then there can be a good relation between
cl” S and the closure S of S in S. A relevant notion is the impression I(E) of an
end F,

I(E) = () Fn,
where (F},) is any nest of fjords representing E (the outcome is obviously indepen-
dent of the choice of the nest),

EXERCISE 1.76. (i) If all the end impressions I(e) are pairwise disjoint, then
there is a natural continuous projection 7 : S — cI” S extending the identical map
S — S. Fibers of ™ over y € 7S are end impressions.

(ii) Under the above circumstances, if all the end impressions I(e) are singletons
then w is a homeomorphism.

The simplest application of this scheme is the construction of one-point com-
pactification for a locally compact space S, where fjords are defined as arbitrary
non-precompact open subsets. Note also that the topological end compactification
described in §1.7.5 can be generalized to arbitrary manifolds S, using as fjords
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non-precompact domains whose topological boundaries in S are compact mani-
folds. In this book, we will encounter two more important occasions: prime end
(Carath’eodory) and puzzle end compactifications.

1.7.7. Simply connected surfaces.

LEMMA 1.77. Let S be an open simply connected surface. Then:
(i) S has one end;
(ii) Any simple closed curve o on S is dividing;

(iil) Any proper arc v on S is dividing.

PROOF. (i) Being open, S must have at least one end (by Lemma 1.71). Assume
it has two different ends, Ey and Fy. Let Fy and Fj be fjords with disjoint closures
representing the corresponding ends, and let o; := JF;. Construct a proper arc
~v:(0,1) — S landing at Ey as t — 0 and landing at E; as ¢ — 1, and crossing each
curve o; at a single point. Since the intersection number between closed curves and
proper arcs is invariant under proper homotopy, the curves o; cannot be trivial —
contradiction.

(ii) The proof is similar: If o were non-dividing then there would be a proper
arc v on S crossing o at a single point (with both ends of v landing at the end of
S). This would imply that o were non-trivial.

(iii) Similarly: if a proper arc v was non-dividing then there would exist a
simple closed curve o crossing v at a single point. (I

We can define a hull in S as in the case of R?, as a continuum with connected
complement.

LEMMA 1.78. Any simplicial continuum J C S can be filled-in to a simplicial
hull K, which is the smallest hull containing J.

PRrROOF. Since S has only one end, all but one components of S~ J are bounded
(by Corollary 1.72) . Call the unbounded component U. Its boundary o := 9U is
a polygonal curve that can be approximated by a simple closed curve ¢ C U. For
the same reason, there is only one unbounded complementary component of ¢; call
it F. For the same reason, the complement of F' is bounded, so it comprises only
finitely many triangles. Adding all these triangles to .J, we obtain the desired hull
K. O

LEMMA 1.79. For a given triangulation of S, any simplicial hull K C S is
simply connected.

PROOF. Any simplicial hull is composed of finitely many triangles, so let us do
induction in the number of triangles. The statement is obvious for one triangle. To
pass from < n to n + 1, let us consider two cases:

Case 1. Assume there is a cut-point in K, i.e., a vertex a € K whose removal
disconnects K. Then there are at least two accesses from S\ K to a. Since S\ K is
connected, there are two proper topological rays R4 : R. — S~ K landing at a as
t — 0 and landing at co as t — +o00 (respectively). The union v := R_UR; U{a}
is a proper arc. By Lemma 1.77 (iii), S\ v consists of two components, U; and Us.

Let £ := KNU; and £; := L; (i = 1,2). Since 7 cuts through K at a, the sets

L7 are non-empty. Hence each £; is a simplicial hull composed of < n triangles.
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By induction assumption, each of them is simply connected. Then so is the whole
hull K.

Case 2. Assume K does not have cut-points. Take any boundary triangle
A C K, and let K’ := cl(K ~ A). The latter is a simplicial hull composed of n
triangles. Moreover, by the no-cut-points assumption, I := A N K’ is the union of
one or two edges of A. In either case, I is a deformation retract for A, and hence
K’ is a deformation retract for K. The conclusion follows. O

LEMMA 1.80. An open simply connected surface S can be exhausted by topo-
logical disks, i.e., there exist an increasing nest of closed topological disks D, C S,
such that D,, @ D41 and |JD,, = S.

PRrROOF. Let us triangulate S and select a base triangle Ag. Let us define A, 1
inductively as the union of A, with all triangles attached to it. In this way, we
exhaust S with an increasing nest of simplicial continua.

By Lemma 1.78, A, can be filled-in to a simplicial hull K,, := A,. The
K,, provide us with an increasing nest of hulls exhausting S. The unbounded
components U, of S\ K,, form an escaping nest of domains in S.

Let 0, C U, be a simple closed curve approximating 0U,,, and let F, C U,
be the unbounded component of S \ ¢,,. They form an escaping family of fjords.
Selecting a converging subsequence if needed, we turn the I}, into a decreasing nest.

The complement D,, := S \ F), is a compact surface with boundary o,, (where
D,, = int Dn) . Moreover, D,, can be retracted onto K, so it is simply connected
by Lemma 1.79. By the Fundamental Theorem of 2D Topology (Corollary 1.69),
D,, is a closed topological disk. O

COROLLARY 1.81. An open simply connected surface is a topological disk.
Applying the Fundamental Theorem of 2D Topology once again, we conclude:

THEOREM 1.82. There are only two simply connected topological surfaces with-
out boundary: a topological disk and a topological sphere.

1.7.8. Tame ends. An end F is called tame if eventually all the fjords F,, (in
some and hence in any nest (F,) representing F) are cylinders. Any of these
cylinders uniquely determines the corresponding end.

A tame end compactification results in completion each of the cylinders F,, to
a topological disk D,, = F,, U {E}. Thus, e’ S is a topological surface near E.
Under these circumstances, F is referred to as a puncture at infinity for S.

A tame end can also be compactified in a different way by attaching a topolog-
ical circle at infinity called the ideal circle (at infinity) (compare §1.7.2). However,
this compactification is not topologically or smoothly natural:

EXERCISE 1.83. Construct a diffeomorphism f : D — D that does not extend
continuously to any point of T = OD.

REMARK 1.84. In the conformal category, compactifying an end with an ideal
circle is a natural operation, and in fact, a conformal end knows exactly what should
be attached to it: see Theorem 2.59 and §§2.6.1, 5.6. below.
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1.7.9. Open surfaces of finite type.
LEMMA 1.85. For a surface S of finite type, the boundary 0TS is finite.

PRrROOF. Assume 0TS is infinite. Since it is totally disconnected and compact,
for an arbitrary big N € Z there is a family of IV disjoint fjords F;, whose closures
in I’ S cover 'S. Then the complement S J F, is a compact surface with
boundary | |OF, comprising N simple closed curves. The first Betti number of
such a surface is at least N — 1. On the other hand, it is bounded by b;(S), which
is finite by assumption — contradiction. [

LEMMA 1.86. For an open surface S of finite type, any end is tame.

PROOF. Let Fy  F; 3 ... be a nest of fjords representing an end E € 97'S.
Since E is isolated in 7S, eventually the F}, do not have any other ends, so we
can assume this holds already for Fy. Then the bordered surfaces A,, ;= F), ~ Fri
are compact. If infinitely many of them had positive genus, the genus of compact
bordered surfaces F,, ~ Fy would grow to co, contradicting to boundedness of their
first Betti number. Hence eventually the A, have zero genus. As they have two
ends, these A, are topological cylinders (Corollary 1.69 from the Fundamental
Theorem of 2D Topology). Hence the fjords F,, = U A, are topological cylinders

m>n
as well. 0

Now the Fundamental Theorem of 2D Topology and its Corollary 1.68 for
compact surfaces can be refined for general surfaces of finite type:

THEOREM 1.87. Any surface S of finite type (with or without boundary) is
homeomorphic to a compact surface with finitely many punctures.

PRrROOF. Indeed, the compactification ¢l S amounts to adding to S finitely
many tame ends (punctures at infinity), resulting in a compact surface. O

Let us conclude with characterization of open topological annuli (compare with
Corollary 1.69):

COROLLARY 1.88. An orientable open surface S is a topological annulus iff
m1(S) =~ Z.

1.7.10. Multicurves and pair of pants decompositions. Note that a simple closed
curve 7 on a surface S7 is trivial iff one of the components of X \. v is a topological
disk.

A simple closed curve on int S is called peripheral if it is either trivial or dividing
in such a way that one of the components (call it F') of S~ is a topological cylinder.
This cylinder can be open or semi-closed. In the former case, F' is a fjord of a tame
end. In the latter case, v is homotopic to a boundary component of S (which is the
boundary component of F).

For instance, if S = S% \ {z;} is a sphere with finitely many punctures then -
is non-peripheral iff each component of S2 \ 7 contains at least two punctures.

"For purposes of this section, any simple closed curve v : T — S can be assumed extendable
to an embedding A(r~!,r) — S, r > 1. It ensures, without using the Schénflies Theorem, that -y
can be attached as a boundary circle to any complementary component.
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EXERCISE 1.89. If S contains a non-peripheral curve v, then x(S) < 0. More-
over, each component of S\ v has negative Fuler characteristic as well.

A pair of pants is a surface S homeomorphic to the disk with two holes. We
can consider open, closed, and semi-closed pairs of pants. For instance, an open
one is modeled on S ~ D~ (D(a,r) UD(—a,r)), where e.g., a = 1/2, r = 1/4,
while a closed pair of pants is obtained by adding the boundary (three circles) to

it. Notice that the Euler characteristic of a pair of paints is equal to —1.

LEMMA 1.90. Let S be a surface of finite type with negative Euler characteristic.
If S is not a topological pair of pants, then it contains a non-peripheral curve -y.

ProOOF. Completing the ends of S with circles, we obtain a compact Riemann
surface. Then

N
S~S~||Di,
i=1
where S is a closed surface of genus g and D; are open topological disks with disjoint
closures. Let o; := 0D;.

If S has a positive genus, then we can let v be a non-dividing curve on S going
along a handle avoiding the D;. So, assume S has zero genus, i.e., S ~ S2. Then
N > 4 since x(S) < 0. Consider two of the holes, say D; and Dy, and connect
them with an arc  C S. We obtain a graph I' C S comprising « and two circles,
o1 and oy. Thicken this graph slightly to obtain a Jordan disk A. It is bounded
by a desired non-peripheral curve ~. (I

A multicurve G = | |, is a collection of pairwise disjoint non-peripheral simple
closed curves v; on S.

THEOREM 1.91. Let us S be a surface of finite type (g, N) with negative Euler
characteristic: x < 0. Then any multicurve on S has at most

l:=@B|y|-N)/2=3g—3+N

components. Moreover, any multicurve is contained in a maximal one comprising
exactly I components. They divide S into |x| pairs of pants.

ProOF. By Lemma 1.90, if S is not a pair of pants, then it contains a non-
peripheral curve . Let S’ be a component of S ~\ ~. If v is non-dividing then

9(8") =g(8) =1, x(8) =x(9).
Otherwise

9(8") < 9(9),  IX(S)| < [x(9)],
where the second inequality follows from the additivity of the Euler characteristic
and Exercise 1.89. In either case,

(1.6) 9(S") + [x(S")] < g(S) + [x(S)-

If S’ is not a pair of pants, then we can apply to it the same cutting procedure,
and so on. Proceeding this way, we construct an increasing sequence of multicurves
G, that cut S into pieces SI* such that g(S!") + |x(S!")| decays with n. Hence this
process must stop in finite time, producing a maximal multicurve G = G,,,. At this
final moment, all the components of S \. G must be pairs of pants.

Of course, we can turn on this procedure starting with any given multicurve
Go. It produces a maximal multicurve G containing G.
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By additivity of the Euler characteristic, the maximal multicurve G divides S
in exactly || pairs of pants. Their disjoint union has 3|x| boundary components.
Out of them, 3|x|— N are glued in pairs, producing (3|x| — N)/2 curves comprising
g. O

COROLLARY 1.92. Let S ~ S?~ Z where Z is a set of N > 3 punctures. Then
any multicurve on S has at most N — 3 components. Moreover, any multicurve is
contained in a maximal one comprising exactly N — 3 components.

We can reverse the above cutting procedure. Take a finite family of pairs of
pants, and paste together some pairs of their boundary components. We obtain a
surface of finite type with negative Euler characteristic. Theorem 1.91 shows that
in this way we can obtain an arbitrary such a surface.

In fact, it can be generalized to surfaces of infinite type:

THEOREM 1.93. Any surface S with negative Euler characteristic can be ob-
tained by pasting together some family (finite or countable) of pairs of pants.

This result applies to a surface of any type: closed, open, or bordered, as long
as we make use of pairs of pants of various types.

PROOF. Since 7S is compact and totally disconnected, there is a nest of
neighborhoods Uy D U; D --- D 978 such that (U, = 0TS and each U, ~ 97§
is a finite union of fjords. Then compact bordered surfaces S,, := S \ U,, form an
increasing nest exhausting S. Decomposing Sy and each S, 11 \ S, into pairs of
pants (by Theorem 1.91), we obtain a desired decomposition for S. (]

Note in conclusion that we will also need more general pants defined as topo-
logical disks with finitely many (more than one) holes.

1.7.11. Arc diagrams. A similar theory can be developed for proper arcs instead
of simple closed curves. Let us first assume that S is an open surface of finite type.
According to general definitions, a proper arc on S is an embedding « : (—o0, 00) —
S such that a(t) — 0TS as |[t| — oco. More generally, we can talk about proper
curves on S. Both ends of a proper curve land at some points of the ideal boundary
978, so a proper curve “connects” points at infinity.

Two proper arcs/curves on S are called properly homotopic if they are homo-
topic through a family of proper curves. A proper arc/curve is called trivial if it is
homotopic to an arc contained in an arbitrary small neighborhood of some point
at infinitely.

A multi-arc on a surface S is a family of disjoint non-trivial proper arcs rep-
resenting different proper homotopy classes. The corresponding family of proper
homotopic classes in called an arc diagram on S.

In case of a bordered surface S of finite type, we will slightly modify this notion.
A proper arc/curve a : I — S will mean not only that « : I — S is a proper map,
but also that a(intI) C int.S and «a int7 is a proper arc/curve in int.S (in the
above sense); in particular, f(91) C 9S.8 A proper homotopy is then understood
as a homotopy through proper curves, (so the endpoint of the curve can slide along
the boundary of S).

Similarly to Theorem 1.91, we have:

8Here int I and A1 are understood in the intrinsic way, e.g., d(0,1] = {1}.
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FIGURE 1.12. Pair of pants decomposition for a disk with a Cantor
set removed.

PROPOSITION 1.94. Let S be a bordered surface of finite type with negative
Euler characteristic: x < 0. Then any multi-arc on S contains at most 3|x| arcs.
In particular, for a disk with N > 2 holes we obtain at most 3(N — 1) arcs.

ProoF. Topologically, int S is a closed surface S with k£ > 0 punctures. The
canonical arc diagram A can be realized as a net of disjoint edges on S connecting
the punctures. This net can be completed to a triangulation of S whose only vertices
are punctures. Let ¢ and e > | A| be respectively the number of triangles and edges
of this triangulation. Then 3t = 2¢, and by the Euler Formula,
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1.7.12. Plane domains. A plane domain U is a domain in the sphere S? which
is different from the whole sphere. Realizing S? as the one-point compactification
of R?, we can place U inside R2.

LEMMA 1.95. For a plane domain U, there is a natural one-to-ome corre-
spondence between the ends of U and connected components of the complement
K := 5?2~ U. Moreover, if Q is the component corresponding to an end E then 0Q
is equal to the impression I((E).

PROOF. Let (F,) be a nest of fjords of U representing some end E € 07U,
and let o, := OF,. Each o, is a Jordan curve, so it bounds a Jordan disk D,
containing F,. Moreover, these disks are strictly nested: Dy © D; © ..., so
Q :=ND, =D, is a hull or a singleton. We have

QNU =(\DnNU) =()Fn=0,

so @ is contained in K. Since any point of K \ @ is separated from ) by some
curve o, C U, @ is a connected component of K.

Vice versa, any connected component ) of K is a hull or a singleton, so it is
cellular by Proposition 1.20. Hence there is a sequence of Jordan curves o,, C U
that bound a nest of Jordan disks shrinking to K. Fjords F}, := D,, NU represent
the end F of U corresponding to Q.

We let the reader to verify the last assertion. O

In particular, a bounded topological annulus A C R? has two complementary
components, the unbounded component K° called outer, and the bounded com-
ponent K* called inner. Respectively, it has two boundary components, the outer
boundary 0°A C K°, and the inner boundary 0'A C K*.

The following statement shows that the end compactification of a plane domain
is a sphere obtained by collapsing all the complementary components to singletons
(compare Exercise 1.76):

PROPOSITION 1.96. For any plane domain U C S2, there is a continuous sur-
jection h : S? — S? that restricts to a homeomorphism h : U — h(U) and maps the
complement K := S? \ U onto a totally disconnected set h(K) so that the fibers of
h: K — h(K) are connected components of K.

PRrROOF. Consider a pair of pants decomposition (P/*) for U. Construct a pair
of pants family (A) with the same combinatorics, where the A" are bounded by
circles or points (with the points corresponding to tame ends of the P*). Moreover,
the construction can be arranged so that diam A? — 0 as n — co. Then the pairs
of pants A7 tile a plane domain V' whose complement is totally disconnected.

Construct now a homeomorphism h : U — V that maps P* to the correspond-
ing A7, tile by tile. It induces a homeomorphism h between the end compactifi-
cations of U and V. By Lemma 1.95, each end e of U corresponds to a connected
component Q. of 2\ U. The corresponding end ﬁ(e) corresponds to a connected
component of S? \ V, which is a singleton z.. Extends h to the whole sphere by
collapsing each Q. to the corresponding point z.. This provides us with a desired
map. ([l

COROLLARY 1.97. For a plane domain U, the end compactification cI* U is a
topological sphere S2.
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COROLLARY 1.98. Let U and U be two plane domains with totally disconnected
complements. Then any homeomorphism h : U — U extends to a homeomorphism
h:8%— 52

EXERCISE 1.99. Let U = D~ K where K C D is a Cantor set. Show that there
is a homeomorphism h : D — D that maps K to the standard triadic Cantor set.

1.7.13. Surface coverings. Specializing Lemma 1.62 and its Corollary to the
surface case, we obtain:

e To any essential domain V' C S corresponds a surface covering g : S — S such that
71(S) = w1 (V) and one of the components V of ¢~ (V') projects homeomorphically
onto V.

o If S is orientable, then to any non-trivial simple closed curve v C S corresponds an
annulus covering ¢ : A, — S containing a non-trivial simple closed curve 4 C A, (an
“equator”) that projects homeomorphically onto . (We make use of Corollary 1.88.)

EXERCISE 1.100. (i) Let Sq — Cyl be a covering of finite degree d € Z over a
topological cylinder Cyl. Then Sy is a topological cylinder as well. For each degree
d € Z, there is only one such a covering (up to covering equivalence). Write down
a model for each of these coverings.

(ii) There is only one infinite degree covering Soo — Cyl over Cyl, which is the
Universal covering. Here Soo &~ S = {0 < Imz < 1} is a topological strip. Write
down a model for this covering.

(iii) The above coverings constitute the full list of coverings over Cyl (up to covering
equivalence). All of them are Galois.

(iv) For a finite degree d € Z., any homeomorphism h : Cyl — Cyl admits d
lifts to a homeomorphism H : Sq — Sq. The lift is determined by the value H(e)
(selected arbitrary in the appropriate fiber) at any point e € Sy. Similarly, for the
Universal covering there are infinitely many lifts.

1.7.14. Surface branched coverings. Topological proper maps are defined in
§50.3.2.

EXERCISE 1.101. Assume that S and T are precompact domains in some am-
bient surfaces and that f : S — T admits a continuous extension to the closure S.
Then f is proper if and only if f(0S) C OT.

EXERCISE 1.102. Let V C T be a domain and U C S be a component of f~1V.
If f: S — T is proper, then the restriction f: U — V is proper as well.

Let now S and T be topological surfaces, and f be a topologically holomorphic
map.  The latter means that for any point a € S, there exist local charts ¢ :
(U,a) — (C,0) and ¢ : (V, f(a)) — (C,0) such that 1o f o ¢p~1(z) = 2¢, where
d € N. The number d = deg, f is called the (local) degree of f at a. If deg, f > 1,
then a is called a branched or critical point of f, and f(a) is called a branched or
critical value of f. We also say that d is the multiplicity of a as a preimage of

b= f(a).

EXERCISE 1.103. Show that a continuous map f : (D,0) — (D,0) that restricts
to a covering D* — D* is topologically holomorphic.
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A basic property of topologically holomorphic proper maps is that they have a
global degree:

PRrROPOSITION 1.104. Let f : .S — T be a topologically holomorphic proper map
between two surfaces. Assume that T is connected. Then all points b € T have
the same (finite) number of preimages counted with multiplicities. This number is
called the degree of f, deg f.

PrOOF. Since the fibers of a topologically holomorphic map are discrete, they
are finite. Take some point b € T, and consider the fiber over it, f~'b = {a; é:r
Let d; = deg,, f. Then there exists a neighborhood V' of b and neighborhood U;
of a; such that any point z € V', z # b, has exactly d; preimages in U;, and all of
them are unbranched.

Let us show that if V' is sufficiently small then all preimages of z € V' belong
to |JU;. Otherwise there would exist sequences z, — b and (, € S~ |JU; such
that f((,) = z,. Since f is proper, the sequence {(,} would have a limit point
¢ € S\UU;. Then f(¢) = b while ¢ would be different from the a; — contradiction.

Thus, all points close to b have the same number of preimages (counted with
multiplicities) as b, so that this number is locally constant. Since T is connected,
this number is globally constant. O

COROLLARY 1.105. Topologically holomorphic proper maps are surjective.

The above picture for proper maps suggests the following generalization. A
topologically holomorphic map f : S — T between two surfaces is called a branched
covering of degree d € N U {co} if any point b € T has a neighborhood V with
the following property. Let U; be the components of f~'V. Then each U; contains
a single preimage a; of b and and there exist maps ¢; : (U;,a;) — (C,0) and
Y2 (V,b) — (C,0) such that o fop; ' (2) = z{. Moreover, 3. d; = d. (A branched
covering of degree 2 will be also called a double branched covering.)

We see that a topologically holomorphic map is proper if and only if it is a
branched covering of finite degree. All terminology developed above for proper
maps immediately extends to arbitrary branched coverings.

Note that if V' C T is a domain which does not contain any critical values,
then the map f is unbranched over V, i.e., its restriction f~1V — V is a covering
map. In particular, if V is simply connected, then f~'V is the union of d disjoint
domains U; each of which homeomorphically projects onto V. In this case we have
d well-defined branches f;* : V — U; of the inverse map. (When it does not lead
to confusion, we will often use notation f~! for the inverse branches.)

EXERCISE 1.106. Let f : (U,a) — (V,b) be a branched covering of local degree
d at a. Assume U is connected and V is simply connected. If deg f > d then f has
a critical value v # b.

REMARK 1.107. We will follow the following terminological convention. Given
amap f:S5 — T and two open subsets U C S, V C T, we say that f(U) covers V
with degree d if the map

(1.7) fUnfrv)y—=v

is a degree d branched covering. In particular, if d = 2 the “f(U) double (or, two-
to-one) covers V7 if d = 1 then “f(U) univalently covers V. If U N f~4(V) does
not have critical points, then we say that “ f(U) covers V without branching”. If
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U and V are compact (e.g., closed Jordan disks), we will also say that f(U) covers
V with degree d.

Similarly to the unbranched situation (see §1.6.1), a branched covering f : S —
T is called Galois or regular if there is a discrete group I' of deck transformations
faithfully acting on S such that the fibers of f coincide with the orbits of I'. A
point ¢ € S is branched for f iff it is fixed for some non-trivial deck transformation
~ € T'. Moreover, the local degree at ¢ is equal to the order of Stab(c).

EXERCISE 1.108. Show thatT acts on S properly discontinuous and that Stab(x)
is cyclic for any x € S. Vice versa, if I' is a discrete group acting properly discon-
tinuously on S then the natural projection S — S/T is a Galois branched covering.

As in the unbranched case, I' is called the covering group.

1.7.15. Marking. A surface S can be marked with an extra topological data. It
can be either several marked points a; € S, or several closed curves v; C S up to
homotopy (usually but not always they form a basis of 71(S)), or a parametrization
of several boundary components v; C 95, ¢; : T — ~;.

The marked objects may or may not be distinguished (for instance, two marked
points or the generators of 71 may be differently “colored”). Accordingly, the mark-
ing is called colored or uncolored.

A homeomorphism h : S — S between marked surfaces should respect the
marked data: marked points should go to the corresponding points (h(a;) = a;),
marked curves «; should go to the corresponding curves 4; up to homotopy (h(y;) ~
i), and the boundary parametrizations should be naturally related (ho ¢; = (;31)

1.8. Orbifolds.

1.8.1. General notion. This notion accounts to varieties with simple singular-
ities represented as local quotients of manifolds by finite group actions. More
precisely, an n-dimensional orbifold O is a topological space M covered with a base
U of neighborhoods U; such that:

(i) The atlas U is closed under finite intersections;

(ii) For each Uj, there exists a homeomorphism ¢; : U; — UZ-/GZ-, where U; is a
neighborhood in R™ and G, is a finite group of homeomorphisms acting on U
(iii) If U; C U; then the group G; embeds into G so that there is an equivariant
embedding ¢;; : U, — U j» called a transit map, that induces the natural embedding
U; C Uj.

The space M is called the underlying space, the groups G; are called the (local)
orbifold groups, while the natural projections =; : U; — U; are called the (inverse)
local charts of ©. Sometimes, we will informally refer to neighborhoods U; them-
selves (endowed with the orbifold group actions) as “local charts”. The singular set
S C M is the union of m(S’i), where S; is the set of fixed points of the G;-action.

A basic example is a global quotient M /G of a manifold M by a global properly
discontinuous group action, but not all orbifolds are obtained this way.

A morphism O — O’ between orbifolds is a continuous map f : M — M’
between the corresponding underlying spaces that locally lifts to an equivariant
continuous map U; — Uj between local charts. The notion of an orbifold home-
omorphism naturally follows. Note that an orbifold homeomorphism induces a
homeomorphism between the singular sets that locally lifts to a conjugacy between
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the orbifold group actions. In particular, the local degrees of the singular points
are preserved under orbifold homeomorphisms.

Note also that for any neighborhood U C M, there is a natural orbifold restric-
tion O|U.

An orbifold morphism O — O’ is called a covering of degree d € Z U {oco} if
any point y € M’ has a neighborhood (V,y) whose full preimage is a disjoint union
of neighborhoods (U;, x;) such that each restriction f : (U;,z;) — (V,y) induces an
orbifold homeomorphism O] U; — O'| V such that

> [Gi: T =d,

where G; are the orbifold groups for U; and T is the orbifold group for V. In this
case, the U; and V can be identified (by some homeomorphisms) and the groups
G; can be embedded into I' so that the map Ul/Gz — V/F induced by f becomes
the natural projection U;/G; — U;/T. The index [ : G;] is called the local degree
deg,, f. For instance, if O is a manifold, then a covering f : O — O’ locally
looks like the quotient U — U /G with the local degree equal to the order of G. A
Universal orbifold covering p : U — O is an orbifold covering such that any other
orbifold covering m : W — O with the same base is a factor of p, i.e., there exists
an orbifold covering ¢ : Y — W such that p =7 oq.

THEOREM 1.109. Any orbifold admits the canonical’> Universal covering.

Below we will supply a construction in dimension two.
If the universal covering of an orbifold O coincides with itsels, we will refer to
it as universal.

EXERCISE 1.110. The underlying space of a universal orbifold is simply con-
nected.

An orbifold is called good if its Universal covering is a manifold. It is exactly
the case of a global quotient of a manifold by a group action.

An orbifold is called oriented if the neighborhoods U; are oriented and the
groups G; as well as the transit maps ¢;; are orientation preserving.

1.8.2. 2D orbifolds. If O is an oriented 2D orbifold then its local charts can
be selected as the disk D endowed with cyclic rotations groups G;, z +— e(m/q;) z,
m € Z/q;Z. As the quotients D/G; are homeomorphic to D, the underlying space
M is an (oriented) topological surface as well. So, in this case, we can think of O
in a simply minded way, as an oriented surface M with a set X of isolated points
x; endowed with “ramification indices” q; € Zy, q; > 2, ¢ = 1,...,n. The data
(M;{q1,...,9,}) is called the signature of O. We can also let q(z) = 1 for any
regular point * € M, so we make the ramification function q : M — Z4 defined
everywhere.

REMARK 1.111. If O is a smooth 2D Riemannian orbifold, then the above pic-
ture becomes too simplistic, as the underlying space M develops conic singularities
with angles 27/q; at points x;. See §2.1.4.

9Meaning “unique up to equivalence between coverings”.
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EXERCISE 1.112. Let Oy be the orbifold with the underlying space U = D, and
the local chart U =D endowed with the cyclic rotation group G,

ze(m/q)z, meZ/qZ
(so that all other charts are obtained by restricting this one). Let

fnD—=D, z+— 2"

(i) The map f, induces a morphism Oq — O, if and only if nq is a multiple of p.
If so, this morphism is an orbifold covering of degree d = nq/p. In particular, f,
induces the universal covering D — O, (where D is identified with Oy).

(i) If nq divides p then the multi-valued inverse map f, 1 lifts to the orbifold uni-
versal covering f,; '+ Oy — Oq. In the D-model for the universal coverings, it
becomes z +— 2¥ with k = p/(nq).

EXERCISE 1.113. A morphism f : O — O’ between two 2D orbifolds is a
covering of degree d iff it induces a Galois branched covering f : M — M' of degree
d between the underlying surfaces such that q(fx) = deg, [ - q(z) for any x € M

Construction of the Universal covering in 2D. Let us puncture out
the singular points z; from M, setting M* = M ~ X, and let p* : U — M~
be its universal covering. Let V; be small disk neigborhoods of the z;, and let
V* = Vi ~ {x;}. For each z;, let us select a component V;* of p~(V;*). By
Proposition 1.59, each restriction p* : VZ* — V;* is a universal covering, so it is
equivalent to the exponential map e : H — D*.

Let T'; be the stabilizer of ‘72* in the group G of deck transformations, and let
I" be the subgroup of G generated by the I';. Let W* :=U/T" and let 7 : W* — M*
be the corresponding covering. Then each restriction pj : Vz* /T = V* is equivalent
to the covering f; : D* — D*, z — 2% with some v; dividing q;. Hence, by adding
one ideal point z; to each Vi*, we can extend p; to a branched covering equivalent
to f; : D — D. It provides us with an extension of p* to a branched covering
p: W — M, which can be interpreted as an orbifold covering.

EXERCISE 1.114. Verify that this orbifold covering is universal (and canonical).

EXAMPLE 1.115. Let us consider the orbifold O with signature (S?;{2,3}). Let
us realize it as the Riemann sphere C with the singular set X = {0, 00}. According to
the above construction, its universal covering U is obtained by taking the exponential
coivering e : C — C* and quotening it by the translation group generated by Ts :
z=z+2and T3 : z — z+ 3. This group generates the whole group Z of deck
transformations for e, so we get O back as its own universal covering. We see that
this orbifold is bad.

EXERCISE 1.116. Describe the Universal covering of the orbifolds with signa-
tures (S2;p) and (S%;{p,q}),

The Euler characteristic of a 2D orbifold O with signature (M;{q;}) is defined
as
1
(1.8) X(0) = x(M) = > (1- s
This definition secures the standard behavior of the Euler characteristic under cov-
ering and connected sum operations. Indeed, since the orbifold Oq is covered with
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degree q by the disk D, we want x(Oq) = 1/q. If O has n singular points z;, then
the underlying space of O is obtained by gluing n orbifolds Oy into M .| |U;, where
the U; are Jordan disk neighborhoods of the ¢; (with disjoint closures). Then the
desired additivity of the Euler characteristic requires

(O) = x(M | U + 3" x(Oq)) = x(M) = n + qi
yielding (1.8).

EXERCISE 1.117. Let O and O be two 2D orbifolds.
(i) Show that if f: O — O is a degree d covering then x(O) = d x(O').

(ii) If O Uy, O’ is obtained from O and O’ by gluing the underlying surfaces along
boundary Jordan curves, then x(O U, O") = x(O) + x(O").

One says that a 2D orbifold O is of finite topological type if its underlying
surface M is of finite type and it has only finitely many singular points.

EXERCISE 1.118. A 2D orbifold is of finite topological type iff it has a finite
Euler characteristic.

It is convenient to consider a puncture in a surface as an orbifold point of infinite
index (modeled on the Z-action of H generated by the translation z — z+1). With
this convention, an orbifold of finite type has a compact underlying surface with
finitely many singular points (including punctures).

EXERCISE 1.119. Check that the above discussion carries through with this more
general interpretation of 2D orbifolds.

It turns out that in dimension two almost all orbifolds are good: the only bad
once are (S?;p) and (S?;{p,q}), with p # q. See §2.8.2.

1.9. Appendix 1: Hausdorff metric. Let Z be a compact metric space,
and let &(Z) be the space of its closed subsets. The Hausdorff distance between
two subsets X,Y € &(2) is defined as follows:

(1.9) disty (X,Y) = max{sup dist(z,Y"), supdist(X,y)}
reX yey

(where dist(x,Y) is defined in §50.3.4). Note that distg(X,Y) < € means that X
is contained in the e-neighborhood of Y and the other way around.

EXERCISE 1.120. For a compact metric space, we have:
(i) disty defines a metric on &(Z) (called “Hausdorff”).
(il) X, — X iff all limits points imxy, ©,, € X, , Nk — 00, belong to X, and
for any point x € X there is a sequence x,, € X,, converging to x.
(iil) &(Z) is compact.

e Given a sequence of sets X,, C Z, we let:

e limsup X,, be the set consisting of all limits lim x, where z;, € X, for some
n—oo
subsequence njy — o0.

e liminf X,, be the set consisting of all limits lim x,,, where x,, € X,,.
n—roo
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As Exercise 1.120 shows, X,, — X in the Hausdorff metric iff

limsup X,, = liminf X,, = X.

If we have a closed set X\ C Z depending on some parameter A € A, we
say that it depends upper semicontinuously on A at A, if limsup X, C X, for
any A, — Xo. In other words, ¥V e > 0 3§ > 0 such that if |\ — Ao| < 0 then
X is contained in the e-neighborhood of X,  (i.e., X, cannot “blow-up” under
perturbations).

EXERCISE 1.121. Let Z be compact, and let ¢ : Z — A be a continuous map.
Then the fibers Xy := ¢~ 1(\) depend upper semicontinuously on X € A.

Similarly, lower semicontinuity means that liminf X, D X,  for any A\, — Ao
(so X, cannot “collapse” under perturbations). Thus, we have the usual property:
X depends continuously on A with respect to the Hausdorff distance iff it depends
simultaneously upper and lower semicontinuously.

1.10. Appendix 2: Alexander cohomology. This is a very general theory
that can be applied to fractal sets (unlike the homotopy theory). In particular, it
allows us to characterize hulls in R? (which are intuitively “simply connected”) in
terms of vanishing cohomology. We will not try to develop this theory in a regular
way but will rather give a quick account (for the first cohomology only) suitable for
our purposes. To make it more intuitive, we will use the physical language.

Let K be a compact metric space whose points are viewed as “particles”. An
interaction energy is a continuous function ¢(z,y) defined for all pairs z,y € X
with dist(z,y) < r (for some r > 0) such that

o ¢(x,z) = 0;
i ¢(xay) = —¢>(y,m),
e Chain Rule: ¢(x,z) = ¢(x,y)+¢(y, ) (as long as all three distances are bounded
by 7).

Such a function is also called 1-cocycle.

We can extend the interaction to the pairs of particles connected by an r-chain,
i.e., a sequence of points C' = (x = xg,x1,...,2, = y) such that d(x;, z;41) < r.
Namely, let

n—1
b (@,y) = d(xiwitn).
=0

Of course, the result may depend on the chain.

EXERCISE 1.122. Show that ¢o (x,y) = ¢pc(x,y) if C' is a small perturbation
of C with the same endpoints.

The interaction is called potential if there exists a continuous function v : X —
R such that ¢(x,y) = u(y) — w(z). In this case, the cocycle ¢ is called trivial.

EXERCISE 1.123. (i) An interaction is potential if and only if dc(x,y) is in-
dependent of the choice of the chain C'.

(ii) Any interaction is locally potential.
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Let us first define vanishing cohomology:
Hi(K)=Hx(K,R)=0
if all interactions with sufficiently small r > 0 are potential.

EXAMPLE 1.124. H} (D) = 0. To see it, notice that any two r-chains C
and C' connecting = to y are discretely homotopic rel the endpoints.!® It means
that for any € > 0 there is a sequence of r-chains C = C°,C',...,C* = '
with the same endpoints such that dist(C?, C*™!) < . The latter means that the
chains in question can be concatenated into the same number of subchains C’,i, C’}fl
(k=1,...,m) with diameter < r/2 and distg(C},C}"") < e (where disty stands
for the Hausdorff' distance, see Appendix 1 below). Since the energy of a chain is
homotopy invariant, it depends only on the endpoints. Hence it is potential.

EXAMPLE 1.125. H(T) # 0. For points z and ¢ which are not antipodal on T,
we have a well defined interaction energy ¢(z,() = arg((/z) € (—m, 7). It satisfies
the Chain Rule for any three points that lie on the same side of some diameter.
However, it is not potential since the energy of a closed chain that goes around the
circle is equal to 27.

In general, the first Alexander cohomology group, Hx(K) = Hx(K,R), is de-
fined as the space of 1-cocycles modulo trivial ones.

EXERCISE 1.126. Show that H(T) ~ R.

1.11. Appendix 3: Cyclic order. A cyclic order on a finite set © with q
elements can be defined in one of the following equivalent ways:
(i) A cyclic permutation o : © — ©;
(ii) A bijection o : © — Z/qZ, up to translation o(0) + k, k € Z/qZ;
(iii) An oriented graph I' supported on © (as the set of vertices) which is a single
cycle;
(iv) An assignment to any point 6 € © the next one, o(6), so that the corresponding
oriented graph is a single cycle.

Any subset ©' C O naturally inherits a cyclic order from © (whose cycle I" is
obtained from T by concatenating arrows of I through vertices of © \ ©’).

Note that a 2-point set has only one cyclic order, while a 3-point set supports
exactly two different cyclic orders.

EXERCISE 1.127. Let © ~ Z/qZ be a finite cyclically ordered set, and let g :
O — © be an order preserving permutation (i.e., if 6’ is next to 0 then g(0') is neat
to g(0)). Then g is conjugate to a translation n+— n +p on Z/qZ. In particular,
all points of © have the same period.

Such a permutation g is called a rotation of ©, with rotation number p/q. If q
and p are mutually co-prime, then g is called a cyclic rotation.

Any finite subset © of an oriented topological circle S' is endowed with a
natural cyclic order corresponding to the positive motion around the circle. So, a
point @’ € © is next to 6 € O if the interval (6,60) € S' (whose orientation from 6
to @ is positive in S') does not contain points of ©.

10[In fact, it can even be done continuously by projecting the chains in question orthogonally
to the interval connecting = and y.
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More generally, an infinite set © is called cyclically ordered if any its finite
subset is, and these orders are compatible: If Oy C ©; then the cyclic order of ©g
is induced from O.

Any subset of a cyclically ordered set © naturally inherits a cyclic order. We
say that a triple (0y,09,05) € ©3 is positively ordered if its natural cyclic order
coincides with the one induced from ©.

Also, selecting any two points 61,02 € ©, the set of points § € © such that the
triple (61,0, 02) is positively ordered forms a linearly ordered “interval” (61,05) (so
for any two distinct points 6,6’ in this interval, we have 6 < 6’ or the other way
around). Of course, we can add endpoints to (01, 62) to obtain a “closed interval”
[01, 62] or “semi-closed intervals” [0, 02) and (61, 62].

Notes. The text book by Munkres [Mul] serves well as a basic reference in
topology. Orsay Notes by Douady and Hubbard [DH2] and Milnor’s book [M2]
can also serve as an efficient introduction to the topology of plane continua.

Various takes on the Jordan Theorem can be found in [Mul, KaC|, [Hat,
§2.B] The most general approach goes through the Alexander Duality (see [Hat,
Thm.3.44]). A general treatment of the Alexander cohomology can be found in
[Spen|. Note that it was independently introduced by A.N. Kolmorogov [Ko].

Nadler’s book [Na] goes in depth into the topological structure of continua.
(See also [Lew]| for a discussion of pseudo-arcs.) All wild creatures that one can
imagine appear naturally in dynamics, albeit not necessarily for polynomials, see
[De3, He3, KY, Mayer, Re3|.

The Triangulation Theorem for 2D manifolds was proven by Rado in the 1920s
[Rado]. Moore’s Theorem appeared in 1925 [Moo].

The notion and a basic theory of orbifolds is due to Thurston, see [Sc].

Acknowledgment. The author thanks Oleg Viro for reading this chapter of
the manuscript and making helpful comments, and Lasse Rempe-Gillen for useful
comments on wild creatures.



Part 1

Conformal and quasiconformal
geometry






CHAPTER 1

Conformal geometry

2. Riemann surfaces

2.1. Analytic and geometric structures on surfaces.

2.1.1. Smooth surfaces. Rough topological structure can be refined by requiring
that the transition maps belong to a certain “structural pseudo-group”, which often
means: “have certain regularity”. For example, a smooth structure on S is given
by a family of local charts ¢; : U; — R? such that all the transition maps are
smooth (with a prescribed order of smoothness). A surface endowed with a smooth
structure is naturally called a smooth surface. A local chart ¢ : U — V smoothly
related to the charts ¢; (i.e., with smooth transition maps) is referred to as a
“smooth local chart”. A family of smooth local charts covering S is called a smooth
atlas on S. A smooth structure comes together with affiliated notions of smooth
functions, maps and diffeomorphisms.

There is a smooth version of the connected sum operation in which the bound-
ary curves are assumed to be smooth and the boundary gluing map h is assumed
to be an orientation reversing diffeomorphism. To get a feel for it, we suggest the
reader to do the following exercise:

EXERCISE 2.1. Consider two copies D1 and Dy of the closed unit disk D C R2.
Glue them together by means of an orientation reversing diffeomorphism h : 0Dy —
0Dy of the boundary circles. You obtain a topological sphere S?. Show that it can
be endowed with a unique smooth structure compatible with the smooth structures
on Dy and Dy (that is, such that the tautological embeddings D; — S are smooth).
The boundary circles 0D; become smooth Jordan curves on this smooth sphere.
Show that this sphere is diffeomorphic to the standard “round sphere” in R3.

Using a partition of unity, any smooth surface can be endowed with a Rie-
mannian metric. This makes the Triangulation Theorem (1.70) easy in the smooth
category:

PROPOSITION 2.2. Any smooth surface S can be triangulated.

PRrOOF. Take a fine net of points on S (including 9.5) in a general position, and
connect each of them with nearby points by geodesic arcs. We obtain a tessellation
of S by geodesic polygons. Triangulating these polygons, we obtain the desired. [

Real analytic structures would be the next natural refinement of smooth struc-
tures.

57
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2.1.2. Riemann surfaces. If R? is considered as the complex plane C with z =
x + 1y, then we can talk about compler analytic = holomorphic transition maps
and corresponding complex analytic structures and surfaces. Such surfaces are
known under a special name of Riemann surfaces. A holomorphic diffeomorphism
between two Riemann surfaces is often called an (biholomorphic) isomorphism.
Accordingly a holomorphic diffeomorphism of a Riemann surface onto itself is called
its (biholomorphic) automorphism.

For instance, the one-point compactification C = CU {00} of C is a topological
sphere endowed with the natural complex structure, with two local charts, id : C —
C and ¢ : C~ {0} = C, ¢(z) = 1/z. This Riemann surface is called the Riemann
sphere.

Connected sum operation still works in the category of Riemann surfaces. In
its simplest version the boundary curves and the gluing diffeomorphism should be
taken real analytic. Here is a representative statement:

EXERCISE 2.3. Assume in Exercise 2.1 that R? = C and that the gluing diffeo-
morphism h is real analytic. Then S% can be supplied with a unique complex analytic
structure compatible with the complex analytic structure on the disks D; C C. The
boundary circles 0D; become real analytic Jordan curves on this Riemann sphere.

More generally, we can attach handles to the sphere by means of real analytic
boundary map, and obtain an example of a Riemann surface of genus g. It is
remarkable that, in fact, it can be done with only smooth gluing maps, or even
with singular maps of a certain class. This operation (with singular gluing maps)
has important applications in Teichmiiller theory, theory of Kleinian groups, and
Dynamics.

If R? is supplied with the standard Euclidean metric, then we can consider
conformal transition maps, i.e., diffeomorphisms preserving angles between curves.
The first thing students usually learn in complex analysis is that the class of orienta-
tion preserving conformal maps coincides (in dimension 2!) with the class of invert-
ible complex analytic maps. Thus the notion of a conformal structure on an oriented
surface is equivalent to the notion of a complexr analytic structure=holomorphic
(though it is worthwhile to keep in mind a conceptual difference between them:
one comes from geometry, the other comes from analysis).

We say that a Riemann surface S is a conformal disk/annulus etc if it is iso-
morphic to the standard disk D, a round annulus A(r, R) etc. A conformal sphere
naturally bears the same name as a holomorphic one: the Riemann sphere.

2.1.3. Fine geometric structures and rough structures. One can go further to
projective, affine, Euclidean/flat or hyperbolic structures. We will refine this dis-
cussion momentarily.

One can also go in the opposite direction and consider rough structures on a
topological surface whose structural pseudo-group is bigger then the pseudo-group
of diffeomorphisms, e.g., bi-Lipschitz structures. Even rougher, quasiconformal,
structures will play an important role in our discussion.

Let i : S — S’ be a surface homeomorphism. Then any structure p’ of T can be
obviously pulled back to a structure h*p’ of the same kind on S, and any structure
i on S can be pushed forward to a structure h,p on S’. In fact, the pullback h*p
is well defined as long as h is a covering map. Namely, for any p/-local chart ¢| U’
and any neighborhood U C S such that h : U — S’ is an embedding into U’, the
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composition ¢ o h|U is declared to be a local chart on S. (Note that the transition
maps for p/ and h*p' are the same.)

To comfort a rigorously-minded reader, let us finish this brief excursion with a
definition of a pseudo-group on R? (in the generality adequate to the above discus-
sion). It is a family of local homeomorphisms f : U — V between open subsets of
R? (where the subsets depend on f) which is closed under taking inverse maps and
taking compositions (on the appropriately restricted domains). The above struc-
tures are related to the pseudo-groups of all local (orientation preserving) home-
omorphisms, local diffeomorphisms, locally biholomorphic maps, local isometries
(Euclidean or hyperbolic) etc.

The uniformization of a Riemann surface S is a holomorphic parametrization
¢ : S, — S of S by some model Riemann surface S,, e.g., by the complex plane,
the Riemann sphere, or the hyperbolic plane. These three models lead to three
geometries that will be discussed below.

2.1.4. Geometric structures on orbifolds. Let us now refine the discussion from
§1.8.

An orbifold O is called smooth if the local group elements, as well as the transit
maps are diffeomorphisms. (Of course, the underlying space M of a smooth orbifold
still has singularities.)

A smooth orbifold morphism O — O’ (between smooth orbifolds) is a contin-
uous map f : M — M’ between the underlying spaces which is smooth in local
charts, (i.e., it locally lifts to equivariant smooth maps f;; : U, — UJ) between local
charts). The notions of an orbifold diffeomorphism naturally follows.

The orbifold is called Riemannian if all the U; are endowed with the Riemannian
metrics ds? that turn all the group elements and the transit maps into isometries.
The notion of an orbifold isometry naturally follows.

Similarly, we can define a general notion of orbifold geometric structure (con-
formal = Riemann, Euclidean, spherical, hyperbolic, etc.) and associated (iso-
Ymorphisms.

For 2D orientable manifolds, the local orbifold groups are cyclic, Z/qZ. In
the Riemannian case, the local quotients are cones with angle 27/q, ¢ € Z4 (with
singular points corresponding to q > 2). Obviously, there is no way to turn the
underlying surface near cone singularities into a smooth Riemannian one (compare
with Remark 1.111.)

2.2. Flat (Euclidean) and affine geometries. Consider the complex plane
C. Holomorphic automorphisms of C are complex affine maps A : z — az + b,
a € C*, b € C. They form a group Aff(C) acting freely bi-transitively on the
plane: any pair of points can be moved in a unique way to any other pair of points.
Moreover, it acts freely transitively on the tangent bundle of C.

Thus the complex plane C is endowed with the affine structure canonically
affiliated with its complex analytic structure. Of course, the plane can be also
endowed with a Euclidean metric |z|2. However, this metric can be multiplied by
any scalar ¢ > 0, and there is no way to normalize it in terms of the complex
structure only. All these Euclidean structures have the same group Euc(C) of
(orientation preserving) Euclidean motions A : z — az+b with |a| = 1. This group
acts transitively on the plane with the group of rotations z — e(0)z, 6 € R/Z,
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stabilizing the origin. Moreover, it acts freely transitively on the unit tangent
bundle of C (corresponding to any Euclidean structure).

The group Aff has very few discrete subgroups acting freely on C: rank 1
lattice z — z + an, n € Z, where a € C*, and rank 2 lattice z — an + bm,
(m,n) € Z?, where (a,b) is an arbitrary basis in C over R. All rank 1 lattices are
conjugate by affine transformations, so that the quotients modulo their actions are
all isomorphic. Taking a = 1 we realize these quotients as the bi-infinite cylinder
C/Z. 1t is isomorphic to the punctured plane C* by means of the exponential
map e : C/Z — C*. The rank 2 quotients are all topological tori. However,
they generically represent different Riemann surfaces. Indeed, by a complex affine
transformation, any rank 2 lattice can be brought to t he form

L=L,:={m+nr: ((mn)€Z? Im7 >0},

so we obtain a complex one-prameter family of tori T? = T2 := C/L, 7 € H.
However, not all of these tori are conformally distinct, and in fact, the space of
various complex tori is the quotient of H by some discrete group (see §2.6.3 below).

Note that the above discrete groups preserve the Euclidean structures on C.
Hence these structures can be pushed down to the quotient Riemann surfaces.
Moreover, now they can be canonically normalized: in the case of the cylinder we
can normalize the length of the simple closed geodesic to be 1. In the case of the
torus we can normalize its total area. Thus, the complex tori and the bi-infinite
cylinder are endowed with the canonical Euclidean structures.

By the Geometric Uniformization Theorem (see Appendix 2), we have ex-
hausted the list of complete Euclidean surfaces:

THEOREM 2.4. Any complete Euclidean surface is isometric to either the Eu-
clividean plane R2, or to the flat cylinder T x R, or to the torus T2.

EXERCISE 2.5. Let us consider a torus T? = T2 := C/L,, 7 € H.
(i) Any holomorphic endomorphism f of T? is affine, i.e., it is induced by an affine
map f:z+— pz+0b of C (such that p- L C L). In particular, we can take

(2.1) f=A,:2—nz withneZ.

(i) deg f = |p|?; so f is an automorphism iff |p| = 1. In particular, any torus
admits a holomorphic involution o unduced by A_q : z — —z. This involution has
four fized points in T?.

(iii) The involution o is the only (up to conjugacy by translations) non-trivial au-
tomorphism of any torus, except two special ones corresponding to extra symmetric
lattices, I; and Lo(1/6)- Describve the group of symmetries for these two.

(iv) If T2 admits an endomorphism z — pz + b with non-integer p, then p and T
are quadratic irrationals. So, there are only countably many such endomorphisms.
They are called “complex multiplications”.

By taking quotients of C by non-free actions of discrete subgroups I' of Euc(C),
we obtain 2D Euclidean orbifolds (also called flat or parabolic).

EXERCISE 2.6. (i) Make a list of such Euclidean orbifolds and the corresponding
branched coverings C — M of their underlying spaces.

(ii) Note that all of them have zero Euler characteristic.
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iil) Pay attention to three special ones related to a checker-board tesselation T of
C by white and black triangles with angles w/p, 7/q, 7/t, where

11 1
S+ 2=1, p,qref2,3,...}.
s Tate pog,v€{ }

Each of these triangles is as fundamental domain for the full group of symmetries
L DT of T (including reflections), which is the index two extension of T'.

Notice that these properties are (naturally) in agreement with the Gauss-
Bonnet Formula (see Appendix 2 below). For instance, orbifolds in (iii) are en-
dowed with flat metric with three cone singularities. By (2.33) these singularities
support curvatures 2w(—1/p), 27(1 — 1/q), and 27(1 — 1/t), so the total curvature
of this metric is equal to

1 1 1
23— (—+—+ — =471 = 27 - v(S?).
(- (Grite) (s

2.3. Projective and spherical geometries.

2.3.1. Mobius group. Consider now the Riemann sphere C. Tts biholomorphic
automorphisms are Mdbius transformations

az+b a b
QS.Z'—)m, det(c d>7§0

We will denote this Mébius group by Mob(C). It acts freely triply transitive on
the sphere: any (ordered) triple of points (a, b, c) on the sphere can be moved by a
unique Mobius transformation to any other triple (a’, ', ).

Note that the Riemann sphere is isomorphic to the complex projective line
CP'. For this reason Mébius transformations are also called projective. Alge-
braicly, the Mobius group is isomorphic to the linear projective group PSL(2,C) =
SL(2,C)/{£TI} of 2 x 2 matrices A with det A = 1 modulo reflection A — —A.

2.3.2. Classification of Mdbius transformations. Any Mobius transformation
A has a fixed point o € C, i.e. A(c) = o. Hence there are no Riemann surfaces
whose universal covering is C (except ® itself). In fact, any non-identical Mobius
transformations has either one or two fixed points, and can be classified depending
on their nature.

To this end, let us bring a Mobius transformation to a simplest normal form
by means of a conjugacy ¢~ o f o ¢ by some ¢ € Méb(@). Since Méb(@) acts
double transitively, we can find some ¢ which sends one fixed point of f to oo and
the other (if exists) to 0. This leads to the following classification:

(i) A hyperbolic Mobius transformation A has an attracting and repelling fixed
points, a; and a_, with multipliers' p and p~! respectively, where 0 < |p| < 1. Tts
normal form is a global linear contraction A : 2 — pz (with possible spiralling if p
is unreal). These fixed points are called hyperbolic as well.

Hyperbolic Mébius transformations with unreal p are also called loxodromic.

(ii) An elliptic Mobius transformation has two fixed points oy with multipliers
p and p~! where p = e(f), € R/Z. Its normal form is the rotation z — e(6)z.

IThe multiplier of a fixed point o is the derivative A’(a) calculated in any local chart around
«, compare §§19.5, 21.1.
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(iii) A parabolic Mobius transformation has a single fixed point o with multiplier
1. Tts normal form is a translation z — 2z + 1.

EXERCISE 2.7. (i) Verify those of the above statements that look new to you.
(ii) Show that dilations z — pz, 0 < p < 1, rotations z — e(0) z, 0 € R/Z, and
translations z — z + a, a € [0,1), generate the whole group Aff(C).
(ili) Show that Aff(C) together with the involution z +— 1/z, generate the whole
group Mob(C).

EXERCISE 2.8. Classify Mobius transformations in terms of the representing
matrices A € SL(2,R). Namely, A is elliptic, parabolic (including A = id), or
hyperbolic according to whether tr A € (—=2,2), [trA| =2, ortrA € C~[-2,2],
respectively. Moreover, A is loxodromic iff tr A is unreal.

2.3.3. Dynamics. Using the above normal forms, it is easy to describe the dy-
namics of Mobius transformations:

(1) If A is hyperbolic then its forward orbits { A"z} ,en converge to the attracting
fixed point v, while backward orbits {A™"z},cn converge to the repelling fixed
point a—.  Moreover, A preserves the foliation of circular arcs (“separatrices”)
passing through a4 and «_.

(ii) If A is parabolic then both forward and backward orbits converge to the
a-fixed point. Moreover, A preserves a foliation of circles (“ horocycles”) passing
through «, all tangent to one line.

(iii) If A is elliptic, then it acts as a rotation by 6 around points at. Moreover,
it preserves a foliation of circles separating these two points.

EXERCISE 2.9. Justify the above description.

2.3.4. Compactness and degeneration.

EXERCISE 2.10. Show that topology of PSL(2,C) and topology of uniform con-
vergence on the sphere coincide. Given an € > 0, let us consider the set () of
Mébius transformations ¢ such that the triple (¢=1(0,1,00) is e-separated in the
spherical metric (i.e., the three points stay at least distance € apart). Show that
K(e) is compact in Mob(C).

Let us now describe the way how M&bius maps can degenerate:

PROPOSITION 2.11. If a family F of Mdbius maps is not precompact in Mob(C)
then it contains a sequence { A} such that A, (z) = a uniformly on compact subsets
of C ~ {b}, while A;(z) — b uniformly on compact subsets of C~ {a} (for some
points a,b € ¢ depending on the sequence).

PRrOOF. Without loss of generality we can assume that F is a sequence escaping
to infinity in PSL(2, C).

For any two points a,b € C we can select a subsequence {M,,} from F such
that the limits o = lim M, (a) and 8 = lim M,,(b) exist. Assume first it can be done
so that a # 8. Then the family of M6bius maps

z— My(a)
o2 = T30 )
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is precompact, so it is enough to verify the statement for the family

(b—a)z
fn=¢noM,ot, where(z)= 1+ 1 +a
But f,(0) =0, fn(00) = 00, so fn(z) = ppz for some p, € C*.

Since this sequence escapes to infinity in PSL(2,C), it contains a subsequence
with p, — 0 or p, — oo. In either case the conclusion is obvious.

Assume now that o = 3 for any choice of two points a, b and any subsequence
{M,} as above. It implies that M, (a) — « pointwise along the whole sequence
F. Without loss of generality we can assume that o« = co. Similarly to the above
argument, we can make a change of variable f,, = ¢,, o M,, such that f,(c0) = oo,
S0 fn(2) = pnz + ¢y, and ¢, — id uniformly on C.

Note that ¢, = f,,(0) = co. If p,, = o(c,,) then f,, — oo uniformly on compact
subsets of C. Otherwise, f,(z) = pn(z — by) with p, — oo, b, = O(1) along a
subsequence. These affine maps have fixed points

Pnbn
a, = —— = 0(1).
Hence the translations 1, : z — 2z — a,, form a precompact family. Moreover, they
conjugate the f, to complex rescalings g, : z — ppz for which the conclusion is

obvious. O

2.3.5. Uniqueness of the sphere. By the Geometric Uniformization Theorem
(see Appendix 2), the standard sphere is the only Riemann surface endowed with
spherical structure:

THEOREM 2.12. The only (up to isometry) Riemann surface emdowed with a
complete spherical structure is the standard sphere S? C R3.

2.3.6. Platonic orbifolds. By taking quotients of the unit sphere S? C R? by
actions of finite groups of rotation, we obtain 2D spherical orbifolds (also called
elliptic). The full list is provided by the serious of orbifolds with signatures (52, q, q),
q = 2,3,... (corresponding to the cyclic groups of rotations), and three Platonic
orbifolds corresponding to the five Platonic bodies.? Projecting each of these bodies
B to the sphere, we obtain a spherical polygonal tiling 7 = 7. Let

Sym = Sym(B) C SO(3)
be the group of rotations preserving 7, and let
Sym = Sym(B) C O(3)

be the full group of symmetries of 7 (including reflections), so Sym is the index
two normal subgroup of S/y?n Each tiling 7 can be further refined to a a checker-
board tessellation of S? by black and white triangles (see Figure ) ), so that the full
symmetry group S/y-r\n acts freely and transitively on the family of triangles, which
makes each of these triagles fundamental for S/y?n The fundamental domain for
the subgroup Sym is a spherical rectangle composed of two triangles, black and
white. This description makes the groups Sym C S/yzl examples of (spherical)
triangle groups.

2The orbifolds corresponding to the dual bodies are the same.
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EXERCISE 2.13. For each Platonic body B,
(i) Justify the above tessellation picture.
(ii) Identify the corresponding symmetry groups, Sym C S/yr\n c O(3).
iii) Show that the Platonic orbifold O = Op corresponding to the group Sym has
signature (S%; {p,q,t}) with
1 1 1

(2.2) S 4->1
p q

(iv) Show that
(2.3) VO) = —2— 50, while area(0) = —T— — 27(0).

|Sym| |Sym|
(v) Conclude that the spherical area of the fundamental triangle A is equal to

1 1 1

(2.4) area(A) = - (p + p + T 1) .

(vi) Show that all signatures (S%;{p,q,t}) satisfying (2.2) are realized by Platonic
orbifolds.

Formula (2.4) is a special case of the dollowing result:

GAUSS-BONNET FORMULA (FOR SPHERICAL TRIANGLES). For a spherical tri-
angle A with angles «, 3,y we have:

area(A) =a+ S+ —.
EXERCISE 2.14. Verify this formula.

2.4. Hyperbolic geometry.

2.4.1. Conformal disk and its automorphisms. Let us consider a conformal disk
S. Tt is a Riemann surface S conformally equivalent to the unit disk D, or equiva-
lently, to the upper half plane H, or equivalently, to the strip S. Using the isomor-
phism S ~ D, it can be naturally compactified by adding to it the ideal boundary
0'S ~ T also called the ideal circle or the absolute (compare §1.7.8).

The group Aut(S) of conformal automorphisms of S in the the upper half-plane
model consists of M6bius transformations with real coefficients:

az+b <a b)GSL(Q,R).

M
Z}_>cz—|—cl7 d

Hence Aut(S) ~ SL(2,R)/{£I} = PSL(2,R). In the unit disk model, it is realized
as the group PSL#(2,R):
az+p z—a a B
MH“+&+a:H—w’ <ﬁa>epaﬂzm,
where A =a/a €T, a=—F/a €D (see §50.8).

The above classification of Mobius transformations (see §2.3.2) has a clear
meaning in terms of their action on S:

(i) A hyperbolic transformation A € PSL(2,R) has two fixed points on the
absolute 99 (and does not have fixed points in S). Its normal form in the H-
model is a dilation z — Az (0 < A < 1), and is a translation z — z + a in the
S-model, where a = log A.
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(ii) A parabolic transformation has a single fixed point on 97S (and does not
have fixed points in S). Its normal form in the H-model is the translation z — z+1.

(iii) An elliptic transformation A # id has a single fixed point a € S (and
does not have fixed points on 97S). Its normal form in the D-model is a rotation
z—e(0)z, 0 e R/Z.

EXERCISE 2.15. (1) Verify those of the above statements that look new to you.

(ii) Show that dilations z — pz, 0 < p < 1, translations z — z+a, a € [0,1] (in the
H-model), and rotations z — e(0) z, 0 € R/Z (in the D-model) generate the whole
group Aff(R).

(iii) Show that Aff(R) and the involution z — —1/z generate the whole group Aut(S)
of S ~ H.

2.4.2. Hyperbolic metric. A remarkable discovery by Poincaré is that a confor-
mal disk S is endowed with the intrinsic hyperbolic structure, that is, there exists
a Riemannian metric pg on S of constant curvature —1 invariant with respect
PSL(2,R)-action. In the H-, D- and S-models, the length element of pg is given
respectively by the following expressions:

2|dz| _|dz] dps — |dz|

2.5 dop = —221 _ ezl

siny’
where z = x + iy. This metric is called hyperbolic .

REMARK 2.16. Yet another useful model for the hyperbolic plane, the slit plane,
will appear in §2.4.5.

EXERCISE 2.17. Verify that the above three expressions correspond to the same
metric on S, which has curvature —1 and is invariant under PSL(2,R). Show that
the group of orientation preserving hyperbolic motions of S is equal to Aut(S) =

PSL(2,R).

A conformal disk S endowed with the hyperbolic metric is called the hyperbolic
plane.

2.4.3. H as a symmetric space. In this way, PSL(2,R) assumes the meaning of
the group of (orientation preserving) hyperbolic motions of the hyperbolic plane.
It acts freely transitively on the unit tangent bundle of H, so the latter can be
identified with PSL(2,R). The isotropy group of ¢ € H coincides with the group
PSO(2) of hyperbolic rotations

zcost —sind

zsinf + cosf’ 0 €R/L.

Thus, the hyperbolic plane gets identified with the symmetric space
(2.6) PSL(2,R)/PSO(2) ~ H.

REMARK 2.18. The symmetricity of H is reflected by the properties that it is
homogeneous for the group pf motions, and for any pointed geodesic (v, z) there is
an isometric involuion M : (H,~, z) — (H, v, 2) flipping v around z (e.g., z — —1/2
flips i - R4 around 4, or in the D-model: rotations by 7 flip the geodesics around 0).
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From the Lie Theory point of view, the hyperbolic metric on H can be inter-
preted as follows. Let us consider the Lie algebra sl(2,R) of trace free 2 x 2 real
matrices. It is endowed with the inner product < a,b >= 2tr ab (the Killing form)
which is invariant under the adjoint action

a— gag™t, acsl(2,R), g€ SL(2,R),

of SL(2,R) on sl(2,R).

Viewed as the linear space, sl(2,R) is the tangent space to SL(2,R) at the
identity. By the left action of SL(2,R) on itself, the Killing form can be promoted
to a left-invariant Riemannian metric on SL(2, R). Moreover, it descends to a metric
on the symmetric space SL(2,R)/SO(2) invariant under SL(2, R)-action.

EXERCISE 2.19. Verify that this metric coincides (via the identification (2.6))
with the hyperbolic metric on H (subject of appopriate normalizations).

REMARK 2.20. The Lie Theory discussion can be extended further to pro-
vide a general underlying principle for the hyperbolicty of the symmetric space
SL(2,R)/SO(2) (without a priori familiarity with the hyperbolic plane H). Namely,
any irreducible non-compact symmetric space H of dimenion > 2 is hyperbolic in
the sense that the curvature is negative at any point in all two-dimensional direc-
tions (see [W, Cor, 8.4.6]). Since SL(2,R)/SO(2) is two-dimensional, there is only
one direction at any point, so the curvature is constant by homegenuity.

2.4.4. Hyperbolic geodesics and horocycles. Hyperbolic geodesics in the D-model
of the hyperbolic plane are arcs of Euclidean circles orthogonal to the absolute T. If
we want to emphasize that we consider the full geodesic rather than a geodesic arc,
we sometimes call it complete. For any hyperbolic unit tangent vector v € TD, there
exists a unique oriented complete hyperbolic geodesic tangent to v. For any two
points x and y on the absolute, there exists a unique complete hyperbolic geodesic
¥ = Yzy With endpoints z and y.

EXERCISE 2.21. Let &+ = &1 (D) be the space of oriented complete hyperbolic
geodesics in D endowed with the Hausdorff metric (associated with the Euclidean
metric on D). Show that:

(i) The space & is homeomorphic to (T x T) \ diag, where diag = {(x,z) € TxT}.
(ii) The space & = & (D) of non-oriented geodesics is the quotient of T x T \ diag
modulo the involution (x,y) — (y, ).

(iii) The space p™ of pointed oriented geodesics (7y,z), z € 7y, is homeomorphic
to & x R.

(V) If (Yn,2n) — (7,2) in SpT then the naturally parametrized geodesics 7,
C'-converge to the parametrized . Modify this statement appropriately for non-
oriented pointed geodesics.

The stabilizer Stab, () of this geodesic preserving its orientation is the one-
parameter group of hyperbolic transformations with the endpoints = and y fixed.
(By normalizing # = 0 and y = oo in H, we can bring it to the normal form

Stabi(y) ={z+— Az: A e R}

Moreover, 7 is called the azis of any A € Stabi(y). The group PSL(2,R) acts
freely and transitively on the space of pointed oriented hyperbolic geodesics.



2. RIEMANN SURFACES 67

FiGURE 2.1. Slit plane model for the hyperbolic plane and the
dipole electric field.

EXERCISE 2.22. (i) Verify the above assertions if they are not familiar to you.

(i1) Show that a hyperbolic R-neighborhood of the wertical axis i - Ry in H is the
sector {|argz — /2| < 0} with 6 = O(R) € (0,7/2).
(iii) Show that for M € Staby(y) and for any ¢ € v, we have

(2.7) Apr i= inf distuyp (2, M(2)) = distugp (¢, M(C)).

The quantity Ay (2.7) is called the displacement of M. A sector described in
(ii) is called a Stolz sector centered at 0 € H. In general, a Stolz sector centered at
a € OH is an R-hyperbolic neighborhood of a hyperbolic geodesic landing at a.

A horocycle in D centered at x € T is a Euclidean circle v C D tangent to T at z.
A horodisk D C D is the disk bounded by the horocycle. In purely geometric terms,
horocycles centered at x form a foliations orthogonal to the foliation of geodesics
landing at x. The stabilizer of any horocycle (and the corresponding horoball) is
the parabolic group fixing its center.

In fact, the H-model fits better for describing horocycles: in this model the
horocycles centered at © = oo are horizontal lines L, = Lj(c0) = {Imz = h},
the corresponding horoballs are the upper half-planes Hj;, = Hj,(c0) = {Im z > h},
which are stabilized by the one-parameter group of parabolic translations z +— z+t,
t € R. Similarly we let

Ly(a) :={z:|z— (a+ir/2)|=7r/2}, L.(a):={z:]z—(a+ir/2)] <r/2}
be horocycles and horoballs centered at a € R.
2.4.5. Slit plane. There is one more model of the hyperbolic plane which is

useful in the real dynamics. Namely, let us consider an open interval L C R and
the corresponding slit plane

(2.8) C(L):=C~ (RN L)

(slit along two real rays).

For an angle 6 € [0,7), we let® Dg(L) be the R-symmetric domain intersecting
R along L whose upper half DJ (L) := Dy(L) N Hy is bounded by a circle arc that
meets the real line at angle 0, together with the interval L. Note that Dg(L) = C(L),
while D /5(L) is the Buclidean disk D(L) based upon L as a diameter.

EXERCISE 2.23. (i) Write down an explicit conformal map ¢ : C(L) — H.
(ii) Show that the interval L is a hyperbolic geodesic in C(L).
(iil) Show that Dy(L) is a hyperbolic R(0)-neighborhood of L.

EXERCISE 2.24. The above circle arcs represent the flow lines of the electrostatic
field generated by the dipole of two opposite charges placed at OL.

3A slight notational ambiguity (D, vs Dg(L)) hopefully will not cause confusion.
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2.4.6. Hyperbolic convezity. A subset Q C D is called (hyperbolically) convex if
for any two points x,y € X, the hyperbolic geodesic arc connecting = and y is also
contained in . The boundary of @ in D consists of two disjoint parts: the relative
boundary 0*'Q in I and the ideal boundary 0'Q in T. We say that Q has a totally
geodesic boundary if 9*¢'Q is the union of complete geodesics (in other words, there
are no corners in 0*°'Q). Such sets appear naturally as follows.

The hyperbolic convexr hull X of a subset X C D is the smallest convex set
containing X. For instance, let X be a closed subset of T, and let I; C T be the
complementary intervals (“gaps”) of X. Let us consider open (in D) hyperbolic
half-planes H; D I; based on the I; (they are bounded the hyperbolic geodesics I';
that share the endpoints with I;). Then

(2.9) X=D~|JH;.
Note that X is closed in D and X N'T = X. In fact, we have:

LEMMA 2.25. For a closed non-singleton X C T, the convex hull X is a closed
Jordan disc.

PRrROOF. The boundary of X can be homeomorphically retracted onto T by
projecting the boundary geodesics I'; onto the ideal intervals I;. To be definite,
one can take the orthogonal projection along geodesics orthogonal to I';. (To see
it explicitly, move I'; by a Mo6bius automorphism to a diameter of D.) 0

COROLLARY 2.26. Let z € X and y € T~ X. Then any path connecting x to
y crosses some boundary geodesic I';.

EXERCISE 2.27. Let Q be a hyperbolically convex subset of D which is a closure
of its interior. Then @ has a totally geodesic boundary iff Q@ = X for some closed
subset X C T. Moreover, under these circumstances, X = 0Q.

EXERCISE 2.28. Let X,, be a sequence of closed subsets of T converging in the
Hausdorff metric to a set X (i.e., in the space &(T)). Then X,, — X in the space
&(D).

2.4.7. Hyperbolic triangles. Let us consider three points A, B,C in the hyper-
bolic plane D or on the absolute T. Connecting them with arcs of hyperbolic
geodesics, we obtain a hyperbolic triangle A with vertices A, B, C'. Its boundary in-
herits the orientation from the complex plane, giving the cyclic order to the vertices.
Relabeling the vertices if necessary, we can assume that the cyclic order (A, B, C)
is positive. Let «, 3,7 be the angles at the vertices A, B, C. Notice that an angle,
say «, vanishes iff the corresponding vertex A is ideal: A € T.

In a striking contrast with Euclidean geometry, the vertices determine the tri-
angle:

THEOREM 2.29. For any cyclically ordered set («, 8,7) of non-negative angles
satisfying
1 1 1
—+ 4+ =<1,
a By
there exists a unique, up to a hyperbolic motion, oriented hyperbolic triangle A =
A(a, B,7) with these angles.
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FIGURE 2.2. The left hand-side shows an ideal triangle with angles
(a, 8,0). The right-hand one illustrates how it can be deformed to
a triangle with with arbitrary admissible angles (¢, 8,7).

FIGURE 2.3. Representation of an arbitrary triangle as a difference
of two ideal triangles.

PROOF. A realization of the triangle A(«, 3,0) with one ideal vertex is shown
on the left-hand side of Figure 2.2. It can be then deformed to the triangle A(«, 3,7)
with arbitrary v € [0, 7 —a— f), see the right-hand side of that figure. One can also
readily see that any triangle with given angles can be moved to a form depicted on
the figure. We leave the reader to fill in details. (I

As the angles determine the triangle up to a hyperbolic motion, they should
determine its area, too. This leads to the following remarkable relation:

GAUSS-BONNET FORMULA (FOR HYPERBOLIC TRIANGLES). The area of the
hyperbolic triangle A with angles (o, B,7) is equal to the “angle defficiency’

arecaA =71 — (a+ S+ 7).

PROOF. For the ideal triangle A(c,3,0) depicted on Figure 2.2, it can be
checked by a direct calculation. The general case follows by representing an arbi-
trary triangle as a difference of two ideal ones, as shown on Figure 2.3. (]

Of course, the angles should determine the lengths of the edges of the trinagle
as well. It follows from the following Sine Theorem (combined with the Gauss-
Bonnet):

HypERBOLIC SINE THEOREM. The lengths a,b,c of the edges of the triangle
A(a, 8,7) are related to its angles as follows:

sinha  sinhbd B sinh ¢

sina  sinf  siny’
ProJECT 2.30. Study a proof of the Hyperbolic Sine Theorem, as well as other
basic aspects of the Hyperbolic Trigonometry, see [Bel, §7].

Similarly, we can consider hyperbolic polygons P. As for triangles, we allow
some of their vertices to be ideal, representing cusps of P. In fact, will also need to
consider more general ideal polygones with ideal sides (i.e., arcs of T).

EXERCISE 2.31. Show that if P is a hyperbolic n-gon without ideal sides then
area P =7m(n —2) — Zai,
where «; are its angles.

An important feature of the hyperbolic geometry is that projections to geodesics
are exponentially contracting:

EXERCISE 2.32. (i) For any geodesic v in H and any point z € H, there is a
unique point m(z) € v which is closest to z ony. Moreover, the geodesic connscting
z to my(z) ts orthogonal to .
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(ii) For any two points z,( € H on distance > R from v, we have:
disthyp (my(2), 74(C)) < B_RdiSthyp(Za Q).

2.4.8. Fuchsian groups: dynamical structure. A Fuchsian group T' is a discrete
subgroup of PSL(2, R) acting on the hyperbolic plane. Let us start with a structural
theorem for these actions.

THEOREM 2.33. Let I' be a Fuchsian group acting on ((@,ﬁ, T). Then there is
a closed T-invariant set A = A(T') C T with the following properties:

(i) A is the limit set of any orb(z), z € C. In prticular, the action of T' on A is
minimal: any orbit is dense in A.

(ii) The action of T' on the complementary set, Q(I') := C ~ A(T'), is properly
discontinuous.

(iil) A is the closure of hyperbolic fized points.

(iv) If T' contains a parabolic map, then A is the closure of parabolic fized points.
(v) If T contains an elliptic map then it has finite order, it has a unique fized point
a in D, and this point belongs to D (in particular, it does not belong to A).

(vi) A is either the whole circle T, or a Cantor set, or esle |A| < 2. In the latter
case, there are four options:

a) T is a finite cyclic group of elliptic rotations around a fized point o € D, and
A =10. The normal form for T is z — e(k/q) z, k € Z/qZ.

b) T is an infinite cyclic group of parabolic translations with a common fized point
a €T, and A = {a}. The H-normal form* for T is

Zzz4+n, ne€Zl.

¢) I is an infinite cyclic group of hyperbolic maps with common fized points o, 5 € T,
and A = {a, B}. The H-normal form for T is

(2.10) I'y={z—p"z, nel} for somepe(0,1).

d) T is an infinite diahedral group® that has an orbit {a,, B} C T of size two. More-
over, A = {«a, B}. The H-normal form for T' is generated by the above cyclic group
I', (for some p € (0,1)) and the involution z — —1/z.

PROOF. Assume first that I' is infinite and that there are no points fixed under
the whole group. Since T' is discrete, it is countable, G = {g, }nen Where go = id,
and moreover g, — oo in PSL(2,R) (meaning that the g, eventually escape any
compact subset of PSL(2,R)).

Let w(z) stand for the limit set of orbz (i.e., it consists of the limits of all
convergent subsequences (gn(x)z) as ng — 00). It is a non-empty closed subset of

C. By Proposition 2.11, if a € w(z) then a € w(¢) for all points ¢ € C except at most
one point b. But if b is exceptional then so is gb for any g € T' (since w(gb) = w(b)),
implying that the exceptional point must be fixed under the whole group. As we
assume that such fixed points do not exist, there are no exceptional points either,
s0 a € w(z) for any z € C. Consequently, the limit set w(z) is independent of z,
and we can call it A = A(T).

41.6.7 the normal form in the upper-half plane model H for the hyperbolic plane.
51.:3.7 the semidirect product of Z and Z/27Z, with the latter acting on Z by reflection: n — —n.
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We can also make the following conclusions:
e A is ¢ D-invariant (since for any z € C, we have: g(A) = w(gz) = w(z) = A).
e A C T (since w(z) C T for z € T).

This confirms (i) (under our current assumptions).

Proposition 2.11 also implies that any sequence of distinct elements g, C T’
contains a sunbsequence g, such that for some points a,b € A, we have: g,,z — a
and g;klz — b uniformly on compact subsets of Q = C ~. A.% This implies that the
action of T on 2 is properly discontinuous, confirming (ii).

Let Fix(T") be the union of the sets of fixed points of all maps g € T', g # id.
Notice that if « is a fixed point for some f € I' and g € I' then ga is a fixed point
for go f og™1. Tt follows that Fix(T" is I'-invariant, and moreover, the action of I'
on Fix(I") preserves type of points (hyperbolic/parabolic/eilliptic).

By minimality of the action, if A contains one fixed point of certain type then
fixed points of that type are dense in A. Obviously, any hyperbolic or parabolic
fixed point (if exists) belongs to A. This confirms (iv). To complete the proof of
(iii), we need to show that hyperbolic points always exist (under our assumptions).
It follows from the following assertion]:

EXERCISE 2.34. Let A and B be two elements of PSL(2,R) that do not share
fixed points. If both of them are parabolic, or else if one of them is elliptic, then the
commutator {A, B} := ABA'B~1 is hyperbolic.

REMARK 2.35. Another approach to this issue is to find a non-peripheral closed
geodesic (not necessarily simple) on the quotient Riemann surface S = D/T (or
rather, on the quotient orbifold). Its lift to D is an axis for a hyperbolic deck
transformation (compare Prop. 2.53 below).

We leave to the reader to verify (v), and pass to (vi). If A has non-empty interior
in T, then by (iii), int A contains a fixed point « of some hyperbolic transformation
g € I'. But then the orbit U g™ (A) can omit at most one point on T. Since A is

neL
invariant and closed, it must coincide with the whole circle T.

Thus, if A # T then it is nowhere dense. Let us show that it is perfect. Notice
that if g € T is a hyperbolic map with fixed points a and 3, then {a, 8} C w(z) for
any z € T\ {«, 8}. It follows that if |[A] > 2 then hyperbolic fixed points are not
isolated in A. Now (iii) implies that there are no isolated points in A.

Let us now deal with the remaining special cases.

Case 1) Assume there is a point « fized under the whole group. If o € D then
I' is a group of elliptic rotations around «. Since it is discrete, it must be finite,
leading to the option (vi-a)

Let now « lie on the absolute T. Let us pass to the upper half-plane model
H putting « at infinity. Then I" becomes a subgroup of affine transformations
z—pz+cwithpeR* ceR. If p=1 for all g € T" then I is a discrete subgroup
of the one-parameter parabolic group z +— z + t. It follows that I' is cyclic and
A = {a}, yielding option (vi-b).

6Compare with the notion of normality and the Montel Theorems below (§4).



72 1. CONFORMAL GEOMETRY

Otherwise I' contains a hyperbolic element g, which can be brought to the form
g : z+ pz. If there is some h € T that does not fix 0 then h(z) = Az + ¢ with ¢ # 0,
and g" ohog™" is equal to z +— Az + u"c, n € Z, which is not discrete.

It follows that G is a discrete subgroup of the one-parameter hyperbolic group
z + pz, p € R*. Hence G is cyclic again, and A = {0,00} (in the normal form),
which amounts to case (vi-c)

Case 2) Assume [A| < 2.

Assume A = (), which is equivalent for I" to be finite. Then all elments of T’
must have finite order, so they must be elliptic. Then by Exercise 2.34, they must
share a fixed point, bringing us back to Case 1).

If |A| =1 then A = {a}, where « is fixed under the whole T, bringing us back
to Case 1) again.

If |A| = 2 then we can normalize it so that A = {0,00}. Then I' contains a
normal subgroup I', (2.10) fixing these points, so [I" : T'y] < 2. Thus, either I' =T,
bringing us back to Case 1) once again, or I' is a semidirect product of ', and
an involution permuting 0 and co. Such an involution has a form z — —\/z with
A > 0, which is conjugate to { — —1/¢ by rescaling z = VAC. We arrive at case
(vi-d). O

The set A(T") is naturally called the limit set of T', while the complementary
set Q(T) is called the set of discontinuity. One says that I is a Fuchsian group of
first kind it A(T') = T. If A(T") is a Cantor set then T is called a Fuchsian group of
second kind. The special groups listed in item (vi) are called elementary. We see
that |A] < 2 for such a group, while A is uncountable for all others.

2.4.9. Hyperbolic Riemann surfaces. Since I' acts properly discontinuous on €2,
the quotient space S := ID/T" is Hausdorff. Moreover, if I acts freely on D, then the
complex structure and the hyperbolic metric naturally descend from D to S, and
we obtain a hyperbolic Riemann surface.

Under the above circumstances, one says that S is uniformized by a Fuchsian
group. The Geometric Uniformization Theorem (see Appendix 2 below) yields:

THEOREM 2.36. Any complete hyperbolic” Riemann surface can be uniformized
by a Fuchsian group.

2.4.10. Cusp and annulus. Let us take a look at elementary Fuchsian groups
listed in items (vi-b) and (vi-c) of Theorem 2.33. Let us start with parabolic cyclic
groups, Case (vi-b).

The quotient of a horoball Hj by a discrete cyclic group of parabolic transfor-
mations Z =< z — z +n > is called a cusp. Conformally it is the punctured disk
D*, hyperbolically it is the pseudosphere. Simple closed curves IL;/Z C Hy /Z,t > h
(see §2.4.4) are also called horocycles (in the cusp).

EXERCISE 2.37. Any cusp Hy/Z has infinite hyperbolic diameter but a finite
hyperbolic area. The hyperbolic length of the horocycle L /Z goes to zero ast — co.

7In this statement, S is assumed to be endowed with a metric of constant negative curvature,
while the general Uniformization Theorem does not assume this. (A similar remark applies to
Theorems 2.4 and 2.12 above.)
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FIGURE 2.4. The hyperbolic cusp (on the left) vs the flat half-
infinite cylider (on the right). Metrically they are quite different,
though conformally they are equivalent.

EXERCISE 2.38. Write down explicitly the universal covering H — D* and show
d

that the hyperbolic metric on D* is equal to ds = A
|2log 2| |

EXERCISE 2.39. Let S be a Riemann surface, and let f : S — D* be a holomor-
phic covering. If deg f < oo then S is isomorphic to D*; otherwise S is isomorphic
to H.

Let us now pass to the hyperbolic cyclic groups: Case (vi-c) of Theorem 2.33.

EXERCISE 2.40. (i) The quotient H/I', is conformally equivalent to an annulus
A = A(1, R) with some R > 1 (which one?).
(ii) The circle vy = T,z is a simple closed hyperbolic geodesic in A. Calculate its
hyperbolic length.

(iii) There is an anti-holomorphic involution o : A — A such that v4 = Fix (o).
This hyperbolic geodesic v, is called the equator of A.

Let us now consider any conformal annulus A. By definition, it is conformally
equivalent to a round annulus A(r, R) with some 0 < r < R < oo. (Of course, it
can be normalized so that » = 1 as above.) Such annuli can be easily conformally
classified:

EXERCISE 2.41. Two round annuli are conformally equivalent if and only if
R/r = R'/r'. The only conformal isomorphisms A(r,R) — A(r', R") are complex
rescaling

z Ae(d), )\:—:g, 0 € R/Z.
Hence the modulus of A,
1 R
mod A := glog7 € (0, 00),

is well defined and is the complete conformal invariant of A.
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REMARK 2.42. In §6.3.1 we will give an intrinsic definition of the modulus, in
terms of the extremal length of some path family, which is one of the main tools in
Holomorphic Dynamics.

Moreover, Exercise 2.40(ii) implies that any conformal annulus A has an equator
(a simpe closed hyperbolic geodesic whose homotopy class generates m1(A4)) and
yields the following expression for its hyperbolic length:

T
(2~11) Zhyp(’YA) = mod A°

(Note that in the round model A = A(r, R), The equator becomes the “geometric
mean circle”, y4 = {|z] = VRr}.)

REMARK 2.43. Later on we will: a) see that the equator is the only simple closed
geodesic in a conformal annulus (see §2.4.16); b) discuss another useful model for
a conformal annulus, a flat cylinder (see §2.6.1).

If A is a conformal annulus with boundary then mod A is defined as the modulus
of int A.

The punctured disk D* ~ H/Z can be viewed as the annulus A(0,1), so it is
natural to let mod D* = oo. Similarly, C* can be viewed as the annulus A(0, c0).
All the more, we let mod C* = oo.

EXERCISE 2.44. Show that:
(i) D* is not conformally equivalent to any annulus A(r,R), 0 < r < R < 0o;

(ii) C* is not conformally equivalent to any of the above surfaces.

We see that a Riemann surface under considerarion “knows” wherther it has a
puncture or an ideal circle at infinity of its end, which contrasts with the topological
situation discussed above (see §1.7.8).

REMARK 2.45. Later on (§5) we will see that any Riemann surface which is
a topological annulus is conformally equivalent to one of the models from the last
exercise. Moreover, the type of an embedded annulus for A C C can be recognized
by checking whether the components of C~ A are singletons or continua (see §6.3.3).

2.4.11. Hyperbolic orbifolds. Assume now the action of a Fuchsian group I' on
D is not free, so it has fixed points z; € D. Since the action of I" on D is properly
discontinuous,

e these points are isolated, and so, there are at most countably many of them;
e each Stab(z;) is finite, and hence is a cyclic group Z/q;Z.

Each z; projects to a singular point «; of the quotient S := D/T". Thus, we
obtain an orbifol O with signature (S;{q;)}. Moreover, the hyperbolic metric on D
descends to a hyperbolic metric on S with cone singularities of angles 27 /q; at the
(678

Elementary Fuchsian groups of this kind are covered by Cases (vi-a) and (vi-d)
of Theorem 2.33. In the former case, we obtain the cone with angle 27/q (which
has signature (D; q)).

EXERCISE 2.46. Describe the orbifold that appears in Case (vi-d).
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2.4.12. Modular group, surface, and function J. The modular group is the
group I' := PSL(2,Z) naturally acting on the closed upper half-plane clH* =
H* U R by Mébius transformations.

EXERCISE 2.47. (i) The modular group T is generated by the parabolic map
v iz z+ 1 and the order two elliptic map § : z — —1/z.
(ii) Letting IT" := {z € H' : |Rez| < 1}, the set A := IIT D is a fundamental
donain for T.
(iii) The fundamental domain A contains three fized points (on its boundary), i =
e(1/4) is the order two fized point (for §) while e(1/6), e(1/3) are order three fized
points (for 6y~ and §v respectively).
(iv) The quotient H/T is a hyperbolic orbifold M supported on C with one cusp (at
infinity of C) and two cone points, of order two and three.

(v) The limit set for T is the whole circle R = RU{oo}. (So I is a Fuchsian group
of the first kind.)

(v) The modular group is isomorphic to the free product of two cyclic groups:
'~ (2/2Z) = (Z/3Z).

The quotient 9 := H/T is called the modular surface and the corresponding
projection J : H — 9 ~ C is called the modular function.

EXERCISE 2.48. Let A := AN {Rez > 0}. It is a hyperbolic triangle with
vertices i,e(1/6),00. Consider the group T’ generated by reflections with respect to
the sides of A.

(i) Show that the translations of A under T tessellate H.

(ii) Show that the modular group I' is the unique index two normal subgoup of I.

The modular group will naturally appear in the discussion of the moduli space
of complex tori and four-times-punctured spheres (see §§2.6.3, 2.6.4).

2.4.13. Thrice-punctured sphere, ideal triangle group, and modular function \.
Let us now consider the thrice-punctured sphere® C < {0, 1}. For this domain, there
is a simple explicit construction of its uniformization by a Fuchsian group. Namely,
let us consider an ideal triangle A in the hyperbolic plane, that is, the geodesic
triangle with vertices on the absolute? (see Figure 2.4.13). By the Riemann Mapping
Theorem, it can be conformally mapped onto the upper half-plane H so that its
vertices go to the points 0,1 and oco. By the Schwarz Reflection Principle, this
conformal map can be extended to the three symmetric ideal triangles obtained by
reflection of A in its edges. Each of these symmetric rectangles will be mapped onto
the lower half-plane H_. Then we can extend this map further to the six symmetric
rectangles each of which will be mapped onto H, again, etc. Proceeding in this
way, we obtain the desired universal covering A\ : D — U called a modular function.

EXERCISE 2.49. Verify the following properties:
(i) The union of the above triangles tile the whole disk D;
(ii) The modular function \ provides us with the Universal coveringD — C~.{0,1};

8Note that all thrice-punctured spheres are equivalent under the action of the M&bius group

Mob(C).
INote that all these triangles are equivalent under the action of PSL(2,R).
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FIGURE 2.5. Modular group, surface, and function J.

(iil)) Its group of deck transformations is the index 6 normal subgroup of the modular
group PSL(2,7Z) consisting of matrices congruent to I mod 2

(iv) There is a natural Galois orbifold covering C ~ {0,1} — 9 ofr degree 6.
Describe its group of deck transformations.

The above Fuchsian group is called the congruent group I's, or the ideal triangle
group.

Pushing the hyperbolic metric down by A from D to C \ {0,1}, we endow
C ~ {0,1} with a complete hyperbolic metric (with three cusps corresponding to
0,1,00).

2.4.14. Hyperbolic triangle groups. We have seen above a short list of exam-
ples of spherical and parabolic orbifolds with three singular points corresponding
to chess-board triangle tessellations of S? and R? (see Exercises 2.13, 2.6). We
have also seen examples of the modular groups corresponding to the chess-board
tessellations of the hyperbolic plane H by triangles with angles {0, 7 /3, 7/2} and by
ideal triangles with all angles 0 (respectively). It turns out that there exists a plenty
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FIGURE 2.6. Modular function A as the universal covering over
the thrice-punctured sphere, which is presented in the flat and
hyperbolic models.

of such hyperbolic examples. Indeed, by Theorem 2.29, for any triple {p,q,t} of
1 1
numbers in {2,3,...}U{oo} with — + — + o< 1 there exists a hyperbolic triangle

A with angles 7/p, 7/q, and 7/t. Let o, 04, and o, be the reflections with respect
to the edges of these triangles, and let I be a group generated by these reflections.

~

PrROBLEM 2.50. (i) T is a discrete group generating a checker-board tesselleta-
tion of H by the transformations of A, with A serving as a fundamental domain.

(ii) T contains the index two subgroup I C PSL(2,R) whose fundamental domain
is a rectangle consisting of the union of two triangles, black and white.
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(iii) The orbifold O = Oy ¢y corresponding to T has signature (S*; {p,q,t}) and
Euler characteristic

1 1
XO)=-+-+--1<0.
q T

2.4.15. Fundamental domain. For a finitely generated Fuchsian group T, let us
consider its Dirichlet fundamental domain A (see §1.5.1). Its construction implies
that it is a hyperbolic polygon, possibly ideal. Its ideal vertices correspond to the
cusps of the quotient Riemann surface S := H/I", while ideal sides correspond to
the ideal boundary components for S. Moreover, the sides of A are paired: for
any side e, there is an element 7, € I such that v.(e) is a side e’ of A, so y(A) is
attached to A along €’. So, § is obtained from A by gluing e to ¢’ by means of .

It may also happen that for a vertex v € H of A, there is a composition =, of
some 7’s that fixes v. If v is non-ideal, then =, is elliptic with a rational rotation
number 1/q; it produces an orbifold singularity on S of index q. Otherwise, 7, is
parabolic producing a cusp for S.

Vice versa, according to the Poinaré Theorem, any hyperboplic polygon with
above properties generates a Fuchsian group.

ProJecT 2.51. Work out details of the above description.

2.4.16. Simple closed curves on Riemann surfaces. Let us now consider a Fuch-
sian group I' and the corresponding hyperbolic Riemann surface S = D/T". Hyper-
bolic geodesics on S are (obviously) projections of the hyperbolic geodesics on Dj
horocycles on S are (by definition) projections of the horocycles on . (A simple
horocycle is a horocycle without self-intersections.)

Let 7 be a non-trivial simple closed curve on S, and let [y] be the class of simple
closed curves freely homotopic to . To this class corresponds a conjugacy class
A(7) of deck transformations (see Corollary 1.60 and Exercise 1.61).

EXERCISE 2.52. Show that elements § € A(y) are primitive.

Since deck transformations cannot be elliptic, the elements of A() are either
all hyperbolic or all parabolic. Accordingly, we say that the class [y] itself is either
hyperbolic or parabolic.

PROPOSITION 2.53. (i) If the class [] is hyperbolic then it is represented by a
unique closed hyperbolic geodesic § € [y]. This geodesic minimizes the hyperbolic
length of the closed curves in [y].

(i) If the class [] is parabolic then S contains a neighborhood U isometric to a

cusp, and [y] is represented by any horocycle in it. In this case, the class contains
arbitrary short curves.

PRrROOF. Let us consider a lift 4 of v, and let G =< ¢™ >, ¢z be its stabilizer.

(i) If ¢ is hyperbolic then it has two fixed points, x_ and x, on the absolute,
and then the closure of 7 in D is a topological interval with endpoints z; and z .
Let us consider the hyperbolic geodesic $ in D with endpoints z4. It is invariant
under the action of the cyclic group G. In fact, it is completely invariant. Indeed,
if ¥(0) N & # 0 for some ¢ € I' . G, then ¢)(3) N7 # 0 as well, which is impossible
since v does not have self-intersections. Hence the projection of §to S is equal to
) /G, which is the desired simple closed geodesic representing [7].
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FI1GURE 2.7. Tightening of a loop to a geodesic or a horocycle.

(ii) If ¢ is parabolic then it has a single fixed point 2 on the absolute, and the
closure of 4 in D is a topological circle touching T at = (a “topological horocycle
centered at z”).

Let U be the corresponding topological horoball bounded by 4. Let us show
that it is completely invariant under G. Indeed, for ¢ € I'\ G, w(ﬁ ) is a topological
horoball centered at 8(x) # . But since v is a simple curve, ¥(7) N5 = @ for any
p € '\ G. Since two topological horoballs with disjoint boundaries are disjoint,
»(U)NU = 0.

It follows that U/G is is isometrically embedded into D/T" = S. But U/G is
a conformal punctured disk containing some standard cusp Hy,/Z. Thus, this cusp
isometrically embeds into S as well, and its horocycles give us desired representa-
tives of [v]. O

In case (i) of the above statement we say that the class [y] (or, the curve
itself) is represented by a geodesic. In case (ii) it is represented by a horocycle.

A free homotopy of a simple loop to a representing geodesic or a horocycle will
be called tightening. It can be done without increasing the length:

EXERCISE 2.54. A simple closed e-loop can be tightened to a simple closed
geodesic or a simple closed horocycle through a family of e-loops. (An e-loop is a
loop of length at most €.)

2.4.17. Ideal boundary. Let us now consider a tame end F of S, and let ' C S
be a topological cylinder representing E. It is bounded by a peripheral curve .

If v is trivial then S is simply connected, and hence S = D. In this case, the
ideal compactification of S is naturally defined as the closed disk, cl! D = D, with
the absolute being its ideal boundary, 0'ID = T.

Otherwise, + is either parabolic or hyperbolic, so it is represented either by a
horocycle or by a geodesic ( Proposition 2.53).

LEMMA 2.55. If 7 is parabolic, then two options can occur:

(i) The end E is a cusp; it can be completed by adding one point, cog, and the
completed surface has a natural conformal structure;

(ii) S = D* and the end E corresponds to annuli A(r,1) C D*, r € (0,1); it can be
completed by adding T to D*.

In the latter case, we let 3'D* = 'E = T and cl’ D* = D* U’ D* =D ~ {0}.

PRrROOF. By Proposition 2.53, v is homotopic to a horocycle in a cusp U C S,
which is conformally isomorphic to D*. The isomorphism ¢ : U — D* provides us
with an embedding of U into D. By glueing S and D by means of ¢, we obtain a
desired Riemann surface

;S := 85Uy D.
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completing S at infinity by adding one ideal point.

If the cusp U represents the same end as F, we are in case (i). If U and F
represent different ends of S, then v partitions S into two topological cylinders, so
S is a topological cylinder as well, with the fundamental group generated by [7].
Then S ~ H/ < A >=D*, where A : z — z+1 is the parabolic deck transformation
(appropriately normalized) corresponding to [v]. d

Let us now assume that a peripheral curve v on S is hyperbolic, so it is repre-
sented by a geodesic §.

LEMMA 2.56. The cylinder F lifts to a topological bigon F on the universal
covering D bounded by a lift ¥ of v and an interval I C T. The stabilizer of F
and of I in the covering Fuchsian group I' is the cyclic group G =< A > generated
by a hyperbolic transformation A corresponding to 7. The quotient I/G is a circle
completing the cylinder F at infinity. The geodesic ¢ lifts to a geodesic 6 sharing
endpoints with 5. The bigon A = Ay bounded by 6 and I covers a cylinder A/G in
S representing the same end E.

The circle I/G is called the ideal boundary of the end E. We denote it 0'F =
O'F, and we let clL, S := SUJ'E.

PROOF. Since 71 (F) is the cyclic group generated by [v], the cylinder F lifts to
a domain F' C D with a cyclic stabilizer G =< A > generated by the hyperbolic deck
transformation A. Moreover, F' is completely invariant under G. Since OF = -, the
boundary of F in D is equal to 7, so F is one of the two components of D~ 7. In D,
this component is bounded by 4 U I, where I is an open arc of T sharing the end-
points with 4. It follows that I is also completely invariant under the cyclic group
G. Since G acts on [ totally discontinuously, we have I C T~ A. As 0] = 07 C A,
we conclude that I is a gap in A.

The quotient (FUT)/G is a semi-closed cylinder with the circle I/G attached
to the open cylinder F'. So, it provides a completion of F' at infinity.

Let us check that the bigon A is completely invariant under G. Indeed, A(Af) =
Ay = A for any A € G. On the other hand, if A € T' .G then A(I)NI = 0.
Hence

A(A[) NAr = AA(]) NAr=0.

We conclude that F' := A/G is a cylinder in S bounded by §. Moreover, F'NF
contains a cylinder U/G, where U C D is a small G-invariant neighborhood of I.
It follows that F’ and F represent the same end of S. O

For surfaces of finite topological type, the above assertion can be reversed: any
gap in A corresponds to some ideal boundary circle of S:

PROPOSITION 2.57. Assume that T is finitely generated, but not a parabolic
cyclic group. Let us consider a gap I in A. Then the stabilizer of I in T is a cyclic
group G generated by a hyperbolic transformation A. The quotient I/G is an ideal
boundary circle of S completing some non-cuspidal end.

PROOF. Let us consider a curve 6 : [0,1) — D landing at some point b € I, i.e.,
o(t) — bast— 1. It projects to a curve o on S converging to some end E. Since
all the ends of S are tame, o is eventually trapped in a cylinder F' representing F.
Let F be its lift to D that contains a tail of .
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If E were cusp then the closure of F would touch T at a single parabolic point,
S0 b is this point. But this is impossible since parabolic points belong to A.

Thus, E is a non-cuspidal end. If v were parabolic then by Lemma 2.55 (ii), S ~
D*, and I" would be a cyclic parabolic group, which is ruled out by the assumption.

Hence v is hyperbolic, and as such, is represented by a geodesic. Then the
boundary of F on the absolute is a gap ICcT~A corresponding to the end E (see
Lemma 2.56). Since the gaps I and I overlap, they coincide. So, I is stabilized by
the cyclic group G generated by A. We are done. O

Thus, the simultaneous ideal completion of all non-cuspidal ends of S can be
obtained by taking the quotient of D . A by the action of the Fuchsian group I'.
We call it ¢l S, while the full ideal boundary will be called 7S5.

REMARK 2.58. Note that the above result shows that a finitely generated Fuch-

sian group I' does not have wandering intervals , i.e., there are no gaps I in A such
that A(J) NI =10 for all A €'~ {id}.

Let us summarize our discussion:

THEOREM 2.59. Let I" be a finitely generated Fuchsian group, and let S be the
corresponding hyperbolic Riemann surface H/T'. Any cuspidal end E of S can be
completed by an ideal puncture cop, with complex structure extended through ocop.
Any non-cuspidal end E can be completed by an ideal circle 0'E at infinity.

This completion produces a compact Riemann surface S, the full ideal com-
pactification of S . This compactification is conformally natural:

PROPOSITION 2.60. Any conformal isomorphism ¢ : S — S’ between hyperbolic
Riemann surfaces extends to a conformal isomorphism ® : S — S’ between their
ideal compactifications.

PROOF. The isomorphism ¢ lifts to an equivariant isomorphism ¢E D —- D
between the universal coverings. Being Mébius, it extends to D. Being equivariant,
¢ maps the limit set A for S to the limit set A’ for S’. On the complement, we obtain
an equivariant isomorphism I~ A — D ~. A, which descends to an isomorphism
®:9'S — 0'S’. By the Removability of isolated singularities, ® extends through
the ideal punctures to a conformal isomorphism ® : S — S’. O

More generally, we have:

EXERCISE 2.61. Any holomorphic covering f : S — S’ of finite degree between
hyperbolic Riemann surfaces extends continuously to a covering £ : S — S’ between
their ideal compactifications (holomorphic on int'S ).

2.4.18. Conwvex core. Let A = A(T") be the limit set of a Fuchsian group I' of
second kind, and let 7 : D — S be the projection onto the quotient Riemann
surface. Since A is invariant under I', the convex hull A is T-invariant as well.
Hence it covers a Riemann surface C' = Cg with boundary called the convex core

of S.
PROPOSITION 2.62. The natural embedding C' — S is a homotopy equivalence.

PROPOSITION 2.63. The group I is convex co-compact if and only if the convex
core C' is compact.
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FIGURE 2.8. This picture illustrates a geometric difference be-
tween two types of tame hyperbolic ends: a cusp associated with
a horocycle and and an “open end” associated with a peripheral
geodesic.

2.4.19. Linking. Let us consider a configuration of two pairs of points on a
topological circle S, X = {x1,22} and Y = {yi,y2}, where all four points are
assumed to be distinct. There are two possible relative positions of these pairs:
they can be linked or unlinked. Linking means that the points alternate when one
goes around the circle, i.e., both intervals with endpoints x1, 2 contain a y-point.
Otherwise, Y is contained in one of these intervals. These properties are intrinsic for
S1, but in case when S! is the boundary of a 2-disk, they can be nicely recognized
from the inside:

EXERCISE 2.64. For two pairs of points X and Y on the unit circle T = 0D,
the following properties are equivalent:

(i) X and Y are linked;
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(ii) The hyperbolic geodesics [x1, 2] and [y1,ya] cross in D;

(iii) Any continua X' and Y’ in D such that X C X' CD\Y andY CY' C D~ X
intersect.

More generally, let X and Y be two disjoint closed non-singleton subsets of a
topological circle S'. We say that X and Y are unlinked if any two pairs of distinct
points, {z1,22} C X and {y;,y2} C Y, are unlinked. The previous Exercise yields:

EXERCISE 2.65. For sets X and Y as above the following properties are equiv-
alent:

(i) X and Y are unlinked;
(ii) X is contained in a single gap of Y (and the other way around);
(iii The hyperbolic convex hulls X and Y are disjoint;

Two closed curves 77 and 2 on a surface S intersect (or “cross”) essentially if
any two curves 1 and 7%, respectively homotopic to 1 and 79, intersect (so, the
intersection cannot be removed by deforming the curves).

EXERCISE 2.66. Let S be a hyperbolic Riemann surface and let m : D — S be
its universal covering. Two closed curves, v1 and 2, on S intersect essentially iff
they admit lifts, 41 and 72, to D that converge to linked pairs of points, {a1,b1} and
{ag,bg}, m T.

2.5. Geodesic laminations.

2.5.1. Glossary. A geodesic lamination £ in D is a closed subset of D (called
supp £) partitioned into complete hyperbolic geodesics (leaves of £). In other words,
there is a complete geodesic v, C supp L passing through any point z € supp £, and
these geodesics are either equal or disjoint. The leaves of the geodesic lamination
vary uniformly continuously, together with derivatives, in the following sense:

EXERCISE 2.67. Let (v, z,) be a sequence of disjoint pointed geodesics in D
such that z, — z € D. Then the naturally parametrized 7, converge to a geodesic
7 through z in the Ct-topology on the space of paths [—oo, +0c] — D.

A gap @Q in the geodesic lamination is a component of D \ supp L.

EXERCISE 2.68. Show that any gap Q) in L is hyperbolically convex. Moreover,
the closure Q is the convex hull of its ideal boundary 0'Q C T.

In particular, if 9'Q is finite then @ is a hyperbolic polygon. More generally,
we say that a gap Q of a geodesic lamination is of countable type if 3'Q is countable.

We say that a geodesic lamination is clean if no two gaps of countable type
share an edge. Any geodesic lamination can be cleaned by removing common edges
of gaps of countable type.

Given a clean lamination, let us blacken all gaps of countable type and possibly
some other gaps observing the condition that no two black gaps are adjacent (i.e.,
they do not share a leaf of the lamination). We call such a lamination colored.

Three disjoint geodesics in D can be in two combinatorial positions: one of
them can separate the other two, or not. In the non-separating case, the geodesics
“bound” an m-gon in Dwith3<m<6 (with m — 3 ideal sides and 6 — m cuspidal
vertices). More generally, if we have n > 3 disjoint non-separating geodesics (i.e.,
none of them separates any other two) then they “bound” an m-gon in D with
n<m < 2n.



84 1. CONFORMAL GEOMETRY

FIGURE 2.9. Examples of unclean laminations: a rectangle and an
oo-gon with a diagonal.

EXERCISE 2.69. Let L be a geodesic lamination, and let {v;}!_, be a non-

separating family of n > 3 leaves of L. Then the polygon bounded by the ~y; contains
a gap of L.

A simple example of a geodesic lamination is the one with geodesics

(e(0,e(=0))%, 0€(0,1/2),
connecting R-symmetric points of T.!19 Tts support is the whole disk D (so it is

actually a foliation). We will refer to it as the Chebyshev lamination (or foliation)
Ly (for the reason that will become clear later, §32.5.1).

EXERCISE 2.70. (i) Assume that supp L contains a domain II. Then there exist
two disjoint (open) ideal intervals I, J C T and an orientation reversing homeomor-
phism h : I — J such that

= (@, h(x))4.
xzel
(ii) If supp £ = D then the lamination is topologically equivalent to the Chebyshev
foliation.

In case (i), we refer to £ as a vertical geodesic foliation in the rectangle II. A
particular case of this situation is when the intervals I and J share an endpoint a.
Then the rectangle IT degenerates to a topological sector based on the ideal interval
TU{a} UJ. Moreover, the foliation £ is not topologically transverse to T at a,
so we call the latter an ideal singular point for L. For instance, the Chebyshev
foliation has two ideal singular points, +1.

2.5.2. Geodesic laminations, equivalence relations, and lc hulls. We say that a
geodesic lamination L is polygonal if all the gaps in £ are polygons. Notice that if
a polygonal lamination is clean then it is mazimal among clean laminations.

Geodesic laminations provide us with a visualization of equivalence relations ~
of T. Such an equivalence relation is called unlinked if all the equivalence classes
are pairwise unlinked.

10Recall from §50.2 that (a,b)y stands for the interval with endpoints a and b disregarding
their order.
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To any closed unlinked equivalence relation ~ on T we can associate a colored
geodesic lamination £(~) in D as follows:

1) Take the hyperbolic convex hull H(X) of each equivalence class X;

2) Consider the boundary components (in D) of these convex hulls as the leaves of
L(~).

3) Blacken all the gaps of type H(X).

EXERCISE 2.71. Check that L(~) is indeed a colored (and in particularly, clean)
geodesic lamination.

Let us define an equivalence relation =~ on C by declaring that its equivalence
classes are the above convex hulls H(X) or singletons.

PROPOSITION 2.72. For any colored lamination L(~), we have: (i) The quo-
tients K :=D/ ~ is a lc compact space;
(ii) The quotient C/ ~ is a topological plane R?;
(iii) K is a hull in R2.

PRrOOF. (ii) Though we could use Moore’s Theorem, let us sketch a direct
argument.

Let 7 : D — K be the natural projection. The lamination £ has two types of
gaps: a gap of first kind represents a single equivalence class (which collapses to a
point under 7), while a gap of second kind is partitioned into singletons (so, 7 is
injective on such a gap G). In the latter case, we say that 7(G) is a “component
of interior” of K (which is just a term at the moment).

Let us start with a couple of special cases:

a) In case of a finite lamination, the quotient (C, D)/ ~ is homeomorphic to (R?, K),
where K is a tree T' of bubbles D; (i.e. piecewise smooth closed Jordan disks)
attached one to another. Let us realize T as an actual tree embedded into K (e.g.,
by marking a “center” a; in each bubble D; and connecting them through K by
piecewise smooth arcs).
b) If L consists of boundary leaves L; of some gap G of first kind, then K is a
point = m(G) with countably many bubbles D; attached to it (corresponding to
the components of D \ L; disjoint from G).
¢) If L consists of boundary leaves L; of some gap G of second type, then K is a
closed Jordan disk D = 7(G) (see Exercise 1.8) with countably many bubbles D;
attached to it at points w(L;).

In general, let us consider a sequence of finite laminations £™ converging to
L such that £7*! is obtained from £" by adding either a single leave or all the
peripheral leaves bounding one gap G. Moreover, assume any peripheral leaf
belongs to some L£". Let us construct inductively the corresponding sequence of
quotient bubble trees (R2, K™ = |JD;,T") so that K"*! ¢ K™ dK™ N K" is
a finite set of points of T", and T > T". Let X = [ K".

For a bubble D] centered at ay, the set T :=1T" N D] is a star rooted at ay.
For the sake of this discussion, let us call its edges the internal radii of D}'.

If £+ is obtained from £" by adding a single leaf L, then K"*! is obtained
from K™ by a simple pinching of some bubble 57 producing two new bubbles ﬁ?“

and byj__ll touching at the point 2 = 7(L). This procedure can be realized in R?
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FIGURE 2.10. Adding a rectangular gap to a lamination amounts
to tuning one of the bubbles by a flower with four petals (shad-
owed).

by putting x at the middle (with respect to the arc length) of the appropriate
internal radius and putting the bubbles ﬁ?ﬂ, ﬁ;ill into narrow neighborhoods of

the corresponding half-radii.

If £ is obtained from L™ by adding boundary leaves of a gap G of first
kind, then the construction is similar. Again, we can put the point z = 7 (G) at the
middle of the appropriate internal radius, add to 7" several new short edges sticking
out of z, and attach to x a bouquet of bubbles contained in small neighborhoods
of the corresponding half-radii and new edges. In the course of this procedure, the
bubble D} is replaced with a smaller bubble, while all other bubbles D}’ remain
untouched, see Figure 2.10.

Finally, if L1 is obtained from £" by adding boundary leaves of a gap G of
second kind, then we realize 7(G) as a small Jordan disk centered in the middle of
the appropriate inner radius of D}, with attached bubbles which are contained in
small neighborhoods of the corresponding half-radii or new short edges.

In this way we ensure that the diameters of the bubbles and interior components
(that appear in the above construction) go to 0 as n — oo, which implies that X
is a hull. Moreover, there is a natural homeomorphism (C, K) — (R?, X).

EXERCISE 2.73. Supply missing pieces and details of the proof.
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FIGURE 2.11. Fat and thin hedgehogs.

Somewhat informally, we will also refer to K as the quotient of D mod the
colored lamination £, and will use notation K., = D/L for it. Similarly, we let
C/L be the corresponding quotient of the whole plane. Such a representation of a
hull K C C is called the pinched disk model for K.

The minimal way of coloring a clean lamination £ is to blacken only gaps of
countable type. In this way we obtain the mazimal quotient K.« associated with
this lamination (as any other quotient K is the quotient of Kpax).

EXAMPLE 2.74 (Fat and thin hedgehogs). Consider a Cantor set X C T and it
convex hull Q). Filling in every component of D \ Q with a geodesic foliation, we
obtain a geodesic lamination £ on . The hull K., = D/L is a hedgehog (a closed
Jordan disk D with needles attached densely to its boundary). In this case, there
is also the minimal hull K, obtained from K.« by collapsing D to a point It is
another version of a hedgehog whose needles are attached to a single point. We will
distinguish these hedgehogs as fat and thin respectively. See Figure 2.11.

Sometimes we will need to consider non-closed subsets X C ID partitioned into
complete geodesics. We refer to these objects as geodesic pre-laminations supported
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on X. There is a natural partial order on the space of geodesic pre-laminations:
L'~ L if L' is an extension of £ to a bigger support.

We say that two geodesic pre-laminations £ and £’ are unlinked, £ || L', if any
two leaves v € £ and 7' € L’ either coincide or disjoint.

EXERCISE 2.75. (i) Any geodesic pre-lamination supported on X extends to a
geodesic lamination supported on X (we will refer to this extension as the closure

of L).

(ii) If two geodesic pre-laminations are unlinked then so are their closures.

2.6. Cylinders, rectangles, tori, and four-times-punctured-spheres.

2.6.1. Flat cylinder. Let us consider a flat cylinder Cyl = Cyll" = S, /(I - Z)
(obtained by taking the quotient of the strip of height h by the cylic translation
group with generator z — z +1). Endow it with the flat metric ds = |dz| induced
from the strip. The exponential map

Sn — A =A(1,exp(2wh/l)), 2z e(—2/1)

induces a conformal isomorphism between Cyl and the annulus A, so Cyl is a
conformal annulus with modulus

(2.12) mod Cyl = mod A = h/I.
By (2.4.2) the hyperbolic metric on Cylﬁl is equal to
T |dz]
2.13 ds,, = ————.
(2.13) e T sin(my/h)

In this model, the equator v = ¢y1 becomes the round circle on the middle height,
h/2. Tts hyperbolic length is equal to

ml

(214) o) = 7
(which matches with (2.11)).

Let finally note that the punctured disk D* is conformally equivalent, via the
exponential map e : H — D*, to the half-infinite (flat) cylinder T x Ry ~ H/Z.
(Compare with the bi-infinite cylinder model for C*, §2.2.)

2.6.2. Modulus of a rectangle. A flat rectangle 11 is a standard Euclidean rec-
tangle in R? (the one we learn at the elementary school), for instance, a standard
rectangle TI} = [0,1] x [0,h]. A marking of a flat rectangle is a choice of two oppo-
site sides declared to be horizontal (while the other two are declared to be vertical);
of course, a standard rectangle II}' is naturally marked. The modulus modII of a
marked rectangle is the ratio of the lengths of its vertical and horizontal sides, so
mod th = h/l. Change of marking replaces the modulus to the inverse one.

Two marked rectangles II and TI' are called affinely/conformally/etc equivalent
if there is an affine/conformal/etc isomorphism IT — TI’ that maps the horizontal
sides of II to the horizontal sides of TI'. Obviously, marked IT and II" are affinely
equivalent if and only if mod Il = mod II’. It is still true, albeit less obvious, for
conformal equivalence:

EXERCISE 2.76. Two marked flat rectangles I1 and 11" are conformally equiva-
lent if and only if mod II = mod IT'.
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For three real points, a < b < ¢, let H(a,b,c) = H(a, b, ¢, 00) be the upper half
plane with these points marked on its ideal boundary (and oo marked by default).
By an affine automorphism of H, two of these points can be normalized, e.g. the
triple can be brought to the form (a,0, 1) with some a < 0.

EXERCISE 2.77. The elliptic integral

i dz
B(z) = /1 Vz(z—=1)(z —a)

induces a conformal isomorphism between H and some standard rectangle 11(a) =
TI(1, h(a)). Moreover, modIl(a) depends on a continuously and monotonically, and

modIl(a) = 0 as a - —oo, modIl(a) = oo as a — 0.

Thus, modI(a) assumes all possible values.

2.6.3. Modulus of the torus. Let us take a closer look at the actions of the
group I' ~ Z2? on the (oriented) affine plane P ~ C by translations (see §2.2).
We would like to classify these actions up to affine conjugacy, i.e., two actions T’
and S are considered to be equivalent if there is an (orientation preserving) afline
automorphism A : P — P and an algebraic automorphism 7 : I' — I" such that for
any v € I' the following diagram is commutative:

P ? P
(2.15) Al L4
P — P
Si(y)

This is equivalent to classifying the quotient tori P/TT up to conformal equiva-
lence (since a conformal isomorphism between the quotient tori lifts to an affine
isomorphism between the universal covering spaces conjugating the actions of the
covering groups).

The conjugacy A in the above definition will also be called equivariant with
respect to the corresponding group actions.

The problem becomes easier if to require first that ¢ = id in (2.15). Fix an
uncolored pair of generators o and § of I'. Since T acts by translations and since
P is affine, the ratio
CTP(2) -z
O T(2) — 2
makes sense and is independent of z € P. Moreover, by switching the generators «
and 3 we replace T with 1/7. Thus, we can color the generators in such a way that
Im7 > 0. (With this choice, the basis of P corresponding to the generators {a, 5}
is positively oriented.)

T=1(T)

EXERCISE 2.78. Show that two actions T and S of I' =< «a, 8 > are affinely

equivalent with i = id if and only if 7(T) = 7(T).

According to the discussion in §1.7.15, the choice of generators of I' means
(uncolored) marking of the corresponding torus. Thus, the marked tori are classified
by a single complex modulus 7 € H.
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Forgetting the marking amounts to replacement one basis {a, 8} in T by an-
other, {&, 8}. If both bases are positively oriented then there exists a matrix

( i 2 ) € SL(2,Z)

such that @ =aa + b8, 3 = ca+d 3. Hence

ar +b
et +d

7~':

Thus, the unmarked tori are parametrized by a point 7 € H modulo the action of
the modular group PSL(2,Z) on H (see §2.4.12).

Remark. Passing from SL(2,7) to PSL(2,7Z) has an underlying geometric rea-
son. All tori C/T have a conformal symmetry z — —z. It change marking {«a, 5}
by —I{«, 8}. Thus, remarking by —1I acts trivially on the space of marked tori.

We also know from Exercise 2.47 that the modular surface 9t = H/PSL(2,Z)
is an orbifold supported by C with two cone points, of order two and three. Thus,
the unmarked tori are parametrized by a single modulus u € 9M(T?) = M ~ C.

EXERCISE 2.79. What is the special property of the tori corresponding to the
cone points?

In the dynamical context we will encounter tori ’JI‘?) obtained by taking the
quotients of C* by cyclic groups generated by complex scalings L, : z — pz, where
|p| # 1. Assume for definiteness that |p| < 1.

Note that ']I‘f) can be explicitly “cooked” by taking a fundamental annulus
A, = {|p| < [¢| < 1] and gluing its boundary components by the scaling relation
(identifying a point ( € T with p¢ € T|,)).

This torus has a marked generator o € T' := 71 (T?) ~ Z? represented by the
equator in A, (which is the generator of the subgroup of I' associated with the
covering C* — T2).

The second generator 5 of I' is represented by a proper arc in the fundamental
annulus A, connecting two related boundary points, e.g., connecting 1 to p by an
arc of a logarithmic spiral given in the polar coordinates (r,6) as

r=|pl', 6 =targp, 0<t<1

The (27i)-ambiguity in the choice of arg p corresponds to the “twist” ambiguity in
the choice of 3, i.e., replacement of g with 4+ na.

Let us consider the universal covering of C* explicitly given by exp : C — C*.
Then the complementary generator S lifts to the deck translation z — z + log p,
with the branch of log p corresponding to the above choice of argp. For a given
choice of log p, the torus becomes fully marked, with the modulus

1
=28l g
21

Making different choices of log p amounts to taking the quotient of H by the cyclic
group 7 +— 7 +n, n € Z. In this way, the moduli space of partially marked tori ']I‘?)7
p € D* gets naturally identified with H/Z, where H represents the moduli space of
the marked tori.
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2.6.4. Cross-ratios and four-times-punctured spheres. Let us mark a set of four
distinct points, {a, b, ¢, d}, on the Riemann sphere (or, equivalently, puncture these
points out of @) Then we can form six cross-ratios, obtained from the basic one
(c—a)(d—10)

(b—a)(d—rc)
by permuting the variables. The basic property of cross-ratios is that they are
preserved under the Mobious transformations,

A=[a,b,cd] =

[a,b,c,d] = [M(a), M(b), M(c),M(d)] forany M € Mdb(C),

and vice versa, if [a, b, ¢, d] = [a, b,é, d~] then there exist a Mobius transformation M
such that a = M(a) etc.

EXERCISE 2.80. (i) Various cross ratios are obtained one from another by the
action of the cross-ratio group e, comprising siz Mobius transformations

1 Aoa-1 1}

A= 1 AT 1=

which is isomorphic to the symmetric group Ss.

(2.16) A {A; 1A,

(ii) Two four-times-punctures spheres, C~ (a,b,c,d) and C~ (a, b, ¢, d~), with col-
ored points, are conformally equivalent iff the corresponding cross-ratios are equal:
[a,b,c,d] = [675, c, J]

(iil) Two four-times-punctures spheres, C~ {a,b,e,d} and C - {d,i), c, J}, with
uncolored points, are conformally equivalent iff the corresponding cross-ratios are
related by the gross-ratio group: [a,b, c,d] = ’y([&,l;, c, cﬂ) for some v € T,

By moving the triple (a,b,d) to (0,1, 00) by a Mdbius transformation, we turn
the basic cross-ratio [a,b, ¢, d] into ¢ € C ~ {0,1}. Thus, the space of colored four-
times-punctured spheres is isomorphic to the thrice-punctured sphere C ~ {0,1}.
Its quotient by the Mdbius action of the cross-ratio group, zm(@ ~AHa,b,¢,d}) =
(C ~{0,1})/T, is the space of uncolored four-times-punctured spheres. From
Exercise 2.49 we know that this space is the modular surface 9t ~ C (or rather:
the modular orbifold).

EXERCISE 2.81. Write down explicitely the covering C ~ {0,1} — 9.

The reader has certainly noticed that the modular surface 9t has appeared
on two occasions: as the space of conformal tori and as the space of four-times-
punctures spheres. There is a good reason for this. Indeed, to any torus Ti =C/L,
p € M(T?), we can associate a four—times-punctured sphere by taking its quotient
by the involution ¢ : z — —z. Vice versa, giving a four-times-punctured sphere
C X, where X = {a,b, c,d}, parametrized by the cross-ratio v = [a,b,c,d] €
M(C ~ X), we can construct a double branched covering T, — C ~ X (for some
S 93?(@ ~ X)) branched over X, by gluing two copies of C along two slits pairing
the pucntures (which is in the most classical way of constructing Riemann surfaces).

EXERCISE 2.82. Show that two tori are conformally equivalent iff the corre-
sponding four-times-punctured spheres are.
Thus, we obtain an intrinsic isomorphism between 9(T?) and M(C < X).

Let us note that the above construction requires the Uniformization Theorem
for the conformal tori 7, doubly covering the four-times-punctured sphere C ~
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{0,1,A}. However, on this occasion we do not need its full power as it can be
explicitly constructed as follows:

e Realize the torus in question as the algebraic curve

= {(z,w) €C?: w? =2(z — 1)(z —v)},
and let I" be its Universal covering.
e Consider the Abelian differential w := dz/w on T.

e For any base point p, € f, consider the Abelian integral
A p A
I1:T—C, p»—>/ w, pel.
Po

Let L be its lattice of periods, i.e. of the image of the fiber containing po.
e The map I descends to the desired uniformization T, — C/L.

ProJeEcT 2.83. Work out details of this construction.

2.7. Flat structures and geometry of quadratic differentials.

2.7.1. Flat structures with cone singularities and boundary corners. Recall that
a Euclidean, or flat, structure on a surface S is an atlas of local charts related
by Euclidean motions. However, for topological reasons, many surfaces do not
admit any flat structure: the Gauss-Bonnet Theorem bans such a structure on any
compact surface except the torus (see below). On the other hand, if we allow some
simple singularities, then these obstruction disappears.

Everybody is familiar with a Euclidean cone of angle o € (0,27). To give a
formal definition, just take a standard Euclidean wedge of angle a and glue its
sides by the isometry. It is harder to define (and even harder to visualize) a cone
of angle & > 27. One possible way is to partition « into several angles a; € (0, 27),
1=0,1,...n — 1, to take wedges W; of angles a;, and paste W; to W;;1 by gluing
the sides isometrically (where 4 is taken mod n) ( and then to check, by taking a
“common subdivision”, that the result is independent of the particular choice of the
angles «;).

But there is a more natural way. Consider a smooth universal covering e :
H — D* over the punctured disk, and endow H with the pullback of the Euclidean
metric, e Y|dz|. Let us define the wedge W = W («) of angle « as the strip {z : 0 <
Rez < a} completed with one point at Imz = +oco. If we isometrically glue the
sides of this wedge, we obtain the cone C = C(«a) of angle a. (We can also define
C(«) as the one-point completion at +oo of the quotient H/aZ.)

EXERCISE 2.84. Let v be a little circle around a cone singularity of angle c.
Check that the tangent vector ~' rotates by angle a as we go once around 7.

According to the discussion in Appendix 2.12.2, a cone singularity x with angle
o = «fx) carries curvature 2 — .

Let us now consider a compact flat surface S with boundary. Assume that
the boundary is piecewise linear with corners. It means that near any boundary
point, S is isometric to a wedge W (a)) with some « > 0. Points where o # 7 are
called corners of angle o (as the corners are isolated, there are only finitely many
of them). The rotation p(x) at a corner = € 95 of angle & = «(x) is defined as
m — « (see Appendix 2.12.2).
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2.7.2. Gauss-Bonnet Formula (for flat surfaces).

THEOREM 2.85. If S is a compact flat surface with cone singularities and piece-
wise linear boundary with corners then

ZK —|—Z,0 = 27mx(9),

where the first sum is taken over the cone singularities while the second sum is
taken over the boundary corners.

This is certainly a particular case of the general Gauss-Bonnet formula (2.35)
from Appendix 2.12.2, but in our special case we will give a direct combinatorial
proof of it.

PROOF. Let us triangulate S by Euclidean triangles in such a way that all cone
singularities and all boundary corners are contained in the set of vertices. Let «;
be the list of the angles of all triangles. Summing these angles over the triangles,
we obtain:

Z a; = 7(# triangles).

On the other hand, summation over the vertices gives:

Z a; = 27(# regular vertices) + Z a(z) + Z a(y)

cones corners
= 2 (# vertices) — Z K(z)— Z p(y) + w(# corners).
cones corners
Hence
Z K(x)+ Z p(y 2(# vertices) + (# corners) — (# triangles)) = 2mx(5),

where the last equahty follows from

3(# triangles) = 2(# edges) + (# corners).
]

2.7.3. Geodesics. Let S be a flat surface with cone singularities. A piecewise
smooth curve v(¢) in S is called a geodesic if it is locally shortest, i.e., for any
x = ~(t) there exists an € > 0 such that for any ¢1,t2 € [t —e,t+¢], v: [t1,t2] = S
is the shortest path connecting v(¢1) to y(t2).

Obviously, any geodesic is piecewise linear: a concatenation of straight Eu-
clidean intervals meeting at cone points. Moreover, both angles between two con-
secutive intervals in a geodesic must be at least 7 (in particular, the intervals cannot
meet at a cone point with angle < 27).

EXERCISE 2.86. Verify these assertions by exploring geodesics on a cone C(a).

THEOREM 2.87. Let S be a closed flat surface with only negatively curved cone
singularities. Then for any path v : [0,1] — S, there is a unique geodesic ¢ : [0,1] —
S homotopic to v rel the endpoints.

PROOF. Euxistence. Let L be the infimum of the lengths of smooth paths ho-
motopic to v rel the endpoints. We can select a minimizing sequence of piecewise
linear paths with the intervals of definite length. Such paths form a precompact
sequence in S, so we can select a subsequence converging to a path § in S of length
L. Obviously, ¢ is a local minimizer, and hence is a geodesic.
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Uniqueness. Let v and 0 be two geodesics on S homotopic rel the endpoints.
They can be lifted to the universal covering S to geodesics 4 and § with common
endpoints. We can assume without loss of generality that the endpoints a and b are
the only intersection points of these geodesics (replacing them if needed by the arcs
4" and &' bounded by two consecutive intersection points). Then 4 and § bound a
polygon II with vertices at a and b and some corner points x;. Let y; be the cone
points in int II. By the Gauss-Bonnet formula,

(m = p(a)) + (1= p(b)) + D (m = plai) + Y Kl(y;) = 2m.

But the first two terms in the left-hand side are less than 7 while the others are
negative — contradiction. ([

2.7.4. Euc(2)- and Euc(1)-structures. Let S* stand for a flat surface S with its
cone singularities punctured out.

A parallel line field on S is a family of tangent lines I(z) € T, S, z € S*, that
are parallel in any local chart of S.

Let j : Euce(C) — U(2) be the natural projection that associates to a Euclidean
motion its rotational part. Let Euc(n) stand for the j-preimage of the cyclic group
of order n in U(2). In other words, motions A € Euc(n) are compositions of
rotations by 2wk/n and translations. (So, the complex coordinate, they assume the
form A: z—e(k/n)z +c.)

LEMMA 2.88. A flat surface S admits a parallel line field if and only if its
Euclidean structure can be refined to a Euc(2)-structure.

PROOF. Let S be Euc(2)-surface and let § € R/ mod nZ. Given a local chart,
we can consider the parallel line field in the 6-direction. Since the #-direction is
preserved (mod7) by the group Euc(2), we obtain a well defined parallel line field
on S*.

Vice versa, assume we have a parallel line field on S*. Then we can rotate the
local charts so that this line field becomes horizontal. The transit maps for this

atlas are Euclidean motions preserving the horizontal direction, i.e., elements of
Euc(2). O

LEMMA 2.89. S admits a parallel line field if and only if all cone angles are
multiples of .

PrOOF. Any tangent line can be parallelly transported along any path in S*.
Since S is flat, the result is independent of the choice of a path within a certain
homotopy class. S admits a parallel line field if and only if the holonomy of this
parallel transport around any cone singularity is trivial, i.e., it rotates the line by
a multiple of 7. But the holonomy around a cone singularity of angle « rotates the
line by angle a. O

2.7.5. Abelian & quadratic differentials vs translation surfaces. Next, we will
relate flat geometry to complex geometry. Namely, any flat surface S is naturally
a Riemann surface. Indeed, since Euclidean motions are conformal, the flat struc-
ture induces complex structure on S*. To extend it through cone singularities,
consider a conformal isomorphism ¢ : H/aZ — D*, z — e(z/a). It extend to a
homeomorphism C'(«) — D that serves as a local chart on the cone C'(«).
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EXERCISE 2.90. Show that the extension of the conformal structures from S*
to S is unique.

PROPOSITION 2.91. Let S be a a smooth surface.

(i) Prescribing a Euc(1)-structure on S (with cone singularitires) is equivalent to
precribing an Abelian differential w on a Riemann surface supported on S.

(ii) Prescribing a Euc(2)-structure on S (with cone singularitires) is equivalent to
precribing a quadratic differential ¢ on a Riemann surface supported on S.

For instance, if we have a holomorphic function ¢ : S — C then we can pull
back the standard Euclidean structure on C to obtain a Euc(1)-structure on S with
cone singularities at zeros of ¢. The corresponding Abelian differential is w = d¢.

More generally, we can consider a holomorphic function on the Universal cov-
ering, ® : S — C*, which is transformed multiplicatively under the action of the
group I of deck transformations:

O(yz) = c(y)- #(2), ~v€TL,
where ¢ : I' = C* is a multiplicative homomorphism. The pullback of the standard
Euclidean structure on C to S by log® : S — C descends to a Euc(1)-structure

on S* := S\ zeros of ®. The correspomnding Abeliean differential is the log-
derivative of ®, w = d®/P.

2.8. More on orbifolds.

2.8.1. Triangle groups: summary. Putting together Exercises 2.13, 2.6, and
2.50, we obtain:

THEOREM 2.92. For any triple {p,q,t} of numbers in {2,3,...} U{oc}, there
exists an orbifold O = Oy, 4.y with signature (S%,{p,q,t}). It is uniformized by a
spherical, FEuclidean, or hyperbolic triangle group, depending on whether the Euler

characteristic L1
x(0O)==-4+-4+--1
(0) p o

positive, zero, or negative.

2.8.2. Almost all 2D orbifolds are good.

THEOREM 2.93. There only two bad (2D) orbifolds:*' (S2;p) and (S%;{p,q}),
with p # q.

PrROOF. Let U be the Universal covering of an orbifold O, and let M be its
underlying surface. Since M is a simply connected surface, it is the topological disk
or the topological sphere. Assume the singular set X C M contains more than two
points. Then take a Jordan disk A C M containing three if these points. Adding a
“cup” to this disk, we obtain a topological sphere S? with three singular points. By
Theorem 2.92, the corresponding orbifold can be uniformized by a triangle group.
It induces a non-trivial orbifold covering of U corresponding to the disk A with
three singular points (as in §1.7.13). Hence U cannot be universal in this case.

So, we are reduced to the case of the disk or the sphere with at most two
singular points. The disk with two singular points is topologically equivalent to
the sphere with three singular points (one of which has infinite index), which is

HNotice that both of them have positive Euler characteristic.
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uniformized by a triangular group once again. The sphere with two two singular
points of the same index q can be realized as M = C with X = {0, 00}, which is
uniformized by the map f; : C— hC, z — z9. The remaining cases correspond to
the excdeptional bad orbifolds: see Example 1.115. (]

2.8.3. Orbifolds of finite conformal type. We say that a Riemann orbifold O has
a finite conformal type if it has a compact underlying surface with finitely many
singular points (maybe, of infinite index). Such an orbifold has a finitely generated
fundamental group and a finite Euler characteristic. We have already encountered
a number of examples: Euclidean orbifolds listed in Exercise 2.6, spherical orbifolds
listed in Exercise 2.13, and hyperbolic orbifolds uniformized by finitely generated
Fuchsian groups of first kind. Remarkably, these examples exhaust the full list of
good orbifolds of finite conformal type! See Theorem 5.9 below.

2.9. Schwarzian derivative and projective structures.

2.9.1. Definition. The fastest way to define the Schwarzian derivative S f is by
means of a mysterious formula:

3y
(2.17) sr=13 z(f,) .

However, there is a bit longer but better motivated approach.

Let us try to measure how a function f at a non-critical point z deviates from a
Mobius transformation. Mébius transformations depend on three complex param-
eters. So, one expects to find a unique Mobius transformation A, that coincides
with f to the second order. Then

near z, and we let Sf(z) =b/f'(2).

REMARK 2.94. Division by f’(z) ensures scaling invariance of the Schwarzian
derivative: S(Af) = Sf. Coefficient 1/6 provides a convenient normalization sug-
gested by the Taylor formula: it makes Sf(z) = f"(z) for a normalized map

FQ) =C+O(I¢ = 2%).

EXERCISE 2.95. Show that by postcomposing with a Mdbius transformation,
f = Ao f, any univalent map f near z can be brought to the just mentioned
normal form (with the 2-jet equal to id).

The best Mobius approximation to f is easy to write down explicitly. Let
f(Q)=ap+ai(¢—2)+az(¢—2)?+... near z with a; = f’(z) # 0. Then

ai(¢—z) : _ap
m with B = ;1,

the 3d Taylor coefficient of f — A, is (a3 — a3/a1), and (2.17) follows.

AZ(C) =ao +
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2.9.2. Chain rule.

LEMMA 2.96. Let f be a holomorphic function on a domain U. Then Sf =0
on U if and only if f is a restriction of a Mébius map to U.

ProoF. Sufficiency is obvious from the definition: If f is a M6bius map then
A, = f at any point z, and Sf(z) = 0.
Vice versa, assume Sf = 0 on U. Then f is a solution of a 3d order analytic

ODE
f/// _ §(f//)2 -0
2 f
on U\ Cy, where Cy is the critical set of f. Such a solution is uniquely determined
by its 2-jet!? at any point z € U ~ Cy. Hence f = A,. O

Similarly, one can prove:

EXERCISE 2.97. Let f and g be two holomorphic functions on a domain U.
Then Sf = Sg on U if and only if f = Ao g for some Mdbius map A.

LEMMA 2.98 (Chain Rule).
(2.18) S(fog)=(Sfog)-(4) + Sg.

PRrROOF. Since the Schwarzian derivative is translationally invariant on both
sides (i.e., S(Ty o f o Ty) = Sf for any translations T} and T5), it is sufficient
to check (2.18) at the origin and to assume that g(0) = f(0) = 0. Furthermore,
by Exercise 2.97, postcomposition of f with a Mobius transformation would not
change either side of (2.18). In this way, we can bring f to a normalized form:

Sf(0
(2.19) fQO)=¢C+ #g%...
and then painlessly check (2.18) by composing (2.19) with the 3-get of g. O

In particular, for a Mobius transformation A, we have:
(2.20) S(foA)=(SfoA) (A2

which coincides with the transformation rule for quadratic differentials. It suggests
that the Schwarzian should be viewed not as a function but rather as a quadratic
differential Sf(z)dz2. This point of view is not quite right on Riemann surfaces,
but it becomes exactly correct on projective surfaces.

2.9.3. Projective surfaces. A projective structure on a Riemann surface S is an
atlas of holomorphic local charts with Mobius transit maps. A surface endowed
with a projective structure is called a projective surface. Projective morphisms are
defined naturally, so that we can refer to isomorphic projective surfaces.

Of course, the Riemann sphere C has a natural projective structure, and any
domain U C C inherits it. If we have a group I' of Mdbius transformations acting
properly discontinuously and freely on U then the quotient Riemann surface V =
U/T inherits a unique projective structure that makes the quotient map 7 : U — V
projective. In particular, any hyperbolic Riemann surface V' is endowed with the
Fuchsian projective structure coming from the uniformization 7 : H — V.

12Recall that a n-jet of a function f at z is its Taylor approximant of order n at z.
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Given a meromorphic function f on a projective surface V', the Chain Rule
(2.20) tells us that the local expressions Sf(z)dz? determine a global quadratic
differential on V.

EXERCISE 2.99. Check carefully this assertion.

More generally, let us consider two projective structures f and g on a Rie-
mann surface V' given by atlases {f,} and {gg} respectively. Then the Chain
Rule (more specifically, Exercises 2.97 and 2.99) tell us that the local expressions
S(fao ggl)(z) dz? determine a global quadratic differential on V' endowed with the
g-structure. This differential is denoted S{f,¢}. It measures the distance between
fand g.

In particular, given a holomorphic map f : V' — W between two projective
surfaces, we obtain a quadratic differential S{f*(W),V} on'® V. Writing f in pro-
jective local coordinates (¢ = f(z)), we obtain the familiar expression, Sf(z)dz?,
for this differential. It measures the deviation of f from being projective.

2.10. Appendix 0: Weierstrass P-functions. An meromorphic fuction f :
C — C is called periodic if f(z+w) = f(z) for some w € C*. Then the set of all
periods (with 0 added to them) form a lattice L C C, i.e., a discrete subgroup of C.
Such a lattice is either ismorphic to Z (rank 1 case) or to Z? (rank 2 case).

2.10.1. Trigonometric functions. Let us say that an entire function f:C — C
is triginometric if it is periodic with rank 1 group of periods:

f(z+an) = f(z), neZ.

After an affine change of variable, we can make ¢ = 1. Familiar examples are
e(z) = e*™* and cos z. The former provides us with the universal covering C — C*,
while the latter provides us with a Galois branched covering C — C, branched
over {#1} (which can be also viewed as the universal covering of the orbifold with
signature (C,{2,2,}). These coverings are nicely visualized by means of checker-
board tilings.

EXERCISE 2.100. Any trignomentric function (normalized so that a = 1) can
be expanded into a Fourier series

o0

f(z) = Z ane(nz).

EXERCISE 2.101. (i) For any n € Z there is a polynomial 9,, such that
(2.21) cos(nz) = Y, (cos z).

For instance, Ya(2) = 222 — 1.

(i1) All critical points of these polynomials are simple and lie on the interval
(=1,1); the only critical values are =1 (only 1 for n = 2).

These polynomials are called Chebyshev.

13Here we notationally identify surfaces with their projective structures
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2.10.2. Weierestrass P-function. A elliptic function is a doubly periodic mero-
morpohic function f : C — C. So, there is a rank two lattice!* L ¢ C such that
f(z+w) = f(2) for any w € L. Equivalently, it can be viewed as a holomorphic
branched covering from the torus C/L to the Riemann sphere C. This branched
covering has a degree d that we call the (associated) degree of f. (Note that
formally speaking, f itself has infinite degree).

Basic examples are provided by the Weierstrass P-functions of associated de-
gree two. Such a function can be explicitely represented by the following series:

(2.22) P(z) = Ziz + U%:L [(zlw)z - ljz]

PROJECT 2.102. Justify that expression (2.22) represents indeed a degree two
elliptic function.

By a complex rescaling z — Az, A € C*, any lattice L. C C can be brought to a
form {m + n7}(.n)ezz with Im7 > 0. Considering Weierstrass P-functions up to
rescalings P(A\z), we obtain a complex one parameter family of them, {P,(z)},cn.

EXERCISE 2.103. (i) For any n € Z there is a rational function R, of degree
n? such that

(2.23) P(nz) = L, (Pn(2)).

(i) All critical values of the L, are contained in the 4 critical values of P.

(ili) A similar function L, is associiated to any complex multiplication z — pz
for a rank 2 lattice L.

These rational functions are called Lattés maps.

2.11. Appendix 1 : Tensor calculus in complex dimension one.

2.11.1. General notion. For (n,m) € Z?, an (n,m)-tensor on a Riemann sur-
face S is an object 7 that can be locally written as a differential form

(2.24) 7(2)dz"dz™.

Formally speaking, to any local chart z = v(z) on S corresponds a function 7, (z),
and this family of functions satisfy the transformation rule: if { = §(z) is another
local chart and z = ¢(() is the transit map, then

(2.25) 75(¢) = 7(8(C)) ¢'(€)"¢' ()

The regularity of the tensor (e.g., 7 can be measurable, smooth or holomorphic) is
determined by the regularity of all its local representative 7.

Even when dealing with globally defined tensor, we will often use local notation
(2.24), and we will usually use the same notation for a tensor and the representing
local function.

Disregarding the regularity issue, tensors form a bigraded commutative semi-
group: if 7 and 7/ are respectively (m,n)- and (m/,n’)-tensors, then 77’ is an
(m 4+ m',n 4+ n')-tensor.

m

14i‘e., a discrete subgroup generated by some basis w1, ws € R?
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A holomorphic (1, 0)-tensor w(z)dz is called an Abelian differential; a holomor-
phic (2,0)-tensor q(z)dz? is called a quadratic differential. More generally, we can
consider meromorphic (n,0)-tensors, e.g., meromorphic quadratic differentials.

A (—1,1)-tensor p(z)dz/dz is called a Beltrami differential. Notice that the ab-
solute value of a Beltrami differential, ||, is a global function on S. (In this book all
Beltrami differentials under consideration are assumed measurable and bounded.)

A (1,1)-tensor p = p(z)dzdz with p > 0 is a conformal Riemannian metric
p(z)|dz|? on S. Its area form

%p(z) dzNdz = p(z)dx AN dy

is a tensor of the same type (both are transformed by the factor |¢’(¢)[?). This
allows us to integrate (1, 1)-tensors:

/p:%/p(z)dz/\dé.

For instance, if ¢ is a quadratic differential then |g| is a (1, 1)-form, so that
we can evaluate [ |g| (at least locally). If ¢ is a quadratic differential and x is a
Beltrami differential, then gu is again a (1, 1)-form, so the local integral [ gu makes

sense.
A (—1,0)-tensor M has the same type as a vector field. Indeed, in this case

the tensor rule (2.25) assumes the form v, (4(¢)) = ¢'(¢) v5(¢) that coincides with
the transformation rule for vector fields.
EXERCISE 2.104. (i) Let v = v(2)/dz be a C'-smooth vector field near oo on
C. Show that v(z) = az? + bz + O(1). Moreover, v(co) = 0 iff a = 0.
(i) A wvector field v(z)/dz is holomorphic on the whole sphere C iff
v(z) = az® + bz +c.

EXERCISE 2.105. (i) Let ¢ = q(2) dz® be a meromorphic quadratic differential
near oo on C. If q(z) < 2™, n < 3, then q has a pole of order 4 —n at co. In

particular, g has at most a simple pole at oo iff q(z) vanishes to the third order at
00, i.e., q(z) = O(|z|?).

(i) ¢ € QY(C) iff q(2) is a rational function with simple poles in C that vanishes to
the third order at co.

(iil) # poles —# zeros of q is equal to 4.
2.11.2. 8 and 9. The differential of a function 7(2) can be expressed in (z, Z)-
coordinates as follows:
dr = 0,7dx + 0yTdy = 0,7 dz + 0:7 dZ,

where

1 1

This suggests to introduce differential operators 0 and 9 (acting from functions to
(1,0)- and (0, 1)-forms respectively):

or = 0,7dz, or = 0s7dzZ, so d=090+90.
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EXERCISE 2.106. Check that Ot and Ot are correctly defined (1,0)- and (0,1)-
forms respectively. .

We will sometimes use notation 0 and O for the partial derivatives (2.26) as
well, unless it can lead to a confusion.

Using the semigroup structure, we can extend these differential operators to
arbitrary tensors:

At dz"dz™) = Ot dz"dz™ = 0,7 dz""1dz™,

O(1dz"dz™) = Or dz"dz™ = ;7 dz"dz™ .

These operators increase the grading by (1,0) and (0, 1) respectively. -
For instance, if v is a vector field viewed as a (—1,0) tensor, then Ov is a
Beltrami differential.

REMARK 2.107. The above commutative tensor operators should not be con-
fused with their anti-commutative exterior counterparts acting on differential forms.
For instance, if w = w(z)dz is a holomorphic (1,0)-form then in the tensor sense
0w = w'(2) dz?, while w = 0 in the exterior sense .

2.11.3. Pullback and push-forward. Let f : S — T be a holomorphic map
between two Riemann surfaces. Then any (n, m)-form 7 on T can be pulled back
to an (n, m)-form f*7 on S, which in is given in local coordinates by the expression

fr(r(w) dw™dw™) = 7(f(2)) ' (2)" f'(2)™ dz"dz"™.
Moreover, if 7 is a holomorphic/meromorphic (n,0)-form then so is f*(7).
If f is invertible then of course forms can be also pushed forward. For 7 =
7(2) dz™dz™, it looks as follows:

_7(3)
frE)mfz)m
It is less standard that tensors can be also pushed forward by non-invertible maps

(at least, by branched coverings of finite degree) by summing up the local push-
forwards over the preimages:

for= (Y (7) dw™dw™ substituting z = f~(w).

foT = Z(fi)*(T) = Z Jmn dw"dw™ substituting z; = f; ' (w).
mef-t(w) '

where f; is the local branch of f near z; € f~!(w). This expression is well defined
outside the set V' of critical values of f.

Moreover, if 7 is a meromorphic (n, 0)-form with the polar set P then f,.7 is also
meromorphic, with the polar set contained in f(P)UV. Indeed, outside f(P)UV,
the push-forward f.(7) is a holomorphic (n,0)-form with at most power growth
near f(P)UV.

This discussion applies directly to the case of meromorphic quadratic differen-
tials ¢ = q(z) dz?%, which will be the main case of our interest:

(2i)
faa= (fi)ra= P
Z zief~H(w) f (22)2
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In the case of an area form pdz A dz, the push-forward operation is actually
standard as it corresponds to the push-forward of the measure with density p:

. (2)
felpdz NdZ) = e .
T e

Since the area is conserved under invertible changes of variable, we have:

(2.27) /f*p=d/p7 /f*p=/p

(assuming p has a finite total mass).

2.11.4. Push-forward is a contraction in Q'. Integrability of a meromorphic
quadratic differential ¢ on a Riemann surface S means integrability of the corre-
sponding area form |g|. Let Q'(S) stand for the space of integrable meromorphic
quadratic differential on S, and Qf. (S) stand for the space of locally integrable
ones. Note that ¢ € Q] _ if and only if it has only simple poles.

For q € Q!(9), transformation rules (2.27) (together with the triangle inequal-

ity) imply:

(2.28) [1z.d< [ £1al= [1a

Thus, the push-forward operator is contracting in the space of integrable holomorphic
quadratic differentials. This property plays a key role in the Thurston theory, see
§39.

EXERCISE 2.108. Consider a holomorphic quadratic differential ¢ = q(2)dz? on
the whole Riemann sphere C, so q(z) is a rational function.
(i) What is the condition that q has zero/pole at oo. If so, what is its order?
(ii) q is integrable if and only if all its poles (including at oo) are simple;
(iii) For f: 2z 2% and q = 2"d22, calculate f*q and f.q.

LEMMA 2.109. Let f:S — T be a holomorphic covering of degree d, and let q
be an integrable quadratic differential on S. Then

(2.29) /If*ql Z/\ql

if and only if f*(f«q) = dq.

PRrROOF. Equality (2.29) is equivalent to attaining equality in (2.28). Since both
¢ and f,.q are continuous outside a finite set and |f.q| < f.|g| everywhere, integral
equality in (2.28) is equivalent to pointwise equality |f.q| = f|q|- But equality in
the triangle inequality is attained if and only if all the terms have the same phase,
SO

fea=ci(fi)vq, e >0.
Being positive and holomorphic in z, the factors ¢; must be constants. Applying
the pullback f; to the last equation, we obtain:

f*(feq) = ciq mear z; € f1z
But the ratio f*(f.q)/q is a global meromorphic function: if it is locally constant,
it must be globally constant, so f*(f.q) = cq. Finally, by (2.27)

[1rtal=d [1r.d=a [l
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2.11.5. Duality.

LEMMA 2.110. Let f : S — T be a holomorphic covering of degree d. Consider a
meromorphic quadratic differential ¢ € Q' (S) and a measurable essentially bounded
Beltrami differential i on T. Then

/Sq~f*u:/Tf*q'u~

PROOF. It is sufficient to check that

/Uq-f*u=/vf*q~u

for a base of neighborhoods V on T and U = f~1(V). Since f is covering, we can
choose the V' so that
d
U=||u,
i=1

where the restrictions f; = (f : U; — V') are biholomorphic. Then
/Uq-f u—Z/Uimf u—Z/Uif ((fi)«q - p)
Z/Ui(fi) Q'N:/U(fi) q-p.

O

REMARK 2.111. All the above statements concerning covering maps extend
immediately to maps f : S — T that are coverings over T'~. A where A is a discrete
subset. This includes branched coverings (see §3).

2.12. Appendix 2: Bits of 2D Riemannian geometry.

2.12.1. Classification of Riemannian surfaces of constant curvature. The no-
tion of Riemannian surface is not the same as of Riemann surface. The former is
a smooth surface endowed with a Riemannian metric

ds* = Edx® 4+ 2F dz dy + G dy*  (a local expression).

Our main models are homogeneous surfaces that have a constant curvature K:
the standard sphere S? C R® (K > 0), the Euclidean plane R? (K = 0), and
the hyperbolic plane H (K < 0). For definiteness, we will always normalize the
curvature (by rescaling the metric) so that K € {—1,0,+1}.

PROPOSITION 2.112. A Riemannian surface S of constant curvature K is en-
dowed with the associated geometric structure: spherical (for K > 0), flat (for
K =0), or hyperbolic (for K < 0). Vice versa: such a geometric structure induces
a metric of constant curvature on S.

PrOOF. The latter assertion is obvious as the metric of constant curvature on
S can be obtained by pulling back the corresponding homogenious metric by the
local charts ¢; of the given geometric structture (spherical, flat, or hyperbolic).
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The direct assertion follows from the fact that any Riemannian surface of con-
stant curvature is locally isometric to one of three homogeneous surfaces. It can be
accomplished by analysing the Liouville equation

A¢p = K e?
for the metric ds = e~ % |dz| of constant curvature K (see [DNF, §13, Thm 5]). O

GEOMETRIC UNIFORMIZATION THEOREM. Any simply connected complete Rie-
mannian surface of constant curvature K is either the standard sphere S C R3
(K >0), or the Euclidean plane R? (K =0), or the hyperbolic plane H (K < 0).

PROOF. Take a base point x € S and consider a local isometry h : (U,z) —
(V,0) to the model homogeneous surface S, (S?, R? or H). Assume first K <
0. Then by the Hadamard Theorem (see [DoC, §5-6]), h extends to a global
diffeomorphism h : S — S, which is isometric on the geodesic rays emanating from
. Then the local isometries along any such ray R coinciding with hon R glue
into an isometry near R. It is easy to see that they must match for nearby rays,
implying that his a global isometry.

This construction of promoting local isometries (or other geometric structures)
to a global one is called developing.

For K > 0, S must be compact (see [DoC, §5-9, Exercise 1]). By the Gauss-
Bonnet Formula, x(S) > 0, so S must be a topological sphere. Let S, be the
standard sphere. Then the developing map S — S, is a locally isometric covering.
As Sy is simply connected, it is a global isometry. O

By taking the Universal covering, we obtain the full classification of complete
Riemannian surfaces of constant curvature:

COROLLARY 2.113. Any complete Riemannian surface of constant curvature K
is isometric to one of the following surfaces:

(i) Spherical case: the standard sphere S* C R (K > 0);

(ii) Flat case: the Buclividean plane R?, or the flat cylinder T x R, or the torus T?
(K =0);

(iii) Hyperbolic case: The quotient of the hyperbolic plane H? modulo a Fuchsian
group (K < 0).

2.12.2. Gauss-Bonnet formula for variable metrics. Formally speaking, we can
skip a discussion of this general version of the Gauss-Bonnet formula as we have
verified it directly in all special cases that we need. However, it does give a deeper
insight into the matter. The reader can consult, e.g., [DoC]| for a proof.

Let S be a compact smooth Riemannian surface, maybe with boundary. Let
K (x) be the Gaussian curvature at @ € S, and let k(x) be the geodesic curvature at
x € 0S. The Gauss-Bonnet formula related these geometric quantities to topology
of S:

(2.30) /KdUJr/ kds = 2mx(S5),
S as

where do and ds are the area and length elements respectively.
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In particular, if S is closed then

(2.31) /SKdU = 2mx(9),

which, in particular, implies that there are no flat structures on a closed surface of
genus g # 0. Also, for a surface S of constant curvature K € {£1}, we obtain:

(2.32) area S = +21x(9).

The boundary term in (2.30) admits a nice interpretation. Let us parametrize a
closed boundary curve v with the length parameter, so that +/(¢) is the unit tangent
vector to . Then for nearby points v(t) and v(7), where 7 = ¢ + At > ¢, let v(t, 7)
be the tangent vector 4/ (7) parallelly transported from ~(7) back to v(t). Then let
0(t,T) be the angle between ~/(t) and v(t,7) (taking with positive sign if v points
“into S”. Summing these angles up over a partition of v into small intervals, we

obtain the rotation number of the tangent vector. It coincides with / Kds.

~
Note that if 0S consists of geodesics, the boundary term in (2.30) disappears,

and it assumes the same form (2.31) as in the closed case.

If we allow the Riemannian metric to have an isolated singularity at some point
x € S then using the Gauss-Bonnet formula for a small disk around x, we can assign
the Gaussian curvature to x:
(2.33) K(z)=2n— lim [ rds,

Y—x ~

provided the limit exists. (Here « is a small circle around x, and K (x) is assumed
to be integrable.)

In particular, if = is a cone singularity of angle 6 € (0, +00), then it support
curvature

(2.34) K(z) =27 — 0.

If we allow a corner of angle o € (0,00) at a boundary point y € 0S5 (see
§2.7.1), we can assign the rotation number p(y) = 7 — a € (w,—00) to it as the
angle between the incoming and outgoing tangent vectors.

Then the Gauss-Bonnet formula is still valid for surfaces with singularities and
boundary corners, assuming the following form:

(2.35) / Kdo + Z K(z) +/ kds + Z p(y) = 2mx(S).
S sing o8 corners
With these definitions, the Gauss-Bonnet Formula immediately extends to orb-
ifolds. For instance, let O be an orbifold of finite conformal type with signature
(S;{q:}), where S is a closed underlying surface. Endow it with an orbifold Rie-
mannian metric with curvature K (z) and the area form do. As the curvature form
K do of this metric is calculated in the orbifold local charts, it does not account to

the curvatures K; of the cone singularities. By (2.35) and (2.33), we have:

27rx(S)—/Kda—i—ZKi—/Kda—kZ(Zw—?Z>,

yielding

(2.36) /Kdo =27 x(O).
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(So, the orbifold Euler characteristic amounts to the regular portion of the total
curvature.)

3. Holomorphic proper maps and branched coverings
3.1. First observations.

EXERCISE 3.1. Show than any non-constant holomorphic map between two Rie-
mann surfaces is topologically holomorphic.

The following assertion generalizes Exercise 2.61 to branched coverings:

EXERCISE 3.2. Any holomorphic branched covering f : S — S’ of finite degree
between hyperbolic Riemann surfaces extends continuously to a branched covering
f:S — S’ between their ideal compactifications (holomorphic on int'S).

EXERCISE 3.3. (i) A holomorphic branched covering f : D — D of degree d is
a Blaschke product

Z — ag

, where [\ =1, a, €D.

d
f(Z):/\H 1—agz
k=0

(ii) A holomorphic branched covering f : Hy — Hy of degree d with f(c0) = oo
has a form

d—1

f(z) :)\Oz—l—ao—z , where \p >0, ar €R, k=0,1,...,d—1.

3.2. Riemann-Hurwitz formula. This formula gives us a beautiful relation
between topology of the surfaces S and T, and branching properties of f.

RIEMANN - HURWITZ FORMULA. Let f : S — T be a branched covering of
degree d between two topological surfaces of finite type. Let C' be the set of branched
points of f. Then

X(S)=d-x(T) - > (deg, f —1).
acC

Let us define the multiplicity of a € C' as a critical point to be equal to deg,, f—1
(in the holomorphic case it is the multiplicity of a as the root of the equation
f'(a) = 0). Then the sum in the right-hand side of the Riemann-Hurwitz formula
is equal to the number of critical points of f counted with multiplicities.

PROOF. Let us first assume that S and T are closed Riemann surfaces.
Let us consider a triangulation 7 of 7" such that all critical values of f are
vertices of 7. By the Euler formula,

X(T) = v(T) = e(T) + 4(T),

where v,e and ¢ stand for the number of vertices, edges and faces (triangles) of T.
Let S be the lift of this triangulation to S. Then

HS) =d-HT), e(S)=d-e(T), v(S)=d-v(T)=> (deg, f—1),
aeC
and the conclusion follows.
R To Qeal with non-closed case, consider the one-point-per-end compactifications
S and T of our surfaces. If S and T are of finite type then these surfaces are
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closed. Since f is proper, it continuously extends to a map f : S — T. This map
is certainly proper. By Exercise 1.103, it is topologically holomorphic. Thus, it is
a branched covering (of the same degree d). As in the above calculation, we have

E(S) =d- &)~ Y (deg, [~ 1).

ec&(S)

Putting this together with the Riemann-Hurwitz formula for f implies the desired.
O

REMARK 3.4. One could also define x(S) for an open surface S using ideal
triangulations, with some vertices being at infinity, co. (see §1.7.5). Then the
proofs for closed and open cases become identical.

REMARK 3.5. The formula also applies to surfaces with boundary, with the
same proof (or by removing the boundary, which does not change the Euler char-
acteristic). Or else, one can use triangulations of the bordered surfaces.

COROLLARY 3.6. Under the above circumstances, assume that T is a topological
disk. Then S is a topological disc as well if and only if there are d—1 critical points
in S (counted with multiplicities).

PROOF. A surface S is a topological disk if and only if x(5) = 1. O

3.3. Topological Argument Principle. Consider the punctured plane R?
{b}. If v : St — R? \ {b} is a smooth oriented Jordan curve then one can define
the winding number of v around b as

wy(y) = / d(arg(z — b)).

Since the 1-form d(arg(x — b)) is closed, the winding number is the same for homo-
topic curves. Hence we can define the winding number wy(7y) for any continuous
Jordan curve vy : St — R%~ {b} by approximating it with a smooth Jordan curves.

Furthermore, the winding number can be linearly extended to any simplicial
I-cycle in R? \ {b} with integer coefficients (i.e., a formal combination of oriented
Jordan curves in R? \ {b}) and then factored to the first homology group. It gives
an isomorphism

(3.1) w: H(RE{b}) = Z, [y] — w(y).
EXERCISE 3.7. Prove the last statement.

PROPOSITION 3.8. Let D be a Jordan disc and let f : D — R? be a continuous
map that does not assume some value b € R? on D. If wy(f|0D) # 0 then f
assumes the value b in D.

PROOF. Obviously, the curve v = (f : 9D — R?) is contractible in f(D). If
b ¢ f(D) then v would be contractible in R? \ {b}, so it would have zero winding
number around b. (]

Let € D be an isolated preimage of b = fx. Then one can define the ind,(f)
as follows. Take a disk V' C D around z that does not contain other preimages
of b = fx. Take a positively oriented Jordan loop v C V' ~\ {z} around = whose
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image does not pass through b, and calculate the winding number of the curve
f v — R2~ {b} around b

ind (f) = wse(f 07).

Clearly it does not depend on the loop -, since the curves corresponding to different
loops are homotopic without crossing b.

PROPOSITION 3.9. Let D C R? be a domain bounded by a Jordan curve T, and
let f: D — R? be a continuous map such that the curve fol' does not pass through
some point b € R?. Assume that the preimage of this point f~'b is discrete in D.
Then

Z ind,(f) =wy(fol),
zef~1b
provided I' is positively oriented.

ProOOF. Note first that since f~!b is a discrete subset of a compact set D,
f~'x is actually finite, so that the above sum makes sense.

Select now small Jordan loops «y; around points z; € f~'b, and orient them anti-
clockwise. Since T' and these loops bound a 2-cell, [[] = Y [v;] in Hy(D ~ f~1b).
Hence f.[['] = fi[vi] in Hi(R?~{b}). Applying the isomorphism (3.1), we obtain
the desired formula. O

EXERCISE 3.10. Let f : D — R? be a continuous map, and let a € D be an
isolated point in the fiber f='b, where b = f(a). Assume that ind,(f) # 0. Then
f is locally surjective near a, i.e., for any € > 0 there exists a § > 0 such that

f(D.(a)) D Ds(b).
Hint: For a small e-circle v around a, the curve f o stays some positive
distance 0 from b. Then for any b’ € Ds(b) we have: ind,(f o y) = ind,(f oy) # 0.

But if ¥’ ¢ f(D-(a)) then the curve f o~ could be shrunk to b without crossing b'.
3.3.1. Degree of proper maps.

3.4. Lifts.

LEMMA 3.11. Let f : (S,a) — (T,b) and f : (S,a) — T,b) be two double
branched between topological disks (with or without boundary) coverings branched
at points a and @ respectively. Then any homeomorphism h : (T,b) — (T, l~)) lifts to
a homeomorphism H : (S,a) — (S,a) which makes the diagram

(S,a) L (S,a)
fl Lf
(T.b) — (T,b)

commutative. Moreover, the lift H is uniquely determined by its value at any un-
branched point z # a. Hence there exists exactly two lifts.

If the above surfaces are Riemann and the map h is holomorphic then then the
lifts H are holomorphic as well.

PROOF. Puncturing all the surfaces at their preferred points, we obtain four
topological annuli. The maps f and f restrict to the unbranched double coverings
between respective annuli, while h restricts to a homeomorphism. The image of the
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fundamental group 71 (S ~\ {a}) under f consist of homotopy classes of curves with
winding number 2 around b, and similar statement holds for f. Since the winding
number is preserved under homeomorphisms,

(3-2) hae(fo(mi(S N {a})) = fu(m (S~ {@})).
By the general theory of covering maps, h admits a lift
H:S~{a} = 5~ {a}

which makes the “punctured” diagram (3.2) commutative. Moreover, this lift is
uniquely determined by the value of H at any point z € S\ {a}.

Extend now H at the branched point by letting H(a) = a. It is clear from the
local structure of branched coverings that this extension is continuous (as well as
the inverse one), so that it provides us with the desired lift.

If all the given maps are holomorphic then the lift H is also holomorphic on
the punctured disk S\ {a}. Since isolated singularities are removable for bounded
holomorphic maps, the extension of H to the whole disk is also holomorphic. I

EXERCISE 3.12. Similar statement holds for branched coverings f and f with
a single branched point (of any degree). Analyze the situation with two branched
points.

EXERCISE 3.13. Assume that all the topological disks in the above lemma are
R-symmetric and that all the maps commute with the reflection o with respect to
R. Assume also that h(f(TNR)) = f(TNR). Then both lifts H also commute with
o (in particular, they preserve the real line).

3.5. Galois branched coverings.

EXERCISE 3.14. If a Galois branched covering f : S — T is holomorphic then
the deck transformations v € I' are holomorphic automorphisms of S. Vice versa, if
in the previous Ezercise the deck transformations are holomorphic automorphisms
then the natural projection S — S/T is holomorphic.

The following statement shows that any branched covering can be “symmetrized”
in a controlled way:

PRrROPOSITION 3.15. Let f : S — T be a holomorphic branched cover of Riemann
surfaces of degree d. Then there is a Galois branched cover g : ¥ — T of degree at
most d! that factors as g = foh for some h: X — S. Moreover, g is ramified only
over critical values of f.

PrOOF. . Let V be the set of critical values of f and let 7% = T~ V. Let
C=f"1(V)andlet S* = S~ C. Then f: S* — T* is an unbranched covering
of degree d. By Exercise 1.58, there is a Galois covering g : ¥* — T of degree at
most d! that factors through some covering h : ¥* — S*. Moreover, we can endow
>* with the pullback complex structure to make both g and h holomorphic.

Let us now complete these coverings to obtain branched coverings. To this
end, it is enough to treat h. Let us take any ¢ € C and a little disk D around
it. Let D* = D ~ {c}, and let us consider a component U* of h~!(D*) Then
f:U* — D* is a finite degree covering. Hence U* is isomorphic to a punctured
disk D* (see Exercise 2.39), so it represents a cusp end e of X*. Let us complete
it to a conformal disk U = U* U {oc.} =~ D and extend h holomorphically to the
completion (see Proposition 2.59 and a remark after it).
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Doing this with all punctures ¢ and all punctured disks U*, we complete %* to a
Riemann surface ¥ such that A admits a holomorphic extension ¥ — S. Obviously,
this extension is proper, so it is a branched covering. O

Note in conclusion that the notion of a holomorphic Galois branched cover-
ing is equivalent to the notion of a covering between Riemann orbifolds (compare
Exercise 1.113).

3.6. Telescope. For dynamical purposes, let us prepare a simple but very
useful lemma.

TELESCOPING LEMMA. Let U; C C, i = 0,1,...,1, be a family of open topo-
logical disks, and let ¢; : U; — C, i = 0,1,...,1 — 1, be a family univalent maps
such that ¢;(U;) D Ujyq. Let ® := ¢, _10---0¢g. Then Dom ® is a topological disk
D C Uy univalently mapped onto U;. Furthermore, if ¢;(U;) D U;41 then D € Uy.

COROLLARY 3.16. Under the above circumstances, there is a nest of topological
disks

D=D'cD'c---cD'=U,

such that D is mapped univalently under ®;, := ¢po---0¢g onto U;. Furthermore,
if ¢;(U;)  Uiyq then DF € DFTY k=0,1,...,1— 1.

4. Riemann, Montel, Koebe

4.1. Little Montel Theorem.

THEOREM 4.1 (Little Montel). Any bounded family of holomorphic functions
is normal.

PROOF. It is because the derivative of a holomorphic function can be estimated
via the function itself. Indeed by the Cauchy formula

/ max cev|$(C))

Thus, if a family of holomorphic functions ¢,, is uniformly bounded, their derivatives
are uniformly bounded on compact subsets of U. By the Arzela-Ascoli Criterion,
this family is precompact in the space C'(U) of continuous functions. Since M(U) is
closed in C'(U), we see that the original family is precompact in the space M(U). O

4.2. Riemann Mapping Theorem. For dynamical applications, we will not
need the full strength of the Uniformization Theorem: only uniformization of plane
domains will be relevant. Let us start with the most classical case:

RIEMANN MAPPING THEOREM. Any simply connected domain D C C whose
complement contains more than one point is conformally equivalent to the unit disk
D. The conformal isomorphism ¢ : D — D is unique up to pre-composition with a
Mabius transformation M € Aut(D).'®

L5Ror instance, it is uniquely determined by its value at 0 and the image of the tangent vector
1 € ToD under D¢(0).
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PROOF. The uniqueness part is obvious, so let us focus on the existence.

First, notice that D can be conformally mapped onto a bounded domain in
C. Indeed, since C . D contains more than one point and D is simply connected,
C < D is in fact a continuum. Let us take two points a1,as € C~ D, and move
them to 0,00 by a Mdbius transformation. This turns D into a domain in C*.16
Since D is simply connected, the square root map @ : z — +/z has a single-valued
branch on D. Applying it, we obtain a domain whose complement has non-empty
interior (the image of the other branch of @)). Moving co to this complement by a
Mbobius transformation, we make D a bounded domain in C.

Let us now take a point a € D, and consider the space C of conformal embed-
dings v : D — D normalized so that (a) = 0. Note that C # @ since D can be
embedded into D by an affine map. By the Little Montel Theorem, C is normal.
Hence we can find a conformal map vy € C that maximizes the derivative |¢'(a)]
over the class C.

We claim that g conformally maps D onto D. The only issue is surjectivity.
Assume there is a point a € D \ (D). Let B : (D,0) — (D,0) be a double
branched covering with critical point at a.

EXERCISE 4.2. Write down B explicitly.

Since 1g(D) is simply connected, there is a single-valued branch B~! : 4g(D) —
D. By the Schwarz Lemma, |B’(0)] < 1, and hence the embedding B~ o ¢y :
(D,a) — (D,0) has a bigger derivative at a than ¢ — contradiction. a

In particular, if we mark a point a € D, then the uniformization ¢ : (D,0) —
(D, a) is unique up to rotations of ID. Since rotations preserve the foliations D
by the radii and circles centered at 0, their images under ¢ are well defined. In
this way we obtain two orthogonal analytic foliations of D ~\ {a}, by (Green) rays
RY = {p(re(0)) : 7€ (0,1)} and equipotential E™ = {p(re(0)) : 6 € R/Z}.

Note that this definition is consistent with the one given in §10.9 since the
Green function G, is equal to — log|¢~1(2)|.

4.3. Normal families and Big Montel Theorem. Let U be a Riemann
surface, and let M(U) be the space of meromorphic functions ¢ : U — C. Supply
the target Riemann sphere C with the spherical metric d, and the space M(U)
with the topology of uniform convergence on compact subsets of U. Thus ¢,, — ¢
if for any compact subset K C U, ds(¢n(2),d(z)) — 0 uniformly on K. Since
locally uniform limits of holomorphic functions are holomorphic, M(U) is closed in
the space C(U) of continuous functions ¢ : U — C (endowed with the topology of
uniform convergence on compact subsets of U).

EXERCISE 4.3. Endow M(U) with a metric compatible with the above conver-
gence that makes M(U) a complete metric space.

It is important to remember that the target should be supplied with the spher-
ical rather than Fuclidean metric even if the original family consists of holomorphic
functions. In the limit we can still obtain a meromorphic function, though of a very
special kind:

L6\We will keep notation D for various domains conformally equivalent to D.
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EXERCISE 4.4. Let ¢, : U — C be a sequence of holomorphic functions con-
verging to a meromorphic function ¢ : U — C such that ¢(z) = oo for some z € U.
Then ¢(z) = oo, and thus ¢, (z) — oo uniformly on compact subsets of U.

A family of meromorphic functions on U is called normal if it is precompact in

M(U).

EXERCISE 4.5. Show that normality is the local property: If a family is normal
near each point z € U, then it is normal on U.

EXERCISE 4.6. If a domain U C C is supplied with the Buclidean metric |dz|
while the target C is supplied with the spherical metric |dz|/(1 + |z|?), then the
corresponding “ES norm” of the differential D(z) is equal to |¢'(2)|/(1 + |¢(2)[?),

z € U. Show that a family of meromorphic functions ¢, : U — C is normal if and
only if the ES norms || D, (2)|| are uniformly bounded on compact subsets of U.

EXERCISE 4.7. A sequence of holomorphic functions is normal if and only if
one can extract from any subsequence a further subsequence which is either locally
bounded or divergent (locally uniformly) to co.

THEOREM 4.8 (Montel). If a family of meromorphic functions ¢, : U — C
does not assume three values then it is normal.

PROOF. Since normality is a local property, we can assume that U is a disk.
Let us endow it with the hyperbolic metric p. Let a,b, ¢ be omitted values on C,
and let p’ be the hyperbolic metric on the thrice punctured sphere C \ {a, b, c}.

By the Schwarz Lemma, all the functions ¢,, are contractions with respect to
these hyperbolic metrics. By Proposition 7.5 (iii), the spherical metric is dominated
by p’, so the ¢, are uniformly Lipschitz from metric p to the spherical metric.
Normality follows. U

THEOREM 4.9 (Refined Montel). Let {¢,, : U — C} be a family of meromorphic
functions. Assume that there exist three meromorphic functions v; : U — C such
that for any z € U and i # j we have: 1;(z) # 1;(z) and ¢n(2) # i(2). Then the
family {¢n} is normal.

PROOF. Let us consider the holomorphic family of Mébius transformations
h, : C — C depending on z € U as a parameter such that

hz : (1/11(Z)a¢2(2')>1/’3(z)) = (07 17 OO)
Then the family of functions ®,,(z) = h,(¢,(z)) omits value 0, 1, 00, and hence is
normal by Theorem 4.8. It follows that the original family is normal as well.  [J

EXERCISE 4.10. Show that the theorem is still valid if the functions ; are
different but ¥;(z) = 1,(2) is allowed for some z € U.

Given a family {¢,} of meromorphic functions on U, we can define its set of
normality as the maximal open set F' C U on which this family is normal.

4.4. Koebe Distortion Theorem. We will now discuss one of the most
beautiful and important theorems of the classical geometric functions theory.

The inner radius rp(a) = dist(a,dD) of a pointed disk (D, a) is the biggest
round disk D(a, p) contained in D. The outer radius Rp(a) = disty(a, D) is the
radius of the smallest disk D(a, p) containing D. (If a = 0, we will simply write rp
and Rp.) The shape (or dilatation) of a disk D around a is the ratio Rp(a)/rp(a).
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THEOREM 4.11 (Koebe Distortion). Let ¢ : (D,0) — (D,a) be a conformal
isomorphism, and let k € (0,1), Dy, = ¢(Dy). Then there exist constants C = C(k)
and L = L(k) (independent of a particular ¢!) such that

¢'(2)]
(4.1) PIR] < C(k) for all z,¢ € Dy
and
(4.2) L(k)™*|¢'(0)] < rpya < Rp,(a) < L(k) |¢'(0)].

In particular, the inner radius of the image ¢(D) around a is bounded from below
by an absolute constant times the deriwative at the origin:

(4.3) ro(n)(a) = pl¢’(0)| > 0.

The expression in the left-hand side of (4.1) is called the distortion of ¢. Thus,
estimate (4.1) tells us that the function ¢ restricted to Dy has a uniformly bounded
distortion (depending on  only). Estimate (4.2) tells that the shape of the domain
Dy, around a is uniformly bounded. This shape is also called the dilatation of h
on D,. So, univalent functions have uniformly bounded dilatation on any disk Dy.
Note that since any proper topological disk in C can be uniformized by D, there
could be no possible bounds on the distortion and dilatation of ¢ in the whole unit
disk . However, once the disk is slightly shrunk, the bounds appear!

The Koebe Distortion Theorem is equivalent to the normality of the space of
normalized univalent functions:

THEOREM 4.12. The space U of univalent functions ¢ : (ID,0) — (C,0) with
p ) )
|¢'(0)] =1 is compact (in the topology of uniform convergence on compact subsets

of D).
Let us make a simple but important observation:

LEMMA 4.13. Let ¢ : (D,0) — (C,0) be a univalent function normalized so that
|¢'(0)] = 1. Then the image ¢(D) cannot contain the whole unit circle T.

ProOOF. Otherwise the inverse map ¢! would be well defined on some disk D,
with 7 > 1, and the Schwarz Lemma would imply |D¢~1(0)] < 1/r < 1, contrary
to the normalization assumption. 0

Proof of Theorem 4.12. By Lemma 4.13, for any ¢ € U there is a 8 € R such
that the rotated function ¢ does not assume value 1. Since the group of rotation
is compact, it is enough to prove that the space Uy C U of univalent functions ¢ € U
which do not assume value 1 is compact.

Let us puncture D at the origin, and restrict all the functions ¢ € Uy to the
punctured disk D*. Since all the ¢ are univalent, they do not assume value 0 in D*.
By the Montel Theorem, the family U, is normal on D*.

Let us show that it is normal at the origin as well. Take a Jordan curve v C D*
around 0, and let A be the disk bounded by 7. Restrict all the functions ¢ € Uy to
~. By normality in D*, the family U is either uniformly bounded on v, or admits
a sequence which is uniformly going to co. But the latter is impossible since all
the curves ¢, () intersect the interval [0,1] (as they go once around 0 and do not
go around 1). Thus, the family Uy is uniformly bounded on 7. By the Maximum
Principle, it is is uniformly bounded, and hence normal, on A as well.
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Thus, the family U is precompact. What is left, is to check that it contains all
limiting functions. By the Argument Principle, limits of univalent functions can be
either univalent or constant. But the latter is not possible in our situation because
of normalization |¢'(0)] = 1. O

EXERCISE 4.14. (i) Show that a family F of univalent functions ¢ : D — C
is precompact in the space of all univalent functions if and only if there exists a
constant C' > 0 such that

19(0)] <C and C~1 < |¢'(0)] < C forall ¢ € F.

(ii) Let (2,a) be a pointed domain in C and let C > 0. Consider a family F
of univalent functions ¢ : Q — C such that |¢(a)| < C. Show that this family is
normal if and only if there exists p > 0 such that each function ¢ € F omits some
value ¢ with |C] < p.

Proof of the Koebe Distortion Theorem. Compactness of the family &/ immedi-
ately yields that functions ¢ € U and their derivatives are uniformly bounded on
any smaller disk Dy, k € (0,1). Combined with the fact that all functions of U are
univalent, compactness also implies a lower bound on the inner radius r4(p, ) and on
the derivative ¢'(z) in Dy. These imply estimates (4.1) and (4.2) on the distortion
and shape by normalizing a univalent function ¢ : D — C, i.e., considering

. ¢(z) —a
d(z) = ——F——— € U.
¢'(0)
(Note that this normalization does not change either distortion of the function or
its dilatation.)

Estimate (4.3) is an obvious consequence of the left-hand side of (4.2). O

We have given a qualitative version of the Koebe Distortion Theorem, which
will be sufficient for all our purposes. The quantitative version provides sharp
constants C'(k), L(k), and p, all attained for a remarkable extremal Koebe function
f(2) = 2/(1—2)% € U. The sharp value of the constant p is particularly remarkable:

KOEBE 1/4—THEOREM. Let ¢ : (D,0) — (C,0) be a univalent function with
¢'(0) = 1. Then ¢(D) D Dy ,4, and this estimate is attained for the Koebe function.

We will sometimes refer to the Koebe 1/4—Theorem rather than its qualitative
version (4.3), though as we have mentioned, the sharp constants never matter for
us.

EXERCISE 4.15. Find the image of the unit disk under the Koebe function.

Let us finish with an invariant form of the Koebe Distortion Theorem:

THEOREM 4.16. Consider a pair of conformal disks A € D. Let

mod(D ~ A) > > 0.
Then any univalent function ¢ : D — C has a bounded (in terms of p) distortion
on A: )
¢'(2)]
24(9]

The proof will make use of one important property of the modulus of an annulus:
if an annulus is getting pinched, then its modulus is vanishing:

< C(u) for all z,{ € A.
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LEMMA 4.17. Let 0 € K C D, where K is compact. If
mod(D\ K) > p >0
then K C Dy, where the radius k = k() < 1 depends only on p.

PROOF. Assume there exists a sequence of compact sets K; satisfying the as-
sumptions but such that R; — 1, where R; is the outer radius of K; around 0.
Let us uniformize D \ K; by a round annulus, h; : A(p;,1) — D~ K;. Then
pi < p=e# < 1. Thus, the maps h; are well-defined on a common annulus
A = A(p,1). By the Little Montel Theorem, they form a normal family on A, so
that we can select a converging subsequence h;, — h.

Let v C A be the equator of A. Then h(7y) is a Jordan curve in D which
separates the sets K, (with sufficiently big n) from the unit circle - contradiction.

O

Remark. The extremal compact sets in the above lemma (minimizing k for a
given y) are the straight intervals [0, ke®].

Proof of Theorem 4.16. Let us uniformize D by the unit disk, h : D — D, in
such a way that h(0) € A. Let A = h~'A and ¢ = ¢poh. By Lemma 4.17, A C Dy,
where k = k(u) < 1. By the Koebe Theorem, the distortion of the functions h
and ¢ on A is bounded by some constant C' = C(k). Hence the distortion of ¢ is
bounded by C?. O

We will often use the following informal formulation of Theorem 4.16: “If ¢ : D — C
is a univalent function and A C D is well inside D, then ¢ has a bounded distortion
on A”. Or else: “If a univalent function ¢ : A — C has a definite space around A,
then it has a bounded distortion on A”.

Let us summarize some of the above results in a very useful comparison of the
derivative of a univalent function with the inner radius of its image:

COROLLARY 4.18. For any univalent function ¢ : (D,0) — (D,a), we have:
rp(A) < |¢'(0)] < 4rp(a).

PrOOF. The left-hand side estimate follows from Lemma 4.13 by normalizing
1
¢. The Koebe 1/4-Theorem implies the right-hand side one: rp(a) > 1|¢’(0)| O

5. Uniformization Theorem

5.1. Statement. The following theorem of Riemann and Koebe is the most
fundamental result of complex analysis:

THEOREM 5.1. Any simply connected Riemann surface is conformally equiva-
lent to either the Riemann sphere C, or to the complex plane C, or the unit disk

D.

We also say that any simply connected Riemann surface as a conformal sphere,
or a conformal plane, or a conformal disk.
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5.2. Classification of Riemann surfaces. Consider now any Riemann sur-
face S. Let 7 : S — S be its universal covering. Then the complex structure on
S naturally lifts to S turning S into a simply connected Riemann surface which
holomorphically covers S. Thus, we come up with the following classification of
Riemann surfaces:

THEOREM 5.2. Any Riemann surface S is conformally equivalent to one of the
following surfaces:

e The Riemann sphere C (spherical case);

e The complex plane C, or the punctured plane C*, or a torus T2, 7 € H
(parabolic case);

o The quotient of the hyperbolic plane H? modulo a discrete group of isome-
tries (hyperbolic case).

Thus, any Riemann surface comes endowed with one of the three geometries:
projective (§2.3), affine (§2.2), or hyperbolic (§2.4). In particular, any hyperbolic
Riemann surface S is endowed with the canonical hyperbolic metric, the push-
forward of the hyperbolic metric from H? to S.

5.3. Smooth annuli. We will now pass to domains on Riemann surfaces be-
ginning with annuli:

PROPOSITION 5.3. Let A € S be a topological annulus in a Riemann surface
S with piecewise smooth boundary. Then A is conformally equivalent to a standard
annulus A(r, R).

PROOF. Let us call one of the boundary components of A “inner”, 9°A, and the
other one “outer”, 9°A (compare §1.7.12). Let us consider the “harmonic measure”
of the outer component, i.e. a harmonic function u(z) on A vanishing on 9°A and
=1 on 9°A (see §10.8). Let u* be its harmonic conjugate, This function is not
single valued, but rather gets changed by the period

p:/*du
~

under the monodromy along a non-trivial cycle v in A (see §10.1). Hence the
holomorphic function

2
f=exp —W(u +iu*)
p

is single valued. Moreover, it properly maps A onto the round annulus A(1, el/ P)
and has degree one (since f homeomorphically maps the equipotentials of A onto
the round circles. The conclusion follows. (I

5.4. Simply connected domains.

PROPOSITION 5.4. Let D € S be a simply connected domain on a Riemann
surface S with piecewise smooth boundary. Then D is conformally equivalent to the
unit disk D.

PRroor. Take a base point zg € D, and let D, be a coordinate disk of radius
€ > 0 centered at zg. Then U \ D, is a topological annulus with piecewise smooth
boundary, so by Proposition 5.3 there is a conformal map ¢. : D~ D, — A(r(g),1)
onto a round annulus. By the Little Montel Theorem, the family of maps ¢. is
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normal on D ~ {z}.}7 Let us select a converging subsequence ¢., — ¢ as g — 0,
where ¢ : D~ {20} — D is a holomorphic map. By Removability of isolated
singularities, ¢ holomorphically extends through zg.
Let us show that ¢ : D — D is proper. It is sufficient to check that for any
€ (0,1), the preimage ¢—*(ID,) is compactly contained in D. Indeed, take any
R € (r,1). By invariance of the modulus,

mod(a- H(A(R, 1)) = % log% >0, for any € > 0 sufficiently small.
By Lemma 4.17, dist(¢- ' (Tg), 0D) > p > 0 for some p = p(R) > 0. Letting e — 0,
we conclude that dist(¢~'(T,),dD) > p > 0, and properness of ¢ follows.
So, ¢ has a well defined degree. Since degree is stable under perturbations,
deg ¢ = deg¢., for all k sufficiently large. Thus deg¢ = 1, and hence ¢ is a
conformal isomorphism. O

5.5. Simply connected Riemann surfaces. We are now ready to prove the
Uniformization Theorem: it is covered by the following two results.

THEOREM 5.5. Any simply connected open Riemann surface S is isomorphic
to either the disk D or to the complex plane C.

PrROOF. Fix a base point p € S and some reference local chart ¢) near it. By
Lemma 1.80, S can be exhausted by a nest of (open) topological disks D,, with
piecewise smooth boundary:

peDyEDy E..., UDn:S.

By Proposition 5.4, for each n, there is a conformal map ¢, : (Dy,p) — (Dg, ,0)
normalized so that ¢/, (p) = 1, where the derivative is calculated with respect to the
reference local chart 1.

The Schwarz Lemma implies that Ry < Ry < .... Let R := lim R,, € (0, c0].
By the Koebe Theorem, for any m € N, the sequence (¢,)52,,, being restricted to
D,,, is precompact. By the diagonal procedure, we can select a subsequence ¢,
converging on each D,,. The limits patch together into the desired conformal map
®: 5 — D (where Dy = C). O

THEOREM 5.6. Any simply connected closed Riemann surface S is isomorphic
to the Riemann sphere C.

ProOF. By the Fundamental Theorem of 2D Topology, S is a topological
sphere. So, if we puncture out a point p from S, we obtain a topological disk.
By Theorem 5.5, S\ {p} is isomorphic to either D or C.

Assume the former, and let ¢ : S~ {p} — D be an isomorphism. By Remov-
ability of isolated singularities for conformal maps, ¢ extends to a holomorphic map
¢ : S — D. But such maps do not exist for variety of reasons (e.g., the image ¢(S)
must be simultaneously compact and open; or by the Maximum Principle).

So, there is an isomorphism ¢ : S\ {p} — C. Using the Removability of
isolated singularities once again, we extend it to an isomorphism é :S > C. O

70n normality with varying domains of definition, see §7.7.
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5.6. Extension to ends revisited. Let us now formulate a semi-local version
of Exercise 3.2:

LEMMA 5.7. Let f : S — S" be a holomorphic map between two Riemann
surfaces. Let e and €' be tame ends of S and S’ respectively such that f induces a
proper map e +— €.

(i) If E is a cusp then f extends holomorphically through the ideal punctures at oo.

(ii) If E is non-cuspidal then f extends continuously to a covering between the ideal
circles at infinity of the ends.

PROOF. Let us consider a topological cylinder F' C S’ representing the end
E’, and let F C S be the component of f~!(F’) that has e as one of its ends. Such
a component exists as f properly maps F to E’. Moreover, if F’ is sufficiently
small then f : F — F” is proper, and hence is a branched covering of finite degree.
Then it has finitely many critical points, and F’ can be further shrunk so that
f : F — F' is unbranched. By 1.100, F' is a topological cylinder, and hence it
represents the end e. By Exercise 2.61, f: F — F’ extends to a covering between
the ideal completions of these cylinders, implying the assertion. O

COROLLARY 5.8. Let i : S < S’ be an embedding between two Riemann sur-
faces. Let E and E’ be tame ends of S and S’ respectively such that i properly maps
E to E'. Then i continuously extends to a homeomorphism 0%S — 0L, S" between
the ideal circles at infinity of the ends.

Under these circumstances, we identify £ and E’ by means of the extended
homeomorphism .

5.7. Uniformization of orbifolds.

THEOREM 5.9. Let O be a Riemann orbifold of finite conformall type with non-
exceptional signature (i.e., different from (S%;p) and (S* {p.q}, p # q). Then O
falls into one of the following three types:

(i) Parabolic type: x(O) = 0. In this case O is uniformized by a discrete group of
Euclidean motions acting on C (listed in Exercise 2.6), and possesses the canonical
flat structure (up to scaling).

(ii)  Elliptic type: x(O) > 0. In this case O is uniformized by a finite group of
rotations of the round sphere (listed in Erxercise 2.15), and possesses the canonical
spherical structure.

(iil) Hyperbolic type: x(O) < 0. In this case O is uniformized by a finitely generated
Fuchsian group of first kind, and possesses the canonical hyperbolic structure.

PRrROOF. By Theorem 2.93, our orbifold is good, so it can be uniformized by a
discrete group I' of autoimorphisms of a simply connected Riemann surface S. By
the Uniformization Theorem, S is either C, or C or H, endowed with the canonical
geometric structure (flat, spherical, or hyperbolic respectively), making T a group
of motions. This endows O with the corresponding geometric structure. By the
Gauss-Bonnet Formula for orbifolds (2.36), the Euler characteristic x(O) has the
same sign as the curvature of the structure. O
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Accordingly Riemann orbifolds are classified as elliptic, parabolic, or hyperbolic
(similarly to Riemann surfaces). Moreover, almost all Riemann orbifolds are hy-
perbiolic: the short list of parabolic and elliptic ones is provided in Exercises 2.6
and 2.13.

6. Extremal length and width

6.1. Definitions. Let us now introduce one of the most powerful tools of
Conformal Geometry. Given a path family I' in a Riemann surface U, we will
define a conformal invariant £(T') called the extremal length of T'. Consider a
measurable conformal metric p|dz| on C with finite total mass,

m,(U) = /p2d$ Ady < oo, where p:U — [0, ]

(such metrics are called admissible). Let

mwzfmwu

stand for the length of v € T in this metric (with the convention I,(y) = oo if v is
non-rectifiable, or p|v is not measurable, or else it is not integrable!®). Define the
p-length of T as

[,(T") = inf ,(7).

yel
Normalize it in the scaling invariant way:

and define the extremal length of T' as
L(T') = sup L,(I'),
P

where the supremum is taken over all admissible metrics.
A metric p on which this supremum is attained (if exists) is called extremal.

EXERCISE 6.1. Show that the value of L(I') does not change if one uses only
smooth admissible metrics p.

Let us summarize immediate consequences of the definition:

EXERCISE 6.2. e Extension of the family: If a path family T' contains a family
T, then L(T') < L(T).
e Overflowing: If T overflows I (i.e., each path of T' contains some path of T"),
then L(T') > L(T).
e Independence of the ambient surface: If U C U’ and T is a path family in U then
L(T') = L(T'"). (This justifies skipping of “U” in the notation.)
e Disregarding small subfamilies: If I' is a smooth foliation of some domain and
IV C T comprises almost all curves of T' then L(T") = L(T).

18For this to make sense, we should think of p as an actual function rather than a class
of functions up to modification on null-sets. It is also convenient to assume that p is defined
everywhere.
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The extremal width of the family I' is defined as the inverse to its length:
W(T) = ()~
One can also conveniently define it as follows:

EXERCISE 6.3. W(T') = inf m,(U), where the infimum is taken over all metrics
with p(y) > 1 for all paths v € T. (In this context, such metrics are called admis-
sible. Sometimes, to distinguish it from the previous admissibility requirement, we
call these metrics W-admissible.)

REMARK 6.4. One should think that a family is “big” if it is “wide”, i.e., it has
big extremal width. So, big families are short.

The extremal length and width are conformal invariants:

If ¢ : U — U’ is a conformal isomorphism between two Riemann surfaces such that
o) =TIV, then L(T') = L(I"). This immediately follows from the observation
that ¢ transfers the family of admissible metrics on U to the family of admissible
metrics on U’ preserving all the quantities in question.

6.2. Electric circuits laws. We will now formulate two crucial properties of
the extremal length and width that show that they behave respectively like the
resistance and the conductance in electric circuits.

Let I'y, 'y and T be three path families on U. We say that ' disjointly overflows
I’y and T's if any path v € I contains a pair of disjoint paths v; € I'y and v, € I's.

SERIES LAw. Assume that a family T disjointly overflows families I'y and T's.
Then
L(T) = L(T1) + L(T2),
or equivalently,
W) <W(T) & W(Ts).

Here x ®y = (1/x+1/y)~ ! is the harmonic sum of x and y (which is conjugate
to the usual sum by means of z — 27 1).

PROOF. Let p; and ps be arbitrary admissible metrics. By appropriate rescal-
ings, we can normalize them so that

lp,(T;) =m,, (U) = L,,(T), i=1,2.
Let {, = max(p1, p2). Since any v € I' contains two disjoint paths v; € I';, we have:
L) = Loy (1) + Loy (72) = 1py (T1) + 1p, (T2) = L, (T'1) + L, (I2).

Taking the infimum over all v € I, we obtain:

lp(r) = Ly, (') + Ly, (T'2).
On the other hand, since p < py + p2, we have:

mP(U) < Mp, (U) + My, (U) = ‘Cpl (Fl) + £P2 (FQ)

Hence

Lo(T) = Ly, (Th) + £, (T'2).
Taking the supremum over all normalized metrics p; and py, we obtain the desired
inequality. (]

We say that two path families, I'y and I's, are disjoint if they are contained in
disjoint measurable sets.
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PARALLEL LAw. LetI' =Ty UT's. Then
W() < W(I'1) + W(Le).
Moreover, if I'y and I's are disjoint then
W) =W(T1) + W(Ts).

PRrROOF. This time, let us consider metrics p; and p, that are W-admissible in
the sense of Exercise 6.3, so that [,,(I';) > 1. Let again p = max(p1,p2). Then
[,(I') > 1 as well, and hence

WIE) < mp(U) < mp, (U) + mp, (U).

Taking the infimum over the metrics p;, we obtain the desired inequality.

Assume now that 'y and I's are disjoint. Let X; and X5 be two disjoint
measurable sets supporting the respective families. Take any admissible metric p
with p(T') > 1, and let p; = p| X;. Then p;(I";) > 1 as well, and hence

mp(U) = mp, (U) +mp,(U) 2 W(I'1) + W(I2).
Taking the infimum over admissible p, we obtain the opposite inequality. (|
REMARK 6.5. Both laws extend immediately to the case of n families I'y,...,T,.

6.3. Annulus, rectangle and torus revisited.

6.3.1. Modulus as the extremal length. We will now calculate the modulus of an
annulus (see §2.6.1) in terms of the extremal length. Consider an open flat cylinder
Cyl = Cyllh with circumference ! and height h. Proper curves (0,1) — Cyl going
from the top to the bottom of Cyl will be called vertical. ' Among these curves
there are genuinely vertical, that is, straight intervals perpendicular to the top and
the bottom. Horizontal curves in Cyl are closed curves homotopic to the top and
the bottom of Cyl. Among them there are genuinely horizontal, that is, the circles
parallel to the top and the bottom. Genuinely vertical and horizontal curves form
the wvertical and horizontal foliations respectively.

If A is a conformal annulus, then it is isomorphic to a flat cylinder, and will
be freely identified with it. Curves in A corresponding to (genuinely) verti-
cal /horizontal curves in the cylinder will be called in the same way. In particular,
the vertical and horizontal foliations in A(r, R) are respectively comprised of radial
intervals and co-centric circles.

PROPOSITION 6.6. Let I' be a family of vertical curves in a conformal annulus
A= Cyllh containing almost all genuinely vertical ones. Then

L(T) =mod A= h/l
Moreover, the Euclidean metric on the cylinder Cyl is extremal.

Proor. We will identify A with a flat cylinder Cyl = Cylﬁl. Take first the flat
metric e on the cylinder. Then l.(y) > h for any v € T, so that, [.(I') = h. On the
other hand, m.(I") = lh. Hence

L(T) > L.(T) = h?/lh = mod Cyl.
Take now any admissible metric p on Cyl. Let 79 € I' be the genuinely vertical

curve through 6 € R/IZ. Then [,(T") < l,(vs) for any 6 € R/IZ. Integrating this

191n this discussison, we do not require that vertical curves land at any points of 9A.
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over R/IZ (using that vy € T for a.e. @ € R/IZ)) and applying the Fubini Theorem
and the Cauchy-Schwarz inequality, we obtain:

2 2
(6.1) (1-1,(1))? < </ Lo(70) d&) = (/ pdme) < lhm,(Cyl).
R/1Z Cyl
Hence £,(Cyl) < h/l = mod Cyl, and the conclusion follows. O

EXERCISE 6.7. Show that the Euclidean metric is the unique extremal metric
on Cyl.

There is also the “dual” way to evaluate the same modulus:

EXERCISE 6.8. Let I" be a family of horizontal curves in Cyl containing almost
all genuinely horizontal curves. Then

mod Cyl = W(T).

6.3.2. Groztsch Inequality. The following inequality plays an outstanding role
in holomorphic dynamics (the name we use for it is widely adopted in the dynamical
literature):

PROPOSITION 6.9. Consider a conformal annulus A containing n disjoint con-
formal annuli Ay, ... A, homotopically equivalent to A. Then

mod A > ZmodAk.

PROOF. Let I'y be the horizontal family of Ay and I' be the horizontal family
in A. By the Parallel Law, W(T') > > W(T'}), and the conclusion follows from
Exercise 6.8. (Dually, one can apply the Series Law to the extremal length of the
vertical families.)

O

6.3.3. Euclidean geometry of an annulus. The length-area method allows one
to relate mod A to the Euclidean geometry of A. As a simple illustration, let us show
that mod A is bounded by the distance between the inner and the outer complements
of A rel the size of the inner complement:

LEMMA 6.10. Consider a topological annulus A C C. Let K and Q stand for
its inner and outer complements®® respectively. Then

mod A < C(1 + dist(K, @)/ diam K).

PRrROOF. Let I' be the family of horizontal curves in A. According to Exer-
cise 6.8, we need to bound W(I').

Take points @ € K and ¢ € Q on minimal distance dist(K,Q), and then select
a point b € K such that dist(a,b) > diam K/2. Consider a family A of closed
Jordan curves v C C~\ {a, b, ¢} with winding number 1 around a and b and winding
number 0 around c¢. Since I' C A, W(T') < W(A).

Let us estimate £(A) from below. Rescale the configuration {a,b,c} (without
changing notations) so that |a —b| =1 and |a — ¢| = d, where

dist(K,Q)/ diam K < d < 2 dist(K, Q)/ diam K.
20For an annulus with comlicated boundary, they are defined as follows. Take a homotopically

non-trivial Jordan curve v C A, and let the inner/outer complement be the union of components
of C \ A lying in the inner/outer component of C \ =, respectively.
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Take now the unit neighborhood B of the union [a,b] U [a, ¢] of two intervals, and
endow it with the Euclidean metric e (extended by 0 outside B). Then [.(A) > 1
so this family is W-admissible. Moreover, m¢(B) < C(1 4 d), and hence W(A) <
C(1+d) as well. O

COROLLARY 6.11. If neither K nor Q is a singleton then mod A < co.

COROLLARY 6.12. If pp:=mod A > pu > C (with C from Lemma 6.10) then a
homotopically non-trivial round annulus of modulus > log u can be inscribed into A.

PROOF. A round annulus of outer radius dist(Q, K) and inner radius diam K
can be inscribed into A. O
EXERCISE 6.13. Show that under the above circumstances,

(i) If mod A > p > C then diam K < M exp(—apu), with absolute M > 0 and
a > 0.

(ii) There is a lower bound: mod A > u(dist(K, Q)/ diam(K)) > 0.
An annulus A C C is called e-pinched if
dist(K, Q) < emin(diam K, diam @),
where K and @ are the inner and outer complementary components of A.

PROPOSITION 6.14. The modulus of an annulus A C C is d-small iff A s
e-pinched (quantitatively).

PROBLEM 6.15. Let U = AU K. Show that

arca U > 1+ 47 mod A.

area K

6.3.4. Divergence Property. The Groztsch Inequality proves an effecient tool to
recognize cusps as ends of Riemann surfaces.

PROPOSITION 6.16. Let (A,,)22, be a nest of disjoint annuli in C, and let
Ky D Ky D ... be the corresponding nest of their inner components A,,.
If " mod A, = © then K := UK" is a singleton.

PROOF. Let us take a horizontal curve v in Ay and consider the annulus A
bounded by v and K. By the Groztsch Inequality,

mod A > ZmodAn = 00.

n=1

Corollary 6.11 concludes the argument. O

6.3.5. R-symmetric case. Let us consider a pair of nested intervals, L € int I,
and let H* be the components of I ~. L. Let us consider the affiliated conformal
annulus

A(I,L) ;== (CN\R)U(HTUH").
and let
[H*|

(6.2) mod (] : L) :=mod A(I,L), modg(]:L):= min o
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LEMMA 6.17. We have:
mod(l:L)>e>0< modg(l:L)>¢6>0.

ProOOF. To obtain implication <, consider the round annulus A whose inner
circle is based upon L as a diameter, and the outer circle is based upon the scaled
interval (14 4) - 1.

The other implication follows from Lemma 6.10. (I

COROLLARY 6.18. Let (I, L) and (I',L") be two pairs of real intervals, and let
¢: (C,I,L) — (C,I', L) be a conformal embedding that restricts to a diffeomor-
phism between the interval pairs. Then

modg(I : L) > > 0= modg({': L") > & > 0.
PROOF. By conformal invariance and monotonicity of the modulus, we have:
mod(I" : L') > mod ¢(A(I, L)) = mod A(I, L) = mod(I : L),
and the conclusion follows from the lemma. O

EXERCISE 6.19. Derive the above Corollary from the Koebe Distortion Theo-
rem.

6.3.6. Shrinking nests of annuli. For a set X C C, let us say that a sequence
of disjoint annuli A,, C C is nested around X if for any any n, A,, separates both
Apy1 and X from co. (We will also call it a “nest of annuli around X.)

COROLLARY 6.20. Consider a nest of annuli A, around X. If Y mod 4,, = oo
then X is a single point.

PrROOF. Only the first annulus, A;, can be unbounded in C. Take some disk
D = Dpg containing As, and consider the annulus D \ X. By the Groztsch Inequal-
ity,
mod(D \ X) > ZmodAn = 0.
n>2
Hence X is a single point. O

6.3.7. Quadrilaterals (rectangles). This discussion is parallel to the above dis-
cussion of annuli, so we will be brief. Let us consider a standard marked rectangle
IT = 1I[I, h] = [0,1] x [0, ] (see §2.6.2). As in the case of an annulus, we can nat-
urally define (topologically) vertical and horizontal paths in II, as well genuinely
vertical and horizontal ones. The latter form the vertical and horizontal foliations.

EXERCISE 6.21. (i) Let T' be a vertical path family in II[I, h] that contains
almost all genuinely vertical paths. Then L(I") = mod(II).
(ii) More generally, let T be a genuinely vertical lamination in I1[l, h] (i.e., a family
of genuinely vertical paths) supported on a measurable set A. Let k be the horizontal

projection of A. Then L(T") = h/k.

A quadrilateral or a conformal rectangle Q(a, b, c,d) is a conformal disk @ with
four marked points a, b, ¢, d on its ideal boundary. We will often let Q = Q(a, b, ¢, d)
so that there is no notational difference between the quadrilateral and the under-
lying disk. (If the underlying disk is called, say, D then the corresponding quadri-
lateral is denoted accordingly, D = D(a,b,c,d).)
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A quadrilateral has four ideal boundary sides. As in the case of a rectangle
marking of a quadrilateral is a choice of pair of opposite sides called horizontal,
while the other pair is called wvertical.

As an important example, let us consider the quadrilateral

H(a‘5071) EH(G,O,I,OO), a< Oa
based on the upper half-plane H, marked so that [1, o] is a horizontal side.

PROPOSITION 6.22. Any marked quadrilateral Q is conformally equivalent to a
unique (up to scaling) standard marked rectangle.

PRrROOF. By the Riemann Mapping Theorem, @ can be conformally mapped
(as a marked quadrilateral) onto a marked quadrilateral H(a,0, 1, 00) with some
a < 0. By Exercise 2.77, this quadrilateral is conformally equivalent to a standard
rectangle.

Uniqueness follows from Exercise 2.76. (]

At this point, we can define various conformal notions and objects (mod @,
genuinely vertical foliation, etc) for any marked quadrilateral @ by transferring
them from a standard rectangle IT conformally equivalent to (). Assertions of
Exercises 2.76 and 6.21 immediately extend to general marked quadrilaterals.

As in the annulus case, the length-area method allows one to relate conformal
and Fuclidean quantities:

EXERCISE 6.23. Show that for R > 1

1 4

—1 < mod(H(0, 1 QL

I 08 = mod(H(0, 1, R)) < —m—7m
(Here the left-hand estimate is good for big R, while the right-hand one is good for
R=~1.)

6.3.8. Tori. Let us now consider a flat torus T2. Given a non-zero homology
class a € H{(T?), we let I',, be the family of closed curves on T? representing o (we
call them a-curves). Among these curves, there are closed geodesics, a-geodesics
(they lift to straight lines in the universal covering R?) . They form a foliation. All
these geodesics have the same length, /.

EXERCISE 6.24. Let I' be a family of a-curves containing all a-geodesics. Then

area T2
—
l()t

W(T) =

An annulus A embedded into T? is called an a-annulus if its horizontal curves
represent the class . (In this case, we also say that A itself represents the class
«.) The following estimate finds interesting applications in dynamics and geometry
(see §24.6):

PROPOSITION 6.25. Let Ay,..., A, be a family of disjoint a-annuli. Then
2
ZmodAi < arez;’}l‘ .
lCK

PRrROOF. Let I'; be the family of horizontal curves of the annulus A;. Then by
the Parallel Law, >~ W(T;) < W(T',), and the result follows from Exercises 6.8 and
6.24. ]
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6.4. Dirichlet integral.

6.4.1. Definition. Consider a Riemann surface S endowed with a smooth con-
formal metric p. The Dirichlet integral (D.1.) of a function y : S — C is defined
as

zxXr:/vaMdmm

where the norm of the gradient and the area form are evaluated with respect to p.
However:

EXERCISE 6.26. The Dirichlet integral is independent of the choice of the con-
formal metric p. In particular, it is invariant under conformal changes of variable.

In the local coordinates, the Dirichlet integral is expressed as follows:
D) = [[(hal + 1hy ) = [(Oh? + |0h)dim.
In particular, for a conformal map h : U < C we have the area formula:
D(h) = / |W (2)]2dm = area h(U).
6.4.2. D.I. of a harmonic function.

EXERCISE 6.27. Consider a flat cylinder A = S* x (0, h) with the unit circum-
ference. Let x : A — (0,1) be the projection to the second coordinate (the “height”
Junction) divided by h. Then D(x) = 1/h.

Note that the function y in the exercise is a harmonic function with boundary
values 0 and 1 on the boundary components of the cylinder (i.e., the solution of the
Dirichlet problem with such boundary values).

EXERCISE 6.28. Such a harmonic function is unique up to switching the bound-
ary components of A, which leads to replacement of x by 1 — x.

Due to the conformal invariance of the Dirichlet integral (as well as the modulus
of an annulus and harmonicity of a function), these trivial remarks immediately
yield a non-trivial formula:

PROPOSITION 6.29. Let us consider a conformal annulus A. Then there exist
exactly two proper harmonic functions x; : A — (0,1) (such that x1 + x2 = 1) and
D(x;) =1/ mod(A).

6.4.3. Multi-connected case. Let S be a compact Riemann surface with bound-
ary. Let S = (95)gU(dS)1, where each (95); # 0 is the union of several boundary
components of dS. Let us consider two families of curves: the “vertical family” I
consisting of arcs joining (99) to (95)1, and the “horizontal family” I'* consisting
of Jordan multi-curves separating (95) from (95)1. (A multicurve is a finite union
of Jordan curves.)

Let x : S — [0,1] be the solution of the Dirichlet problem equal to 0 on (9.5)
and equal to 1 on (95);.

THEOREM 6.30. .
vy hy __
LTy =wW(T") = 7D(h)'
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The modulus of S rel the boundaries (0S)p and (05); is defined as the above
extremal length:

mod((9S)o, (8S)1) = L(T).

Remark. Physically, we can think of the pair (0.5)¢ and (95); in S as an electric
condensator. The harmonic function x represents the potential of the electric field
created by the uniformly distributed charge on (95);. The Dirichlet integral D(x)
is the energy of this field. Thus, mod((9S)o, (05)1) = 1/D(x) is equal to the ratio
of the charge to the energy, that is, to the capacity of the condensator.

6.5. Non-Crossing Principle. Let us say that two path families I' and A
cross if every path of I' crosses every path of A. The Non-Crossing Principle asserts
that two big path families do not cross:

NON-CROSSING PRINCIPLE. Let I' be a horizontal foliation in a quadrilateral
or an annulus, and let A be another path family. If W(T') - W(A) > 1 then T’ and
A do not cross.

PROOF. Let II be the quadrilateral or the annulus supporting I, and let I'*
be the vertical path family in II. If A crosses I' then it overflows I'", and hence

L(A) > L(TH) =wW(D).
0

EXERCISE 6.31. Assume A is also a horizontal foliation in a quadrilateral or an
annulus. If W(T')-W(A) =1, then T and A do not cross unless they are supported
on the same quadrilateral and A is equal to T+,

The Non-Crossing Principle can be sharpened to an assertion that two wide
path families have a relatively small overlap (which will be used only in vol. III).

Let us consider a genuinely vertical lamination in a quadrilateral @ (see Exer-
cise 6.21). After uniformizing it by a standard rectangle IT = II[I, h], its projection
to the horizontal side induces a transverse measure v on A (defined up to scaling).
If @ is embedded into a Riemann surface S and « is a path on S, we say that
intersects less than e-portion of the total width of A if

v{xeA: ANy #0} <ev(A)

(note that this condition does not depend on the normalization of v). The same
discussion applies to the case of annulus.

SMALL OVERLAPPING PRINCIPLE. Let k > 1. Let us consider a genuinely
vertical lamination A on some conformal annulus or quadrilateral @ C S, and let
T be another path family on S. If W(A) > k and W(T') > &, then there exists a
path v € T that intersects less than 1/k-portion of the total width of A.

PROOF. Assume for definiteness that @ is a quadrilateral. Let ¢ : IT[a, h] — R
be the uniformization of () by a standard rectangle normalized so that the horizontal
projection of ¢*A (which is a genuinely vertical lamination in II) has length x. By
Exercise 6.21,

W(A) = W(¢"(A)) =
Since W(A) > k, we conclude that h < 1, and thus
area(¢*A) = h - W(¢*(A)) < k.

=
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To bound W(T'), let us the push-forward the Euclidean metric e on II to the
quadrilateral @, i.e., let p = ¢.(e|A). If a curve v €
Gamma intersects at least 1/k-portion of the total width of A, then the transverse
length of v is at least 1, and hence

L(v)=v(y) 2 1.
If this happened for every v € I' then we would have
W(T') < area,(A) = area(¢™A) < &,

contradicting the assumption. O

6.6. Transformation rules.
6.6.1. General rules. As we know, both extremal length and extremal width
are conformal invariants. More generally, we have:

LEMMA 6.32. Let f : U — V be a holomorphic map between two Riemann
surfaces, and let G be a family of curves on U. Then

L(f(T)) = L(T).
Moreover, if f is at most d —to — 1, then
L(f(T)) <d-L(T).

PROOF. Let p be a conformal metric on U. Let us push-forward the area form
m, by f. We obtain the area form m, = f.(m,) of some conformal metric 7 on V.
Then area, (V) = area,(U) and f*(7) > p. It follows that

L,(T) < L-(f(I) < L(F(T)).

Taking the supremum over p completes the proof of the first assertion.

For the second assertion, let us consider a conformal metric 7 on V' and pull
it back to U, p = f*r. Then l,(y) = I-(f(v)) for any v € T', while m,(U) <
d - area, (V). Hence

1
L() 2 £,(1) > 5£,(F(T)),
and taking the supremum over 7 completes the proof. (I

COROLLARY 6.33. Under the circumstances of the previous lemma, let A be
a family of curves in V' satisfying the following lifting property: any curve v € A
contains an arc that lifts to some curve in T'. Then L(A) > L(T).

PrOOF. The lifting property means that the family A overflows the family
f(T). Hence L(A) > L(f(T")), and the conclusion follows. O

6.6.2. Coverings of an annulus. Let us start with a particular case which is
most important for dynamical applications.

PROPOSITION 6.34. Let U and U’ be two conformal disks, and let f:U — U’
be a holomorphic branched covering of degree D. Let B' € U’ be a Jordan disk and
let B €U be a component of f~1(B'). Let d = deg(f : B— B'). Then

d-W(U'~B') <W(U ~B)< D - WU~ B
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ProoOF. Let I and T” be the vertical path families on the annuli U ~ B and
U’ \ B’ respectively. Take an arbitrary W-admissible (in the sense of Exercise 6.3)
conformal metric on U’ \ B’, so l,(y') > 1 for any 7' € I". Let p = f*(p’) be its
pullback to U \ B.

Take any path v € I' and orient it from the outer boundary. The intersection
vy f _1(§/) is closed in v, so we can take the first intersection point b. Let 79 C ~y
be the initial piece of y that ends at b. Then the image 7, := f(70) begins on oU’,
ends at f(b) € B’, and except for the endpoint, is contained in U’ \ B Thus,
v, € I” and ~ is a lift of v. Hence

L(v) > 1p(v0) =l (75) > 1.

Thus, metric p is W-admissible for T'.
By the definition of extremal width given in Exercise 6.3,

W(U \ B) = W(T') < area,(U \ B) = D - area, (U \ B’).

Taking the infimum over all W-admissible p’ we obtain the desired right-hand side
inequality.

To prove the left-hand side inequality, let us consider the genuinely vertical
foliation F’ on the annulus U’ \. B’. This time, let us orient it from B’ to OU’. Let
us cut U’ ~ B’ along the critical leaves of F’, i.e., the leaves passing through the
critical values of f. If there are no such leaves, let us cut U’ ~. B" along one leaf of
F.

We obtain a tiling of U" \ B’ by rectangles II; such that

> war) = w(u' \ B)).

Each II lifts to d disjoint rectangles II;; in U \ B (with horizontal sides on 0B and
OU) each of which is conformally equivalent to II,. By Monotonicity of the width,
the Parallel Law, and conformal invriance of the width, we obtain:

WU~ B)>W (U Hij) =3 waL) =d- S W(L) =d- WU’ ~ B)).
O

EXERCISE 6.35. Generalize Proposition 6.34 to the case when B and B’ are
finite unions of Jordan disks and the restriction f : B — B’ is a branched covering
of degree d. Conclude that if f : U ~ B — U’ ~ B’ is a covering of degree d then

mod(U’ \ B") = d mod(U \ B),

where mod(U \ B) stands for the extremal length of the path family connecting OB
to OU in U \ B.

6.7. Maximal, canonical, and covering annuli.

LEMMA 6.36. Let S C C be a domain on the Riemann sphere. Then in the
homotopy class of any non-trivial simple closed curve v C S, there exists an em-
bedded open annulus A = A., of mazimal modulus. This modulus is infinite if and

only if v is a peripheral curve around a puncture (i.e., an isolated point of@ N 9).
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PROOF. The statement is vacuous for C and C, and obvious for C*. So, we
can assume that |[C \ S| > 3, and thus S is hyperbolic. Let us consider the family
® of all conformal embeddings

¢:A(L,r) = 8,

where the radius r» > 1 is variable. Let r,.x be the sup of all possible radii. Select
a monotonic sequence of radii 7, € (1, 7yax) converging to rpax, and corresponding
functions ¢,, € ®, ¢, : A(1,r,) — S. Since S is hyperbolic, Montel’s Theorem
implies that for any m, the restricted sequence ¢,|A(1,7,,), n = m,m +1,...
admits a convergent subsequence. By the diagonal procedure, we can select a
subsequence ¢,,(y) € ® that converges on each annulus A,,. Its limit provides us
with an extremal embedding A(1, 7max) — S whose image A, is a desired annulus
of maximal modulus,
mod A, = % 1og " max,

in the given homotopy class.

If v is a peripheral curve around a puncture, then mod A, = oo since mod D* =
0o. The inverse statement follows e.g., from Exercise 6.13. |

We call such annuli A, mazimal, and we let mod[y] = mod A, be their moduli.
Of course, the above discussion applies to bordered Riemann surfaces S as well. In
this case, we allow v to be a component of 95, letting mod[y] be the modulus of
the corresponding maximal peripheral annulus.

EXERCISE 6.37. Generalize the above result to an arbitrary Riemann surface S
(including tori).

THEOREM 6.38. Let S be a domain in C. Then in each non-trivial homotopy
class [y] of simple closed curves there is a unique mazimal annulus A..

The uniqueness part of this statement is much deeper than the existence result
proved above, and its proof provides us with a beautiful insight into the geome-
try of the maximal annuli. Namely, these annuli are horizontal annuli of so called
Strebel quadratic differentials, i.e, quadratic differentials whose non-singular hori-
zontal trajectories are all circles. Any maximal annulus is obtained by cutting the
sphere along the separatrices of such a differential (see [GaL, §11]). We will leave
this picture without a proof and in our future discussion will refrain from using it,
but will keep it in mind as a good intuition.

Fix now some M > 1. Let us consider a maximal annulus A in S with mod A >
2M that does not represent a puncture (but can represent a boundary curve). Let
us uniformize it by a Euclidean cylinder C' = S* x (0, h), where S* has length 1 (so
h = mod A > 2M). Round cylinders S* x (0, M] and S* x [h — M, h) are called
buffers in C. Note that they are disjoint since h > 2M. Buffers B° and B® in A are
the corresponding annuli in A (where labels “0” and “i” stand for the “outer” and
“inner” respectively?!). Removing the buffers, we obtain an M -canonical annulus

A=A~ (B°UB").

LEMMA 6.39. For any M > 1, any two M -canonical annuli are disjoint.

210n the Riemann sphere, this labeling is arbitrary, but it makes a clear sense when A C C.
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FIGURE 6.1. Intersection of the annuli forces the buffers cross.

PROOF. Let 7, 7 be two non-trivial Jordan curves in S, andlet A C A, A C A
be the corresponding canonical and maximal annuli. If v and 74 essentially cross
then any horizontal curve in A crosses any horizontal curve in A contradicting the
Non-Crossing Principle.

So, the curves v and 7 are essentially disjoint. Replacing them with homotopic
ones, we can assume that v and 74 are disjoint in the first place. Then one of the
Jordan disks in C bounded by ~ contains 7. Let us call it the outer side of ~.
Similarly we can define the outer side of 4. Since the curves are not homotopic,
the intersection of their outer complementary components contains a point of
C~.S. This point can be placed at co, making the inner complementary components
bounded.

Since our curves are non-trivial, we can select a point Z € C~ S lying “inside”
4 (i.e., in the inner complementary component of 4) and hence “outside” ~.

Let the buffer B® and B° lie on the outer sides of A and A, respectively. If
AN A+ 0 then any horizontal curve ¢ in B° is forced to enter the annulus A (see
Figure 6.1). At the same time, § must “go around” Z forcing it to go outside A. It
follows that 6 must cross the whole buffer B°.

We conclude that the horizontal path families in the buffers B° and B° cross
each other. Since both have width > 1, we arrive at a contradiction with the
Non-Crossing Principle. O

Thus, we obtain the canonical multicurve on S comprising the equators of all
the canonical annuli. The corresponding homotopy classes are also called canonical.

Along with the maximal annuli A, we can consider the covering annuli A,
from §1.7.13.

LEMMA 6.40. For any domain S in C and any non-trivial Jordan curve v C S,
we have: mod A, — 2 < mod A, <modA,.

PrOOF. Under the covering ¢ : A, — S, the fundamental group m;(A,)
projects to the cyclic group I' generated by [y]. Since I' = 7m(A,), the annu-
lus A, lifts to an annulus A,y C A, that conformally projects onto A,. The upper
estimate for mod A, follows.
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The lower estimate follows from Lemma 7.15 as mod A, is bounded from below
by the modulus of the geometric collar N, (y), while the latter is at least 7/l —2 =
mod A, — 2. (]

6.8. Canonical weighted arc diagram. Let S be a hyperbolic Riemann
surface of finite topological type, and let ST be its ideal compactification (see
§2.4.17). We assume that /S # ). Let a be a non-trivial proper arc on S landing
on boundary circles of ST (perhaps, on the same one). To the homotopy class of «
we will now associate a weight W(a) > 0 as follows.??

Let 7 : D — S be the universal covering of S, let I' = 71(.S) be the Fuchsian
group of deck transformations acting on D, and let A C T be its limit set. It is a
Cantor set, and the covering 7 extends continuously to a covering 7 : T~ A — 9§
(keeping the same notation). So, for any complementary interval (“gap”) J C T~A,
the projection 7| J is the universal covering over some component J of the ideal
boundary. Moreover, if v € I' is a deck transformation corresponding to the loop
J, then 7 is a hyperbolic M6bius map keeping invariant one of the gaps J over J ,
and the boundary of J consists of the fixed points of .

Let J and J’ be the boundary components of S connected by the arc o. Then
« lifts to an arc & on D connecting some gaps J and J' that cover J and J’
respectively. If « is non-trivial then the intervals clJ and clJ’ are disjoint, and
hence they can be viewed as the horizontal sides of a quadrilateral II = TI(&)
supported on D. Define

Wi(a) = W(J,J') := W(I)

as the width of this quadrilateral. In other words, let us uniformize IT by s standard
rectangle P = [0,a] x [0,1] so that J and J’ correspond to the horizontal sides of
P. Then W(a) = a.

If W(a) > 2, let us define the square buffers of II as the quadrilateral corre-
sponding to the lateral squares [0,1) x [0,1] and (a — 1,a] x [0, 1] in P. Removing
the square buffers from IT we obtain a quadrilateral IT = II(&). The weight of « is
defined as the width of II:

W(a):=WI) =W(a)-2=a—2.

Note that this width is independent of the choice of the lift & since the corresponding
quadrilaterals are related by Md&bius transformations of D.

In case when W(a) < 2, we let W(a) = 0.

The family of arcs o with W(a) > 0 is called the canonical arc diagram A =

A(S) of S.

LEMMA 6.41. Quadrilaterals 11, II' corresponding to different lifts &, & of an
arc « € A are disjoint.

PrOOF. Otherwise these rectangles would have intersecting vertical sides, L C
[Mand L' C I, LNL' # (. But then their buffers B and B’ attached to these sides
would cross each other in the sense the corresponding vertical path families cross.
Since the buffers have width 1, this would contradict to the Non-Crossing Principle
(accompanied with Exercise 6.31) . O

22We will not notationally distinguish an arc and its homotopy class.
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REMARK 6.42. In fact, we could define arcs allowing self-intersections. What
the above argument shows is that the canonical arcs automatically avoid ones.

COROLLARY 6.43. The projection  : Il — S is an embedding.

Thus, the projection II = II(«) := w(II(&)) is an embedded rectangle in S
(obviously independent on the choice of the lift &). We call it the canonical rectangle
corresponding to the arc a.

LEMMA 6.44. Any two canonical rectangles, II(«) and I1(B), are disjoint.

PROOF. Otherwise, some of their lifts, II(&) and II(3), would intersect. But
this can be ruled out by the same argument as in Lemma 6.41. O

Together with Proposition 1.94, this implies:

COROLLARY 6.45. The canonical arc diagram Ag contains at most —3x(.5)
arcs. In particular, for a disk with n holes (which is the only case needed for the
dynamical applications) we obtain at most 3(n — 1) arcs.

Thus, we have at most —3x(S) disjoint canonical rectangles II(«), « € A, on S.
Putting together the vertical foliations on these rectangles, we obtain the canonical
foliation on S.

7. Hyperbolic metric and Schwarz Lemma

7.1. Schwarz Lemma. In terms of the hyperbolic metric, the elementary
Schwarz Lemma can be brought to a conformally invariant form that plays an
outstanding role in holomorphic dynamics:

SCHWARZ LEMMA. Let ¢ : S — S’ be a holomorphic map between two hyper-
bolic Riemann surfaces. Then
e cither ¢ is a strict contraction, i.e., ||[Do(2)|| < 1 for any z € S, where the norm
of the differential is evaluated with respect to the hyperbolic metrics of S and S’;
e or else, ¢ is a covering map, and then it is a local isometry: ||Do(2)|| = 1 for
any z € 5.

PROOF. Given a point z € S, let 7 : (D,0) — (S, z) and " : (D,0) — (57, ¢(2))
be the universal coverings of the Riemann surfaces S and S’ respectively. Then ¢
can be lifted to a holomorphic map ¢ : (D,0) — (ID,0). By the elementary Schwarz

Lemma, |¢'(0)| < 1 or else ¢ is a conformal automorphism of I (in fact, rotation).
This yields the desired dichotomy for ¢. O

In particular, if S C S” then ps > ps (a smaller Riemann surface is “more
hyperbolic”). Moreover, if S # S’ then dpg(z) > dps/(2) for any z € S.

COROLLARY 7.1. Let S C S’ be a nest of two hyperbolic Riemann surfaces,
S#S, and let f: S — X be an (unramified) covering map to a Riemann surface
3. Then for any z € S we have

IDf(2)lls2 > 1,
where the norm of Df(z) is evaluated from the hyperbolic metric of S to that of 3.
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Dy(1)

FIGURE 7.1. Symmetric Schwarz Lemma.

PRrROOF. Since f is a local isometry from the hyperbolic metric of S to that of
Y., we have

dps
(7.1) IDf()lls 2 = 5 =(2),
ps’
and the desired estimate follows from the remark preceding this Corollary. O

7.2. Symmetric Schwarz Lemma.

7.2.1. Formulation. Let us formulate an R-symmetric version of the Schwarz
Lemma (with the notation introduced in §2.4.5): Let LUg be the class of R-symmetric
univalent maps ¢ : C(I) — C(I') between slit planes that restrict to diffeomor-
phisms I — I’ between open intervals I,I’ C R.

SYMMETRIC SCHWARZ LEMMA. Let ¢ : C(I) — C(I') be a map of class L.
Then for any 6 € (0,m), we have ¢p(Dg(I)) C Dy(I").

PRrROOF. Follows from the Schwarz Lemma and Exercise 2.23 (iii) O
Any open interval I = (a,b) C R can be considered as a model of the hyperbolic
line endowed with the hyperbolic metric

2(b—a)dx

ds = ————.
T a-ab-a)
This metric can be also viewed as induced from the disk D(7) ~ H2.

COROLLARY 7.2. Let ¢ : C(I) — C(I') be a univalent map of class Ug. If ¢ is
not Mdébius then it strictly contracts the hyperbolic metric:

(7.2) IDG(@)||nyp <1 V€L
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If L € int I is a smaller interval with modg(I : L) > § > 0 then the hyperbolic norm
in (7.2) is bounded by p(6) < 1, and the map ¢ has a bounded distortion on L:

‘ Do(x)
Do(y)

PrROOF. By the Symmetric Schwarz Lemma, ¢(D(I)) C D(I’). Contracting
property (7.2) follows from the Schwarz Lemma (for the maps D — D). Conse-
quently, the hyperbolic length of ¢(L) is bounded by that of L, which is bounded
in terms of §. Hence the contraction is uniform on L by the Definite Schwarz
Lemma below (or just by a normality argument). Finally, the distortion bounds
follow from the Koebe Theorem. O

<C(5) YuzyeL.

7.2.2. Lipschitz control. Given an interval I = (a,b) and a point z € C(I), let
ang(z,I) = min{| arg(z — b)|, |arg(a — 2)|},

where the argument is selected in the range [0, 7]. In words, ang(z, I) is the smallest
of the angles between the intervals [a, z], [b,z] and the corresponding real rays
(a, —o0], [b, +00) of the real line. We let

(7.3) Co(I):={2z€C(I): ang(z,I)> 6}.

LEMMA 7.3. Under the circumstances of the Symmetric Schwarz Lemma, let
us consider a point z € Cg(I) with dist(z,I) > |I|. Then

dist(¢(2),I") - Cdist(z,])
1| - 1|

with C' = C(0).

PROOF. Let D, (I) be the smallest (closed) geodesic neighborhood of I con-
taining z, and let ]D);;(I ) be its upper half. Assume for definiteness that z € S :=
ODF(I) and [z — b < |z —a|. Let T' C S be the circle arc connecting b to z; its
angular size 7y is less than 7.

Since |z — b| > |I|, the angle between I" and z — b at b is at least 6/2, so v > 6.
Hence

dist(z,1) = |z — b| > C~tdiamD, (1), with C' = C(6).
By the Symmetric Schwarz Lemma, ¢(z) € Dg(I")

). Hence
dist(¢(2), ") - diam(ID>,,(I"))  diam(ID, (1)) < Cdist(z,])

'] - '] | LI

as asserted. O

7:3. Hyperbolic metric blows up near the boundary. For a domain
U C C, let d(z) stand for the spherical distance from z € U to OU.

LEMMA 7.4. Let S be a Riemann surface, v € S, and assume that the punctured
surface S = S~ {a} is hyperbolic with the hyperbolic metric p. Then

|dz|

dp(z) = —— 2L
P& = =g "

where z is a local coordinate on S with z(x) = 0.
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PROOF. By Proposition 2.53, a standard cusp Hj, /Z is isometrically embedded
into S so that its puncture corresponds to x. On the other hand, by means of the
exponential maps H — D*, z +— €% the cusp Hj,/Z is isometric to the punctured
disk D, r = e=2™" in the hyperbolic metric of D*. By Exercise 2.38, the latter has
the desired form in the plane coordinate of D} (which extends to a local coordinate
on S near z). Hence it has the desired form in any other local coordinate on S near
T. (]

PROPOSITION 7.5. For any hyperbolic plane domain U C C, there exists Kk =
k(U) > 0 such that:

dpu K
dpoon ) = T d@ylogd) “ €V

where o is the spherical metric.

PROOF. Take some point z € U, and find the closest to it point a € OU.
Since OU consists of at least three points, we can find two more points, b, ¢ € U,
such that the points a,b,c are e-separated on C, where ¢ > 0 depends only on
U. Let us consider the Mobius transformation ¢ that moves (a,b,c) to (0,1, 00).
By Exercise 2.10, these transformations are uniformly bi-Lipschitz in the spherical
metric, which reduces the problem to the case when (a,b,c) = (0,1,00). But in
this case, py(z) dominates the hyperbolic metric on U = C~ {0, 1}, and the desired
estimate follows from Lemma 7.4. (]

EXERCISE 7.6. More generally, let S be a Riemann surface endowed with a
conformal Riemannian metric o, and let K be a compact subset of S such that
S\ K is a hyperbolic Riemann surface with hyperbolic metric p. Then there exists
a k= k(S,K) >0 such that

@(z)Z—L ze€SNK,
do

d(z)logd(z)’
where d(z) = dist(z, K).

7.4. Hyperbolic metric on simply connected domains. For simply con-
nected plane domains, the hyperbolic metric can be very well controlled:

LEMMA 7.7. Let D C C be a conformal disk endowed with the hyperbolic metric
pp. Then

1 |dz| < dpp(2) < |dz|
- z —_— .
4 dist(z,0D) — PPV = dist(z, 0D)

Remark. Of course, particular constants in the above estimates will not matter

for us.

PROOF. Let r = dist(z,0D); then D(z,r) C D. Consider a linear map h :
D — D(z,7) as a map from D into D. By the Schwarz Lemma, it contracts the
hyperbolic metric. Hence

dpp(2) < ha(dpp(0)) = h.(|dS]) = |dz|/r.

To obtain the opposite inequality, consider the Riemann mapping 1 : (ID,0) —

(D, z). By definition of the hyperbolic metric,
dz
40 (=) = . (dpn(0)) = v (ldC) = oo

O
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But by the Koebe 1/4-Theorem, r < [¢)'(0)|/4, so that dpp(z) > |dz|/4r. O

The 1/d-metric on a plane domain U is a continuous Riemannian metric with
the length element |dz|/d(z). The previous lemma tells us that the hyperbolic
metric on a simply connected domain is equivalent to the 1/d-metric.

7.5. Definite Schwarz Lemma. Montel’s compactness allows one to turn
the Schwarz Lemma into a definitive form. Let us begin with an elementary version:

LEMMA 7.8. Let ¢ : (D,0) — (ID,0) be a holomorphic map that omits a point z
with |z| <r < 1. Then |¢'(0)| < o(r) < 1.

Proor. By the Little Montel Theorem and the Hurwitz Theorem, the space
of maps in question is compact (for a given p < 1). Hence the Schwarz Lemma
becomes definite on this space. 0

Now the Uniformization Theorem immediately turns this elementary fact into
an invariant geometric property:

LEMMA 7.9. Let ¢ : (S,a) — (S',a’) be a holomorphic map between hyperbolic
Riemann surfaces. If ps:(a’,0(¢S)) < r then | Do(a)| < o(r) < 1, where the norm
is evaluated with respect to the hyperbolic metrics.

PROOF. Following the proof of the Schwarz Lemma given in §7.1, lift ¢ to a
holomorphic map ¢ : (D,0) — (D,0). By assumption, there is a point z € 9(¢S)
such that pg/(a’,z) < r. Then ¢ omits a point Z such that

pp(2,0) = distg (z,a") <.
By Lemma 7.8,
[Dg(a)]| = 1¢'(0)] < o(r) < 1.
(I

COROLLARY 7.10. For a nest of two hyperbolic Riemann surfaces S C S’ and

any z € S such that ps/(z,05) < r we have:
dp’
dp

COROLLARY 7.11. Let S C S’ be a nest of two hyperbolic Riemann surfaces,
and let f: S — 5" be an (unramified) covering map. Then for z € S we have

IDf(2)||lsr > A(r) > 1, provided distg/(z,05) <r.
PRrROOF. It follows from (7.1) and Corollary 7.10. O

(2) <o(r) <1

Thus, if S # S’ then a covering map f : S — S’ as above is locally strictly
expanding in the hyperbolic metric of S’. (If S = S’ then it is a local isometry.)

EXERCISE 7.12. Let A’ © A D T be a nest of two annuli symmetric with respect
to the unit circle T such that
0<p <modA' <1/p', 0<p<modA<1/v.
Then for any z € T we have:
dfp’

S o(p,p') <1.
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Moreover, if g : A — A’ is a holomorphic double covering then
[1Dg(2)[lar = M) > 1.
Let us conclude with the inverse of Corollary 7.10:

EXERCISE 7.13. For a nest of two hyperbolic Riemann surfaces S C S’ and any
z € S such that pg:(z,0S5) > r > 0 we have:

dp’
dp
Thus, the hyperbolic metrics on two Riemann surfaces S C S’ are comparable
in terms of ps(z,05").

(z) > &(r) >0, where £(r) = 1 as r — oo.

7.6. Thin-thick decomposition.
7.6.1. Definite cusp neighborhoods.

LEMMA 7.14. There is a universal £ > 0 such that any cusp on any hyperbolic
Riemann surface S has a neighborhood bounded by a horocycle of length &.

PRrROOF. Let I' be the Fuchsian group covering S. Assume it contains the
translation T : z — z + 1 covering a cusp of interest. Let us consider horocycles
Ly = Lp(oc0) in H centered at oo and horocycles

Ly(a)={z€eH:|z— (a+ir/2)| =1r/2}

centered at a € R, and let Hj;, = Hj(c0), H,.(a) be the corresponding horoballs (see
§2.4.4). Note that T translates points of L; by distance 1 in the intrinsic horocyclic
metric.

Let us show that if y(IL1(00)) = L,(a) for some v € T and a € R then r < €.
[This will impy the desired assertion since under these circumstances the horoball
H,2> will project to a cusp neighborhood on S as a cyclic covering, |

Without loss of generality we can assume that a = 0. Let us consider the
horocycle L, C H; on hyperbolic distance 1 from L;. Then (L) = L, /. (which
in the horocylce in H,.(0) on hyperbolic distance 1 from L,). Let us consider the
strip S := cl(H; \ H,) and the crescent C' := cl(H,.(0) \ H, /.(0)) = v(S).

Let 6 :== yoT o~y It is a parabolic map fixing 0 and translatng L,.(0)
by 1 in the intrinsic horocyclic metric. Assume r > e2. Then each horocycle L,
withp € [r/e, r| contains a fundamental interval for ¢ that fits into S.

Let us take a sequence nj — oo. Take a point 2° € S and consider its translate
20 +ng € S and let (0 := (2% +ng) € C. Then 2! := §™0(¢°) € S for some my.
Now repeat the procedure: let ¢! := v(z! +ny) and 22 := §™1({;) € S, and so on.

Proceeding this way, we will construct a non-escaping infinite I'-orbit. O

7.6.2. Geometric collars. Given a simple closed geodesic v on a hyperbolic
Riemann surface S = H/T, let

Ny(v) :={z € 5 distnyp(2,7) <1}
For instance, let us consider the strip model S for the hyperbolic plane (see §2.4.2)

and a standard cylinder A; = S/IZ. Its equator v, := (R+1iw/2)/IZ is a hyperbolic
geodesic of length . In this case, N, (7y;) is also a standard cylinder
1/2+h dy

/\f;t(’yl) ={z: 1/2—h<Imz<1/24+h}/IZ where / my !
12 siny
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FIGURE 7.2. Geometric collar of a geodesic.

PROPOSITION 7.15. Ther exists an n = n(l) such that: for any simple closed
geodesic v C S of length 1, its n-neighborhood cl N, (v) is isometric to the standard
cylinder LN (,); Moreover,

n(l) = log% +0(1) and mod? —2<N,(y) < % as | — 0.

The neighborhood N, () will be called the geometric collar of ~.

LEMMA 7.16. Let us consider an interval I C R of Fuclidean length | < .
Let 6 C S and B C S be respectively the Euclidean semi-circle and the hyperbolic
geodesic in S sharing the endpoints with I. Then (3 lies under §.

PRrROOF. Let x; : 0S — {0,1,} be the characteristic function of I and let
hs : S — Ry be its harmonic extension to S. Similarly, let hﬂ :H — Ry be the

harmonic extension of x;|R to H. Then hg|0S > h B | OS (with a strict inequality
on R + 7). By the Maximum Principle (see §10.5), hg|S > hg. But

0={zcH: hg(z)=1/2}, B={z€8: hﬁ(z)zl/Q}.
Hence hg|B > 1/2 = hg |0, so d is separated from I by 3. O

Proof of Prop. 7.15. (i) Let us realize the universal covering of S as the strip
S so that + is lifted to the horizontal geodesic R + mi/2. The corresponding deck
transformation 7" is the translation by [. Let us consider any deck transformation
R that does not belong to the cyclic group of T, and let B := R(y). Since the
geodesic = is simple, 3 does not intersect it, so both ends of 3 lie either on R or
on R + 7i. Assume for definiteness that the former holds.

Let I C R be the ideal interval sharing the endpoints with 8 (the “shadow” of
B). Since T(3) is disjoint from 3, |I| < I. Hence 3 lies under the geodesic 3 C R
whose shadow is an interval I’ D I of length [. The distance from I’ to R + i /2
depends only on [; call it 3n(l). Then the closed n-neighborhood of R + im/2 is
disjoint from all of its translates by deck transformations. The conclusion follows.
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By Lemma 7.16, 3 lies under the semi-circle § based upon I. The Euclidean
distance between R+i7/2 and 4 is equal (1—1)/2, implying the desired asymptotics
by elementary estimates. O

EXERCISE 7.17. (i) A simple closed geodesic v of length <1 is 3n(l)-separated
from any disjoint simple closed geodesic (where n(l) is defined in the above proof).

(ii) The geometric collars of disjoint simple closed geodesics are disjoint.

7.6.3. Collars around geodesics. Recall from §6.7 that given a simple closed
curve v on a surface S, A, stands for the maximal embedded annulus in the ho-
motopy class of 7.

CoLLAR LEMMA. Let S be a hyperbolic Riemann surface. Then there exist
absolute | > 0 and M such that if for some simple closed geodesic, lnyp(y) < then

mod A, — <M
| o

Inyp(7)

PROOF. Let us represent the universal covering of S a the strip S(7) so that
the geodesic v lifts to the horizontal line {Imz = mx/2}. The corresponding deck
transformation covering ~ is the translation T : z — z 4+ [ with [ = lhyp('y).i Any
other lift of v is a curve contained in a disk D(a,1/2) centered at 0S(w). If [ <,

then this lift lies outside the strip {|Imz — 7/2|} < (7 —{)/2. Hence this strip
projects cyclically to S, and the conclusion follows. O

7.6.4. Local weights. Let us take a component J of the ideal boundary 97S. It
represents a loop on S. Let w5 : Ay — S be the annulus covering of S corresponding
to this loop. (For simplicity, we will often skip label J in the notation, so A = A,
7w =my.) The local weight of J is defined as the width of this annulus:

Wioe(J) := W(Ay).

The following lemma makes a connection between conformal and hyperbolic ge-
ometries of S:

LEMMA 7.18. Let v be the peripheral hyperbolic geodesic on S homotopic to J.
Then

1
WiselJ) = ~ lnyp(1):

PROOF. By definition of the covering 7, the geodesic « lifts to a simple closed
curve 4 C A such that 7 : 4 — v is a homeomorphism. Since 7 is a local isometry,
4 is a closed geodesic, and lnyp (%) = lhyp(7y). But there is only one simple closed
geodesic on A, and by (2.12) we have:

W) = ~ Iy (7).

Putting the above ingredients together, we obtain the desired formula. (|
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FI1GURE 7.3. Thin-thick decomposition.

7.6.5. Thin-thick decomposition (without border). The e-thick part of a Rie-
mann surface is the set of points with injectivity radius > €.

THEOREM 7.19. There exists an absolute € > 0 with the following property.
Let S be a hyperbolic Riemann surface of finite type without ideal circles at infinity.
Then S is represented as the union of finitely many definite cusps, finitely many
canonical annuli and the e-thick part.

7.6.6. Comparison of hyperbolic distances.

EXERCISE 7.20. Let v1 and 72 be two geodesic segments in the hyperbolic plane
such that their endpoints stay distance at most d apart. Then

|lhyp('71) - lhyp('YQ)‘ < 2d.

LEMMA 7.21. Let U C V be two hyperbolic Riemann surfaces. For x € U,
let p(x) > 1 be the conformal density of the hyperbolic metric of U with respect to
the hyperbolic metric of V. Let L(x) = disty (x,0U), where disty stands for the
hyperbolic distance in V. Then

p(z) =1+0(").

PROOF. Let us consider the universal covering 7 : (ID,0)) — (V, z), and let U be
the component of 7~ (U) containing 0. Since 7 is a local isometry, distyp (0, 0U) = L.
Hence U D D, with r =1 — O(e™F).

The hyperbolic metric in D, is obtained from that in D by scaling by 1/r. By
the Schwarz Lemma, the hyperbolic metric in U is dominated by that in D,.. Hence
p(0) < 1/r =140(e™E), where j is the density of the hyperbolic metric in U with
respect to that in . Since 7 : U—Uis covering, it is a local isometry as well, so
p(0) = p(x), and we are done. O
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7.6.7. Hyperbolic geometry of a quadrilateral.

LEMMA 7.22. Let us consider an arc o connecting ideal boundary components
J and J', and let v and ' be the peripheral geodesics homotopic to J and J'. Then

Ihyp (v NTI(@)) = Iy (Y N TI(@)) = 7 W(e) + O(1).

PROOF. Let us consider a lift & of o to the universal covering D. It connects
some ideal intervals J and J’ covering .J and J’ respectively. The geodesics v and
~/ lift to geodesics 4 and 4’ sharing the endpoints with J and J’ respectively. Let
IT be the lift of IT to D.

The quadrilateral in D with horizontal sides J and .J/,

II(&) ~ II° = [0, a] x [0,1],
is symmetric with respect to the geodesic § corresponding to the horizontal axis in
II* on mid-height. This symmetry interchanges the geodesic segments 4 N II and
AN IT implying that they have the same length. So, we can focus on one of these
geodesics, say 4 = 9, in the II”-model (with all notations preserved).

Let 4(z) be the point on 4 with the horizontal coordinate 2z € [0,a]. Then
Im#,(1) decreases as a decreases (the geodesic 4, goes “down” as a decreases,
which can be seen using the comparison principle for the harmonic measure, as
4 is the 1/2-level set for the harmonic function h on IT* which is equal to 1 on
on J and vanishes on the rest of the boundary of I1%). It follows that for a > 2,
1/2—TIm~,(1) is bounded by 1/2—Im~2(1). For the same reason (or by symmetry),
1/2 = Im4,(a — 1) is bounded as well.

We have two geodesics segments, 4 N II and 6 N1II with the endpoints staying
bounded hyperbolic distance apart. By Exercise 7.20,

Inyp (3 NIT) = lyyp (6 N TT) + O(1).

Finally, we should compare the hyperbolic length of § N IT in II® and in the
infinite strip S = {0 < Imz < 1} (as we know, the latter is equal to 7TW(«)).
We claim that they differ by a bounded amount. Indeed, let d(z) = min(z,a — x)
be the distance (both Euclidean and hyperbolic in S) from (z,1/2) € II to the
vertical boundary of II. By Lemma 7.21, the ratio between the hyperbolic metrics
in question at that point is 1 4+ O(e~%®)), which implies the conclusion. O

Let A stand for the family of canonical arcs landing on J. For the correspond-
ing peripheral geodesic v = s, we let

(7.4) Ythick = VJ,thick = 7 U ().
acAy
LEMMA 7.23. There exists an absolute € > 0 such that for any two peripheral
geodesics vy and v, we have: diSthyp(Venicks Vipiex) > €-

PROOF. For asmall e > 0, let us consider two peripheral geodesics, surrounding
boundary curves J and J' respectively, with distnyp(Venick, Vipiee) < €- Let a and
a’ be the closest points on these geodesics, and let ag be the the shortest geodesic
connecting a and a’ (the common perpendicular to our peripheral geodesics).

Let us lift this configuration to the universal covering D so that a and a’ go
to imaginary symmetric points, ia = —ia’. (We mark the lifted objects in D with
“hat”.) Then &y = [@/,a] is contained in the full geodesic & := (—i,14), where «
represents an arc in S connecting J to J'.
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Moreover, 4 and 4’ are uniformly close almost horizontal (in the Euclidean
sense) geodesics chopping off in I a geometrically thin quadrilateral @ symmetric
with respect to both axes. The complement T \. ) consists of two symmetic arcs A
and A’ of size close to 1/2 covering J and J’ respectively. These arcs are horizontal
sides of a rectangle II. Since they are very long compared wih the complementary
arcs of T, the rectangle IT is wide. Hence it produces the canonical rectangle IT(«)
whose lift f[(a) is obtained by chopping off two square buffers from IT. Moreover,
& is the genuinely vertical geodesic in IT, which belongs to II. Thus, the points a
and a’ belong to II(«), which is in the thin part of our surface S. The conclusion
follows. (]

COROLLARY 7.24. Any two disjoint closed peripheral geodesics of length < 1
are at least (1) > 0 separated.

PROOF. On the thin part, the geodesics are e(I)-separated since the canon-
ical rectangles II(«) from (7.4) intersecting  or ' have a bounded width (by
Lemma 7.22). On the thick part, they are e-separated with a uniform ¢ > 0 by
Lemma 7.23. (]

7.6.8. Thin-thick decomposition (bordered case).

THEOREM 7.25. For a bordered hyperbolic Riemann surface S of finite type, we

have:
Do W) =2 Y W(a)+O(x(S))).
Jeors aceWAD(S)

PROOF. Let us consider all the peripheral geodesics v = v, J € 9'S, and
their slices v N II(«) by the canonical rectangles, « € WAD(S). By Lemma 7.22,
we have:

23 WTI(@) = -3 by 1T1(0) + O(x(5)),
« J,a

where the factor “2” appears because each arc o meets two geodesics ;. Also, by
Lemma 7.18,

3" Wae) = —p(0).

Comparing these inequalities, we see that the desired one boils down to

D lngp (Ymiek) = O(Ix(S)))-
J

Let € > 0 be from Lemma 7.23. For each peripheral geodesic v, consider a maximal
2e-separated net of points xZJ on 7jthick- Let ny be the number of these points.
Then
eEng X lhyp('VJ,thick)-
By the choice of ¢, the hyperbolic half-disks B(z/,¢) (lying on the interior side of
the corresponding geodesics) are pairwise disjoint. Hence
2
Z %nJ < areahyp(sconv)a
J

where Scony is the conver hull of S, i.e., the subsurface bounded by all periph-
eral geodesics. By the Gauss-Bonnet formula, the latter is equal to wx(S). The
conclusion follows. O
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7.7. Carathéodory convergence.

7.7.1. Convergence of domains. Let us consider the space D of all pointed con-
formal disks (D, a) in the complex plane. This space can be endowed with a natural
topology called Carathéodory. We will describe it it terms of convergence:

DEFINITION 7.26. A sequence of pointed disks (D,,,a,) € D converges to a
disk (D,a) € D if:
(i) an — a;
(ii) Any compact subset K C D is eventually contained in all disks D,,:
dN: KCD,Vn> N,

(iii) If U is a topological disk contained in infinitely many domains D,, then U is
contained in D.

Note that this definition allows one to pinch out big bubbles from the domains
D,,.

EXERCISE 7.27. a) Define a topology on D that generates the Carathéodory
convergence.

b) Show that if OD,, converges to OD in the Hausdorff metric then the disks
D,, converge to D in the Carathéodory sense.

The above purely geometric definition can be reformulated in terms of the
uniformizations of the disks under consideration. Let us uniformize any pointed
disk (D,a) € D by a conformal map ¢ : D — D positively normalized so that
¢»(0) = a and ¢’(0) > 0.

PROPOSITION 7.28. A sequence of pointed disks (D,,a) € D converges to a
pointed disk (D, a) € D if the corresponding sequence of normalized uniformizations
¢n D — D, converges to the positively normalized uniformization ¢ : D — D
uniformly on compact subsets of D.

PROOF. Assuming ¢,, — ¢, let us check properties (i)-(iii) of Definition 7.26.
The first one is obvious. To verify (ii), take a compact subset K of D. Then
¢(D,) D K for some r < 1. Hence dist(¢(T,.), K) > 0 and the curve ¢ : T,, — C
has winding number 1 around any point of K. Since ¢, — ¢ uniformly on T,,
eventually all the curves ¢, : T,, — C have winding number 1 around all points of
K. Then ¢,(D,) D K.

Let us now verify (iii). It is enough to check that any disk V' € U is contained
in D. For such a disk, we have: mod(D,,, V) > u > 0 for all n. Let W,, = ¢, *(V,,).
By the conformal invariance, mod (DD, W,,) > u as well. Hence W,, C D;_o. for some
e >0 (by Lemma 4.17 or 6.10). Using conformal invariance of moduli and Lemma
6.10 once again, we conclude that dist(¢,(T1—z),V) > p > 0. Since eventually
lp(2) — én(2)] < p/2 on Ty_g, the curve ¢ : T;_. — C has the same winding
number around any point of V as ¢, : T;_. — C, and the latter is equal to 1 (for
n sufficiently big). Hence ¢(D1_.) D V, as required.

Vice versa, assume (D,,,a,) — (D, a) in the Carathéodory topology. By Prop-
erty (ii) of Definition 7.26, the domains D,, eventually contain the disc D(a,rp(a)/2)
(where rp(a) stands for the inner radius of the domain D with respect to a € D,
see §4.4). By Corollary 4.18, |¢,(0)| > rp(a)/2.
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On the other hand, by Property (iii), the domains D,, do not eventually contain
the disc D(a,2rp(a)). By Corollary 4.18, |¢!,(0)| < 8rp(a).

Thus, |¢,(0)| < 1. By the Koebe Distortion Theorem (see Exercise 4.14), the
family {¢,} is precompact in the space of univalent functions. But by the first
part of this lemma, any limit function ¢ = lim ¢, ) is the positively normalized
uniformization of (D,a) by (D,0). It follows that the ¢, converge to this uni-
formization. (]

For r € (0,1), let D, stand for the family of pointed disks (D, a) € D with
r<rp(a) <1/r.
COROLLARY 7.29. The space D, is compact.

PROOF. Let ¢p : (D,0) — (D, a) be the positively normalized uniformization
of D. By Corollary 4.18, r < ¢/5(0) < 4/r By the Koebe Distortion Theorem
(see Exercise 4.14), the family of univalent functions ¢p, D € D, is compact. By
Proposition 7.28, the space D, is compact as well. (I

7.7.2. Convergence of maps. With these notions in hands, we can define con-
vergence of a sequence of functions ¥, : (Dp,a,) — (C,b,) on varying domains.
Namely, the functions ,, converge to a function ¢ : (D, a) — (C,b) if the pointed
domains (D,,,a,) converge to (D,a), and v, — % uniformly on compact subsets
of D. (This makes sense since for any K € D, all but finitely many functions ¢,
are well defined on K.)

REMARK 7.30. We will often suppress mentioning of the base points a,, as
long as it would not lead to a confusion.

We can now naturally define normality of a family of functions ¢, : D,, — C
with varying domains of definition. In case when the D,, converge to some domain
D, we also say that “the family {¢,,} is normal on D”.

The statement of the Montel Theorem admits an obvious adjustment in this
setting: If the family of domains D,, is Carathéodory precompact and the functions
Up + Dy — C omit three values on the Riemann sphere, then the family {¢}, is
normal.

7.7.3. Space of annuli maps. In conclusion, let us consider the space A of
pointed conformal annuli (4, a) whose equator E contains a and separates 0 from
00.

EXERCISE 7.31. (i) Carry the above discussion for the space A.
(ii) Show that for any p € (0,1), R > 1, the subspace

Ayr={A: p<modA<1/u, R7'<|a| < R}
is Carathéodory compact.

Let us consider the space €4 of annuli coverings f : (4,a) — (4',a’) (with
A, A" € A) of degree d. Let €4(u, R) be the subspace of maps f € €; with A € A, g.

EXERCISE 7.32. For anty d € Zy, j € (0,1) and R > 1. the space C4(p, R) is
compact.
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8. Carathéodory boundary

8.1. Prime ends. As we know from §2.4.17, any non-cuspidal tame end F of
a Riemann surface S can be completed by attaching to it ideal circle d’e. It turns
out that in case when S € S for some ambient Riemann surface S, this completion
can be described in terms of the ambient geometry. This is the goal of this section.

We will follow the general strategy outlined in §1.7.6: to define a notion of an
“end”, we need a notion of a “fjord” and a notion of “escaping nest” of fjords.

8.1.1. Nested fjords. We will focus on the case of a conformal disk in the Rie-
mann sphere. So, let us consider a pointed conformal disk (D,a) C (C,a). A (gen-
uine) cross-cutin D is an arc o : [0,1] — D~{a} such that int o = ¢(0,1) C D while
Oo = 0{0,1} C dD. A generalized cross-cut in D is a proper arc o : (0,1) — D
not passing through a.

EXERCISE 8.1. Any generalized cross-cut o divides D into two domains,

The component of D \ ¢ that does not contain a is called a prime fjord F.
A prime fjord is specified as genuine or generalized according to the quality of its
cross-cut.

EXERCISE 8.2. Show that for any € > 0, a generalized cross-cut o : (0,1) —
D can be e-approzimated (in the Hausdorff metric) with a genuine cross-cut o’ :
[0,1] = D coinciding with o on [5,1 — 6] (for some 6 > 0) and such that the ends
0'[0,0] and o'[1 — 6,1] have length < e.

Now we can define equivalent nests of prime fjords as in §1.7.5.

REMARK 8.3. Sometimes it is convenient to consider continuous nests of prime
fjords Fy, t € (0,¢e) (where Fr C Fy for 7 < t).

Let ¢ : D — D be the Riemann mapping. A nest of prime fjords F;, is escaping
if diam(F,) — 0. For instance, a nest of standard fjords F;, is escaping if and
only if |6 —0,7| — 0 and t,, — 0, where 0, t,, are respectively the angles and the
level of the rays and the equipotential bounding the F,.

Following the general strategy, we now define a prime end E of D as an equiv-
alence class of escaping nests of (generalized) prime fjords. The definition is
designed so that there is a natural one-to-one correspondence between prime ends
and points of the ideal boundary &' D ~ T. In these terms, topology on the ideal
compactification &' D ~ D can be described as follows (compare §1.7.5). Given a
prime fjord F', let U,,(F') be the union of F' and all the prime-ends that are subor-
dinated to F'. The base of topology of ' D comprises all the sets U(F), together
with all open sets of D.

According to a general definition from §1.7.6, the impression of the prime end
E represented by a nest of prime fjords (F,) is defined as

I(E) =()Fn

8.1.2. Shrinking cross-cuts. The above discussion is quite tautological as the
notion of “escaping fjords” is defined in terms of the Riemann mapping. What will
make it useful is that prime ends can be characterized in terms of the ambient
geometry of the domain D.

A nest of cross-cuts is shrinking if length(c,,) — 0 (in the spherical metric).
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LEMMA 8.4. Any prime end is represented by a nest of (genuine) prime fjords
with shrinking cross-cut.

PROOF. Let b € T and e = e(b) be the corresponding prime end of D. Tt is
represented by the (continuous) nest of circular cross-cuts o, := T(b, 7)ND around b.

The images ¢(o,.) form a continuous nest of (generalized) cross-cuts of D. These
cross-cuts do not necessarily shrink, but as we will see in a moment, some of them
do.

It will be slightly more convenient to replace I with the upper-half plane H
and to put b at the origin. Let us consider half-circles S(r) = T, N H around 0.
We will show that there is a sequence of good radii ; — 0 such that the cross-cuts
¢(S(r;)) of D shrink. To this end, let us consider half-annuli II, = A(r/2,r) N H
viewed as rectangles whose horizontal sides are the semi-circles. Let F, be the
horizontal foliation of II, by the half-circles S,, r/2 < p < r. The extremal length
of this foliation is equal to 1/ mod I, = w/log 2. By the conformal invariance, the
foliation ¢(F;) has the same extremal length.

Let I, be the minimal spherical length of the curves of ¢(S,), /2 < p < r. By
definition of the extremal length,

12 0
area(¢(IL,)) < L) = log2’
where the “area” stands for the spherical area. Since area(¢(A,)) — 0 as r — 0,
we conclude that [, — 0 as well, which gives us the desired nest with shrinking
cross-cuts. (]

(8.1)

REMARK 8.5. a) Notice that the good radii r; constructed above have the
property that ;41 > r;/2.

b) Note also that the rate of shrinking of the above cross-cuts is uniform with
respect to the choice of b € T. Indeed, all the rectangles II,. are contained in the
annulus A[1 — r, 1) (in the disk model), and area ¢(A[1 — r,1)) — 0. This makes
estimate (8.1) uniform.

To reverse the above lemma, we will need the following useful fact that can be
called uniform continuity of the Riemann mapping on continua:

LEMMA 8.6. Let D C C be a conformal disk, and let v : D — D be the Riemann
mapping. Then for any € > 0 there exists a § > 0 such that for any continuum
v C D with diam~y < § (in the spherical metric) we have diam(i(7y)) < €.

PROOF. Assume this is not the case. Then we can find a sequence of continua
~n C D such that 7, — b € 9D, while the images 1(7,,) converge (in the Hausdorff
metric) to some closed interval w C T (which a priori could even coincide with the
whole circle T). Let w’ be a closed sub-interval of int w.

As in Lemma 8.4, let us pass again to the half-plane model, so that w’ C R.
Let us also put b at the origin. Also, let ¢ =~ : D — D.

Lemma 8.4 implies that for any ¢ € N there is a finite family of half-circles
Sy, (a;) = {|z — a;| = r;, Imz > 0} such that:

la; —7i,0; + 73] Cw, WICU(ai_Tiaai+Ti)

and

ri <1/, U(Sy (a;)) < 1/
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Since each of these half-circles intersects ¥ (v,), and v, — 0, we conclude that
¢(Sr;(a;)) — 0 (in the Hausdorfl metric).

Concatenating arcs of the above circles, we obtain a genuine cross-cut o; in D
with a base interval T; such that w’ C intT; C T; C w. Moreover, we can arrange
the construction so that the base intervals T; form an increasing nest. Then for any
i and j > 7 sufficiently big, we can find a Jordan curve I'; ; composed by an arc of
o; and an arc of ;. It bounds a Jordan disk A;;. By the Maximum Principle,

max.ca,, |¢(z)| = 0 asi,j— oo.
Letting j — 0o, we conclude that
limsup |[¢(2)| <& asz— o,

where ¢; — 0. Hence ¢(z) — 0 uniformly as z — w’, so ¢ admits a continuous
extension to w’ by letting ¢|w’ = 0. But this is impossible. O

EXERCISE 8.7. Can you justify this assertion?

COROLLARY 8.8. Let D C C be a conformal disk, and let ¢ : D — D be the
Riemann mapping. If a curve v : [0,1) — D lands at some boundary point b € 0D
as t — 1, then its image ¥(7) lands at some point e(8) of the circle T.

Finally, we can invert Lemma 8.4:

COROLLARY 8.9. Let D  C be a conformal disk, and let ¢ : D — D be the
Riemann mapping. If (F,) is a nest of genuine prime fjords in D with shrinking
cross-cuts, then (Y(F,)) is a nest of fiords in D of the same quality. Hence the
latter shrinks to some point of of T.

Lemma 8.4 and Corollary 8.9 show that for a conformal disk D c C, any prime
end of D is represented by a nest of (genuine) prime fjords with shrinking cross-
cuts, and vice versa: any such a nest represents some ideal end. This brings us to
the standard definition of a prime end as an equivalence class of nests of (genuine)
prime fjords with shrinking cross-cuts. We see that a prime end gives a view of an
ideal boundary point in terms of the spherical geometry (for a conformal disk in
C) With this understanding, we will also refer to the ideal boundary 9D as the
Carathéodory boundary and will use notation 9D for it. Accordingly, the ideal
compactification cl’ D will also be called the Carathéodory compactification ¢ D.

We are ready to formulate a fundamental result of the classical boundary values
theory:

CARATHEODORY BOUNDARY THEOREM. The Riemann mapping ¢ : D — D
extends to a homeomorphism ¢ : D — ¢ D.

EXERCISE 8.10. Let us consider two conformal disks D, D’ C C and a home-

omorpi}ism h:D—D. Thenh:D — D continuously extends to a homeomor-
phism h: c1° D — ¢l D'. Moreover, if D = D’ and h|dD = id then h|9°D = id.

COROLLARY 8.11. Let D g@ be a conformal disk, and let ¢p : D — D be
the Riemann mapping. Let h : D — D be a homeomorphism. Then the conjugate
homeomorphism H = ¢oho ¢~ ! : D — D admits a continuous extension to D.

Moreover, if h| D = id then H|T = id.
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In conclusion, let us consider an arbitrary domain D in C with a tame end E
corresponding to a connected component K of C ~ D. Then K has an annular
collar A C D representing F. Uniformize A by a round annulus A(r, 1) so that
E corresponds to T. Then one can develop the theory of prime ends for E in the
same way as above identifying the ideal boundary 95D ~ T with its Carathéodory
boundary, 9¢ D.

EXERCISE 8.12. Go through details of this construction.
8.2. Local connectivity and Conformal Schénflies Theorem.

EXERCISE 8.13. Show that the inverse Riemann map ¢ : D — D extends con-

tinuously to a point a € D if and only if the corresponding impression I(¢p(a)) is
a singleton.

EXERCISE 8.14. Let I' C C be an immersed smooth closed curve with trans-
verse self-intersections, and let D be the unbounded component of C~\T. Then the
uniformization ¢ : C D — D admits a continuous extension to a map T — T.
Moreover, for any a € T, card(¢~'(a)) is equal to the number of components of
intersection D(a,e) N D, where € > 0 is sufficiently small.

The next classical theorem will motivate some central problems of holomorphic
dynamics:

CARATHEODORY-TORHORST THEOREM. The following properties are equiva-
lent:

(i) The inverse Riemann mapping ¢ : D — D extends to a continuous map D — D;
(i) OD ‘s locally connected;
(iii) C ~ D is locally connected.

PRrROOF. (i) = (ii) by Exercise 1.13.
(i) = (iii) by Exercise 1.16.
(iii) = (i). Assume ¢ does not admit a continuous extension to D. Then there
is a point a € 9D such that the corresponding prime end qg(a) has a non-singleton
impression I = I(¢(a)). Let us consider a nest of semi-circles 8, shrinking to
a whose images v, := ¢(d,) form a nest 4 of cross-cuts representing the prime
end ¢(a) (see the proof of the Carathéodory Boundary Theorem). By selecting a
subsequence, we can assume that the cross-cuts =, shrink to some point y € dD.

Since I is not a singleton, diam D;f (5) 4 0. Hence there exist € > 0 and a
sequence of points ¢, = ¢(z,,) € D;f (5) such that dist((,,v,) > . Let us connect
zn, t0 0 by the straight interval [0, z,]; it crosses d,, at some point b,,. As the distance
d(¢(0), ¢(by,)) stays away from 0, we can assume it is bigger than e as well.

Thus, both arcs, ¢[0,b,] and ¢[b,, z,] must intersect the circle of radius £/2
around y (for n sufficiently big). Then there is a subarc

wn C D(y,e/2) N[0, zn] € D

with endpoint on this circle that crosses v, at a single point ¢(b,). This arc
separates the endpoints of ~,, in D(y,e/2) \ D, contradicting local connectivity of
C~ D at y. |

As a consequence, we obtain:
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CONFORMAL SCHONFLIES THEOREM. Let vy C C be a Jordan curve and D be
a component of C \ . Then the Riemann uniformization ¢ : D — D extends to a
homeomorphism D — D.

8.3. Accessibility and landing rays. Let K C C be a hull and let J = 0K.
Then D := C~ K is a hyperbolic disk, so D ~\ {oo} supports two orthogonal
analytic foliations, by rays and equipotentials centered at oo (see §§4.2, 10.9). In
this situation, they are also called external rays and external equipotentials for K.

Let B:C~ K — C ~ D be the Riemann mapping normalized so that B(z) ~
z as z — o0o0. By definition, the external rays and equipotentials for K are the
pullbacks of the straight rays emanated from oo and round circles centered at oo
(compare §4.2). Let R? be the pullback of the straight ray {re(#) : r > 1}, and let
RO (r) = B~ (re(9)).

Let w(R?) stand for the limit set of the ray R?, i.e., the set of all subsequential
limits

a= lim R%(r,) € J.
Trn—1

We say that a ray RY lands at some point a € J if R%(r) — a as r — 1 (or

equivalently, w(R?) = {a}). In this case, R =RU {a} is called a closed external
ray.
By the Carathéodory-Torhorst Theorem, we have:

COROLLARY 8.15. If K C C is a locally connected hull then every external ray
RY lands at some point z(0) € J.

LINDELOF THEOREM. Let D C C be a conformal disk, and let ¢ : D — D be
the Riemann mapping. Assume there is a curve § : [0,1) — D landing at ¢>™? € T
whose image v(t) := ¢(5(t)) lands at some point ¢ € D. Then the ray RY also lands
at ¢, with the same access as .

PRrROOF. Let us replace D with the half-plane H so that 0 € OH corresponds to
¢?™9 (keeping the notation for ¢). Then the ray R in question is equal to ¢(i-R. ).

In the course of the proof of the Carathéodory Boundary Theorem we con-
structed a shrinking nest of cross-cuts o; = ¢(S(r;)), where S(r) = T, N H and
riv1 > r;/2. Tt follows that the ray R intersects cross-cuts o; at points z; such that
lhyp(R[zi, zi+1]) < log2, where R|[z;, zi11] is the arc of R in between points z; and
zi+1 and lengthy . stands for the hyperbolic length in D.

Since near 9D, the hyperbolic metric blows up compared with the spherical one
(Proposition 7.5) we conclude that lengthy,;, R([2n+1,2:]) — 0 as i — oo. Since the
cross-cuts o; uniformly converge to ¢, so do the arcs R|z;, z;11], and the conclusion
follows. (]

EXERCISE 8.16. Let D be a conformal disk and let ¢ : D — D be the Riemann
mapping. If some ray R?, 0 € R/Z, lands at some point { € OD then ¢(z) — ¢
uniformly on any Stolz sector centered at e(6).

The Lindeldf Theorem, together with Corollary 8.8, imply:

COROLLARY 8.17. Let D € C be a conformal disk. If a curve v in D lands at
some boundary point b € D, then there is a ray RY landing at b with the same
access as 7.
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LEMMA 8.18. Let D be a conformal disk and let ¢ : D — D be the Riemann
mapping. Let v, : [0,1) — D be two curves landing at some points b, b’ € 0D
respectively, and let e(6),e(0’) € T be the landing points of their images (), ¥ (Y)
(existing by Corollary 8.8). Then 6’ = 0 iff b’ = b and the curves v,~" represent the
same access to b. Moreover, R? is the only ray landing at b with the same access.

PrOOF. Let v : [0,1) — D and ~(t) — b as t — 1. For each small ¢ > 0,
let us define a cross-cut o. as the component of dD(b,e) N D that separates (0)
from the ~(¢) with ¢ sufficiently close to 1. These cross-cuts form a (continuous)
nest with shrinking cross-cuts that represents a prime end p € 9¢D. Moreover,
v(t) — p as t — 1 in the Carathéodory compactification cd“ D of D. By the
Carathéodory Boundary Theorem, ¢ := t(v(t)) converges to the corresponding
point a = €2 := 4)(p) of T.

If 7/ lands at b with the same access, then the prime end p constructed above
is the same for these two curves. Hence ¢ (') converges to the same point a € T.
In particular, R is the only ray that can land at b with the same access as 7.

Vice versa, assume that the images § and ¢’ of v and 7' converge to the same
point ¢(#) of T. By the Lindelsf Theorem, the ray R = R? lands at the same point
of D as each curve v and +'. So, v and +’ land at the same point b.

Let us show that « and ' represent the same access to b as R. It is sufficient to
deal with one of them, say v. We can also assume without loss of generality that ~y
is smooth and transverse to R. If § = ¢(y) intersects the interval I := [0, a) at two
consecutive points §(t) and §(7), ¢ < 7, then we can pull the arc §[t —e, 7+ €] off so
that it becomes disjoint from I, without changing the access of v to b. Performing
this to all intersections one by one, we replace § with a curve landing at a and
disjoint from I, without changing the access of v to b. Furthermore, by means of
the loop-erasing procedure (see Lemma 1.9), we can turn 7 into an arc landing at
the same point b.

Thus, we can assume without loss of generality that § is an arc disjoint from
I. Let us connect in D the beginning points (6(0) and 0) of § and I to obtain a
Jordan curve T' C DU {a}. Let A C D be the open Jordan disk bounded by T'. By
the Carathéodory Boundary Theorem, the conformal mapping ¢ =~ ' : A — D
extends continuously to A. Hence any homotopy 6; C A between ¢ and I rel a
induces a homotopy ~v; := ¢(d;) C D between v and R rel b. O

We see that landing of a ray at a certain boundary point b € 9D and the number
of landing rays can be detected purely topologically by looking at accesses to this
point. As the rays naturally correspond to prime ends, in the locally connected
case there is one-to-one correspondence between all accesses to all boundary points
and all prime ends.

A cross-cut, and the corresponding fjord, is called Green if it is composed of
two arcs of Green rays and an arc of an equipotential (centered at a). Lemma 8.18
implies that any genuine cross-cut can be replaced with a Green cross-cut with the
same accesses. It follows that any escaping nest of prime fjords is equivalent to a
nest of Green prime fjords. So, prime ends can be defined in terms of Green prime
ends as well.
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8.4. Appendix: Radial limits for bounded functions. Local connectivity
implies accessibilty of all points of a hull. Remarkably, “almost all” points can be
accessed for an arbitrary hull.

Let ¢ : D — C be a holomorphic function. We say that it has a radial limit for
0 € R/Z if there exists a limit

¢(e(0)) := lim ¢(re(6)).

We say that ¢ has almost all radial limits if the radial limits exist for Lebesgue
almost all 0 € R/Z.

The following classical result by Fatou (1906) might be the first application
of the Lebesgue Intergation Theory to Complex Analysis that inuagurated the
Boundary Value Theory for holomorphic functions:

FAaATOU THEOREM. Any bounded holomorphic function ¢ : D — C has almost
all radial limits.

See [GaM, Ch.1,§2] for the proof.

EXERCISE 8.19. Show that for any hull K C C, external rays R? land for a.e.
0 € R/Z. (It can be also formulated by saying that almost all point with respect to
the harmonic measure on K are accessible.)

UNIQUENESS THEOREM. Let ¢ : D — C be a bounded holomorphic function. If
there is a set © C R/Z of positive length such that ¢(0) = ¢ on ©, then ¢ = ¢ on
D.

This classical result is attributed to F. & M. Riesz or Privalov. See [GaM, Ch.
VI, §2] for the further discussion.

REMARK 8.20. These results are important for the Ergodic Theory of polyno-
mials. However, they do not play much role in the theory developed in the 2nd
volume of this book (§23.2 notwithstanding).

9. Puzzle and pinched disk models

9.1. Cut-curves and puzzle pieces for hulls.

9.1.1. Terminology. Let us develop some terminology concerning intersections
of a curve v with a hull K C C.

Assume first that ~ is an arc intersecting K for a single parameter, which
we can place at 0. Let a = (0). We say that v touches K at a if the local
branches v_ : (—¢,0] — C and 74 : [0,€) — C represent the same access to a from
D :=C ~ K. Otherwise we say that v cuts K at a.

An embedded curve v (which can be closed) is called a cut-curve for K if v cuts
K at every intersection point a; = v(¢;) € K N~. In particular, we can talk about:
e a Jordan cut-curve;

e a cut-line, i.e., a properly embedded line R — C which is a cut-curve. (It can
also be viewed as a Jordan cut-curve in C)

Note that in both cases, the intersection v N K is finite.

Let L : R — C be a cut-line crossing K at points a; = L(t;), where t; < - -+ < t,,.
It is a concatenation of two topological rays

Lo: (—oo,t1] > DU{a1}, Ly :[tn,+00) = {a,}UD,
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and n — 1 arcs L; : [t;,tiy1] — {a;} U D U {a;+1} whose interiors lie in D. The
Lindel6f Theorem implies that

e L is homotopic in D rel a; to an external ray in D landing at a; (and similarly,
for L,);

e Each L;, i =1,...,n — 1, is homotopic in D rel {a;,a;1+1} to a concatenation of
two arcs of Riemann rays in D and an equipotential arc.

So, the whole cut-line L is homotopic in C rel (LN K)U{oo} to a line concate-
nated of arcs of external rays and equipotentials in D (in a “minimal” way). The
latter cut-lines are called Green. The ray part of such a line is called vertical, while
the equipotential part is called horizontal.??

We say that a cut-line is simple if it crosses K at a single point a. If such a

line is Green, it comprises two closed external rays, R and R”, landing at a.

A point a € K is called a cut-point if there is a simple cut-line L through this
point. In this case, the components of C . L are called (open®?) sectors bounded
by L (rooted at a). For a Green sector S bounded by rays R and R%, we
call Sh(S) := (01,02) C R/Z the shadow of S at infinity (where the arc (61, 02) is
selected so that the rays RY with § € (61, 6,) are contained in S).

A sector S rooted at a cut-point a is called perfect if the intersection T :=
(K NS)~ {a} is connected. In this case, the closure T := clT* = T* U {a} is
called a branch of K at a, while T™ itself is called an wunrooted branch. Under
these circumstances, there are no non-peripheral accesses to a from S\ K. (By a
peripheral access to a we mean an access given by a boundary curve of 9S.) For a
perfect Green sector, it follows that no external ray R? C S lands at a.

A puzzle piece (for K) is a closed Jordan disk P bounded by a Jordan cut-curve
~. The cut-points K NOP are called vertices of P. Given a vertex a € P, the local
sector S of OP rooted at a and contained in int P is called the corner of P at a. A
puzzle piece is called perfect if all its corners are such.

9.1.2. Chopping off subhulls. More generally than above, we say that two hulls,
K, and K, touch at a point a € K1 N Ky if the set K := K1 U K5 admits a cut-line
through a locally separating K; \ {a} from Ks ~\ {a}.

The following lemma shows that a simple cut-line cuts a hull into two subhulls
touching at the cut-point.

LEMMA 9.1. Let K C C be a hull, L be a simple cut-line through a cut-point
a € 0K, and let S be a corresponding global sector rooted at a. Then the intersection
SN K is non-empty, and SNK =cl(SNK)=(SNK)U{a} is a subhull of K.

PRrROOF. The intersection S N K is non-empty since L is a cut-line.  Further-
more,

SNK=(SNK)U@BSNK)=(SNK)U(LNK)=(SNK)U/{a}.

Let us show that S N K does not contain relatively clopen subsets X C S.
Assume otherwise. Since SN K is closed, X is closed in K as well. On the other
hand, as X € SN K and X is relatively open in S N K, it is relatively open in
SN K. But since S is open, SN K is relatively open in K. By “transitivity”, X

23This terminology will naturally be extended to various objects below that involve cut-lines
(sectors, puzzlle pieces, corners).
24We will also allow closed and semi-open sectors, with obvious adjustments.
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is relatively open in K. Thus, X is clopen in K contradicting connectivity of the
latter.

Now, if S N K is disconnected then it is decomposed into a disjoint union of
relatively clopen subsets, SN K = X LI X5. Since only one of them can contain a,
which is the only point on SN K, one of the sets X; is contained in .S, contradicting
the above assertion.

Thus, S N K is a continuum. Let us show that it is full. Indeed, if U is a
bounded component of its complement, then QU C K. Since K is full, U C int K.
Since U is in the complement of S N K, it intersects int K ~. S. But then it is
contained in int K \. .S (since any connected subset of K intersecting both S and
C ~. S must contain a, which is on the boundary of K). Then U C K \. S, while by
its definition OU C SN K. It follows that U C {a}, which is of course an absurd.

To complete the proof, we need to check that cl(SNK) = (SN K)U{a}. Since
we already know that the latter set is closed (equal to SN K), it is left to notice
that a € cl(S N K), for otherwise SN K would be a clopen subset of SN K. O

We can now proceed inductively to show:

COROLLARY 9.2. Let K C C be a hull.
(i) Let L; be a finite family of disjoint simple cut-lines with L; N K = {a;}. Then
any component S of C~ |J L; intersects K, and
SNK=c(SNK)=(SNK)U{a; € 05}
is a subhull of K.
(ii) For any puzzle piece P, the intersection PN K is a subhull of K.

REMARK 9.3. Notice that any two components S; and Sy as above are sepa-
rated by a cut-line L, and hence their closures can only touch at a single point
a=LNK.

In fact, Corollary 9.2 is still valid for infinitely many cut-lines:

COROLLARY 9.4. Let K C C be a hull, and let L; be a countable family of
disjoint simple cut-lines with L; N K = {a;}. Assume z € K s distinct from all
the a;, and let I = I(z) C K be the set of points in K that are not separated from
z by the cut-lines L;, together with those a; that are not separated from z by other
cut-lines Lj, j # 1. Then:

(i) I is either a subhull of K or a singleton.
(ii) If none of the a; is separated from z by another cut line L; (j # i), then I(z)
is a hull.

(iil) For any nest of puzzle pieces Py D Py D ..., the intersection K N[ P, is either
a subhull of K or a singleton.

PRrROOF. (i) Consider subhulls I,, = I,,(z) associated with the first n cut-lines
Ly,...,L,. By the previous corollary, they form a nest of subhulls. As (I, = I,
the conclusion follows.

(ii) Under these circumstances, all the a; belong to I, so I is not a singleton
(provided there is more than one point a;; otherwise the assertion is directly covered
by Lemma 9.1).

Part (iii) is a particular case of (i). O
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Letting S; be the sector bounded by L; that does not contain z, we can also

describe I(z) as follows:

I(z) =C~ U Si.
So, I(z) is obtained from K by chopping off infinitely many sectors S;. Moreover,
in case (ii) these sectors are pairwise disjoint.

Note that in general the relation between accesses to a hull K and a subhull @
is quite loose. Indeed, different accesses to K can represent the same access to @,
while on the other hand, an access to () may not represent any access to K. We
can only say that the set of acceses to K at z is naturally mapped to the set of
accesses to @) at z. [This map is obtained by viewing a curve v C C~\ K landing at
z as a curve in S \ @Q.] However, under the above circumstances, we can say more:

LEMMA 9.5. Under the circumstances of Corollary 9.4 (ii) , the set of acceses
to K at z is naturally injected to the set of accesses to I = I(z) at z.

PRrROOF. Let us consider two curves 71,72 C C \ K landing at z representing
two different accesses to K at z. Together, they form a simple cut-line L through K
at z, which bounds two sectors Sy. By Lemma 9.1, the sets K1 := (K NSy)U{z}
are two subhulls of K touching at z; so, they are not singletons. Accordingly, the
set A of cut-points a; is partitioned into two disjoint subsets, AL := {a; € Sy} =
{a; € K1}. Let

Iy =INKy = (IﬂSi)U{Z}.
Then I, is obtained from K by chopping off sectors S; rooted at a; € K and
the sector S_, all disjoint. By Corollary 9.2 (ii), I+ is a not a singleton; similar,
neither is I_. It follows that v+ represent different accesses to I at z. (]

9.1.3. Puzzle ends, impressions, and rigidity. Let K be a hull, and let D :=
C \ K. Following the general framework of §1.7.6, the family P of puzzle pieces
allows us to compactify the domain D. In this setting, we define puzzle fiords as
the intersections F'(P) := int(P N D) for various P € P. An escaping nest of
fjords Fyp D Fy D ... (or, the corresponding puzzle pieces P,) is defined by the
property that any puzzle piece P € P either contains P, := [P, or int P is
disjoint from P,.

EXERCISE 9.6. Show that the last property is equivalent to saying that P
cannot be cut into two pieces by a cut-line of K.

With these in hands, we have a notion of puzzle ends E = Ep, puzzle boundary
07D, and puzzle compactifications c” D. We also have a notion of the puzzle
impression P (F) of a puzzle end E defined as (| P, for any escaping nest (F,)
representing F.

For a € K, we define the puzzle end E(a) as the end represented by escaping
puzzle nests (P,) such that a € int P,,. The corresponding puzzle impression Py (a)
is the set of points ¢ € K that cannot be separated from a by a cut-line (i.e., there is
no cut-line L such that a and ¢ lie in different components of C \ L). Equivalently,
P, (a) is the intersection of all puzzle pieces containing a in its interior.

Corollary 9.4 implies:

COROLLARY 9.7. (i) Let K be a hull. Then any puzzle impression P (a) is
either a subhull of K or a singleton.
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(ii) There is a natural pojection K — OF D whose fibers are puzzle impressions.
(iii) If all puzzle impressions are singletons then K is homeomorphic to 9% D.

If the puzzle impression P, (a) is a singleton then « is called rigid. Equivalently,
a point a € J is rigid if there is a shrinking nest of puzzle pieces P, containing a in
their interiors. If these pieces can be selected perfect, then we say that a is perfectly
rigid.

PROPOSITION 9.8. (i) If a point a € K s rigid then K is weakly locally con-
nected at a.
(i1) If a € K is perfectly rigid then K is locally connected at a.
(iii) If all points of K are rigid then K is locally connected at a.

PROOF. (i) In this case, puzzle pieces P, containing a in their interior provide
a base of closed neighborhoods of a whose intersections with K are connected.

(ii) In this case, the int P, form a base of open neighborhoods of a whose
intersections with K are connected.

(iii) follows from Exercise 1.11. O

This provides us with a very useful condition for local connectivity that will
be applied numerous times in the dynamical context. Let us formulate it in a user
friendly way:

COROLLARY 9.9. Let K be a hull. Assume that for some point a € K, there
exists a nest of puzzle pieces Py, such that a € int P, and diam P,, — 0. Then K is
rigid, and hence weakly locally connected, at a. If this happens for all a € K then
K is locally connected.

Of course, under the circumstances of the last assertion, K is nowhere dense.

9.1.4. Puzzle and rays. By definitions, a ray RY converges to a puzzle end E if
for some (and then for any) escaping nest (P,) representing F, we have:

¥V n €N 3t, > 0such that R?(¢) € int P, for t € (0,t,).

In particular, for a € K, a ray R? converges to a puzzle end E(a) iff for any
puzzle piece P containing a in its interior, the ray R? is eventually trapped in int P
(i.e., there exists o > 0 such that R?(¢) € int P for all ¢ € (0,1y)).

EXERCISE 9.10. Let K be a hull.

(i) If o is a cross-cut contained in a puzzle piece P then the corresponding prime
end fijord F is contained in int P.

(ii) If a prime end impression 1(E) intersects a puzzle piece P, then I(E) C P.
Hence, if the limit set w(R) of an external ray R intersects P then w(R) C P.
(iii) For any puzzle end Ep, there is at least one prime end E¢ subordinated to Ep.
Hence there is at least one external ray R’ converging to Ep.

(iv) There is a natural continuous surjective projection T : Ad’D = ” D extending
the identical map D — D. Hence 7 D is locally connected.

COROLLARY 9.11. Assume a point a € K is rigid. If a belongs to the impression
I(E¢c) of some prime end Ec then I(Ec) = {a}, and hence the corresponding
external ray lands at a.
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Thus, a rigid point a has a well defined full preimage @ = ®~*(a) C T under the
Riemann uniformization ® : C~ D — C~ K with the property that ® continuously
extends to @, ®(Q) = a, while the impression of any other prime end is disjoint
from a.

REMARK 9.12. The above theory can be developed for a subfamily P of puzzle
pieces satisfying the property that for any two pieces Py, Py € P,

either int(P; N Py) = () or P; N P, contains some puzzle piece P € P.

Yoccoz puzzle will provide us with an important example of this kind.

9.1.5. Branches and limbs. Let us say that a cut-point a € K is well branched
with valence n > 2 if there are n rays R; landing at a such that each component of
K~ Uﬁl is connected. Thus, we have n branches T; of K rooted at a. Corollary
9.8 implies:

COROLLARY 9.13. A rigid point a € K with finitely many accesses is well
branched.

Here is another useful condition for well branching:

LEMMA 9.14. Let S be a sector rooted at a € K bounded by rays R=. Assume
there exists a sequence of cut-points a, € K NS which are landing points of rays®

RZ* such that 0t — 04. Then there exists only one branch of K in S (i.e., KNS
is connected).

PrOOF. Otherwise we can select a branch 7% C K NS that does not contain a
subsequence of the a,’s. Let us consider a ray R" landing in T*. Then 7 separates
one of the 61 from all of the 6"} (for that subsequence). O

EXERCISE 9.15. Assume that a point a € K can be separated from any other
point of K by a cut-line through a well branched point. Then a is perfectly rigid.

We will often deal with pointed hulls K > b centered at some base point b
(which is usually the origin). Under these circumstances, if a # b is a well branched
cut-point, then all the branches T; at a that do not contain b will be called limbs of
K at a, while the corresponding sectors S; D T;" will be called wakes. The branch
containing b will sometimes be called the body B of K at a, but sometimes this term
will be used in a different way (which should not lead to confusion as the definitions
will be explicitly given). Compare §25.6.5 and §37.3.

9.2. Interior components of hulls.

9.2.1. Cut-curves and puzzle pieces for general continua. Let us start with ad-
justing the terminology developed in §9.1.1 to general continua J C C (not neces-
sarily hulls).

First, cut-curves, cut-lines and cut-points are defined in the same way as for
hulls. (Of course, in the general case cut-curves can pass through bounded compo-
nents of C . J.) In particular, a cut-line L : R — C crossing J at points a; = L(t;),
t; < --- <ty is a concatenation of two topological rays

Lo: (—oo,t1] = DU{a1}, Ly : [tn,+0) = {a,} UD,

25More rays landing at a are allowed.
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and n — 1 arcs L; : [t;,tiy1] — {a;} U D; U {a;+1} whose interiors lie in C ~ J.
Here D is the unbounded component of C \ J, while (Di)f:_f is some sequence of
components of C . J (which could be repeated). In particular, if all the D; are
equal to D then L is a cut-line for the hull K of J.

Now, the Lindel6f Theorem implies that
e [y and L,, are respectively homotopic in D rel a; and a, to the external rays
landing at a1 and a,,;

e Each L;, i =1,...,n— 1, is homotopic in D; rel {a;,a;11} to a concatenation of
two arcs of internal Green rays in D; and an arc of equipotential.

So, the whole cut-line L is homotopic in C \ J rel (L N J) U {oo} to a line
concatenated of arcs of Green rays and equipotentials in C ~ J. We call such
cut-lines Green.

We say that a cut-line L is simple for J if it is such for the hull K. We say that
L is dipole if it crosses J at two points, a; and aq, so that the arc Ly connecting
these points lies in a bounded component Dy of C~ J. We call such a pair of points
ay,as € 0D1 a dipole.

One can proceed to define dipole sectors and shadows, as well as (perfect) dipole
sectors, (perfect) puzzle pieces and their vertices and corners similarly to their or-
dinary counterparts introduced in §9.1.1. Green puzzle pieces are also defined nat-
urally.

EXERCISE 9.16. Generalize results of §9.1.2 to an arbitrary continuum J € C.
Namely, let L; be a finite family of disjoint simple cut-lines with L; N J = A;,
where each A; is either a singleton or a dipole. Then any component S of C~|J L;
intersects J, and

SnJ=dSng)=(nJ) |J A
A;COS
is a subcontinuum of J.
EXERCISE 9.17. If a puzzle piece P is perfect then K Nint P is connected.
We can proceed with defining (perfectly) rigid points of J.

COROLLARY 9.18. If a € J is perfectly rigid then J is locally connected at a.

9.2.2. Limbs and local connectivity at peripheral points. Let K be a hull, and
let D be a component of int K.

LEMMA 9.19. Assume D is a Jordan disk and there is a countable set A of
cut-points a; € 0D such that

(9.1) K=Dul JL;,

where Lf = S; N K, S; being a sector bounded by two rays landing at a;. Let
L;:=L; =L U{a;}. If diam L; — 0 then:

(i) Any point a € OD \ A is accessible.

(ii) K is perfectly rigid (and hence locally connected) at any point a € 0D~ A, with
exactly one access (and hence with exactly one external ray landing at a).

(iii) If a limb L; is (perfectly) rigid at its root a; € A then J = 0K is (perfectly)
rigid at a;.
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PRrROOF. (i) It is sufficient to construct a sequence of cross-cuts o, whose im-
pression is equal to {a}. Due to the Jordan-Schonflies Theorem, we can assume
that « = 0 and D (as a domain in the Riemann sphere) is the lower half-plane
H_ = {Imz < 0}. The case when a ¢ A is trivial, so assume that a € A, and
assume for definiteness that .4 accumulates on a on the right (while may or may
not accumulate on the left).

Let us label points a; € A near a and the corresponding sets £; so that a; > 0 iff
i > 0. Let &; be the smallest closed disk D(a, ¢;) containing £;. Since ¢; — 0, there
exists a positive subsequence i(n) — oo such that &;,) > & for all a; € (0, ay))-
Then the disk D, contains all the sets £; rooted at the a; € (0, ay,(;y). Hence
there is an arc o, of T.,., in H ~ K whose right-hand endpoint belongs to Lin)s
while the left-hand endpoint belongs either to some Ly, ,,) with k(n) < 0 or to 9D.
For definiteness, assume the former (as the latter case is even either).

The cross-cuts o, represent some prime-end F. Let us show that its impression
is equal to {a}.

Let Iy, be the union of o, the set £;(,) and Ly (,,), and the interval [ay(y,), @i(n)]-
It is a continuum. Since the limbs shrink, diamI',, — 0. Hence diam f‘n — 0 as
well, where I',, is the filled T,.

Since the prime-end fiord D,/ corresponding to the cross-cut o, is contained
in T',,, we conclude that diam D — 0 as well. Hence I(E) is a singleton, and it
cannot be anything but a.

(ii) Let a € 9D ~ A. As above, we assume that a = 0 and D = H_. Take
nearby points a— < 0 < a4 in R\ A, and consider rays R+ C H \ K landing at
these points. Since diam £, — 0, we can truncate these rays by a horizontal interval
0 on a small height that does not intersect K. We can also connect a_ to ay by
an arc w in H_. Concatenation of these four arcs, R_, §, Ry, and w, is a Jordan
cut-curve for J = K that bounds a small puzzle piece P around a.

Moreover, removing of a4+ from P does not disconnect the latter. Indeed,
(PN D)~ {a+} is connected, and attaching to it connected sets £; preserves con-
nectivity. Thus, P is perfect, implying that a is perfectly rigid, .

Similarly, removing a from P does not disconnect the latter, implying that
there is only one access to a.

(iii) Let us drop the label i, so a € A, S is the corresponding sector rooted at
a, and £ C S is the corresponding subhull attached to a. Assume L is rigid at a.
Let v be the boundary of small puzzle piece for £ around a. Then it crosses both
rays of the boundary 0, and hence it crosses nearby external rays R landing on
0D. Let us consider a Jordan cut-curve for J by taking a concatenation of an arc
of =, arcs of R4 and an arc in D connecting the landing points of R and R_.
This provides us with a small puzzle piece for J, proving rigidity of a in J = K.
Moreover, if we start with a perfect puzzle piece for £, this construction gives us a
perfect puzzle piece for J. (I

LEMMA 9.20. Assume D is a Jordan disk and there is a countable dense set A
of cut-points a; € D satisfying (9.1). Then diam £; — 0.

ProoOF. If diam £; # 0 then we can take a Hausdorff limit Lo, = lim £, as
i(k) — oo which is not a singleton. Hence it is a continuum attached to dD. Since
the sets L;(;) are eventually disjoint from the sectors S;, and the latter are open,
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we have
Lo CKNJSi=K~JL;
By (9.1), Lo C 0D. Being a continuum, L, is an arc of dD. Since A is dense

in 0D, the set L, contains some point a; in its relative interior. But then the
approximating sets L,y eventually cross £; — contradiction. O

9.2.3. LC hulls and Jordan disks. We will now use the Carathéodory Theorem
for further study of the topology of lc hulls.

Let K be a hull, and let (D, b) be a pointed component of int K. (We will refer
to b as the center of D.) Since it is simply connected, it can be uniformized by
the unit disk, ¢ : (D,0) — (D,b). Internal rays Ry of (D,b) are defined to be the
images of the straight rays {re(d) : 0 < r < 1} under ¢.

PRrOPOSITION 9.21. Let K C C be a lc hull. Then any component D of int K
is a Jordan disk.

PROOF. Let us consider the projection mp : K — D (1.2). Since it is continu-
ous and K is lc, D is lc as well (Exercise 1.13,b)). By the Carathéodory-Torhorst
Theorem, the boundary 9D is lc as well and the uniformization ¢ : D — D extends
continuously to the boundary.

This shows that 0D is a curve. We just need to show that it is simple. If
not, then there are two internal rays R; and Ro in D that land at the same point
a € OD. Then by Lemma 9.1 (applied to the hull C~ D), the Jordan curve
v :=R1 UR2 U {a} surrounds a point b € 9D C 9K. On the other hand, since
K is full, the open Jordan disk bounded by = is contained in int K; in particular,
b € int K — contradiction. O

o EXEECISE 9.22. For any two components D1 and Do of a lc hull K, the closures
D1 and D5 are either disjoint or touch at a single point.

9.3. Legal issues. Let us say that a lc hull K is pointed if every component D
of int K is pointed. Then a point x € K is called legal if x € 0K or z is the center
of some component of int K. An arc 7 in K is called legal if any non-empty slice of
~ by a component D of int K consists of one or two internal rays of D. Obviously,
endpoints of a legal arc are legal. Vice versa:

EXERCISE 9.23. Let K be a pointed lc hull, and let x and y be two legal points
in K. Then x and y can be connected by a unique legal arc [z,y].

EXERCISE 9.24. Let v : (0,1) — K be a legal arc in a lc hull K. Then any
point a € J N~y is a cut-point that can be accessed from above and from below the
arc.

EXERCISE 9.25. Assume that K is 0-symmetric. Then for any two symmetric
legal points, x and —z, the legal arc [—x, x| passes through 0.

Let us say that a set H C K is legally convex if
(i) for any two legal points x,y € H, the legal arc [z, y] is contained in H;
(ii) The slice of H by any component D of int K is a union of some internal rays.

Let now X C K be a finite set of legal points x; containing at least two points.
The legal hull H = H(X) of X in K is the union of the legal arcs [z;, x;] connecting
all pairs of these points. This is the smallest legally convex set containing X.

EXERCISE 9.26. The legal hull H(X) is a topological tree.
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9.4. Pinched disk model for a hull.

9.4.1. Locally connected case. The Carathéodory-Torhorst Theorem allows one
to represent any hull K C C as a quotient of the unit disc D by a special equivalence
relation 2 Namely, this theorem provides us with the continuous extension ¢ :

C~\D — (C~ K)UOK of the Riemann uniformization. ~Now, the equivalence
classes of ~on the unit circle T are defined as the fibers ¢~1(-) of ¢| T. Obviously,

OK is homeomorphic to the quotient T/ -

We will now extend it to D. Given a non-singleton class X of o let X stand

for the hyperbolic convex hull of X, see §2.4.18. (For any singleton class X = {z},
we let X = X.

LEMMA 9.27. Given a lc hull K, the convex hulls X are pairwise disjoint.

PROOF. Let us compactify the complex plane C with the circle T, at infinity.
Convergence of points z, € C to § € Ty, means that z, — oo and arg z, — 0. It is
easy to check that this compactification, C, is homeomorphic to D.

The Riemann uniformization ¢ : C~\ D — C~ K extends to a homeomorphism
C~D — C~ K in an obvious way. Since K is locally connected, it further extends
to a continuous map C ~ D — C \ int K by the Carathéodory-Torhorst Theorem.
(We will keep notation ¢ for all these extensions.)

Given an ~ equivalence class X = ¢~1(x) C Ty, = € 9K, let

X={re(d): ref0,00], 0 € X} CcC~\ D,

and let
X'=¢(X)=XU|JRoU{z} CCNintK.
vex
This is a compact set intersecting T, by X and intersecting K by {z}.

Consider now another equivalence class, Y = {¢"(y)}, y € 0K, y # x. Then
XNY =0, and hence X NY = . Since ¢ : C~ D — C ~ K is a homeomorphism,
the sets X/ N\ K and Y’ \ K are disjoint. But the intersections X’ N K = {z} and
Y’ N K = {y} are also disjoint. Thus, X' NY"' = (.

By Proposition 2.65, the sets X and Y are unlinked on T, ~ T, so their convex
hulls X and Y are disjoint in D . O

Each set X is declared to be an equivalence class of 2 All other equivalence

classes are singletons. (This equivalence relation can be considered not only on D
but on the whole plane C.)

THEOREM 9.28. A locally connected hull K C C is homeomorphic to the quo-

tient D/ L Moreover, the inverse Riemann map ¢ : C~D — C ~ K admits am

extension to a homeomorphism (C/ s D/ %) — (C,K).

PROOF. Let T := UX C D, where the union is taken over all equivalence
classes on X C T.

Step 1: The set'T is closed. Let z, — z € Dand z, € X,, = ¢~ 1(¢,) with ¢, € K.
Passing to a subsequence, we can assume that ¢, — ¢ € K. By continuity of ®|T,
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we have (see Exercise 1.121)

limsup X, C X := ¢~ '(¢)

n— oo

It easily implies (see Exercise 2.28) that
lim sup X,cX ,

n— oo
soze X.
§'tep 2: The map ¢ : T — OK extends to a continuous mapq?) T — 0K by declaring
H(X) = d(X).

Let z, — z € D, 2, € X,,. Without loss of generality, we can assume that
the X,, are pairwise disjoint. Then there exist points z/, € 9X,, converging to z as
well, so we can assume that z,, € 9X,, in the first place. But |J9X,, is the support
of a geodesic lamination £, so z, belongs to some geodesic leaf vy, = [x,,yn] € L,
where 2,1, € T. But then the +, uniformly on D converge to the geodesic leaf
v = [z,y] € L through z (see Exercise 2.67). Since ¢| T is continuous,

$(zn) = $lan) = d(2) = §(2).

Step 8: For any gap Q in T the map é continuously extends to a homeomorphism
Q — D, where D is a component of int K.

The closure Q C D is the convex hull of its ideal boundary '@ C T, which
is a Jordan disk bounded by 9'Q and a family of hyperbolic geodesics I'; (see
Lemma 2.25 and §2.5). The quotient Q/ ~ is obtained by collapsing the I'; to

singletons, which is also a closed Jordan disk (by the Devil Staircase in the disk,
see Exercise 1.8).

Any homeomorphism between the boundaries of two Jordan discs extends
continuously to the whole discs (e.g., radially). In particular, the embedding
b : (0Q/ ;) — OK extends to a homeomorphism (Q/ ;{J) — D, where D is

the (open) Jordan disc bounded by ¢(9Q). This Jordan disc is contained in int D
since K is full. Since 0D C 0K, D is a component of int K.

Step 4: The map ngS :D — K is continuous.

Given z, — z € D, we want to show that ¢(z,) — ¢(z) . By the above
discussion (Steps 2-3), we only need this check it in case z, € @, where the
@, are distinct gaps. Since area@, — 0, there exist points z/, € 9Q, C T
such that dist(z,,2,) — 0, so z/, — z as well. By Step 2, ¢(z) — ¢(z). But
dist(¢(zn ), ¢(2,) < diam ¢(Q,,) — 0 by Proposition 9.27. The conclusion follows.
Step 5: The map (;AS : D — K is onto. Here we will make use of the exterior of
D. Let us consider some circle T with R > 1 and the corresponding equipotential
Er = ¢(TR). It goes once around K, so by the Topological Argument Principle

(Proposition 3.8) all values in K must be assumed by ¢ (]

9.4.2. General case. For a general hull K, we can modify the above construction
to produce a lc model K. for K. Namely, to each cut-point a € K we can associate
the set X (a) C T of external angles of the rays landing at a. Take the hyperbolic
convex hull X(a) € D of this set. Its boundary in D is the union of hyperbolic
geodesics. Since the sets X (a) are unlinked, all these geodesics are pairwise disjoint.
Taking the closure and cleaning it up, we obtain a geodesic lamination Lx in D.
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Some gaps of this lamination are classes X (a), we call them gaps of first kind (or
black gaps), others are called gaps of second kind (or white gaps). Note that no
two gaps of first kind are adjacent, so we obtain a colored lamination. Taking the
quotient of C mod this colored lamination (by collapsing the classes X (a) to single
points), we obtain K., the lc pinched disk model for K.

PROPOSITION 9.29. Assume |J X (a) is dense in T. Then there exists a natural
continuous projection
7: (C,K) — (R* K).

This projection is a homeomorphism if and only if K is locally connected.

EXERCISE 9.30. Let X be a Cantor set on the circle T =R/Z, and let
K =[]J[0,e(0)]

0eX
be the corresponding hedgehog. What is the lc model for K ?

10. Appendix 1: Potential theory

Harmonic and subharmonic functions is a very important subject on its own
right that penetrates deeply into analysis, geometry, and probability theory. From
our perspective, their outstanding role comes from the fact that they lay down a
foundation for a proof of the Uniformization Theorem. For readers’ convenience,
here we will briefly review needed basics of the theory.

10.1. Harmonic functions and differentials. Recall that a function u :
U — R on a domain U C C is called harmonic if u € C?(U) and Au = 0 where
A=09+ (‘95 is the usual Euclidean Laplacian. The real and imaginary parts of
any holomorphic function f = u+iv on U are harmonic, which is readily seen from
the Cauchy-Riemann equations

Ozu = Oyv, Oyu = —0yv.

They are called conjugate harmonic functions.

Vice versa, any harmonic function u can locally be represented as the real part
of a holomorphic function. Indeed, Au = 0 gives the integrability condition for the
Cauchy—-Riemann equations that allow one to recover locally the conjugate function
.

This can be nicely expressed in terms of the Hodge * operator. Let V =~ R?
be the oriented 2D Euclidean space. By self-duality, we identify vector fields
T = a0, + b0y with 1-forms w = adx + bdy. The Hodge x-operator is defined as

7/2-rotation of w or 7, i.e. *w = —bdz + ady.
Then the Cauchy-Riemann equations can be written as
(10.1) dv = d°u, where d.:==xd, while dd°u= Audz A dy.

So, u is harmonic if and only if the form du is closed, and then (10.1) can be locally
integrated:

s ou
(10.2) v(z) = /Z0 du = [y a—nds,

where ~ is a smooth (oriented) path connecting zp to z (within a small disk), ds
is the length element on v and n is the unit normal vector to v rotated clockwise
from the corresponding tangent vector to ~.
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Globally, the integral (10.2) depends on the homotopy class of the path + (rel
the endpoints), so it defines a multi-valued harmonic function v and the correspond-
ing multivalued holomorphic function f = u+iv. The monodromy for this function
along a cycle v depends only on the homology class of «v and is given by the periods

of d°u: 5
f(2) = f2) =i | du=i | Z2ds,
~(2) (2) ZL u 7,/7 5, 45

where f, is the result of analytic continuation of f along along ~. In particular, if
a is an isolated singularity for u, then the monodromy if f as we go around a little
circle y = S, := {|z —a| =r} is equal to
. ou
() = f(z) =i (¢) do.

s, Or
Relation between harmonic and holomorphic functions makes the notion of
harmonicity manifestly invariant under holomorphic changes of variable: if u is
harmonic then so is u o ¢ for any holomorphic map ¢. Thus, harmonicity is well-
defined on an arbitrary Riemann surface S. This can also be seen from the original

definition by expressing the Laplacian in terms of the differential operators 9 and
0 (see §2.11). Indeed, we have:

(10.3) Q= %(deC), 0= %(df id®).

S0,

Audz A dy = dd°u = 2i 00 u.

REMARK 10.1. Expressions (10.3) show that d and d° are (twice) the real and
imaginary parts of the operators 0 and 9.

A C! differential 1-form w = adx + bdy is called harmonic if it is locally the
differential of a harmonic function. It is called co-closed if d(*w) = 0. It is straight-
forward to check that a form w is harmonic if and only if it is closed and co-closed.

Another characterization is that harmonic 1-forms are real part of Abelian
differentials. Namely, the differential o = w + in is holomorphic if and only if w is
is harmonic and n = *w. (Note that unlike the case of functions, this relation is
global.)

10.2. Basic properties. Given a domain U on a Riemann surface S, let
H(U) stand for the space of harmonic functions in U , and let H(U) stand for the
subspace of H(U) consisting of functions that admit continuous extension to U.

MEAN VALUE PROPERTY. A C? function v on a domain U C C is harmonic
is and only if for any disk D(a,r) C U, we have

2m
u(a) = My (a,r) := %/0 h(a + re'?) db;

PROOF. The mean value property for harmonic functions immediately follows
from the corresponding property for holomorphic ones. The inverse follows from
the second order Taylor expansion at z averaged over a little circle:

(10.4) M, (z,r) —u(z) = iAu(z)r2 + o(r?).
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The Mean Value Property implies in a standard way (as for holomorphic func-
tions):

MAXIMUM/MINIMUM PRINCIPLE. If a harmonic function « on a Riemann sur-
face U has a local maximum or minimum in U then it is constant.

COROLLARY 10.2. Let U € S be a compactly embedded domain in a Riemann
surface S, and let uw € H(U). Then u attains its mazimum and minimum on OU.

COROLLARY 10.3. Under the above circumstances, u is uniquely determined by
its boundary values, u|OU.

10.3. Poisson Formula. The Poisson Formula allows us to recover a har-

monic function h € H(D) from its boundary values:

PROPOSITION 10.4. For any harmonic function h € H(D) in the unit disk, we
have: formula: the following Poisson representation:

1 2T

hz) = 5 ; h()P(z,¢)df, z€D, (=€’ €T,

with the the Poisson kernel

(10.5) P(z,¢)

_ 12
|z = ¢

PrROOF. For z = 0, this formula amounts to the Mean Value Property:

1 27 "
h(0) = — h(e*”) do.
0)=5- [ ne)
It implies the formula at any point z € D by making a Mobius change of variable

(—=z
1—-2¢

that moves z to 0. Since ho ¢! € H(D), we obtain:

¢,:D—=D, (—

2 2
h(z) = (o 62 1)(0) i/O ho¢;ld9:%/o hdo.,

- 21
where
o, = (¢-)"(d0) = |(¢.)"(0)| 0,

and the latter derivative is equal to the Poisson kernel P(z,() (check it!).
Uniqueness of the extension follows from the Maximum Principle. O

The Dirichlet problem (irL some domain D C (@) is the problem of recovery of
a harmonic function h € H(D) from its boundary values on dD. The Poisson
formula provides us with an explicit solution of this problem in the unit disk:

PROPOSITION 10.5. Any continuous function g € C(T) on the unit circle admits
a unique harmonic extension h € H(D) to the unit disk (so that g = h|T). This
extension is given by the Poisson formula:

1

T oor

2
h(z) /0 g(OP(2,¢)dh, zeD, (=¢eYcT.
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PROOF. The Poisson kernel P(z,() as a function of ( € T and z € D has the
following properties:

1
(i) P(z,¢) > 0, and for any z € D, we have by / P(z,¢)df = 1;
™ JT

(ii) For any ¢ € T, the kernel P(z,() is harmonic in z € D;
(iii) For any (o € T and any € > 0, we have:

P.({) — 0 as z — (p uniformly in ¢ € T . D((p, €).

Property (i) follows from the Poisson representation of the function h(z) = 1
in D.

To check (ii), notice that P(-,{) is the pullback of the function Imwu on the
upper half-plane to the unit disk under the M&bius transformation

¢ : D — H, ¢<:z»—>ig+z.
—Z

EXERCISE 10.6. Check this using that ¢, is a hyperbolic isometry.

The last property is obvious (it corresponds to the fact the the function Imw
vanishes on R).

Properties (i) and (iii) imply that P(z,e) df, viewed as measures on T weakly
converge to d¢,. This implies that g gives the boundary values of h. Property (ii)
implies harmonicity of A in D. O

10.4. Harnak Inequality and normality. This inequality allows one to
control a positive harmonic function by its value at one point. Let us begin with
the case of disk:

LeEMMA 10.7. For any r € (0,1), there exists a constant C(r) > 1 such that for
any positive harmonic function u € H(D), we have:

C(r)" u(0) < h(z) < C(r)u(0), 2| <
PrOOF. It immediately follows from the Poisson representation since
1+
Sl
and the Mean Value Property. ]

Cr) P < P(0) <C@r) (Kl=1, |z| <r) with C(r)

Let us now consider the general case. By a coordinate disk D(a,e) we mean
a domain lying within some local chart and equal to the disk D(z(a),e) in this
coordinate.

THEOREM 10.8. Let S be a (connected) Riemann surface, and let zy € U,
K € U. Then there exists a constant C'x > 1 such that for any positive harmonic
function v € H(U), we have:

Crtu(zo) < u(z) < Cru(z), for anyz € K.

ProOOF. We can find finitely many coordinate disks D(z;,&;) whose union
UD(z;,;/2) is connected and covers K U {zp}. Applying the Lemma 10.7 con-
secutively to these disks, we obtain the desired inequalities. [

Similarly to holomorphic functions, bounded families of harmonic functions
are normal (i.e., precompact in the topology of uniform convergence on compact
subsets):
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PropPOSITION 10.9. A bounded family of harmonic functions on U is normal.

ProoOF. The Poisson formula gives a bound on the partial derivatives of u €
H(u) on a compact subset K € U in terms of the bound on u (and the set K). By
the Ascoli-Arcela, our family is precompact in the space of continuous functions on
U (in topology of uniform convergence on compact subsets). But the Mean Value
Property survives under taking locally uniform limits. Hence harmonicity survives
as well. (]

COROLLARY 10.10. Let u, € H(U) be an increasing sequence of harmonic
Junctions, and let u,(z0) < C at some point zyg € U. Then the u, converge,
uniformly on compact subsets of U, to a harmonic function u € H(U).

PROOF. Subtracting ug from the u,,, we see that our functions can be assumed
positive. By the Harnak Inequality, the u, are uniformly bounded on compact
subsets. So, their pointwise limit u(z) is finite. Moreover, by Proposition 10.9,
they form a normal sequence, and hence « is harmonic. O

10.5. Subharmonic functions. Harmonic functions are analytic and hence
rigid: they cannot be locally modified. Subharmonic functions are much more
flexible, but at the same time, they still possess good compactness properties (an
a priori upper bound is sufficient). This combination makes them very useful.

The basic example of a subharmonic function is u = log|f(z)| where f is a
holomorphic function. In fact, this function is harmonic everywhere except for
zeros of f where it assumes value —oo (“poles’of u). This suggests that in general
subharmonic functions should also be allowed to have poles. Of course, [—o0, c0)
is naturally endowed with topology of a half-open interval.

DEFINITION 10.11. A function u : D — [—00,00) on a domain D C C is called
subharmonic if it is not identically equal to —00?% and satisfies the following two
conditions:

e Mean Value Property (subharmonic): For any disk D(z,r) € D,
(10.6) u(z) < My(z,7)
e 1 is upper-semicontinuous.

REMARK 10.12. Notice that the two conditions in the above definition make
the value of a subharmonic function well determined at a point by its values nearby.
In fact, below we will be dealing only with continuous subharmonic functions, and
mostly, assuming only finite values. However, the following basic subharmonic
function does have a pole:

EXAMPLE 10.13. Let u(z) = log|z|. This function is harmonic in C*, so the
MVP is satisfied on an any disk D(a,r) € C*. It is also obviously satisfied on D,
as —oo < M, (0,r).

Let us check it for the disk D(a,r) 3 0. Making an affine change of variable, we
can consider instead the Mean Value Property on'D for a function v(z) = log |z —c¢/,
c e D*. Then we have:

) de

S u(z)df = i/ (u(z) + log
2 T 2 T

26This convention is not completely standardized.

1—c¢z

zZ—cC
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1
. —/log|1 2| df = 0 > log |¢] = v(0).
2T T
For the disk D(a, |a|) whose boundary passes through 0, MVP follows by continuity.

REMARK 10.14. The above estimate is a particular case of the Jensen formula:

1 1
3 [ 108 1(O10 = log |0+ D 1og .-

where f is a holomorphic function in ), continuous up to the boundary, that does
not vanish on T and at 0.

We let SH(U) stand for the space of continuous subharmonic functions in U.

Obviously, the set of subharmonic functions is invariant under addition and
multiplication by positive numbers, so it is a cone. Also, Maximum of finitely
many subharmonic functions is subharmonic. For instance, the function log™ |z| =
max{log |z|,0} is subharmonic.

As for harmonic functions, the Subharmonic Mean Value Property implies:

MAXIMUM PRINCIPLE. If a subharmonic function u on a Riemann surface U
has a local mazimum in U then it is constant.

However, the Minimum Principle is not any more valid for subharmonic func-
tions.
More generally, we can majorant a subharmonic function by a harmonic one:

LEMMA 10.15. Let D be a bounded domain in C, and let uw and h be respec-
tively harmonic and a continuous subharmonic functions on D, both admitting a
continuous extensions to D. If u < h on 0D then u < h in D.

Vice versa, if a function u is continuous in a domain U C C and the above
property is satisfied for any domain D € U and any harmonic h € H(U), then u is
subharmonic.

PRrROOF. To check the former assertion, apply the Maximum Principle to u — h.
To check the latter, let us consider a coordinate disk D and let h solves the
Dirichlet Problem in D with the boundary values h|9D = wu|dD. Then u|D <
h| D. Evaluating it at the center of D, we obtain the Mean Value Property for
subharmonic functions. (]

This lemma shows that the notion of subharmonicity is bi-holomorphically in-
variant (at least for continuous functions®’, and hence is well defined on an arbitrary
Riemann surface.

Also, let us consider a function

up(z) =wu(z) forzeU~D, and wu(z)=h(z) forzeD,

where h is a harmonic function in D defined in the second part of Lemma 10.15.
We call 4y the harmonic majorant of u rel dD. The first part of Lemma 10.15
implies that the harmonic majorant of u is subharmonic.

A function w is called superharmonic if —u is subharmonic. Properties of such
functions follow immediately form the corresponding properties of subharmonic
ones.

271t is still true in general, but we will not need it
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10.6. Perron method. A (non-empty) family P of continuous subharmonic
functions on a Riemann surface U is called Perron if it satisfies the following prop-
erties:

(i) If u,v € P then max(u,v) € P;
(ii) For any u € P and any coordinate disk D € U, the harmonic majorant
up also belongs to P.

PRrOPOSITION 10.16. If P is a Perron family on U then the function

h(z) := s%p u(2)

is either harmonic or identically equal to oo.

PROOF. Since harmonicity is a local property, it is enough to check it within
coordinate disks D € U. Fix such a disk D. Since v < @ € P, we have
h(z) := sup@(z). So, without loss of generality we can assume that all the functions

u € P are harmonic in D.

Take a countable dense subset X C D. By means of the diagonal procedure,
we can select a sequence of functions u,, € P such that h(z) = supu,(z) for any
z € X. Let v, be the harmonic majorant (rel D) of the function max(us, ..., uy),
n € Z,. This is a monotonically increasing sequence of functions of the family P,
harmonic on D, and such that v,(z) — h(z) on X. By Corollary 10.10, v,, — ¢
locally uniformly on D, where ¢ is either harmonic, or else ¢ = co. In either case,
we have:

¢(z) =h(z) >u(z) for any z € X, u € P.
Since both ¢ and u are continuous, we conclude that ¢ > u everywhere on D; hence
¢ > h everywhere on D. On the other hand, since ¢ = h on the dense set X and h
is upper semicontinuous (as sup of a family of continuous functions), we conclude

that ¢ < h everywhere on D. Thus ¢ = h on D. (]

10.7. Dirichlet barriers. We will now apply the Perron method to solve the
Dirichlet problem in an arbitrary domain (for which it is solvable at all).

Let U € S be a domain in a Riemann surface S, and let g be a continu-
ous function on QU. Let us consider the following Perron family of subharmonic
functions:

P=Py(g) ={ueSH(U): limsupu(¢) < g(z) VzedU}.
(—z
By Proposition 10.16, the function h, := supp u is harmonic in U. To study its
boundary values, we will introduce the following notions:

A barrier b, at a boundary point a € OU is a subharmonic function b, (2)
defined on a relative neighborhood D of a in U, continuous up to 9D,%® and such
that b,(a) = 0 while b,(z) < 0 for any z # a. A point a € OU is called Dirichlet
regular if it has a barrier.

ExAMPLE 10.17. If QU near a is an arc of a smooth curve then a is reqular.
Indeed, then there is a wedge

W ={larg(z —a) —a| <e, 0<|z| <2me}

28This condition can be relaxed, but it is sufficient for our purposes. In fact, harmonic
barriers would also be good enough for us.
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which is disjoint from U. The complementary wedge can be mapped conformally
onto the lower half-plane (by a branch of the power function ¢(z) = €?(z—a)" with
appropriate v € (0,1) and 0. The function b = Im ¢(2) restricts to a barrier at a
on U.

EXERCISE 10.18. Show that the same is true is OU near a is a Jordan arc.

THEOREM 10.19. Let U € S be a domain in a Riemann surface S, and let g
be a continuous function on OU. Let us consider the harmonic function h = hg
constructed above by means of the Perron method. Then for any Dirichlet reqular
point a € OU, we have: h(z) — g(a) as z — a.

Proor. Without loss of generality, we can assume that g(a) = 0.
Let us first show that
(10.7) liminf h(z) > 0.

zZ—ra
Take a small » > 0 such that the barrier b(z) = b,(z) is well defined in D, :=
D(a,2r)NU. Let £ be the supremum of b on S, := {|z —a| = r} NU. By definition
of the barrier, £ < 0.

The function b(z) := max(b(z),¢) is a continuous subharmonic function in
D(a,r)NU equal to £ on S,.. Hence it extends to a continuous subharmonic function
in in U by letting b= ¢ in U ~ D,..

Let now

n=inf{g(z): 2€ 00U~ D,}, —e=inf{g(z): z€0UND,} <0,

and consider
B(z) = - b(z) —e.

This is a subharmonic function in U with

lim B(z) =n for pe€ dU \ D,; liminff(z) < —e for p € OU N D,
z—p z—p

mS

so 3 belongs to the Perron family P.
It follows that A > 3 and hence
liminf h(z) > —e.

z—a
Since € — 0 as r — 0, we obtain (10.7).
To obtain the opposite estimate, let us consider the negative barrier —b(z). It
allows us to construct, for any € > 0, a superharmonic function « in U such that

liminf o(z) > g(p) Vp € oU and limsup a(z) < e.
z—p

zZ—ra
By the Maximum Principle, v < « for any u € P, and hence h < a as well. It
follows that
limsup h(z) < ¢,

zZ—a
and we are done. O

We say that a domain U € S has a Dirichlet reqular boundary if OU is non-
empty and all points of QU are regular.

COROLLARY 10.20. Let U € S be a domain with Dirichlet regular boundary.
Then the Dirichlet problem is solvable in U for any continuous boundary values.
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10.8. Harmonic measure. Let U € S be a domain with Dirichlet regular
boundary. Then any continuous function g € C(9U) admits a harmonic extension
g € H(U) to U. Endow H(U) with uniform topology on the whole U. It is a
Banach space isomorphic to C'(0U) by means of the natural restriction and the
above extension operators.

For a given z € U, evaluation §(z) is a bounded linear functional on C(9U)
and hence it is represented by a Borel measure p, on 9U:

i(z) = /a g

This measure is called the harmonic measure for U at z. For instance, in the unit
disk, we have du, = P(z,() df where P is the Poisson kernel.

If OU is disconnected and K C 9U is a clopen subset then . (K) is a harmonic
function on U with boundary values 1 on K and 0 on 9U ~\. K. This function itself is
sometimes referred to as the “harmonic measure of K” (which may sound confusing).

10.9. Green function. We will restrict our discussion to domains U &€ S
with Dirichlet regular boundary. The Green function G = G, on U with pole at
p € U is a harmonic function such that

(Grl) G(z) —» 0 as z — 9U;
(Gr2) In a local coordinate z near p such that z(p) = 0, we have:

1
G(z) =log B +O(1) near p.

For instance, the Green function in D with pole at 0 is —log |z|.

REMARK 10.21. Obviously, existence of such a function G implies the Dirichlet
regularity of U as —G provides a barrier at any boundary point. In the non-regular
case, condition (Grl) can be relaxed so that the Green function still exists as long
as OU has positive capacity.

REMARK 10.22. The Green function has a clear electrostatical meaning as the
potential of the unit charge placed at p in a domain bounded by a conducting
material with the ground potential 0.

The level sets of the Green function Gy, are called equipotentials, its gradient
lines are called rays (emanated from p). They form two orthogonal foliations on
U ~ {p} with singularities at the critical points of G,

THEOREM 10.23. Let U € S be a domain in a Riemann surface S with Dirichlet
regular boundary. Then for any p € U, there exists a unique Green function G,
with pole at p.

PROOF. Let us consider the following family P = Py [p] of functions on U~ {p}:
(i) limsupu(z) <0;

z—0U
(ii) In a local coordinate z near p such that z(p) = 0, we have:

1
u(z) = log ] +0(1).
z
Obviously, it is a Perron family, so the function G' = supp v is harmonic in

U ~ {p} unless it is identically equal to co. We will show that this function is
actually finite, and it is the desired Green function.
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First, P is non-empty. Indeed, for a small » > 0, the function ug := log™ (r/|z|)
(equal to log(|z|/r) on the coordinate disk D(p,r) and extended by 0 the whole U)
is in P. Thus,

(10.8) G(z) > log™ 2| > 0.
T

Let us show that G is finite. Let S, be the coordinate circle centered at p of
radius 7, and let ||u||, be the sup-norm of a function w on S,. Let us fix two small
radii 0 < r < R and compare ||ul/, and ||u||r for u € P.

First, let us look at u from “inside”. Take a small € > 0 and let

ue(z) =u(z) + (L +¢)log|z|.

This function is subharmonic in D(p, R) \ {p} and equal to —oco at p (by property
(ii) of the family P). Hence it is subharmonic on the whole disk D(p, R). By the
Maximum Principle, [Ju.||, < |luc||r, s0

R
el < i+ (1+ ) log -~
Letting ¢ — 0, we obtain

R
(109) Julle < llullr +1og .

On the other hand, we can look at u from “outside”. The Maximum Principle
in S\ D(z,r) implies that for any v € P

(10.10) ullr < flull,
but we want to have a definite drop:
(10.11) lullr < Al

with some A < 1 independent of u. Together with (10.9), this would imply

R

[[ull- < log —
,

1=
that would prove finiteness of G on S, and hence everywhere on U.

To prove (10.11), let us consider the solution v of the Dirichlet problem in
U ~\ D(z,r) with boundary values 1 on S, and 0 on 9U (the “harmonic measure”
of S;.). Since the boundary of QU is regular by assumption and S, is regular as
a smooth curve, such a v exists (Corollary 10.20). By the Maximum Principe,
A= ||’UHR < 1.

Furthermore, the function u(z) is asymptotically majorated by ||ul|, v(z) near
the boundary of S\ D(p,r). By the Maximum Principle,

(10.12) u(z) < |lullrv(z), z¢€~D(p,r).

Taking its sup on Sg, we obtain (10.11).

The required properties of the Green function also follow from the above es-
timates. Indeed, (10.8) and (10.12) imply (Grl), while (10.8) and (10.9) imply
(Gr2).

O

Notice in conclusion that the Green function extends subharmonically to the
whole Riemann surface S by letting G =0 on S\ U.
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EXERCISE 10.24. The Green function has a critical point in U if and only if U
is not simply connected.

Notes

Conformal Schonflies Theorem was proven in [Cal|. The theory of prime ends
and Carathéodory Boundary Theorem appeared in [Ca2]. “Carathéodory-Torhorst
Theorem” is usually attributed to Carathéodory. In fact, in the above two papers
that Carathéodory wrote on the subject, there is no mentioning of local connectivity
or the problem of continuity up to the boundary of the inverse Riemann mapping.
The theorem was proven in Torhorst’s thesis in 1918 (see [To]) written under advice
of Hahn who introduced the notion of local connectivity in 1913. See Lasse Rempe
[Rel] for an account of this story.

The notion of Schwarzian derivative goes back at least to Riemann.






CHAPTER 2

Quasiconformal geometry

11. Analytic definition and regularity properties

11.1. Linear discussion.

11.1.1. Teichmiiller metric on the space of conformal structures. Let V ~ R? be
a real two-dimensional vector space. A conformal structure p on V is a Euclidean
structure (v,w), up to scaling. Equivalently, it is an ellipse £, = {||w|, = 1}
centered at the origin, up to scaling (here |[w||,, is the associated Euclidean norm).
Let Conf (V) stand for the space of conformal structures on V.

Let us consider two Euclidean structures, (v, w), and (v, w), representing con-
formal structures p and v. We define the Teichmiiller distance between p and v as
the distortion of one Euclidean norm with respect to the other:

distr(p, v) = log (max el min Hw”“) where V* =V ~ {0}.

weV* ||le/ T wev+ w||u

Note that it is independent of the the choice of Euclidean structures representing
wand v.

EXERCISE 11.1. Check that distt is a metric on Conf(V).
If we simultaneously diagonalize the Euclidean structures so that
lwll} = 2® +*, [lwlj = 2?/a® +y?/b°, where w = (z,y), a >b >0,

then
distr(u, v) = log(a/b) = log K.

The ratio K = a/b of the axes of the ellipse E,, is called the dilatation of u relative
to v. We denote it Dil(x : n), skipping v if it is the standard conformal structure.
Informally we can say that the Teichmiiller distance measures the relative shape of
the ellipses representing our conformal structures.

An invertible linear operator A : V/ — V induces a natural pullback opera-
tor A* : Conf(V) — Conf(V’): If (v,w), is the Euclidean structure representing
p € Conf(V') then the pullback A*p is represented by (Av, Aw),. It follows imme-
diately from the definitions that the Teichmiiller metric is preserved by the pullback
transformations.

In particular, the group GL(V) of linear automorphisms of V' isometrically
acts on Conf(V) on the right: pA := A*u. Let us restrict this action to the group
GL, (V) of orientation preserving automorphisms. Since this action is transitive,
it turns Conf (V') into a GL (V)-homogeneous space.

To understand this space, let us fix some reference conformal structure o and
select coordinates (z,y) on V that bring it to the standard form 22 + 2. Then

175
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GL4 (V) gets identified with GL4 (2, R), and the isotropy group of o gets identified
with the group Sim(2) of similarities. Hence

(11.1) Conf(V) ~ Sim(2) ~. GL, (2, R) = SO(2) ~ SL(2,R).

Recall that in §2.4.3 we endowed the symmetric space SO(2) \ SL(2,R) with an
invariant metric.

EXERCISE 11.2. This invariant metric coincides with the Teichmiller metric
on Conf(V).

But according to Exercise 2.19, the hyperbolic plane H is naturally isometric
to the symmetric space

PSL(2,R)/PSO(2) ~ SL(2,R)/SO(2).

Since the left and right symmetric spaces are equivariantly isometric by the inversion
A A~!, we conclude:

PROPOSITION 11.3. The space Conf (V') endowed with the Teichmiiller metric
is equivariantly isometric to the hyperbolic plane H.

REMARK 11.4. As we have already mentioned in §2.4.3, the Lie Theory provides
a general underlying principle for the hyperbolicty of the symmetric space (11.1)
without a priori familiarity with the hyperbolic plane.

In conclusion, let us give one more interpretation of the isomorphism (11.1). It
is obtained by associating to an operator A € GL,(2,R) the conformal structure
 represented by the Euclidean structure (v,w), = (Av, Aw) (where (v,w) is the
standard Euclidean structure on R?). The corresponding ellipse E,, is the pullback
of the standard round circle: E,, = A~*(T).

Making use of the polar decompositions of linear operators, we can uniquely
represent A as a product of a positive self-adjoint operator P and a rotation O,
A=0"-P. Let Apax = Amin > 0 stands for the eigenvalues of P. The operator A
is a similarity if and only if P is scalar, i.e., Apmax = Amin. Otherwise we have two
orthogonal (uniquely defined) eigenlines li,ax and Ly, corresponding to Amax and
Amin respectively. These lines give the directions of maximal and minimal expansion
for the operator A. Moreover, the ellipse E,, = A~}(T) = P~(T) has the big axis
of length 1/Amin in lyin and the small axis of length 1/Apax in lnax-The dilatation
of this ellipse (equal to A\pax/Amin) Will be also called the dilatation of A, Dil A.

EXERCISE 11.5. Show that Dil A= = Dil A and Dil(AB) < Dil A Dil B with
equality attained iff the eigenlines of A and B! coincide.

11.1.2. Beltrami coefficients. Let now V = Cg be the decomplixified C. It is
endowed with the standard conformal structure o (represented by the Euclidean
metric |z|?) and with the standard orientation (such that {1,i} is positively ori-
ented). Let A : Cg — Cg be an invertible R-linear operator (which can be also
viewed as a C-valued R-linear form on V).

Let us describe the conformal structure A*c in coordinates z,z of Cg. The
operator A can be represented as

(11.2) z»—>az+b2:az(l+,ui),
z

where p = b/a is called the Beltrami coefficient of A. Let p = |u|e*?, where
6 c R/xZ.
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F1GURE 11.1. Ellipse E,,.

EXERCISE 11.6. The operator A is conformal iff p = 0;
A is invertible iff |p| # 1; A is orientation preserving iff |p| < 1.

REMARK 11.7. Note that the compex conjugation Az does not affect the metric
|Az]? = |az + bz|?, but it replaces the Beltrami coefficient y = b/a with the T-
symmetric one, 1/f. In shows that any Euclidean metric on Cg is conformally
equivalent to a metric |z + pz|? with |u| < 1 (corresponding to the orientation
preserving operators A).

In what follows we assume that A is an invertible orientation preserving op-
erator, i.e., |u| < 1. If we have another such a form A" = a/2 + ¥'Z on V then
A'JA = const it u = p/. Thus, the conformal structures A*c are in one-to-one
correspondence with the Beltrami coefficient 4 € D, so Conf(V') ~ D.

Let us now describe the shape of the ellipse A~!(T) in terms of u. The
maximum of |Az| on the unit circle T = {z = ¢®} is attained at the direc-
tion ¢ = # mod7Z, while the minimum is attained at the orthogonal direction
0 + 7/2 mod7Z. These are the eigenlines lyax and I, of the positive part P of
A. The corresponding eigenvalues are equal to

Amax = |a|(1 + [p]) = |a] + [0, Amin = |a|(1 — [p]) = |a] — [b].
Thus

L+ |
1—|pl’

(11.3) DilA = det A = |a|* — |b]* = \2;, Dil A.

min
This gives us a description of the dilatation and direction of the ellipse E = A~1(T)
in terms of |u| and arg p respectively.
Under conformal changes of variable, z = T¢ = a( (a € C*) the Beltrami
coefficients is rotated: v := T*u = (&/a)p, while the (—1,1)-form
E_ ¢
22
NZ ¢
does not change. It shows that the Beltrami coefficients in various conformal coor-
dinates represent a single (—1, 1)-Beltrami form.
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EXERCISE 11.8. Under a general linear change of variable z = T¢ = o + 3¢,
Beltrami coefficeints are transformed as follows:
T = OH t8
B+«
It follows that the map M : Conf(Cg) — D that associates to a conformal
structure its Beltrami coefficient is PSL(2, R)-equivariant.

EXERCISE 11.9. The map M is an equivariant isometry between Conf(Cg)
(endowed with the Teichmiiller metric) and the disk D (endowed with the hyperbolic
metric).

In what follows we will feel free to identify conformal structures with the cor-
responding Beltrami forms (and in a particular coordinate, with the corresponding
Beltrami coefficients). We will often use the same notation for these objects.

11.1.3. Infinitesimal notation. Let us now interpret the above discussion in
infinitesimal terms. Consider a map h : U — C on a domain U C C differentiable
at a point z € U, and apply the above considerations to its differential Dh(z) :
T.U — Tp,.C. In the (dz,dz)-coordinates of the tangent spaces, it assumes the
form

Oh + Oh = 0,hdz + 0:h dZ,

where the partial derivatives 0, and 0, and the operators 0 and O are defined in
§2.11. Moreover,

Dh(2) = 0.h(2) dz (1 + uh(z)jj) ,

where pp = 0:h/0.h is the Beltrami coefficient of h at z. In fact, as was explained
above, this coefficient represents a (—1,1)-form

dz

dz

called the Beltrami differential of h at z. However, in what follows we will not
make a notational difference between the Beltrami differential and the coefficient
(and will usually use notation 9, 0 for the partial derivatives 9., ;).

Assume that Dh(z) is non-singular and orientation preserving, i.e., |un| < 1.
The map h is conformal at z if and only if uy(z) = 0, which is equivalent to the
Cauchy-Riemann equation Oh(z) = 0.

Let us consider an infinitesimal ellipse

(11.4) E(2) = Dh(z)"Y(Ty.) c T.U,

5h/8h = HUh

where T}, is a round circle in the tangent space T, U. If h is not conformal at
z, then Ej(2) is a genuine (not round) ellipse with the small axis in the direction
arg(un(z))/2 mod 7 and the shape

| 1+ [ (2)]

11.5 Dil(h,z) = ——=.

(11.5) (h, 2) 1)

Moreover, by the second formula of (11.3), we have:
(11.6) Jac(h, z) = |0h(2)|* — |0h(2)|* = Amin(2)? Dil(h, 2),

where Jac(h, z) = det Dh(z) and Apin(z) = inf |Dh(2)v|.

Jv|=1
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If we have a differentiable change of variable z = ¢(() then infintesimal ellipses
E and the corresponding Beltrami differentials ;v at 7%, can be pulled back to T¢.
According to Exercise 11.8, the corresponding tranformation rule is:

(0" 1)(¢) = LZQS(O H(z) +0:6(0) or more concisely : ¢*p = % (po¢) + 85¢.

920(C) - u(2) + 929(¢) 0z - (Lo )+ 0:¢
In the orientation preserving case, ¢* preserves the hyperbolic distance between
Beltrami differentials with |u(2)| < 1. In the conformal case, we have:

. _ () T
(6'1)(Q) = 20 ju(z) o concisely s ¢*u= 2. - (o o).

¢'(C) ¢
11.2. Measurable conformal structures. A (measurable) conformal struc-
ture on a domain U C C is a measurable family of conformal structures in the
tangent planes T, U, z € U. In other words, it is a measurable family £ of infinites-
imal ellipses E(z) C T,U defined up to scaling by a measurable function p(z) > 0,
z € U. (As always in the measurable category, all the above objects are defined
almost everywhere.) According to the linear discussion, any conformal structure
is determined by its Beltrami coefficient u(z), z € U, a measurable function in
z assuming its values in D, and vice versa. Thus, conformal structures on U are
described analytically as elements p from the unit ball of L>®(U). We say that a
conformal structure has a bounded dilatation if the dilatation of the ellipses E(2)
are bounded almost everywhere. In terms of Beltrami coefficients, it means that

[lielloo < 1 since

. . 1+ [|lloo
Dilp:= || D1 E(2)|loc = ———-
1—lpllos
The standard conformal structure o = oy is given by the family of infinitesimal

circles. The corresponding Beltrami coefficient vanishes almost everywhere: p = 0
in L>=(U).

REMARK 11.10. Sometimes ||u||o is also referred to as the dilatation of p. We
will reserve notation dil i for this occasion. Then “bounded dilatation” would mean
that dilp < 1.

The space of conformal structures on U with bounded dilatation is endowed
with the Teichmiiller metric:

distr(p, v) = || distr(p(2), v(2)) ] o-

REMARK 11.11. Since the right-hand side in the above formula depends only
on the real structure on the tangent spaces, we do not need the reference complex
structure on U to define the Teichmiiller metric.

Denote by DHomeo™ (U, V) (standing for “differentiable homeomorphisms™) the
space of orientation preserving homeomorphisms h : U — V that are differentiable
almost everywhere with a non-singular differential D f(z) measurably depending on
2.1 Consider some homeomorphism h € DHomeo™ (U, V) between two domains
in C. Then by the above linear discussion we obtain a measurable family £ of
infinitesimal ellipses By (z) = Dh(z)"!(Tj.) C T.U that determines a (measurable)

conformal structure p, = h*o on U. Analytically this structure can be described

11f we do not need to specify the domain and the range of h we write simply h € DHomeo™;
if we do not assume that h is orientation preserving, we skip “4”.

picture
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as the Beltrami coefficient p,(z) = 0h(z)/0h(z) of h. We say that h has a bounded
dilatation if the corresponding conformal structure h*oy does. In this case we let

Dilh := || Dﬂ(h, z)”oo = % = diStT(h*Uv,UU).
1= [lpnloo
Obviously, the pullback structure h*o does not change if we postcompose h with
a conformal map ¢. If we precompose h with a conformal map ¢ then the Beltrami
coefficient will be transformed as follows:
/

o
Hhog = gﬂh ° 9,

so that the Beltrami coefficients in various local charts represent a single (—1,1)-
form pdz/dz called the Beltrami differential of h (compare §11.1.3).

This allows us to generalize the above discussion to arbitrary Riemann surfaces.
A (measurable) conformal structure on a Riemann surface S is a measurable family
£ of infinitesimal ellipses E(z) defined up to scaling. Analytically it is described as a
measurable Beltrami differential p with |p(z)| < 1 a.e. To any homeomorphism h €
DHomeo™ (S, S”) between two Riemann surfaces corresponds the pullback structure
h*o s represented by the field of ellipses Ej,(z) = Dh(z)~(T,).? The corresponding
Beltrami differential is puj, = 0h/0h (where Oh and Oh are now viewed as 1-forms).

REMARK 11.12. (i) Once again, measurable conformal structures can be con-
sidered on arbitrary smooth surfaces as well, with the dilatation measured with
respect to a reference Riemannian metric (and on a compact surface, the virtue
of being bounded does not depend on the choice of the reference metric.) The
space of bounded structures is endowed with the Teichmiiller metric. Moreover,
this discussion can be further promoted to quasiconformal surfaces.

(ii) A key problem is whether any conformal structure p is associated to a cer-
tain map h. This problem has a remarkable positive solution in the category of
quasiconformal maps (see §14 below).

More generally, let us consider a (non-invertible) map f : U — V which is
differentiable for a.e. z € U in the classical sense with non-singular D f(z). For
such maps the push-forward operation is not well-defined, but the pullback v = f*u
and Dil f are still well-defined. The property that Dil(f*u) < Dil(f) - Dil(p) is
obviously valid in this generality. This observation will be used in the context of
quasiregular maps: see §29.1.1.

11.3. Analytic definition. We are now ready to give a definition of quasi-
conformality. An orientation preserving homeomorphism 4 : S — S” between two
Riemann surfaces is called quasiconformal if

Q1. It has locally integrable distributional partial derivatives;

Q2. It has bounded dilatation, i.e., Oh < k Oh a.e. for some k € [0, 1).

Note that the second property makes sense because the first property implies
that h is differentiable a.e. in the classical sense (by Proposition 11.18).

We will often abbreviate “quasiconformal” as “qc¢”. A qc map h is called K-qc
if Dilh < K, where K = (k+1)/(k—1) € [1,00) with k£ € [0,1) as above.

2Note that the ellipses Ej,(z) are defined only up to scaling since the round circles T, on S’
are (as there is no preferred metric on S’).
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REMARK 11.13. 1) Under the above circumstances, the quantification k-gc is
sometimes more convenient (so that dilh < k < 1), but to avoid confusion, we will
refrain from using it.

2) One of the problems with the above analytic definition is that property Q1 is
not symmetric under taking the inverse h~!. Neither it is invariant under taking
compositions. But we will see eventually that the definition is equivalent to a
geometric one, quasi-invariance of moduli (see QC2 in §12.5), that manifestly has
both virtues.

11.4. Absolute continuity and Sobolev class WW. We will now prove sev-
eral important regularity properties of quasiconformal maps. Recall the definition
of the Sobolev class Wi, (U) = W2 (U) from the Appendix to this section.

PROPOSITION 11.14. Let h : U — V be a qc map. Then h™' is absolutely
continuous with respect to the Lebesque measure,® and thus for any Borel set X C U,

m(h(X))z/ Jac(h, z) dm.

X
The partial derivatives Oh and Oh belong to L2, _(U), so h € W2 (U).

loc

PROOF. Since both statements are local, we can restrict ourselves to homeo-
morphisms ki : U — V between bounded domains in the complex plane. Consider
the pullback of the Lebesgue measure on V', u = h*m. It is a Borel measure defined
as follows: p(X) = m(h(X)) for any Borel set X C U. Let us decompose it into
absolutely continuous and singular parts: = p-m + v. By the Lebesgue Density

Points Theorem, for almost all z € U, we have:
1 1
;) o pdm — p(z); @V(D(z,e)) —0 as —0.

Summing up we obtain:

m(h(D(z,€)) _ p(D(z€)
m(D(z,e))  m(D(z,¢)
But if h is differentiable at z then the left hand-side of the last equation goes
to Jac(h, z). Hence Jac(h, z) = p(z) a.e. It follows that for any Borel set X,

— p(z) ae. as —0.

(11.7) / Jac(h, z) dm = / pdm < u(X) =m(hX).
X X
But Jac(h, 2) = |0h(2)|? — |0h(2)|> > (1 — k?)|0h(2)|?, where k = ||fn]|0o. Thus
2 1 / a112 k2
. < ; < —
(11.8) /X b dm < (8 [ O dm < gm0,

and we see that the partial derivatives of h are locally square integrable.

What is left is to prove the opposite to (11.7). As we have just shown, h locally
belongs to the Sobolev class WW. Without loss of generality we can assume that it
is so on the whole domain U, i.e., h € W(U), and that h can be approximated in
W(U) by a sequence of C* functions h,. Take a domain D € U with piecewise
smooth boundary (e.g., a rectangle).

3We will show later (see Prop. 12.15) that the inverse to qc maps are also qc, making h itself
absolutely continuous as well.
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Let V,, C h, (D) be the set of regular values of h,,. By Sard’s Theorem, it has

full measure in h,(D). Let R, = h,;*(V,,) N D. Note that / Jac h,, dm is equal
R,
to the area of the image of h,| R,, counted with multiplicities:

/ Jac(hp, z) > Jac(hp, z) dm = / card(h;, *¢) dm > m(V;,) = m(h,(D)).
D R, -

Since h,, — h uniformly on D, m(h,D) — m(h(D)). Since Jac(h,) — Jac(h) in
LY(U) (as the partial derivatives converge in L?),

/Jac(hn,z)dm%/ Jac(h, z) dm.
D D

Putting the last estimates together, we obtain the desired.

For an arbitrary Borel set X C U, the result follows by a simple approximation
argument using a covering of X by a union of rectangles D; with disjoint interiors
such that m(UD; \ X) < e. O

REMARK 11.15. This proof shows that for a qc map h : U — D,., where U C C,
the distributional derivatives belong to L?(U).

11.5. Appendix: Distributional derivatives and absolute continuity*
on lines. Let U be a domain in C = Cgi. All functions below are assumed to
be complex valued. A test function ¢ on U is an infinitely differentiable function
with compact support. One says that a locally integrable function h : U — C has
distributional partial derivatives® of class L{ . if there exist functions p and g of
class L on U such that for any test function ¢,

loc
/h-8¢dm:—/p¢dm; /h-éc{)dm:—/g¢dm7
U U U U

where m is the Lebesgue measure. In this case p and g are called 9— and 0—
derivatives of & in the sense of distributions.

This notion is obviously equivalent to the existence of distributional partial
derivatives 0, and 0, in the real variables (defined analogously). Clearly, the latter
property is invariant under smooth changes of variable, so that it makes sense on
any smooth manifold (and in all dimensions). Below this notion is related to the
absolute continuity* on lines. (See §50.4 for the meaning of the “star”.)

EXERCISE 11.16. Prove that a function h on the interval (0,1) has a distribu-
tional derivative of class Li. . if and only if it is absolutely continuous*. Moreover,

its classical derivative h'(x) coincides with the distributional derivative a.e..

There is a similar criterion in the two-dimensional setting. A continuous func-
tion h : U — C is called absolutely continuous™ on lines if for any family of parallel
lines in any disk D € U, h is absolutely continuous® on almost all of them. Hence,
taking a typical line «y of the above family, the curve h : v — C is rectifiable. Clearly
such functions have classical partial derivatives almost everywhere.

ProprosiTiON 11.17. Consider a homeomorphism h : U — V between two
domains in the complex plane. It has distributional partial derivatives of class L11OC
if and only if it is absolutely continuous™ on lines.

4In the Russian literature, they are called generalized derivatives.
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In fact, in the proof of existence of distributional partial derivatives (the easy
direction of the above Proposition), just two transverse families of parallel lines are
used. Thus one can relax the definition of absolutely continuity* on lines by taking
any two directions (“horizontal” and “vertical”).

On the other hand, since existence of distributional partial derivatives can be
recognized in any local charts, a map with this property is absolutely continuous™
on almost all curves of any smooth foliation.

ProPOSITION 11.18. Consider a homeomorphism h : U — V that has partial
derivatives a.e. Then for almost any z € U, h is differentiable at z in the classical
sense, i.e., h € DHomeo.

This result can be viewed as a measurable generalization of the elementary fact
that existence of continuous partial derivatives implies differentiability.

ProJECT 11.19. Fill in details of the above discussion (using literature as
needed), see e.g., [A2, Ch II BJ.

In conclusion, let us define the Sobolev class WP = WP(U) (on a bounded do-
main U € C ) as the space of bounded continuous functions h : U — C whose
distributional partial derivatives on U belong to LP(U).> The norm on W is the
maximum of the uniform norm of h and LP-norm of its partial derivatives. Any
finction h € WP(U) can be approximated by infinitely smooth functions in WP(V)
for any domain V' € U. This can be shown by the standard regularization proce-
dure: convolute h with a sequence of bump-functions ¢,,(z) = n?¢(nz), where ¢ is
a non-negative test function on U with [ ¢dm =1 (see [Ste, Ch V, §2.1] or [LV,
Ch. III, Lemma 6.2]). However, if h is a homeomorphism, these approximating
functions do not necessarily inherit this propery.

REMARK 11.20. The usual Sobolev class WP is defined as the space of LP-
functions with distributional derivatives of class LP. So, our space WP is the in-
tersection of WP with the space of bounded continuous functions. Note that by
the Sobolev Embedding Theorem, for p > 2 functions of WP are automatically
continuous (see [Ste, Ch V, §2.2|), but the borderline W2-regularity of qc maps
is not sufficient for this conclusion (though in the end of the day it is known that
qc maps do belong to W? with p > 2 [Ge]).

We let W = W?2.

12. Geometric definitions

Besides the analytic definition given above, we will give two geometric defini-
tions of quasiconformality, in terms of quasi-invariance of moduli, and in terms of
bounded circular dilatation (or, “quasi-symmetricity”).

12.1. Quasi-invariance of moduli. In this section we will show, by the
length-area method, that the moduli of annuli are quasi-invariant under qc maps.
This will follow from a more general result on quasi-invariance of extremal length:

LEMMA 12.1. Let h : U — U be a K-qgc homeomorphism. Let I' be a smooth
foliation of some domain in U and let T’ = h(T'). Then L(I") < KL(T).

5Only exponents p = 1,2 will be relevant for us.
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PRrROOF. To any measurable metric p on U, we are going to associate a metric
p on U such that

(12.1) h(p) <p
while
(12.2) h*(m;) > K 'm,

(so, the map h is contracting with respect to these metrics, with the area contraction
bounded by K). Then () < p(y) for almost any v € I" and 4 = h(y) € T
(since h is absolutely continuous* on a.e. ), while m;(U) > K~'m,(U). Hence
L;(T) < KL£,(T"). Taking the supremum over all metrics j, we obtain the desired
estimate.

Let X be the set of full measure where h is classically differentiable. Then we
let p(2) = p(h(2))Amax(2) on X (recall from §11.1.3 that Apax(z) is the maximal
expansion factor of Dh(z)), and we let p(z) = oo outside X. Since I' is a smooth
foliation, h is absolutely continuous™ on almost all curves of I'. Let I'9 be the family
of such “good” curves, and let T'9 := h(I'Y). By Exercise 6.2, £(I') = £(I'Y) while
L(T) < L(I'Y), so it is enough to check the desired property for the good families.

So let v € I'Y. Then for any z € X N~ and any unit tangent v € T,U, we have:

[(h*p) vl = p(h(2)) - IDh(2)v] < p(h(2)) - Amax(2) = p (v).
So (12.1) is satisfied for z € yN X (while for z € v~ X it is obviously satisfied). Let
dl and dl be the length measures on v and 5 = h(y), respectively. Since h : v — 7
is absolutely continuous* with respect to these measures, h*(dl) < dl. Integrating
(12.1) over these measures yields: [;(7) < ,(y) for any v € I'Y. Taking the infimum
of the good curves, we obtain: lﬁ(fg) < 1,(T9).
On the other hand,

h*(dmj) = p(hz)? Jac h(z) dedy = K(2) "' p(2)?dady > K~ *dm,,

where the second equality comes from (11.6). This provides us with (12.2), and the
conclusion follows. O

REMARK 12.2. In the above argument we had to be careful with the direction
of quasiconformality (h or h™1), as at this stage we do not yet know that the notion
is symmetric. The next statement is exactly the moment when it gets symmetrized.

PROPOSITION 12.3. Consider a K-qc map h : A — A between two topological
annuli. Then

K1 mod(;l) <mod(A4) < Kmod(zzl)7

PROOF. Let T’ be the genuinely vertical foliation on A, and let T' := h(T).
By Proposition 6.6, mod A = £(T'), while mod A < £(T'). By Lemma 12.1,
L(T) < KL(T), which yields the desired right hand-side estimate. The left-hand
side estimate is obtained by replacing the vertical foliation with the horizontal
one. O

EXERCISE 12.4. Show that the moduli of rectangles are quasi-invariant in the
same sense as for the annuli.

EXERCISE 12.5. Prove that C and D are not qc equivalent.
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FIGURE 12.1. Bound on the circular dilatation.

12.2. Macroscopic circular dilatation. According to the original analytic
definition of qc maps, they have bounded infinitesimal dilatation a.e. It turns out
that this property can be substantially strengthened: in fact, qc maps have bounded
macroscopic dilatation in sufficiently small scales everywhere.

Let h : U — V be a homeomorphism between two domains, and let D :=
D(z,p) C U. Then we can define the macroscopic circular dilatation Dil(h, z, p) as
the shape of h(D) around h(z) (as for conformal maps in §4.4). (Recall also from
§4.4 the definitions of the inner and outer radii of a pointed domain.)

LEMMA 12.6. Let h: U — V be a K-qc¢ homeomorphism. Let D = D(z,p) C U
and D(h(z), R) C V, where R is the outer radius of h(D). Then

Dil(h, z, p) < exp CK,

where C an absolute constant.

PRrROOF. For notational convenience, let us normalize h so that z = h(z) = 0,
and let 7 be the inner radius of h(D). Let a and b be two points on the circle T, for
which |h(a)| = r and |h(b)| = R. Let us consider the annulus A’ := A(r, R) C V and
let A =h1(A’). The inner component of C~\ A contains points 0 and a € T, while
its outer component of C \ A contains b € T,. (See Figure 12.1.) By Lemma 6.10,
mod A is bounded by an absolute constant C. By Lemma 12.3,

1
—logE =mod A’ < Kmod A < KC,
2 r

and we are done. O

The upper circular dilatation of h at z is defined as

Dil(h, z) = limsup Dil(h, 2, p).
p—0

(Of course, if h is differentiable at z then Dil(h, z) = Dil(h, z).) We define the upper
circular dilatation of h as
Dil h := sup Dil(h, 2).
zeU
Lemma 12.6 immediately implies:
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PRrROPOSITION 12.7. Any K-qgc map U — V' has a bounded upper dilatation:
Dilh < exp CK,
where C' is an absolute constant.

12.3. Quasisymmetry.

12.3.1. Generalities. We will now give a characterization of qc maps that can
be applied in a very general setting. For a triple of points (z,y, z) in a metric space
X, let the brackets
_ dist(z,2)
~ dist(y, x)
denote the distance ratio centered at x.

Let n : Ry — R, be a function such that n(t) — 0 as t — 0. An embedding
h: X — 'Y between two metric spaces is called n-quasisymmetric (“n-qs’) if for any
triple of points (z,y, z) in X we have:

A map h is called quasisymmetric if it is n-qs for some 7. Such an h distorts the

ratios in a controlled way.
The function n(t) is called the ¢s dilatation of h.

[y’z]w :

EXERCISE 12.8. Show that the dilatation function n can be selected as a home-
omorphism Ry — Ry (which will be our standing convention in what follows).

For instance, L-bi-Lipschitz homeomorphisms are 7-qs with linear dilatation
n(t) = L*t. However, the class of gs maps is much bigger:

EXERCISE 12.9. The power homeomorphisms of R, x + sign(x)|z|®, are qua-
sisymmetric. What are their gs dilatations?

QS maps can serve as morphisms of the category of metric spaces:

1

EXERCISE 12.10. The inverse of a qgs map is qs, with n,—1 = ocon™" oo, where

o(t) = 1/t. Compositions of gs maps are gs, with Ngor, = Mg © Y.
We conclude that quasisymemtries of any metric space form a group.

12.3.2. QC vs @QS. The most important value of the dilatation function 7(t)
is 7(1) that controls macroscopic dilatation of h on the balls and (as we will see
momentarily) often controls the full 7(t).

LEMMA 12.11. An embedding h : R™ — R™ is n-gs if and only if (quantitatively)
it has L-bounded macroscopic dilatation: Dil(h, z, p) < L for all discs D(z, p).

PRrROOF. Obviously, quasisymmetry implies that macroscopic dilatation is bounded
by L = n(1). Vice versa, bounded macroscopic dilatation implies (12.3) with a
function n(t) = O(t*) as t — oo, where the exponent o > 1 depends only on the
dilatation.

EXERCISE 12.12. Prove this assertion and calculate n(t) in terms of L = n(1).

What is more subtle is to show that n(t) — 0 as t — 0.

Let us take a triple of points xz,y, 2, and let 2,4, 2’ stand for their images
under & (in what follows, the images of other points under h will be marked with
the “prime” as well). Property (12.3) implies:

(12.4) [2,9]: >1 = [2,¢]s >e=1/L > 0.
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By making affine changes of variable in the domain and the target, we can
normalize the situation so that x =2’ =0, |[y| =|y/| =1, z=Re€R, 2/ =r € R.
Of course, we can assume that R > 1. We want to show that r — oo as R — oc.
Let us partition the interval [0, z] by points z, = z/2", n =0,1,..., N, where N is
selected so that zy € [1,2). So, N >logos R — 1 — 00 as R — o0.

Applying (12.4) to the triple of points (0,1, zx), we obtain: |z| > . Then
applying it inductively (backwards) to the triples (z,,0,z,-1) (centered at z,_1),

we conclude that

/
n

|Z - Z;L—1| > €|Z;z—1| > 525

so the net of points z/, is e2-separated. On the other hand, applying (12.4) to the
triple (0, z,,, 2), we conclude that |2'| > £z} |, so that all the points 2], belong to the
disc D,./.. Hence the discs of radius £2/2 centered at the z, are pairwise disjoint
and are contained in the disc Dy, /.. It follows that

- area Dy, /. B E 9

b

~areaDo/y €6
and hence r > ¢y/log R with ¢ > 0 depending only on L. O

Also, in the light of the above result, embeddings h : R™ — R™ with L-
bounded macroscopic dilatation will also be referred to as L-gs. (We hope that a
slight terminological inconsistency with “n-qs” will not cause confusion).

Putting together Lemmas 12.6 and 12.11, we obtain:

PrOPOSITION 12.13. Any quasiconformal map h : U — V is quasisymmetric
on compac sets Q € U (with the gs dilatation controlled by Dilh and a lower bound
on min{dist(Q, U), dist(h(Q), V). Moreover, there is an L depending only on K
such that:

(i) Any K-qc homeomorphism h : C — C is L-gs (in the Fuclidean metric);

(ii) Any K-qc homeomorphism h : C — C fizing 0,1 and oo is L-gs (in the spherical
metric).

Note that without a normalization, the last (quantitative) assertion fails as the
Mobius group is not uniformly gs on the sphere.

12.4. Back to the analytic definition.

PrOPOSITION 12.14. If a homeomorphism h : U — V between domains U and
V' has an L-bounded upper circular dilatation then it is L-qc.

PRrROOF. Since the L-bounded circular dilatation implies the L-bounded infini-
tesimal dilatation at any point of differentiability, all we need to show is that h has
the required regularity, i.e., it is absolutely continuous® on almost all parallel lines.
Since this is a local property, we can assume that U us the unit square, and that
the parallel lines in question are horizontal.

Let Uy = {z € U : Imz < b}. Since the area function

w: b area(h(Uy))

is monotonic, it is differentiable for a.e. b. Let us take such a point b where
w is differentiable, and prove absolute continuity of kA on the corresponding line
v ={z: Imz = b}.
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For K € N, let X = {z € v : Dil(h,z,¢e) < K/2 for ¢ < 1/K}. Since the
dilatation of h is bounded we have: |J Xx = 5. Hence it is enough to prove that
h| X is absolutely continuous.

Let @ C Xk be a set of zero length. We want to show that h(Q) has zero
length as well. By approximation, it is sufficient to show this for closed sets. Then
@ can be covered with finitely many disks D; = D(z;,¢€) (2; € Y, ¢ = 1,...,n) with
intersection multiplicity at most 2 and an arbitrary small total length. Hence for
any 6 > 0, we have ne < § once ¢ is sufficiently small.

Let us consider the outer and inner radia of the h(D;), respectively: R; =
Rp(zi,e) and r; = rp(2;,€). Then R; < Kry, I(h(X)) <Y R;, and by the Cauchy-
Bunyakovsky inequality,

K26 ~2-area(h(U Di))
T 5

I(M(X))> <n) R} <nK>>» 1} <

(where “2” comes from the intersection multiplicity). But since | J D; C Upye\Up—_e,
the last ratio (without “2”) is bounded by

pb+e) —pb—e)
€

— 24/ (b) ase— 0,
and the desired conclusion follows. O

12.5. Summary. Thus, quasiconformality can be defined in several equiva-
lent (non-trivially related) ways: An orientation preserving homeomorphism h :
U — V between two domains in C is K-quasiconformal if one of the following
equivalent properties QC1-QC3 holds:

QC1. Analytic definition.
(i) Regularity: h has distributional derivatives Oh and dh of class LL . Equivalently,

h is absolutely continuous® on almost all lines in any given direction (and it is
sufficient to be so in two transverse directions).

(ii) Bounded dilatation: Dilh < K a.e., or equivalently, |0h| < k - |0h| a.e., where
E=(K-1)/(K+1) <1
QC2. Quasi-invariance of moduli. Moduli of quadrilaterals and annuli are K-

quasi-invariant.

QC3. Bounded upper circular dilatation: Dilh < Q everywhere (where @Q > K can
be bounded in terms of K).

A closely related notion is quasisymmetry:

QS. Any 7-gs map h is K-qc and any K-qc map is locally 7-gs, quantitatively (here
we use the Euclidean metric on C). Moreover, in case when U =V = C, 7-gs and
K-qc are equivalent, quantitatively. (In Corollary 13.13, we will give a D-version
of this assertion.)

Finally, we can conclude:

PROPOSITION 12.15. The inverse of a K-qc map is K-qc. The composition of
K1-gc map and Ka-qc map is (K1K53)-qc.

COROLLARY 12.16. The family of qc self-maps U — U of a given domain is a
group.
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13. Further important properties of qc maps

13.1. Weyl’s Lemma. This lemma asserts that a 1-qc map is conformal. In
other words, if a qc map is infinitesimally conformal on the set of full measure (i.e.,
Oh(z) = 0 a.e.) then it is conformal in the classical set. Since Oh(z) = 0 is just the
Cauchy-Riemann equation, this statement is classical for smooth maps.

Let us formulate a more general version of Weyl’s Lemma:

WEYL'S LEMMA. Assume that a continuous function h : U — C belongs to the
Sobolev class Wi .. If Oh(z) = 0 a.e. then h is holomorphic.

PROOF. By approximation, Weyl’s Lemma can be reduced to the classical
statement. Since the statement is local, we can assume without loss of general-
ity that the partial derivatives of h belong to L!(U). Convoluting h with smooth
bump-functions we obtain a sequence of smooth functions h,, = h*0,, converging to
h uniformly on U with derivatives converging in L!(U). Let us show that dh,, = 0.
For a test function 1 on U, we have:

/ Ohn(2) n(z) dm(z) = — / ha(2) In(z) dm(z)
- _/h(g) dm(¢) /t%(z—()én(z) dm(z)
_ / h(¢) dm(¢) / 90, (z — Q)n(z) dm(2)
- / n(z) dm(z) / h(¢) 96, (z — ¢) dm(C)
_ / n(z) dm(z) / () B, (= — ¢) dm(() = 0.

Here the first and the third equalities are the classical integration by parts, the
next to the last one comes from the definition of the distributional derivative, and
the intermediate ones come from the Fubini Theorem.

It follows that the smooth functions h,, satisfy the Cauchy-Riemann equations
and hence holomorphic. Since uniform limits of holomorphic functions are holo-
morphic, A is holomorphic as well. 0

13.2. Devil’s Staircase vs Weyl’s Lemma. The following example shows
that Weyl’s Lemma is not valid for homeomorphisms of class DHomeo (i.e., dif-
ferentiable a.e.). The technical assumption that the classical derivative can be
understood in the sense of distributions (which allows us to integrate by parts) is
thus crucial for the statement.

Take the standard Cantor set @ C [0,1] and consider a devil’s staircase h :
[0,1] — [0,1], i.e., a continuous monotone function which is constant on the gaps
in @ (See §1.1.2.)

Consider a strip S = [0,1] x R and let f : (z,y) — (x,y + h(x)). This is a
homeomorphism on S which is a rigid translation on every strip G x R over a gap
G C 0,1] ~ Q. Since m(K x R) = 0, this map is conformal a.e. However it is
obviously not conformal on the whole strip P.

Clearly f in not absolutely continuous on the horizontal lines: it translates
them to devil’s staircases.
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13.3. Quasiconformal removability and gluing. A closed set @ C C is
called gc remouvable if any homeomorphism h : U — C defined on a neighborhood
U of @ which is quasiconformal on U \ @ is quasiconformal on U.

Remark. We will see later on (Proposition 16.4) that qc removable sets have
zero measure and hence Dil(f|U) = Dil(f|U \ Q).

EXERCISE 13.1. Show that isolated points are removable.

LiTTLE GLUING LEMMA (SMOOTH VERSION). Piecewise smooth Jordan curves
(or arcs) are removable.

PROOF. Let us consider a smooth Jordan arc I' C U and a homeomorphism
f U — C which is quasiconformal on U ~\ T'. We should check that f is absolutely
continuous on lines near any point z € I'. Take a small box B centered at z whose
sides are not parallel to T.I". Then any interval [ in B parallel to one of its sides
intersects I' at a single point (. Since for a typical [, f is absolutely continuous on
both sides of I ~ {(}, it is absolutely continuous on the whole interval [ as well.

Moreover, Dil(f) is bounded since it is so on U \ T and T" has zero measure.

It proves the assertion for smooth arcs. In the piecewise smooth case, remove
first smooth pieces and then remove remaining isolated points by the previous
Exercise. ]

The above statement is simple but important for holomorphic dynamics. It will
allow us to construct global qc homeomorphisms by gluing together different pieces
without spoiling dilatation. Note that it fails for 1D gs maps (see Exercise 15.1
below).

Let us now state a more delicate gluing property:

BERS’ GLUING LEMMA. Consider a closed set QQ C C and two its neighborhoods
U and V. Assume that we have two quasiconformal maps f : U~ Q — C and
g:V = C that match on OK, i.e., the map

 f(z), zeUNQ
"<Z>—{ 9(z). z€Q

is continuous. Then h is quasiconformal and pn(2) = pg(2) for a.e. z € Q.

ProOF. Consider a map ¢ = g~ ! o h. It is well-defined in a neighborhood £
of @, is identity on @, and is quasiconformal on 2 ~\ Q. Let us show that it is
quasiconformal on 2. Again, the main difficulty is to show that h is absolutely
continuous on lines near any point z € Q.

Take a little box B near some point z € () with sides parallel to the coordinate
axes. Without loss of generality we can assume that z # co and ¢(B) is a bounded
subset of C. Let ¢ denote the extension of d¢/Jz from B~ @ onto the whole box
B by 0. By (11.8), v is square integrable on B and hence it is square integrable on
almost all horizontal sections of B. All the more, it is integrable on those sections.
Take such a section I, and let us show that ¢ is absolutely continuous on it.

Let I; C I be a finite set of disjoint intervals; A¢; denote the increment of ¢
on I;. We should show that

(13.1) D AG =0 as > || —0.
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Take one interval I; and decompose it as L U J U R where 0J C @) and int L and
int R belong to B ~\ Q). Then

Boi <+ [ vdasinl+ [ v
LUR I

Summing up the last estimates over j and using integrability of 1) on I}, we obtain
(13.1).
Absolute continuity on the vertical lines is treated in exactly thesame way.

The last assertion of the lemma follows from the following remarks:
e If z € @ be a point of differentiability for h, then the differntial Dh(z), and hence
the dilatation up(z), can be read off from two directional derivatives of h at z.
e The directional derivative of h along a line L through z € @ is determined by the
restriction of h| L N @, provided z is not isolated on L N Q.

e If z is a density point for @, the latter property holds for a.e. line L through z.
e By the Lebesgue Theorem, almost all points of @) are density points.
(And similarly for g.) O

13.4. Compactness on C. We will proceed with the following fundamental
property of qc maps:

THEOREM 13.2. The space of K-qc maps h : C - C fixing 0,1 and oo is
compact in the topology of uniform convergence on C

PRrROOF. It will be more convenient to consider the space X of K-qc maps h
such that h{0,1,00} = {0,1,00}. First, we will show that the family of maps
h € X is equicontinuous. Otherwise we would have an ¢ > 0, a sequence of
maps h, € X, and a sequence of points z,,(, € C such that d(zpn, ) — 0 while
d(hn(2n), hn(Cr)) > €, where d stands for the spherical metric. By compactness
of C, we can assume that the z,,(, € C converge to some point a and the h, (a)
converge to some b. Postcomposing or/and precomposing if necessary the maps
hy’s with z — 1/z, we can make |a| <1, [b] < 1.

Consider a sequence of annuli 4, = {z : r, < |z —a|] < 1/2} where r,, =
max(|z, — al, |{, — a|) — 0. Since the disk D(a, 1/2) does not contain one of the
points 0 or 1, its images h,,(D(a, 1/2)) have the same property. Hence the Euclidean
distance from the point h,(a) (belonging to the inner complement of h,(A,)) to
the outer complement of that annulus is eventually bounded by 3. On the other
hand, the diameter of the inner complement of h,,(A4,) is bounded from below by
e > 0. By Lemma 6.10, mod(h,,(A,)) is bounded from above. But

1 1
dA, = —log— —
mo 5 108 T 00

contradicting quasi-invariance of the modulus (Proposition 12.3).

Hence X is precompact in the space of continuous maps C — C. Since X is
invariant under taking the inverse h — h~!, and the composition is a continuous op-
eration in the uniform topology, X is precompact in Homeo(@). Since Homeo™ (C)

is closed in Homeo(C), X is precompact in the former space as well.

To complete the proof, we should show that the limit functions are also K-qc
homeomorphisms. Let a sequence h,, € X uniformly converges to some h. Given
a point a € C, we will show that in some neighborhood of a, f has distributional
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derivatives of class L?. Without loss of generality we can assume that a € C.
Take a neighborhood B > a such that h(B) is a bounded subset of C. Then the
neighborhoods h,,(B) are eventually uniformly bounded. By (11.8), the partial
derivatives Oh,, and Oh,, eventually belong to a fixed ball of L?(D). Hence they
form weakly precompact sequences, and we can select limits along subsequences
(without changing notations):

Ohn, — ¢ € L*(D); Ohy, — 1 € L*(D).

It is straightforward to show that ¢ and 1 are the distributional partial derivatives
of h. Indeed, for any test functions n we have:

(13.2) /h@ndmzlim/hnandm: —lim/ahnndm:—/¢ndm,

and the similarly for the d-derivative.

What is left is to show that |¢(2)| < k[(2)] for a.e. z, where
k= (K —1)/(K +1). To see this, select a further subsequence in such a way that
|Ohy | - |6], |Ohn| = [t)] and use the fact that the weak topology respects the

order (see Exercise 13.16 from the Appendix). O

EXERCISE 13.3. Fiz any three points ay,as,as on the sphere C. A family X
of K-qc maps h : C—Cis precompact in the space of all K-qc homeomorphisms
of the sphere (in the uniform topology) if and only if the reference points are not
moved close to each other (or, in formal words: there exists a § > 0 such that
d(ha;, ha;) > 6 for any h € X and i # j, where d is the spherical metric). Consider
first the case K = 0.

13.5. Quasi-isometries and the boundary extension.

13.5.1. Quasi-isometries and quasi-geodesics. A map h : X — X of a metric
space (X, d) is called a (L, C)-quasi-isometry, where L > 1 C > 0, if

L7Yd(z,y) — C < d(h(x),h(y)) < Ld(z,y) +C VY z,y € X.

In other words, it is a bi-Lipschitz map in “big scales”. (In small scales, nothing can
be said, because of the additive constant C.) Note that it is not even required that
h is continuous or invertible, but for the sake of our discussion, it is convenient to
assume that all quasi-isometries under consideration are homeomorphisms.

LEMMA 13.4. A K-quasiconformal homeomorphism h : 1D — D is a hyperbolic
(C, L)-quasi-isometry (quantitatively).

PROOF. It is sufficient to show that a geodesic arc «y of length < 1 is mapped
to a geodesic with a bounded distance between its endpoints. Indeed, then one can
chop a geodesic arc 7 of length > 1 into n < Iy, () + 1 pieces of length < 1 and
apply the Triangle Inequality to h(7y).

So, let lnyp(v) < 1. Since the group of hyperbolic motions acts transitively on
D, we can assume that 7 is a straight Euclidean interval connecting 0 to some point
a € D, where |a| < a < 1 (with an absolute @) and that h fixes 0. Then the annulus
A := D~ ~ has a definite modulus > p > 0. Since moduli of annuli are quasi-
invariant under qc maps, mod(h(A)) > K~'x > 0. This bounds dist(h(a)),T)
from below (due to Proposition 6.14), and hence bounds the hyperbolic distance
from h(a) to 0 = h(0) from above. O
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A path v in the hyperbolic plane is called am (L, C')-quasi-geodesic if for any
two points a,b € vy
diamyyp[a, b, < Ldistpyp(a,b) + C.

where [a, ], is the arc of v connecting a to b.

REMARK 13.5. Once again, because of the additive constant C, this property
tells us nothing about the small scale geometry of v. The corresponding small scale
notion is a quasiarc (see §15.3.1).

EXERCISE 13.6. A path v C H is a quasi-geodesic iff it is a quasi-isometric
image of an interval [0,t] (quantitatively).

PRrOPOSITION 13.7. Any (L, C)-quasigeodesic (finite or infinite) in H is R-
shadowed by a geodesic, where R depends on (L,C') only.

PRrROOF. It is sufficient to deal with finite quasi-geodesics since then one can pass
to an infinite limit. Let Ug be the R neighborhood of the geodesics § connecting the
endpoints of v. Let us show that for R big enough, any component o of vy~ Ug has a
bounded diameter (where all bounds depend only on (L, C)). Then the conclusion
will follows since the whole v will be trapped in a bounded neighborhood of Ug.

So, let o be a component of v\ Ur connecting some points ¢,d € OUgr. Let
¢/, d’" be their projections to the geodesic ¢ (extended to a bi-infinite one). Let us
consider a path w which is a concatenation of three geodesic arcs, [c, ], [¢,d], and
[d,d]. By Exercise 2.32, the length [¢/,d’] is at most e~ # diam][c, d],, so the length
of w is atmost e~ diam|e,d], + 2R. If R is big then this length is much smaller
than diam|c, d],, (provided the latter is also big in terms of R), contradicting the
quasi-geodesic quality of ~. O

13.5.2. Boundary extension.

LEMMA 13.8. Any hyperbolic quasi-isometry h : D — D extends radially to the
boundary T.

PrOOF. Take a point z € T and consider a hyperbolic geodesic v in D landing
at z. Then h(v) is a quasi-geodesic. By Proposition 13.7, it is uniformly shadowed
by some geodesic . Then v lands at the same ¢ € T as § does. (]

THEOREM 13.9. Any qc homeomorphism h : D — D extends to a homeomor-
phism D — D.

PROOF. The proof follows the lines of the proof of Lemma 8.1.2 from the
Carathéodpry Prime Ends Theory. As in that proof, consider the family of quadri-
laterals (half-annuli) II, C D with “vertical sides” on T and with equal moduli,
shrinking to some point b € T. By Lemma 13.8, the images h(II,.) are also quadri-
laterals with vertical sides on T. By the quasi-invariance of moduli, these images
have moduli of order 1. Moreover, area h(IL,.) — 0 as » — 0. By the length-area
estimate, the h(II,) contain horizontal curves shrinking to h(b). O

REMARK 13.10. More generally, quasi-isometries of I continuously extend to
the boundary as well, and this property is valid in all dimension (see [Th2]).

Combining this with the Conformal Schonflies Theorem, we obtain:

COROLLARY 13.11. Any qc homeomorphism h : Dy — Dy between Jordan
domains extends continuously to the boundary.
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13.6. Compactness on D. Let us now state a disk version of the above
Compactness Theorem:

COROLLARY 13.12. The space of K-qc homeomorphisms f: D — D fizing 0 is
compact in the topology of uniform convergence on D.

PROOF. Let ) be the space of K-qc homeomorphisms h : D — D fixing 0, and
X be the space of T-symmetric K-qc homeomorphisms H : C — C fixing 0 and oo.
(To be T-symmetric means to commute with the involution 7 : C — C with respect
to the circle.) Clearly maps H € X preserve the unit circle (the set of fixed points
of 7); in particular, they do not move 1 close to 0 and oo. By Theorem 13.2 (and
the Exercise following it), X’ is compact.

Let us show that X and )} are homeomorphic. The restriction of a map H € X
to the unit disk gives a continuous map i : X — ). The inverse map i~ : Y — X
is given by the following extension procedure. First, extend h € ) continuously
to the closed disk D (by Theorem 13.9), and then reflect it symmetrically to the
exterior of the disk, i.e., let H(z) = 7ohor(z) for z € C~D. Since 7 is an
(orientation reversing) conformal map, H is K-qc on C\T. By the Little Gluing
Lemma (smooth version), it is K-qc everywhere, and hence belongs to X.

Hence Y is compact as well. O

The extension from D to C provided in this proof also implies (via property QS
from §12.5) :

COROLLARY 13.13. A homeomorphism h : (D,0) — (D,0) is K-qc iff it is n-qs
(quantitatively).

EXERCISE 13.14. Let K > 1, C > 0.

(i) Let (D,a,,b) be a double-pointed conformal disk in C. The space of K-qc
homeomorphisms f : D — C such that

(13.3) [f(@][f(0)] <C and |f(a) - f(b)] = C",

is compact in the topology of uniform convergence on compact subsets of D.

(ii) More generally, let (D, an,by,) be a sequence of disks in C Carathéodory con-
verging to a hyperbolic disk (D, a,b), and let f, : D, — C be a sequence of K-qc
maps satisfying (13.3) at the corresponding points. Then f,, admits a subsequence
converging, uniformly on compact subsets of D, to a K-qc map f: D — C.

13.7. Appendix: Banach spaces preliminaries. This background can be
found in any text book in Functional Analysis, see e.g., [Lyu, Ru].

13.7.1. Generalized sequences. Since we need L, we do not assume here that
our spaces are separable. This means that sequential formulations may not be
sufficient. An easy way of dealing with this nuisance is to use instead generalized
sequences (fn)nens labeled by directed sets. Recall that a partially ordered set
(N, =) is called directed if any two elements have a majorant:

Vm,leN IneNst.n>=1l,n>=m.

The theory of limits for generalized sequences is identical with the standard
theory. The advantage is that all the topological concepts can formulated in the
generalized sequential terms, e.g., the closure of a set coincides with the set of the
limits of generalized sequences. (Here relevant directed sets are sets of neighbor-
hoods of a point ordered by inclusion: U = V if U C V.)
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13.7.2. Weak topologies. The dual space to B (of bounded linear functionals ® :
B — C) is denoted by B*. For instance, (L?)* ~ L?, (L')* ~ L™, C(X)* ~ (X)),
where X is a compact space and 2t(X) is the space of finite Borel measures on X
(real or complex-valued depending on the main field).

The weak topology (w-topology) on B is defined as topology of convergence on all
test functionals: p, — pif ®(p,) — ®(u) for all ® € B* (where (u,,) is a generalized
sequence). In case of a bounded sequence pu,, it is sufficient to test convergence
on a dense (in the Banach norm) family of test functionals. For instance, weak
convergence of functions j,, € L°°(D) can be tested on functions ¢ € Cg5,,,(D):

o 2 it [ Gpndm = [ dpdm v € CZ5,,(D).

The weak™ topology (w*-topology) on B* is the topology of pointwise convergence
on all elements u € B. When it does not lead to confusion, we will refer to this
topology as just “weak” skipping the * (for instance, in the case of the space of
measures). The main virtue of this topology comes from the fact that the unit ball
Bi is w*-compact. Note also that vice versa, any weakly convergent sequence is
bounded (Banach-Schteinhaus).

However, one should handle the weak topology with caution: for instance,
product is not a weakly continuous operation:

EXERCISE 13.15. Show that sinnx — 0 in L]0, 2x], while sin® nz — 1/2.
w w

At least, the weak topology respects the order:
EXERCISE 13.16. Let h,, — h in L?.

e Ifh, >0 then h > 0;
e [fh, =0 a.e. on some subsetY C X, then h=0 a.e. onY;
o After selecting a further subsequence, we have:

ht — ht and h;, — h™, so that |h,| — |hl.
Here h* (z) = max(h(z),0), h™(z) = min(h(z),0).

There is a natural embedding B — B**. It is isometric with respect to the
Banach norms, but its image is dense in the w*-topology of B**.

14. Measurable Riemann Mapping Theorem

We are now ready to prove one of the most remarkable facts of analysis: any
measurable conformal structure with bounded dilatation is generated by a quasi-
conformal map:

MEASURABLE RIEMANN MAPPING THEOREM. Let pi be a measurable Beltrami
differential on C with ||ul|sc < 1. Then there is a quasiconformal map h : C — C
that solves the Beltrami equation Oh/Oh = p. This solution is unique up to post-
composition with a Mdbius automorphism of C. In particular, there is a unique
solution fixing three points on C (say, 0,1 and c0).

We will abbreviate this result as MRMT. Its local version sounds as follows:

THEOREM 14.1 (Semi-local integrability). Let p be a measurable Beltrami dif-
ferential on a domain U C C with ||p|lec < 1. Then there is a quasiconformal map
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h : U — C that solves the Beltrami equation Oh/Oh = p. This solution is unique
up to post-composition with a conformal map.

The rest of this section will be occupied with a proof of these two theorems.

14.1. Uniqueness. Uniqueness part in the above theorems is a consequence
of Weyl’s Lemma. Indeed, if we have two solutions h and g, then the composition
1 =goh !isaqcmap with 9y = 0 a.e. on its domain. Hence it is conformal.

14.2. Local vs global. Of course, the global MRMT immediately yields the
local integrability (e.g., by zero extension of u from U to the whole sphere). Vice
versa, the global result follows from the local one and the classical Uniformization
Theorem for the sphere (Theorem 5.1). Indeed, by the local integrability, there
is a finite covering of the sphere 5% = C by domains U; and a family of qc maps
¢; : U; — C solving the Beltrami equation on U;. By Weyl’'s Lemma, the gluing
maps ¢; o ¢j_1 are conformal. Thus, the family of maps {¢;} can be interpreted as a
complex analytic atlas on S2, which endows it with a new complex analytic structure
1 (compatible with the original qc structure). But by the Uniformization Theorem,
all complex analytic structures on S? are equivalent, so there exists a biholomorphic
isomorphism A : (S%, ) — C. Tt means that the maps h o d);l are conformal on
¢i(U;). Hence h is quasiconformal on each U; and h.u = (ho ¢; )0 = o over
there. Hence h is a global quasiconformal solution of the Beltrami equation.

14.3. Strategy. The further strategy of the proof will be the following. First,
we will solve the Beltrami equation locally assuming that the coefficient p is real
analytic. It is a classical (and elementary) piece of the PDE theory. By the Uni-
formization Theorem, it yields a global solution in the real analytic case. Approxi-
mating a measurable Beltrami coefficient by real analytic ones and using compact-
ness of the space of normalized K-qc maps, we will complete the proof.

14.4. Real analytic case. Assume that p is a real analytic Beltrami coeffi-
cient in a neighborhood of 0 in R? = Cg with |1(0)| < 1. Then it admits a complex
analytic extension to a neighborhood of 0 in the complexification C2. Let (z,y) be
the standard coordinates in C?, and let u = x4y, v = & —iy. In these coordinates
the complexified Beltrami equation assumes the form:

oh oh

(14.1) 0 w(u, v)% =0.

This is a linear equation with variable coefficients, which can be solved by the
standard method of characteristics. Namely, let us consider a vector field W (u,v) =
(—p(u,v),1) near 0 in C2. Since the left-hand side of (14.1) is the derivative of h
along X, we come to the equation Wh = 0. Solutions of this equation are the first
integrals of the ODE w = W (w). But since W is non-singular at 0, this ODE has
a non-singular local first integral h(u,v). Restricting i to R?, we obtain a local
solution A : (R?,0) — C of the original Beltrami equation. Since h is non-singular
at 0, it is a local (real analytic) diffeomorphism.

By means of the Uniformization Theorem, we can now pass from local to
global solutions of the Beltrami equation with a real analytic Beltrami differential
1(z)dz/dz on the sphere (see §14.2). Note that the global solution is real analytic
as well since the complex structure generated by the local solutions is compatible
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with the original real analytic structure of the sphere (as local solutions are real
analytic).

EXERCISE 14.2. For a real analytic Beltrami coefficient

w(z) = Zanmzném
on C, find the condition of its real analyticity at co.

There is also a “semi-local” version of this result:

If p is a real analytic Beltrami differential on the disk D with ||u|l. < 1, then
there is a (real analytic) quasiconformal diffeomorphism h : D — D solving the
Beltrami equation Oh/Oh = pu.

To see it, consider the complex structure p on the disk generated by the local
solutions of the Beltrami equation. We obtain a simply connected Riemann sur-
face S = (D, u). By the Uniformization Theorem, it is conformally equivalent to
either the standard disk (D, o) or to the complex place C. But S is quasiconfor-
mally equivalent to the standard disk via the identical map id : (D,u) — (D,0).
By Exercise 12.5, it is then conformally equivalent to the standard disk, and this
equivalence h : (D, u) — (D, o) provides a desired solution of the Beltrami equation.

By §14.1, such a solution is unique up to a post-composition with a Mobius
automorphism of the disk.

14.5. Approximation. Let us consider an arbitrary measurable Beltrami co-
efficient i on a disk D with ||u]je < 00. Select a sequence of real analytic Beltrami
coefficients p1, on D with ||pn]|ec <k < 1, converging to u a.e.

EXERCISE 14.3. Construct such a sequence (first approximate p with continuous
Beltrami coefficients).

Applying the results of the previous section, we find a sequence of quasiconfor-
mal maps h,, : (D,0) — (D,0) solving the Beltrami equations dh,, /Oh,, = i,,. The
dilatation of these maps is bounded by K = (1+k)/(1—k). By Corollary 13.12, they
form a precompact sequence in the topology of uniform convergence on the disk.
Any limit map h : D — D of this sequence is a quasiconformal homeomorphism of
D. Let us show that its Beltrami differential is equal to pu.

By (11.8), the partial derivatives of the h, belong to some ball of the Hilbert
space L?(D). Hence we can select weakly convergent subsequences dh, — o,
Oh,, — 1. We have checked in (13.2) that ¢ = Oh and ¢ = Oh. What is left is to
check that v = p¢. To this end, it is enough to show that u,, Oh, — ue¢ weakly (to
appreciate it, recall that the product is not weakly continuous, see Exercise 13.15).
For any test function n € L%(D), we have:

‘/(m«b — i é’hn)dm’ <

<

/nu(qb — Ohy,) dm| + / In(p — pn) Ohy| dm.

The first term in the last line goes to 0 since the 0h,, weakly converge to ¢. The
second term is estimated by the Cauchy-Schwarz inequality by [|7(p— pn)||2]|0hn]|2,
which goes to 0 since u,, — p a.e. (and are uniformly bounded) while the dh,, belong
to some Hilbert ball. This yields the desired.
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It proves the Measurable Riemann Mapping Theorem on the disk I, which
certainly implies the local integrability. Now the global theorem on the sphere
follows from the local integrability by §14.2. This completes the proof.

14.6. Conformal and complex structures. Let us discuss the general rela-
tion between the notions of complex and conformal structures. Consider an oriented
surface S endowed with a ¢s structure, i.e., supplied with an atlas of local charts
1; : V; = C with uniformly qc transit maps ; o 1[;;1 (“uniformly qc¢” means “with
uniformly bounded dilatation”). Note that a notion of a measurable conformal
structure with bounded dilatation makes perfect sense on such a surface (in what
follows we call it just a “conformal structure”).

Endow S with a complex structure compatible with its gs structure. By defini-
tion, it is determined by an atlas ¢; : U; — C on S of uniformly qc maps such that
the transit maps are complex analytic. Then the conformal structures p; = ¢} (o)
on U; coincide on the intersections of the local charts and have uniformly bounded
dilatations. Hence they glue into a global conformal structure on S.

Vice versa, any conformal structure p determines by the Local Integrability
Theorem (Theorem 14.1) a complex structure on the surface S compatible with its
qc structure (see §14.2).

Thus, the notions of conformal and complex structures on a qc surface are
equivalent. In what follows we will not distinguish them either conceptually or
notationally.

Fixing a reference complex structure on S (so that S becomes a Riemann sur-
face), complex/conformal structures on S get parametrized by measurable Beltrami
differentials p on S with [|u]lec < 1.

14.7. Explicit formula. Let us now give an explicit formula for the solution
of the Beltrami equation with compact support in C:

THEOREM 14.4. Let p be a Beltrami differential in C with compact support
and ||p)lcoc < 1. Let h: C — C be the solution of the Beltrami equation Oh = poh
normalized so that h(z) —z — 0 as z — oco. Then

h=id+T(1 - uS) (1),
where S : L?> — L2 is the Hilbert transform, T : L2 — W s the Cauchy

comp

transform that solves the Beltrami equation O(Tv) = v (see Appendix 14.10.1).
PROOF. Let ¢ := h —id. It satisfies the equation

9 = p(1+ 09).
Let v := d¢. Since v € L? (Theorem 11.14), we obtain:
e as ¢ is correctly normalized (~ ¢/z) we have ¢ = Tv;
e the Hilbert transform S is well defined at v and ¢ = Sv (see Appendix 14.10.3).

We come up with the equation

(I — pS)v = p.

Since the Hilbert transform is a unitary operator in L?, the operator xS is a con-
traction. Hence I — S is invertible, so v = (I — uS)~1(u), and the desired formula
follows. O
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14.8. Dependence on parameters. It is important to know how the solu-
tion of the Beltrami equation depends on the Beltrami differential. It turns out
that this dependence is as best possible: holomorphic. Let us start with continuity:

PROPOSITION 14.5. Let u,, be a sequence of Beltrami differentials on C with
uniformly bounded dilatation, converging a.e. to a differential pp. Consider qc so-
lutions hy, : C — C and h : C — C of the corresponding Beltrami equations fixing
0,1 and co. Then the h,, converge to h uniformly on C.

PROOF. By Theorem 13.2, the sequence h,, is precompact. Take any limit map
g of this sequence. By the argument of §14.5, its Beltrami differential is equal to
1. By uniqueness of the normalized solution of the Beltrami equation, g = h. The
conclusion follows. O

Let us now discuss the holomorphic dependence on parameters. Beltrami dif-
ferentials are elements of the complex Banach space L°°, while qc maps h: C — C
are elements of the complex Sobolev space W. So, it makes sense to talk about
holomorphic maps from one space to the other (see Appendix 14.11).

Let B : LY — W be the map that associates to a Beltrami differential p €
L (DR) with [[u|lec < 1 the normalized solution h, : C — C of the Beltrami
equation Oh,, = p0h,, h,(0) =0,h,(1) = 1.

THEOREM 14.6. For any R > 0, the map B : Ls°(Dgr) — W is holomorphic.

PROOF. Let us take a look at the explicit formula of Theorem 14.4. The Hilbert
and Cauchy transforms are holomorphic as they are complex linear operators. Mul-
tiplication (u,S) — A = S is holomorphic being bilinear. Moreover, since S is
unitary in L%, we have ||A|| = ||u]l < 1. Finally, the resolvent A — (I — A)~!
is holomorphic on the unit ball of the space of operators (see §14.11.2). As the
composition of holomorphic operations is holomorphic, A, given by the formula
depends holomorphically on .

It is normalized differently, though. To bring it to the normal form, notice that
the points a, = h,(0) and b, := h,(1) depend holomorphically on p. Hence the

affine transformation
z—ay

D2
Ou: 2 b, —ay
is holomorphic in two variables, z and p. It follows that the properly normalized
map ¢, o h,, depends holomorphically on ;1 as well. (I

The above result is usually formulated in terms of one-parameter families:

COROLLARY 14.7. Let U be a domain in C, R > 0. If the Beltrami differential
ux € L (Dg) holomorphically depends on a parameter A € U, then so do the
normalized solutions hy : C — C of the corresponding Beltrami equations.

Note that if hy depends holomorphically on A, then any point z € C moves
holomorphically as A changes (in fact, holomorphic dependence on parameters is
often understood in this weak sense). More generally, we have:

COROLLARY 14.8. Let s be a family of Beltrami differentials on a disk Dg
depending smoothly on a parameter t € R™. Then the corresponding normalized
solutions hy : C — C of the Beltrami equation depend smootly on t as well.
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In fact, the above theorem is still valid (though not needed in this book) without
assuming that the Beltrami differentials have uniformly bounded support:

EXERCISE 14.9. Prove that the map B : L3® — W (that associates to a Beltrami
differential p € L°(C) with ||pllec < 1 the normalized solution h,, : C — C of the
Beltrami equation Oh,, = poh,, h,(0) =0,h,(1) = 1) is holomorphic.

14.9. Quasiregular maps. A map h: S — S’ is called K -quasiregular if for
any z € S there exist K-qc local charts ¢ : (U, 2) — (C,0) and ¢ : (V, f(2)) — (C,0)
such that 9o fo ¢~ ! : 2+ 2%, Sometimes we will abbreviate K-quasiregular maps
as K-qr. A map is called quasiregular if it is K-qr for some K. We will also use a
term quasi-holomorphic which sounds more suggestive.

EXERCISE 14.10. Show that any quasireqular map f : S — S" can be decomposed
as go h, where h: S — T is a qc map to some Riemann surface T and g : T — S’
is holomorphic. In particular, if S = S' = C then T = C as well and g: C—Cis
a rational map.

14.10. Appendix 1: J-equation and Hilbert Transform.
14.10.1. Solution of the 0-equation.

THEOREM 14.11. Let v € Lg,,,. Then the D-equation v = v has a unique
continuous solution v of class W behaving as ¢/z at oo. Moreover, it can be found

as the Cauchy transform of v:
v
€ amc).

v(2) = Tw(z) == *%/c

PROOF. Let suppr C Dg. First notice that for any 2 € C, 1/(z — () €
L'(Dg) and its L'-norm is locally bounded, while v € L>(Dg). Hence the Cauchy
transform v(x) = Tv(z) is well defined for any z € C and belongs to L{. .. Moreover,
v is holomorphic on C \ supp v and decays as ¢/ z.

Let us check that v is continuous. Consider the regular representation of the
additive group of C is LP:

L.g(u)=g(u+z2), gelLl, zeC.

It is strongly continuous in the sense that for any g € LP, L,g is continuous in z.
Let us take p > 1 and ¢ € (1,2) such that 1/p+1/g = 1. Since 1/u € L{ , we can

loc?

apply the Holder Inequality in the space L,(Dg) (for € > 0 small enough):

/ y(z+u+s)—y(z+u)dm(u)
lu|<3R

[o(z +2) — 0(z)| = !

< HLEI/—I/HP/ [1/ulfdm —0 ase—0,
lu|<3R

and the conclusion follows.
Let us now assume that v € Cczomp. Then the Lebesgue Dominated Convergence
easily justifies legitimacy of differentiation under the sign of integral, implying that

v is twice differentiable and hence v € C!. Moreover,
- 1 [0
ov=—— / Mdm(u) =v(z),
0 U

where the last equality follows from the Green Formula.
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The general case is obtained by approximating v by a a sequence v, — v a.e.,

where the v € C’gomp have uniformly bounded support and uniformly bounded

L>®-norm.  Selecting a weakly convergent (in L?) subsequence Vk(i), We ensure
that the Twy(;) converge in W, implying that v € W (compare with the proof of
Theorem 13.2).

Uniqueness of the solution follows from Weyl’s Lemma: If v = 0 a.e. for
v € W, then v is holomorphic. Since v vanishes at co, it vanishes identically. O

14.10.2. Fourier transform. Let < z,( >= Re(z() stand for the standard Her-
mitian structure in C. Recall that a Fourier transform of a function ¢ € L' = L'(C)
is defined as

3:) = Fole) = 5 [ oQe(= < 2. >)ac g

Here is the list of basic properties of the Fourier transform F:

o It is a contracting operator L' — Cj, where Cj is the space of continuous functions
¢ : C — C such that ¢(z) — 0 as z — 0.

e It is an algebra homomorphism, where the multiplication in L' is convolution x,
while the multiplication in Cj is pointwise.

o It preserves the L2-norm:
(14.2) I¢ll2 = [|¢ll2, for any ¢ € L' N L2,

and hence extends to a unitary operator L? — L? (for which we will keep the same
notation). Equality (14.2) is called Parseval’s Identity.

e [t conjugates the partial derivations 8% and a% to the multiplication operators by
the corresponding variables (up to 2mi-factor):

533\(;5 = 2mix (ﬁ, 5;;5 = 2miy QAS,
for any function ¢ € L§ with L{ distributional partial derivatives. It follows that
5&3 = 7ri2¢3, 5;1) = m'zqg
in this class of functions.

14.10.3. Hilbert Transform. The Hilbert transform is a unitary operator S :
L? — L? that carries d¢ to 0¢ for any function ¢ € W. In the Fourier chart, it is
defined as the multiplication operator:

Sp=>0, ¢el?

e

The Hilbert trasform can be explicitly defined on functions ¢ € Cfomp as the
principal value of the following singular integral:

So(z) = . lim Q)

T e=0 Jic_zse (C—2)?

Then it can be isometrically extended to L?. See [A2, Ch V.A|,[Ste].

dm.

14.11. Appendix 2: Holomorphic maps between Banach spaces.
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14.11.1. Smoothness in Banach spaces. Basic notions in this generality are the
same as in the finite dimensional case. Let B and Q be Banach spaces, and let U
be a domain in B. We refer to maps U — Q as Banach maps.

A Banach map f : U — Q is called differentiable at a point u € U if

f(p+v)=f(u)+ Duf(v) +o(||v]]) for all v € B small enough,

where D, f : B — Q is a (bounded) linear operator called the differential of f. The
map f is called (C')-smooth on U if it is differentiable at all points 1 € U, and the
differential D, f depends continuously on p. It is called a diffeomorphism (onto its
image V), if V is open in Q, f is invertible, and the inverse map f~! is smooth as
well. The Banach category is appropriate for the smooth theory since the Implicit
Function Theorem is still valid in this generality:

IMpPLICIT FUNCTION THEOREM. Let f : (U,0) = (Q,0) be a smooth Banach
map such that Dof : B — Q is an invertible linear operator. Then f is a local
diffeomorphism.

14.11.2. Holomorphic maps: definitions and examples. In what follows, all Ba-
nach spaces are assumed to be complex. A continuous Banach map f: U — Q is
called holomorphic if for any complex line £ = {x + Av}rec (where z,v € B)
and any (bounded) test linear functional ® € Q*, the composition ® o f| L NU is
holomorphic in A. (As we see, this is essentially one-dimensional notion.)

A Banach map f: B — Q is called a degree d homogeneous polynomial if it is
the restriction of a (bounded) degree d polylinear map

fiBx-xB=Q,  f(vi...vq) <Cli|--lvall,

to the diagonal A = {(v,...v) : v € B}. For instance, let Aut(B) be the space of
(bounded) linear operators A : B — B. Then the map Aut(B) — Aut(B) , A — A?
is a homogeneous polynomial of degree d.

A polynomial is a sum of homogeneous polynomials.

Let us temporarily® say that a Banach map U — Q is strongly holomorphic if
it admits a Taylor expansion near any point u € U:

fp+v) = f(p) + Duf(v) + Dif(v) + ...,

where Dﬁ f is a homogeneous degree d polynomial in v. If this series converges in
the whole space B, f is called entire.
For instance, consider a series

f(A) = chAd, with ¢g < r?.
d=0

It defines a holomorphic map Aut(B) — Aut(B) on the ball Aut,,,.(B) of radius
1/r. (In particular, if the ¢, decay super-exponentially, then it defines an entire
function.) Here are two important examples: the exponential map

> ad
exp: AutB — AutB, expA= Z %7
d=0

6As we will see momentarily that this notion is equivalent to being holomorphic.



14. MEASURABLE RIEMANN MAPPING THEOREM 203

is entire, and the resolvent:
oo
RA) =(I-A)"" =) A
d=0

is strongly holomorphic in the unit ball of Aut(B).

EXERCISE 14.12. (i) Complez linear and polynomial maps are holomorphic.
(ii) Uniform limits of holomorphic maps are holomorphic.

(iii) Strongly holomorphic maps (in particular, the exponential and the resolvent)
are all holomorphic.

A holomorphic curve in B is a subset I' of B that locally admits a holomorphic
parametrization v : D — B.

PROPOSITION 14.13. For a continuous Banach map f : U — Q, U C B, the
following properties are equivalent:
(i) f is holomorphic;
(ii) f is smooth with complex linear differentials D, f : B — Q;
(iii) The restriction of f to any holomorphic curve in B is holomorphic;
(

iv) f is strongly holomorphic.

PROOF. Since (i) is the weakest property, while (iv) is the strongest, it is
sufficient to show that (i) = (iv). Let us first review the case of a scalar function
on a finite-dimensional space, i.e, let B = C”, Q = C. Combining the classical
1D Cauchy formula with the Fubini Formula, we obtain the n-dimensional Cauchy
representation of f (for » > 0 sufficiently small):

(14.3)
1 fz+Q)dG ... d¢,
Te40) = Gy / G G on)’

Now the geometric series expansion (in 1D)

v=(v1...05) €D, (= (C1...Cn)

m

: > ol < [¢]
= v
_ 17 ’
C v m:OCm

implies the Taylor expansion for f.

For a general Q, while B = C", the Cauchy contour integral still makes sense
(as an integral of a continuous Banach-valued function). Cauchy Formula (14.3)
is still valid since it can be tested by any linear functional ® € Q*. It implies the
Taylor expansion as in the scalar case.

Let us now consider a Q-valued function on a general 5. To define the po-
larized dth differential DY (vy,. .., v4), take any finite dimensional subspace E C B
containing all the vectors vy, and use the finite dimensional result in z + E. The
outcome is independent of the choice of E: for another subspace E’ as above, we
can consider F @ E’ which induces the same outcome as either F or E'. O

COROLLARY 14.14. Holomorphic maps are smooth.

COROLLARY 14.15. (i) Composition of two holomorphic maps is holomorphic.

(ii) If f is holomorphic and invertible, then the inverse is holomorphic as well.
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COROLLARY 14.16. A map f : (D,,0) — (B,0) is holomorphic if and only it
admits a power series representation

fA) = Z anA",
n=0
where a, € B and |lay|| < Cp™ for any p > 1/r (with C' depending on p).

14.11.3. Cauchy Inequality and Normality. As in dimension one, the Cauchy
Inequality bounds the derivative in terms of the map:

PROPOSITION 14.17. If supy || f(p)]| < M, then

M
D < Uu.
D1 < 3 pe

(1, 0U)’

PRrROOF. Let r := dist(u,0U). Take a normed vector v € B and a normed
functional ® € Q*. Applying the classical Cauchy Inequality to the holomorphic
function A —= O(f(n+Av)), A < r, we obtain |®(D, f(v))| < M/r. Taking sup over
®, we obtain ||D, f(v)|| < M/r (by the Hahn-Banach Theorem). Taking sup over
v, we obtain the desired. O

For a domain U C B, let us say that a subset L C U is strictly contained in U
if dist(/C, oU) > 0. We endow the space of holomorphic functions &« — C with the
topology of uniform convergence (for generalized sequences) on strictly contained
subsets.

PROPOSITION 14.18. Given a domain U in a Banach space B and M > 0, the
family of all holomorphic functions U — Dyy is compact.

PRrROOF. By the Cauchy Inequality, such a family is equicontinuous on any strict
subset K of U. The Ascoli-Arcela criterion implies precompactness of our family in
the space of continuous functions & — Dj;. Since uniform limits of holomorphic
functions are holomorphic, the conclusion follows. (I

This validates the Montel Theorems for families of functions on Banach do-
Mains.

PROPOSITION 14.19. Let f, : U — Q be a bounded (generalized) sequence of
holomorphic maps pointwise converging to a map f, i.e., fn(u) — f for any p € U.
Then f is holomorphic as well.

PRrROOF. For any functional ® € 9Q*, the sequence of functions g, := ® o f,
pointwise converges to ® o f. By the last Proposition, the functions g, form a
normal family. Hence there is a generalized subsequence converging (uniformly on
strict subsets K C U, and hence pointwise) to a holomorphic function g. Necessarily,
f =g, and we are done. O

14.11.4. Sufficient supply of test functionals. Here we will see that holomor-
phicity can be tested by dense sets of functionals.

LEMMA 14.20. Let f : U — Q be a a locally bounded Banach map, U C B. If
the function ® o f is holomorphic for a w*-dense set Qf of functionals ® € Q,
then f is holomorphic.
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PrROOF. We need to show that ® o f is holomorphic for all & € Q*. By
assumption, any ® € Q* is the w*-limit of some directed family (®,,) C QF. Hence
®, 0 f — ®o f pointwise on Y. Since the family of functions (®,, o f) is locally
bounded, the conclusion follows from Proposition 14.19. O

COROLLARY 14.21. Let p: U — Q*, A — puy, be a continuous family in the
dual space such that A\ — px(¢p) is holomorphic for a w-dense set of test elements
¢ € Q. Then p is holomorphic.

PROOF. Since the natural embedding @ — Q** has a dense image in the
w*-topology of Q**, we obtain a w*-dense set of functionals on Q* to test holomor-
phicity. ]

The above lemmas allow us to test holomorphicity on C°*°-smooth functions
only:

COROLLARY 14.22. Holomorphicity of a map f : U — Q to any of the func-
tional spaces Q = LP(D) or WP(D), p € [1,00], can be tested by pairing of f with
functions ¢ € CZ5,,,(D).

14.11.5. Holomorphic curves in functional spaces. The space L™ is particularly
important for us since Beltrami differentials belong to this class.

LEMMA 14.23. Let py be a family in L*°(D) over a domain A C C. It is
holomorphic in X if and only if it is locally bounded and the functions A — px(z) are
holomorphic in X for a.e. z (after making an appropriate choice of representatives

of the 1y).

Proor. Without loss of generality we can assume that A = D is the unit disk.
Assume A — py is holomorphic over D. Then by Corollary 14.16, it admits a
power series representation
(14.4) i) = 3 va(2) A7,
n=0
where v, € L™ and |v,||lec < Cp™ for any p > 1. Hence there exists a subset
X C D of full measure such that for any p > 1 we have:

v (2) <Cp™ VzeX.

It follows that for any z € X, the function A — px(z) is holomorphic over I (where
the representative of py on X is chosen by the power series (14.4)).

Vice versa, assume that for a.e. z € D, the function A — uy(z) is holomorphic
over D. Then (14.4) holds for a.e. z € D, with

1 wx(z)dA

= — ——— i 1).
271 S (A or any r € (0,1)

Vn(z
But since the family (p») is locally bounded, it is bounded over the circle {|\| = r},
implying that

n(2) < <,

S
with C' = C(r) independent of z. Hence ||vp]|cc = O(r~ "), and the map A — py is
holomorphic by Corollary 14.16. (]
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EXERCISE 14.24. Let f : S — T be a holomorphic map between two Riemann
surfaces, and let (uy) be a holomorphic family of Beltrami differentials on T. Then
(f*(ux)) is a holomorphic family of Beltrami differentials on S.

Functions of class L? appear in our context as derivatives of qc maps.

LEMMA 14.25. Let ¢y be a complex one-parameter family in L?(D) over a
domain A C C. It is holomorphic in X if and only if it is locally bounded in L?
and the functions X\ — ¢x(z) are holomorphic in X for a.e. z (after making an
appropriate choice of representatives of the iy ).

PROOF. As in the previous lemma, assume that A = D is the unit disk and
consider a power series representation

Oa(2) =D Pn(2) A",
n=0

where v, € L?(D) and ||1,||2 < Cp™ for any p > 1. Let o > p. By the Chebyshev
Inequality,

arcalz : [n(2)] > 0"} < C2 (3)2"

o
By the Borel-Cantelli Lemma, [¢,,(z)] = O(c™) a.e. The conclusion follows as in
the previous lemma.

The inverse statement we leave to the reader. 0
Finally, let us consider the space W corresponding to qc maps themselves:

LEMMA 14.26. Let hy be a complex one-parameter family in W(D) over a
domain A C C. It is holomorphic in X\ if and only if it is locally bounded in VW and
for any z € D, the evaluation function A — hy(z) is holomorphic in A\. Moreover,
in this case the partial derivatives (Ohy)aea and (Ohy)xea form holomorphic curves
in L2,

PROOF. The necessity is obvious since for any z € D, the evaluation h — h(z)
is a linear functional on V. Vice versa, if all the evaluations are holomorphic in A,
then for any test function ¢ € Cg;,,, (D), the pairing

/ ha(2) (2) dm(2)
D

is holomorphic in A as well, and Corollary 14.22 implies that A — h) is a holomor-
phic curve in W.
Plugging 0v is place of 1, we see that

/ ha(z) 0Y(z) dm(z) = —/ Ohx(2) ¥(z) dm(z),
D D

depends holomorphically on A. Applying Corollary 14.22 again, we conclude that
A\ — Ohy is a holomorphic curve in L?. Similarly, A — Oh, is. O

15. One-dimensional gs maps, quasicircles and qc welding

In this section, we will develop further the idea of quasisymmetry (see §12.3)
for one-dimensional maps and plane curves.

15.1. Quasisymmetric 1D maps.
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15.1.1. QS maps of the line. Let us first consider the rel line R in the Euclidean
metric. According to Lemma 12.11, L-qs maps h : R — R can be defined as in terms
of bounded macroscopic dilatation. Namely, for any two adjacent intervals I, J C R
of equal length, we require:

If (D)
[F ()]

It looks at first glance that the class of 1D gs maps is a good analogue of the
class of 2D qc maps. However, this impression is superficial: two-dimensional qc
maps are fundamentally better than one-dimensional gs maps. For instance, qc
maps can be glued together without any loss of dilatation (the Gluing Lemma)
while gs maps cannot:

(15.1)

< L.

EXERCISE 15.1. (i) For any § > 0, the power map h : [0,1] — [0,1] is gs.
(ii) Consider a map h : R — R equal to id on the negative axis, and equal to x — x>

on the positive one. This map is not quasi-symmetric, though its restrictions to the
both positive and negative axes are.

Another deficiency of one-dimensional gs maps is that they can well be singular
(and typically are in the dynamical setting), while 2D qc maps are always absolutely
continuous (Proposition 11.14).

These advantages of qc maps makes them much more efficient tool for dynamics
than one-dimensional gs maps. This is one of the reasons why complexification of
one-dimensional dynamical systems is so powerful.

15.1.2. QS circle maps. Of course, an L-gs circle homeomorphism A : T — T
can be defined is the same way as in the case of R, with understanding of (15.1) in
terms of the circle metric. However, there is a subtle difference between these two
cases. Namely, in the line case, the group of 1-qs maps coincides with the group of
affine maps x — ax + b, which is equal to the group of Md6bius automorphisms of
R. On the other hand, in the circle case, only rotations are 1-gs, and in fact,

EXERCISE 15.2. The group of Mdébius automorphisms ¢ of the circle T is not
uniformly qs. However, if $(0) <r < 1 then ¢ is L(r)-gs.

15.1.3. Tilings with bounded geometry. Let I be a closed interval or a circle.
Assume we have an increasing nest (7)52, of tilings of I,

TO=T ...,

by intervals T}', k = 0,1,...,p, — 1. One says that the nest has bounded com-
binatorics if each interval T} is tiled by a bounded number of intervals T]TL'H of
the next level. It has bounded geometry if all such nested intevals T} D T;H'l are
comparable in size. Obviously, bounded geometry implies bounded combinatorics.

EXERCISE 15.3. Assume we have two intervals I and I (or two circles) supplied
with two nests of tilings as above, (T™) and (T™), with bounded geometry. Let
h:I—=1bea homeomorphism respecting these tilings, i.e., h(T}') = T]? for any
tile T}*. Then h is gs (quantitatively).

This statement will be useful in the dynamical setting where nests of tilings as
above appear naturally.
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15.2. Ahlfors-Beurling Extension.

15.2.1. Extension from R. As we know, the class of orientation preserving gs
maps on the plane coincides with the class of qc maps (Propositions 12.13 and
12.14). In particular, if we consider a quasiconformal map h : C — C preserving
the real line R, it restricts to a quasisymmetric map on the latter. Remarkably, the
inverse is also true:

THEOREM 15.4. Any L-qs orientation preserving map h : R — R extends to a
K(L)-g¢c map H : C — C. Moreover, this extension can be selected to be affinely
equivariant (i.e, so that it commutes with the action of the affine group z — az+b,
a € Ry, beR). Moreover, this map is smooth outside R.

PROOF. An extension to the upper half-plane H can be given by an explicit

formula:
1 T4y Z T4y x
H(z +iy) = — / h(t)dt + ) (/ h(t)dt — h(t)dt) .

It is clearly smooth in H and is continuous up to the boundary with boundary values
h. By a fairly direct calculation, one can check that it has a positive Jacobian (so
it is a local orientation preserving diffeomorphism) and to bound its dilatation in
terms of L. One should also check that H(z) — 0o as z — oo in H, so H is proper.
As h|RU {0} is a homeomorphism, we conclude that deg H = 1, and hence H is
a homeomorphism as well.

EXERCISE 15.5. Supply omitted technical details.

Finally, the transform h +— H is manifestly affinely equivariant, and it extends
to the lower half-plane by reflection. (|

15.2.2. Extension from T. As the group of Mébius automorphisms of the circle
is not uniformly ¢s, the circle version of the Ahlfors-Beurling Theorem requires
some extra care:

LEMMA 15.6. Let H : D — D be a K-qc map with H0) < r < 1. Then H
admits an extension to a L(K,r)-gs circle homeomorphism.

Vice versa, any L-gs circle homeomorphism h admits and extension to a K(L)-
gc map H : (D,0) — (D,0).

PROOF. H can be continuously extended to T, and then by symmetry to the
whole Riemann sphere.

Since M&bius automorphisms ¢ : D — D with |¢(0)] < r are L(r)-gs on T,
H can be normalized so that H(0) = 0, and by symmetry, H(co) = oco. Then
H(C) = C, and Lemma 12.6 implies that H is L(K)-gs. O

15.2.3. Interpolation in an annulus.

LEMMA 15.7. Let us consider two round annuli A = A[1,r] and A = A[1,7],
with 0 < e < modA < e and e < modA < e7!. Then any K-qs map h :
(T, T,) = (T, T7) admits a K(k,¢e)-qc extension to a map H : A — A.

PROOF. Since A and A are £2-qc equivalent, we can assume without loss of
generality that A = A. Let us cover A by the upper half-plane, 6 : H — A,

— log i

0(z) = z— = , where the covering group generated by the dilation T : z + Az, with




15. ONE-DIMENSIONAL QS MAPS, QUASICIRCLES AND QC WELDING 209

FIGURE 15.1. QC extension of a gs map by means of Calreson-
Whitney tilings.

2
A=elsr. Let h: (R,0) — (R,0) be the lift of h to R such that h(1) € [1,\) = I,
and h(1) € (=, —1] (note that R, covers T,, while R_ covers T). Moreover, since
deg h = 1, it commutes with the deck transformation 7T'.

A direct calculation shows that the dilatation of the covering map 6 on the
fundamental intervals I and —1 is comparable with (logr)~'. Hence h is C(k,7)-
gs on this interval. By equivariance it is C'(k,r)-qs on the rays R, and R_.

It is also quasi-symmetric near the origin. Indeed, by the equivariance and
normalization,

(14 2)71J] < (D] < (1 + )]
for any interval J containing 0, which easily implies quasi-symmetry.

Since the Ahlfors-Beurling extension is affinely equivariant, the map h extends
to a K(k,7)-qc map H : H — H commuting with 7. Hence H descends to a
K(k,r)-qc map H : A — A. a

15.2.4. QS equivalence between Cantor sets with bounded geometry. Recall from
§1.1.1 basics about combinatorics and geometry of real Cantor sets. The following
assertion will have important dynamical ramifications (see §38.9):

EXERCISE 15.8. Any two Cantor sets K, K C R with the same combinatorics
and bounded geometry qs equivalent, i.e., there exists a quasisymmetric homeomor-
phism h : (R, K) — (R, K) respecting the combinatorics. Moreover, the dilatation
of h depends only on the bounds on the geometry of K and K.

15.3. Quasicircles.

15.3.1. Geometric definition. Let us start with an intrinsic geometric definition
of quasicircles:

DEFINITION 15.9. A Jordan curve v C C is called a k-quasicircle if for any
two points x,y €  there is an arc § C v bounded by these points such that

(15.2) diamd < k|z — y|.

A curve is called a quasicircle if it is a k-quasicircle for some . The best possible
k in the above definition is called the geometric dilatation of the quasicircle. Let
us emphasize that this notion is global in the sense that (15.2) should be satisfied
in all scales. However, it can be localized as follows:

EXERCISE 15.10. If (15.2) s satisfied for all pairs of points with |z — y| < e,
then v is a k'-quasicircle with k' depending only on k and N, where N is the number
of arcs of diame needed to cover ~y.
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A Jordan disk (either open or closed) is called (k-)quasidisk if it is bounded
by a (k-)quasicircle.

EXERCISE 15.11. A Jordan disk D is a k-quasidisk if and only if the Euclidean
path metric on D is k-Lipschitz equivalent to the Fuclidean chordal metric.

A C-quasi-center of a Jordan curve « (or, of the corresponding Jordan disk
D) is a point a € D such that D has a C-bounded shape around a:

RD(a)
rp(a)

<C.

(Here Rp(a) and rp(a) are outer and inner radii of D around a, see §4.4.)
EXERCISE 15.12. Any k-quasidisk has a C(k)-quasi-center.

The shape bound C(k) will often be implicit in our discussion, and sometimes
we will even say that D is “centered at a’.

EXERCISE 15.13. Let v be a 0-symmetric k-quasicircle. Then 0 is (2k + 1)-
quasi-center of .

For a simply connected domain D C C, let us say that a point z9 € 9D is a
cusp if dist(z, zg)/ dist(z,0D) — 0 as z — z in D. The following simple assertion
gives the best intuitive characterization of quasicircles:

EXERCISE 15.14. Quasicircles do not have cusps.

15.3.2. Quasi-rectangles and the cross-ratios. Given four points a,b,c,d on a
Jordan curve v, let I1, (a, b, ¢, d) stand for the corresponding quadrilateral. In case
when v is a quasicircle, this quadrilateral will be called a quasi-rectangle.

LEMMA 15.15. The modulus of a quasi-rectangle, mod(Il,(a,b,c,d)), is con-
trolled by the cross-ratio R := [a,b,c,d]. More precisely,

0 < 61 (R) <modIl,(a,b,c,d) < 62(R),

where the functions 0; depend only on the geometric dilatation of v, and 61(R) — oo
as R — oo.

15.3.3. Quasitriangles and ratios. A Jordan domain D with four marked points
a,b,c,d such that a,b,c € v = 0D while d € int D is called a pointed topological
triangle Ay (a,b, c;d). Let as define mod A, (a,b,c;d) as the extremal length of the
family of proper paths v C D connecting [a,b] to [c, a] and separating d from [b, c].
In case when v is a quasicircle centered at d, A, (a,b,c;d) will be called pointed
quasitriangle.

LEMMA 15.16. The modulus of a quasitriangle, mod A, (a,b,c;d), is controlled
by the ratio R := |b — c|/|b — a|, in the same sense as above.
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15.3.4. The Riemann mapping. What makes quasicircles so important is their
characterization as qc images of the circle:

THEOREM 15.17. Let a be a quasi-center of a rk-quasidisk D, and let i :
(D,0) — (D,a) be the normalized Riemann mapping. Then ¥ admits a K(k)-qc
extension to the whole complex plane.

Vice versa, let (D,a) be a pointed Jordan disk such that there exists a K-qc
map h: (C,D,0) — (C,D,a). Then D is a k-quasidisk with a quasi-center a.

PROOF. The last assertion follows immediately from the fact that h has L(K)-
bounded macroscopic dilatation (by Lemma 12.6). O

15.3.5. Quasi-annuli. A C-quasi-annulus is a conformal annulus A C C such
that there is a C-qc map h : (C,A) — (C,A(1,r)). By the second part of The-
orem 15.17, a C-quasi-annulus is bounded by k(C)-quasicircles. Vice versa, we
have:

LEMMA 15.18. Let A be a conformal annulus with mod A = logr > p > 0
bounded by k-quasicircles. Then A is a C(p, k)-quasi-annulus. In fact, the Riemann
mapping ¢ : A — A(1,r) admits o K(u,k)-qc extension to the whole plane.

LEMMA 15.19. Let A and A be C-quasi-annuli with min(mod A, mod A)>p>
0. Then any L-qs map h : 0A — OA admits a K(C, p, L)-extension to C (quanti-
tatively).

EXERCISE 15.20. Assume an annullus A is partitioned by a k—quasicircle
into two homotopic sub-annuli A; with mod A; > > 0. Then

mod A < C(u, k) (mod Ay + mod Ay).

15.3.6. Little Gluing Lemma.

LiTTLE GLUING LEMMA. Let T' be a piecewise quasicircle (or quasiarc) con-
tained in a domain U C C, and let h : U — V' be a homeomorphism. If h is K-qc
on U N T then h is K-qc on the whole domain U.

15.3.7. Compactness in the space of quasicircles. Let QD ., r > 0, denote the
space of pointed k-quasidisks (D,0) with r < rpog < Rpo < 1/r, endowed with
the Carathéodory topology.

PROPOSITION 15.21. The space QD,, , is compact.

ProoOF. Consider a quasidisk (D,0) € 9D, .. By Theorem 15.17, the normal-
ized Riemann mapping h : (D,0) — (D,0) admits a K-qc extension to the whole
complex plane C, where K depends only on x and r. Moreover, r < |h(1)] < 1/r.
By the Compactness Theorem (see Exercise 13.3), this family of ¢ maps is compact
in the uniform topology on C. Since uniform limits of x-quasidisks are obviously
k-quasidisks, the conclusion follows. (I

15.4. QC welding. Recall from §1.7.2 and §2.1 the discussion of the con-
nected sum DU, (C\ D) of two disks along the circle T by means of an orientation
preserving ” homeomorphism & : T — T. The outcome is a topological sphere S2.

7As we know from §1.7.2, h should be “orientation reversing”. There is no contradiction here
because our h is indeed orientation reversing with respect to the orientations that T inherits from
D and from C \ D.
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FIGURE 15.2. Quasiconformal welding.

As we know from Exercise 2.3, if h is real analytic then this sphere has a
natural complex structure. By the Uniformization Theorem, there is a conformal
isomorphism H : §2 — C. Then I' = I, := H(T) is an analytic Jordan curve in C.

Vice versa, given an (oriented) analytic Jordan curve I' C C, let Uy and Uy,
be the components of C\T (where T' is positively oriented with respect to Up),
and let ¢g : Uy = D, ¢oo : Use — C ~ I be the corresponding Riemann mappings.
Then ¢g o ¢ | T is an orientation preserving analytic homeomorphism of T.

EXERCISE 15.22. Show that these constructions provide us with a one-to-one
correspondence between analytic orientation preserving homeomorphisms h : T —
T, up to two-sided action of Méb(D), and analytic Jordan curves I' C C, up to the
action of Mob(C).

We are now prepared for a far-reaching generalization of this assertion:

THEOREM 15.23. Let h : T — T be a quasisymmetric orientation preserving
homeomorphism. Then the connected sum S; = D U, (C D) can be endowed

with a unique complex structure compatible with the complex structures of D and
C~\D. This gives us a one-to-one correspondence between orientation preserving qs
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homeomorphisms h : T — T, up to the two-sided action of Mob(DD), and quasicircles

I'c @, up to the action of Méb(@). The inverse map is obtained as the composition
b0 0 ¢ | T, where

(15.3) b0 :Ug =D, oo :Uso = C~D

are Riemann mappings to the components of@ N T (where T is positively oriented
with respect to Uy ).

Moreover, there is a quantitative one-to-one correspondence between orientation
preserving L-qs homeomorphisms h : T — T (up to the two-sided action of the
rotation group T), and k-quasicircles I' C C* that are k-quasi-centered at 0 (up to
the action of the complex scaling group C*).

ProOOF. By the Ahlfors-Beurling Theorem, h extends to a qc map
h:C\D—C\D.
Define a measurable conformal structure z on C by letting p = h* (o) on C~D and

i = o onD. By MRMT, it determines a new complex structure on C, which can
be uniformized by the standard Riemann sphere by means of a qc map

H: (C/u) — (C,o).
This gives us a quasicircle I';, := H(T), with the orientation induced from T. Since
H is defined up to the post-composition with a Mdbius map, the quasicircle I'; is
defined up to the action of M&b(C) (given the extension h).

Let us show that I'; is actually independent of the choice of the extension h.
Indeed, if #/ : C <D — C ~ D is another qc extension, then #’ = h o ¢, where
P CD—>C\Disa qe homeomorphism equal to id on T. Let us consider a
homeomorphism ¥ : C — C which is equal to 1 on C\D and equal to id on D. By
the Gluing Lemma, it is qc on the whole sphere. Moreover, the homeomorphism
H'’ := H oV solves the Beltrami equation for the differential p’ associated with A/,
and H'|T = H|T. The conclusion follows.

Thus, we can write I'; = I',. In fact, I', is invariant under the two-sided
action of Mob(D): it does not change if h is replaced with A o h o B~!| T, where
A, B € Mob(D). Indeed, replacing h with A o h does not change the conformal
structure j, so it does not change H. Replacing h with h o B~!| T amounts to
replacing H with H o B~!, which does not affect I'j, either. So we have constructed
a map

(15.4) h (modulo Méb(ID)) — T, (modulo Mh(C))

Let Uy and Uy be the complementary components of C\T';,. By construction,
the maps

(15.5) po:=H ':Uy—=D and ¢oo:=hoH ': Uy —-C~D

are conformal, so they are equal to the Riemann mappings for Uy and U, respec-
tively. Moreover, their composition brings us back the original map h:

(15.6) boo 0 | T = h.
Let 1¢ and 1, be the inverse maps. Then ¥y = 9o © h, so the map
(15.7) W (S2,T)— (C,T) given by ¥|D =1, U|C~D =1,
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is a well defined homeomorphism. As it is conformal on D and C~ D, it induces a
desired complex structure U*(o) on S7.

Let us show that such a complex structure is unique. Indeed, assume there are
two such structures, and let T, TV be the corresponding quasicircles. Then there
exists a homeomorphism @ : (C,T') — (C,T") conformal on C~T. Since quasicircles
are removable, ® is Mobius, so the structures are conformally equivalent.

Furthermore, application of a Mdbius transformation A € Méb(@) to I' leads to
pre-composition of the Riemann mappings (15.5) with A~!, which does not affect
the gluing map h in (15.6). Also, as the above Riemann mappings are well defined
up to post-composition with a Mobius map A € Moéb(D), the gluing map h is well
defined up to two-sided action of Mob(D). Hence the above construction provides
us with the left inverse for the map (15.4), showing that the latter is one-to-one
onto the image.

What is left, is to show that (15.4) is surjective. It amounts to the repetition of
the construction of the gluing map (15.6) for a general oriented quasicircle I' C C.
So, let Uy and Uy, be the components of C~ I', where T is positively oriented with
respect to Uy. Let us consider the corresponding Riemann mappings (15.3), and
let Y9, Yoo be the inverse maps. Then h := ¢, 0 @ 1| T is an orientation preserving
circle homeomorphism.Moreover, as 1)y = 1o o h, the map defined as (15.7) is a
well defined homeomorphism.

By Theorem 15.17, 1y and 1, admit qc extensions Wg, U, : (C, T) — (C,F).
Hence their restrictions 1,9« : T — I' are quasisymmetric, implying that h : T —
T is gs as well.

By what we have already shown, the connected sum S? := D Uy, (@ D), T)
has a unique complex structure compatible with the complex structures on D and
C~ D. Since the homeomorphism ¥ (15.7) is conformal on D and C \ D, it is a
biholomorphic isomorphism between (S7,T) and (C,T'), so I is realized by a qc
welding.

For the last quantitative assertion, recall from Lemma 15.6 that any L-qc home-
omorphism h : T — T extends to a K(L)-qc homeomorphism h : (D,0) — (D, 0).
Then the solution H of the Beltrami equation is also K(L)-qc. Normalizing it
so that H(0) = 0 and H(co) = oo, we obtain by Proposition 12.13 the desired
k(L)-quasicircle T' (modulo the action of C*).

Vice versa, let I' C C* be a k-quasicircle centered at 0 (modulo the action of
C*). Normalizing the corresponding Riemann mappings ¢p and ¢, (15.3) so that
they fix 0 and oo respectively, we make them well defined up to post-composition
with a rotation and precomposition with a complex scaling. Hence the transit map
h = ¢oo © g 1\ T is well defined up to the two-sided action of the rotation group.
Moreover, by Theorem 15.17, each of them admits a K (k)-extension to the whole
sphere C fixing 0 and oo. Applying Proposition 12.13 once again, we conclude that
both maps are L(k)-gs. Hence so is h (with a different L). O

This construction is called the gc welding of D and C\D by means of a gs
homeomorphism h : T — T. More generally, any Jordan curve I' C C can be
viewed as a qc¢ welding by means of some homeomorphism 4 : T — T (namely, by
the transit map from the interior to the exterior Riemann mappings). However,
not all homeomorphisms appear this way.
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FIGURE 15.3. A homeomorphism of R that cannot be realized as
the welding for a Jordan curve.

16. Removability

16.1. Conformal vs quasiconformal. Similarly to the notion of qc remov-
ability introduced in §13.3 we can define conformal removability:

DEFINITION 16.1. A compact subset X C C is called conformally removable if
for any open sets U D X in C, any homeomorphic embedding h : U < C which is
conformal on U \ X is conformal/qc on U.

In fact, these two properties are equivalent:
PRrROPOSITION 16.2. Conformal removability is equivalent to gc removability.

Thus, we can unambiguously call a set “removable”.

It is classical that isolated points and smooth Jordan curves are conformally
removable. Proposition 16.2 implies that they are qc removable as well (which was
also shown directly in §13.3 of Ch. 2). Since qc removability is invariant under qc
changes of variable, we obtain:

LEMMA 16.3. Quasicircles are remouvable.

16.2. Removability and area. The Measurable Riemann Mapping Theorem
yields:

PROPOSITION 16.4. Remowvable sets have zero area.

PROOF. Assume that m(X) > 0. Then there exists a non-trivial Beltrami
differential p supported on X. Let h : C — C be a solution of the corresponding
Beltrami equation. Then A is conformal outside X but is not conformal on X. [J

The reverse is false:

EXAMPLE 16.5.
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16.3. Divergence property.

DEFINITION 16.6. Let us say that a compact set X C C satisfies the divergence
property if for any point z € X there exists a nest of annuli A™(z) around z such

that
Z A"(z) = oc.

Without loss of generality we can assume (and we will always do so) that each
annulus in this definition is bounded by two Jordan curves.

LEMMA 16.7. Compact sets satisfying the divergence property are Cantor.

Proor. Consider any connected component X, of X, and let z € Xy. Then the
annuli A”(z) are nested around X,. By Corollary 6.20 of the Grotzsch Inequality,
X is a single point. ]

LEMMA 16.8. Let X C C be a compact set satisfying the divergence property.
Then for any neighborhood U O X, any qc embedding h : U ~ X — C admits a
homeomorphic extension through X.

PROOF. Let h: U~ X — C be a K-qc embedding. If X C U’ € U then h(U’)
is bounded in C. So, without loss of generality we can assume that h(U) is bounded
in C.

For z € X, let us consider the nest of annuli h(A™(z)). Since h is quasiconfor-
mal,

Z mod h(A"(z)) > K~ * Z mod A" (z) = oc.
Let A™(z) be the bounded component of C \ h(A"(z)), and let

A®(z) = ﬂ D" (2).
n
By Corollary 6.20 of the divergence property, A>(z) is a single point ¢ = ((z). Let
us extend h through X by letting h(z) = (.
This extension is continuous. Indeed, let D™(z) be the bounded component of
C ~ A™(2). Then by Corollary 6.20, diam D" (z) — 0, so that D™(z) is a base of
(closed) mneighborhoods of z. But

diam h(D"(z)) = diam A™(z) — 0,

which yields continuity of A at z.
Switching the roles of (U, X) and (h(U), h(X)), we conclude that =1 admits a
continuous extension through h(X). Hence the extension of h is homeomorphic. [

It is worthwhile to note that, in fact, general homeomorphisms extend through
Cantor sets:

EXERCISE 16.9. (i) Let us consider two Cantor sets X and X in C and their
respective neighborhoods U and U. Then any homeomorphism h : U~ X — U~ X
admits a homeomorphic extension through X.

(ii) It was essential to assume that both sets X and X are Cantor! For any
compact set X C C, give an example of an embedding h : C ~ X — C which does
not admit a continuous extension through X.

LEMMA 16.10. Compact sets satisfying the divergence property have zero area.
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We will show now that sets satisfying the divergence property are removable,
and even in the following stronger sense:

THEOREM 16.11. Let X C C be a compact set satisfying the divergence property.
Then for any neighborhood U D X, any conformal/qc embedding h : U~ X — C
admits a conformal/qc extension through X.

PRrROOF. Let h: U~ X — C be a K-qc embedding. By Lemma 16.8, h extends
to an embedding U — C, which will be still denoted by h. Let us show that h
belongs to the Sobolev class H(U).

Since X is a Cantor set, it admits a nested base of neighborhoods U™ such
that each U" is the union of finitely many disjoint Jordan disks. Take any p > 0.
By the Grtzsch Inequality, for any n € N there is k = k(u,l) > 0 such that
mod(OU™* 9U™) > 1 > 0.  Let x, be the solution of the Dirichlet problem
in U" ~ U™ vanishing on OU™** and equal to 1 on OU". By Theorem 6.30,
D(xn) < 1/p.

Let us continuously extend y to the whole plane in such a way that it vanishes
on U"* and identically equal to 1 on C ~. U™. We obtain a piecewise smooth
function x : C — [0, 1], with the jump of the derivative on the boundary of the
domains U™ and U"t*.

Let h, = xn h. These are piecewise smooth functions with bounded Dirichlet
integral. Indeed,

D(hy) = /(|V><n\2\h|2 + [Xa*[VR[?)dm < diam(h(U))/p + C(K)m(h(U)),

where C(K) = (1+k?%)/(1 — k?) comes from the area estimate (area estimate). By
weak compactness of the unit ball in L?(U), we can select a converging subsequence
Oh, — ¢, Oh,, — 1. But h,, — h pointwise on U ~ X, so that by Lemma 16.10,
hn, — h a.e. Tt follows that ¢ and 1 are distributional partial derivatives of h (see
(13.2)).

Finally, if A is conformal on U \ X then by Weyl’s Lemma it is conformal on
U. |

17. Holomorphic motions

17.1. Definition. Let (A, \,) be a pointed complex Banach manifold® and
let X = X, C C be an arbitrary subset of the Riemann sphere (can be non-
measurable). A holomorphic motion h over (A, \o)? is a family of injections

ha: X =5 C, XeA,

depending holomorphically on A (in a weak sense that the functions z — hy(z) are
holomorphic in A for all z € X) and such that hy, = ho = id. In this situation, we
let X)\ = h,\(Xo).lo

For z € X, holomorphic functions ¢, : A — C, X\ — hy(2), are called orbits
of the holomorphic motion. Since the functions h) are injective, the orbits do not

SWe will eventually deal with infinite dimensional parameter spaces, so we need to prepare
the background in this generality. However, in the first reading the reader can safely assume that
the space A is a one-dimensional disk (which is the main case to consider anyway).

9We will often make a point Ao implicit in the notation and terminology.

10We will sometimes say briefly that “the sets Xy move holomorphically” or “the set X moves
holomorphically” without mentioning explicitly the maps hy.
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collide, or equivalently, their graphs £, C A x C (also called leaves of the motion)
are disjoint. Thus, a holomorphic motion provides us with a family of disjoint
holomorphic graphs over A. We refer to such a family as a (trivial) holomorphic
lamination §. Of course, the above reasoning can be reversed, so that, trivial
holomorphic laminations give us an equivalent (dual) way of describing holomorphic
motions.

A regularity of a holomorphic motion is the regularity of the maps hy on X. For
instance, a holomorphic motion is called continuous, qc, smooth or biholomorphic if
all the maps hy, A € A, have the corresponding regularity on X (to make sense of it
in some cases we need extra assumptions on X, e.g., openness). The regularity of h
can also be interpreted as the transverse regularity of the corresponding lamination
T, see §17.4.2 below.

Notice that a priori we do not impose any regularity on the maps hy (not
even measurability!). A remarkable property of holomorphic motions is that they
automatically have nice regularity properties and that they automatically extend
to motions of the whole Riemann sphere. This set of properties are usually referred
to as the A-lemma. It will be the theme of the rest of this section.

While dealing with a holomorphic motion of a set X, Y, etc., we let X :=
ha(X), Yy := ha(Y), etc. We will refer to the z-variable of a holomorphic motion
as the dynamical variable (though in general, there is no dynamics in the z-plane).
The A-variable is naturally referred to as the parameter.

We let

(17.1) X:=[JX\cC Y:=[J¥cC et

AEA AEA
be the total space of the corresponding motion. It has two transverse structures: It
is fibered over A with fibers X (resp., Y), etc.) and it is foliated by the leaves of
the motion. For a subdomain A’ C A, we let

X| A, = U X>\
AEN
be the total space of the restricted motion.
In case when X are Jordan disks, we will refer to X as a foliated tube.

17.2. Extension to the closure and continuity.

FIRST A-LEMMA (Extension to the closure). A holomorphic motion h of any
set X C C extends to a continuous holomorphic motion of its closure X.

PRrROOF. If X is finite, there is nothing to prove, so assume it is infinite.

Let us show that the family of orbits ¢,, z € X, of our holomorphic motion is
normal. To this end, let us remove from X three points z; € X; let X' = X ~ {z;}
and let ; be the orbits of the points z;. Since the orbits of a holomorphic motion
do not collide, the family of orbits of points z € X’ satisfies the condition of the
Refined Montel Theorem, 4.9, with exceptional functions 1;, and the normality
follows. !

Let ® be the closure of the family of orbits in the space M(A) of meromorphic
functions on A. By the Hurwitz Theorem, the graphs of these functions are disjoint,
so they form a holomorphic lamination representing a holomorphic motion of X.

HResults of §14.11.3 allow us to apply the Montel Theorem on Banach domains.
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Let us keep notation h) for the extended holomorphic motion, and notation
¢., z € X, for its orbits.

Let us show that this motion is continuous. Let A € A, let z, — z be a
converging sequence of points in X, and let ¢, € ® and ¢ € ® be their respective
orbits. We want to show that hy(z,) — hx(z), or equivalently ¢, () — &(N).
But otherwise, the sequence ¢, would have a limit point ¢y € M(A) such that
YW(Ao) = d(Ao) while 1p(N) # ¢(N), which would contradict to the laminar property
of the family ®. O

In particular, for a holomorphic motion of any compacts set X, the maps
hy: X — X, are automatically homeomorphisms.

17.3. Extension of smooth holomorphic motions. In this short section
we will prove a simple extension lemma for smooth holomorphic motions.

LeMMA 17.1 (Local extension). Let us consider a compact set () C C and a
smooth holomorphic motion hy of a neighborhood U of Q over a Banach domain
(A, Xo). Then there is a smooth holomorphic motion Hy of the whole complex plane
C over some neighborhood A’ C A of Ao whose restriction to QQ coincides with hy.

PROOF. We can certainly assume that U is compact. Take a smooth function
¢ : C — R supported in U such that ¢|Q = 1, and let

Hy=¢hy+(1—¢)id.

Clearly H is smooth in both variables, holomorphic in A, and identical outside U.
As H, =id, Hy : C — C is a diffeomorphism for X sufficiently close to Ao, and we
are done. (]

We will sometimes refer to this statement as the Elementary A-Lemma.
17.4. Transverse quasiconformality.
17.4.1. Quasiconformality of hy.

SECOND A-LEMMA (Quasiconformality). Let hy : X — X\ be a holomorphic
motion of a set X C C over the disk D. Then for |\ < r < 1, the maps hy are
n-quasisymmetric with dilatation n depending only on r. Consequently, if X is open
then the maps hy are K-qc with dilatation K depending only on r.

PRrROOF. Let t > 1. Take three distinct points a, b, ¢ € C such that

S _le—d
1< t.
“|b—a| T

We need to show that
1 ha(e) = ha(a)
1<‘)‘—< , A <7, for some n =n,(t) > 1.
U *|hA(b)—hA(a)*n||* 1= nr(t)
Let us normalize the holomorphic motion by affine changes of variables so that
hx(a) =0, hx(b) = 1. Since affine maps do not distort ratios, it is enough to prove
the assertion for the normalized motion, for which it assumes the form:
el <t A< e#ElL = 7 < ha(o)] <n.

But the orbit A — hy(c) is a holomorphic map D — C ~ {0, 1}, and the conclusion
follows from the normality of the family of all such maps (Big Montel Theorem). O
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EXERCISE 17.2. Check a slightly more general assertion, for holomorphic mo-
tions hy : C — C, A € D, of the Riemann sphere.

Given a holomorphic motion h over A, let

Dilh = sup Dil hy
AEA

(which can be infinite). We say that the holomorphic motion h is K-qc if
Dilh < K.

In these terms, the Second A-Lemma tells us that if h is a holomorphic motion over
D then for » < 1, Dil(h|D,) < K(r). Since biholomorphic reparametrizations of
the parameter domain do not affect Dilh, we can formulate the Second A-Lemma
in an invariant form:

COROLLARY 17.3. Any holomorphic motion h over D, restricted to a hyperbolic
disk Duyp(a, p) C D, has a bounded dilatation (in terms of p):

Dil(h| Diyp(a, p)) < K(p).

Note finally that the Second A-Lemma is valid over any Banach ball as well (by
restricting the holomorphic motion to one-dimensional complex disks):

COROLLARY 17.4. Let hy : X — X\ be a holomorphic motion over a complex
Banach ball By. Then for |\ < r < 1, the maps hy are n-quasisymmetric with
dilatation 1 depending only on r.

17.4.2. Holonomy. Take two point po = (Ao, 20) and p = (A, z = ha(20)) on the
same leaf £(pg) and consider local transversals 'y 2 po and I' 3 p to £ through these
points (i.e., local holomorphic curves transverse to £). Then for ¢o = (Xo,() € T's
near pg, the leaf £(gp) intersects I' transversely at a single point, so there is a
well defined local map b : (I'o,po) — (T',p) called the holonomy from T', to T.
The lamination § is called transversely (locally qc)/smooth/biholomorphic if all the
holonomy maps are such.'?

EXERCISE 17.5. The holomorphic motion h is smooth/biholomorphic iff the
corresponding lamination § is transversely smooth/biholomorphic.

LEMMA 17.6. Let h = (hy) be a holomorphic motion of an open set U over
the disk (D,0), and § be the corresponding holomorphic lamination. Then § is
transversely locally quasiconformal. Moreover, if Ty and T' are local transversals
though points po = (0, 20), and p = (X, z = ha(20)), then the dilatation Dilf(zo) of
the holonomy b : (Lo, po) — (I',p) is bounded by Dil hy(zo) (which in turn, depends
only on an upper bound r € (0,1) for |A|).

PROOF. If the transversals are vertical lines {0} x C and A x C then the result
follows from the Second A-Lemma.

Furthermore, the holonomy from the vertical line A x C to the transversal I is
locally conformal at point p. To see this, let us select a holomorphic coordinates
(0,2) near p in such a way that p = 0 and the leaf via p becomes the parameter
axis. Let z = ¢(f) = £ 4+ ... parameterizes a nearby leaf of the foliation, while
0 = g(z) = bz + ... parameterizes the transversal T.

12Notice that smoothness and holomorphicity are local properties, while quasiconformality
is not: that is why we need to say “locally qc” but not “locally smooth” or “locally biholomorphic”.
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Let us do the rescaling z = ¢(,0 = cv. In these new coordinates, the above
leaf is parametrized by the function ¥(v) = e~ (ev), |v| < R, where R is a fixed
parameter. Then U'(v) = ¢/(ev) and ¥’ (v) = ey”(ev). By the Cauchy Inequality,
U’ (v) = O(g). Moreover, 1 uniformly goes to 0 as ¢(0) — 0. Hence |¥’(0)| =
['(0)] < dp(), where dg(g) — 0 as e — 0. Thus ¥'(v) = dp(e) + O(e) < d(e) — 0
as € — 0 uniformly for all |v| < R. Tt follows that ¥(v) =1+ O(d()) = 1+ o(1)
as e — 0.

On the other hand, the manifold I" is parametrized in the rescaled coordinates
by a function v = b{(140(1)). Since the transverse intersection persists, S intersects
the leaf at the point (v, o) = (1,b)(1 + o(1)) (so that R should be selected bigger
than [|b]]). In the old coordinates the intersection point is (6, z9) = (&, be)(1+0(1)).

Thus the holonomy from A x C to I' transforms the disc of radius |¢| to an
ellipse with small eccentricity, which means that this holonomy is asymptotically
conformal. As the holonomy from {0} x C to I'y is also asymptotically conformal,
the conclusion follows. O

COROLLARY 17.7. Under the above circumstances, if Dilh < K, then § is
transversely K-qc.

Again, the above discussion is valid over Banach balls, by restricting the motion
to one-dimensional complex disks:

LEMMA 17.8. For any holomorphic motion h = (hy) of an open set U over
a Banach ball By, the corresponding lamination § is transversely locally quasicon-
formal, with the dilatation Dilh(z0) of the holonomy b : (To,po) — (T, p), where
po = (0,20) € To, p= (A, 2 = ha(20)) € T, bounded by Dil hy(z9) (which in turn,
depends only on the upper bound on |A|). If Dilh < K then § is transversely K -qc.

More generally, we can consider a holonomy on holomorphic curves that are
not necessarily transverse to the motion:

LEMMA 17.9. Let T be a transversal to a holomorphic motion h of an open set,
while S be an arbitrary holomorphic curve in the domain of the motion. Then the
holonomy v : S — T is locally quasiregular (with the same quantification as above).

PrOOF. It is locally K-qc at the points where S crosses F transversally, with
dilatation depending only to the hyperbolic distance of the corresponding parameter
to §. By removability of isolated singularities, it is locally quasiregular at the
tangency points. (I

Quasiconformality is apparently the best regularity of holomorphic motions
which is satisfied automatically.

17.4.3. Lifts of holomorphic motions.

LEMMA 17.10. Let hy : Vo — V) be a holomorphic motion of a domain Vo C C
over a simply connected parameter domain A. Let fy : Uy — V) be a holomorphic
family of proper maps with critical points c’f\ such that the critical values v’f\ = fi (c’i)
form orbits of hy.'3 Then hy uniquely lifts to a holomorphic motion Hy : Uy — Uy
such that

(17.2) froHyx=hyofo.

Bm particular, any holomorphic family of univalent maps fy : Uy — V) is allowed.
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PRrROOF. Notice that (17.2) means that the lamination associated with the mo-
tion H is the pullback of the lamination associated with the motion h under the
map f (23.18). Clearly, such a pullback unique if exists.

Let us take any regular value (o = fo(20) € Vo, and let ¢(X) = ha((o) be its
orbit. We would like to lift this orbit to a desired orbit of z,, so we are looking for
a holomorphic solution z = ¥(A) of an equation

(17.3) a(z) = 6(N)

with ¥(z0) = (5. Since ¢(\) is a regular point of fy for any A € A, the Implicit
Function Theorem implies that near any point (X, z’) satisfying (17.3), it admits
a unique local analytic solution z = (X). Since the maps f) are proper, this
continuation along any path compactly contained in A cannot escape the domain
Uy. Since A is simply connected, ¥(\) extends to the whole domain A as a single
valued holomorphic function.

Two different orbits A — t(\) obtained in this way do not collide, for (17.3)
would have two different solutions near the collision point. Hence they form a
holomorphic motion of Vo . {v5} over A. By the First A-lemma, this motion
extends to the whole domain V5.

Finally,

IA(Hx(20)) = fA((N)) = ¢(A) = ha(Co) = ha(fo(20))
holds for any point 2z, € U, except perhaps finitely many exceptions (preimages of
the critical values of f). By continuity, it holds for all z, € Us. O

17.4.4. Global transversal. A global transversal T’ to a holomorphic motion h) :
Xo — X over A is the graph of a holomorphic function ¢ : A — C that intersects
every leaf of the motion transversely at a single point. In fact, the transversality is
automatic under a mild assumption:

LEMMA 17.11. Assume that the moving set Xy has dense interior. If a holo-
morphic graph T intersects every leaf of h at a single point then the intersection is
transverse.

LEMMA 17.12. Let U be a Jordan disk and let X C U. Let hy : OU U X —
U\ U X be a holomorphic motion of these sets over A. If T is a global transversal
to Onor U then it is a global transversal to X.

LEMMA 17.13. Let Uy and V) be two Jordan disks holomorphically moving over
A. Let Fy : Uy — V) be a fibered conformal isomorphism between these disks. Let
§:A— C%and~:A— C? be two holomorphic curves such that F(y) = 8. If v is
a global transversal to QU then § is a global transversal to OV.

17.5. Phase-Parameter Relation (without dynamics). et v: X —» T
(where X = X,) be the holonomy along the leaves of the motion, and let 7 : I" — A
be the projection of I" onto A. Their composition,

(17.4) X: X = A, x:i=mov,
is a homeomorphism onto the image called the phase-parameter map. Since the

projection 7 is holomorphic, Corollary 17.7 implies:

LEMMA 17.14. Let h be a holomorphic motion of a domain U C C over
A C C with Dilh < K. Then for any global transversal T, the corresponding
phase-parameter map x : U — A is K-gs.
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17.5.1. Holomorphic dependence of the Beltrami differential on .

LEMMA 17.15. Let hy : U — Uy be a holomorphic motion of a domain U C
C over a disk A € C. Then the Beltrami differential puy = 0hy/Ohy depends
holomorphically on X (as an element of L>(U)).

PROOF. Let us take subdomains U" € U and A’ € A. Since the family of
functions A — hy(z), z € U’, is normal, it is uniformly bounded over A’. Hence
the maps hy : U — C, A € A/, are uniformly bounded. Moreover, by the Second
A-Lemma, they are uniformly K-qc. By (11.8), the L?(U’)-norms of the partial
derivatives dhy, Ohy, are uniformly bounded as well. Thus, the family of maps h.,
A € A/, is bounded in the Sobolev space H?(U").

By Lemma 14.26, (hy)xea is a holomorphic curve in H?(U’), and moreover,
the partial derivatives (Ohy)xea, (Oha)rea, form holomorphic curves in L2(U’).
By Lemma 14.25, the functions A + 0hy(z) and A +— Ohy(z) are holomorphic over
A for a.e. z € U. Hence so is the Beltrami differential py(z) = 0hx(2)/0hx(2).
Moreover, ||pallcc < 1. By Lemma 14.23, py as an element of L>°(U) depends
holomorphically on . O

17.6. Further A-lemmas. Let us say that an extension of a holomorphic
motion to some domain D C C is canonical if it behaves naturally under various
conformal representations of D.

THIRD A-LEMMA (Canonical Extension). Let hy : X — Xy, A\ € By, be a
holomorphic motion of some set X C C over a Banach ball By. Then it admits a
canonical extension to a motion hy : C — C over By 3.

This result is based upon quite advanced Teichmiiller theory: it will be proved
(and used) in vol. III.

We say that an extension of a holomorphic motion over A s parameter global if
it is defined over the whole parameter domain A

FOURTH A\-LEMMA (Parameter Global Extension). Let hy : X — X, A € D,
be a holomorphic motion of some set X C C over the disk D. Then it admits a

parameter global extension to a holomorphic motion hy:C = C (over the same
disk D).

This result needs some preparation in Complex Analysis in Several Variables:
it will also be dealt with (and used) in vol. III.

18. Moduli and Teichmiiller spaces of punctured spheres

18.1. Moduli spaces: preview. Consider some qc surface S (with or with-
out boundary, possibly marked or partially marked).

The moduli space M(S), or the deformation space of S is the space of all
conformal structures on S compatible with the underlying qc structure, up to the
action of qc homeomorphisms preserving the marked data. In other words, M(S)
is the space of all Riemann surfaces qc equivalent to S, up to conformal equivalence
relation (respecting the marked data).

If we fix a reference Riemann surface Sy, then its deformations are represented
by qc homeomorphisms h : Sy — S to various Riemann surfaces S. Two such
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homeomorphisms h and h represent the same point of the moduli space if there
exists a conformal isomorphism A : S — S such that the composition

H:B_loAOhZSO%SQ

respects all the marked data. In particular, H = id on the marked boundary. In
the case when the whole fundamental group is marked, H must be homotopic to
the id relative to the marked boundary.

For instance, if S has a finite conformal type, i.e., S is a Riemann surface of
genus g with n punctures (without marking), then M(S) is the classical moduli
space M9". If S is fully marked then M (S) is the classical Teichmiiller space T9°".
This space has a natural complex structure of complex dimension 3g — 3 +n for
g > 1. For g = 1 (the torus case), dim 7% = 1 (see §2.6.3) and dim 7" = n for
n > 1. For g = 0 (the sphere case), dimT%" = 0 for n < 3 (by the Riemann-
Koebe Uniformization Theorem and 3-transitivity of the Mdbius group action) and
dim 79" = n — 3 for n > 3.

EXERCISE 18.1. What is the complex modulus of the four punctured sphere?

There is a natural projection (forgetting the marking) from 79" onto M9".
The fibers of this projection are the orbits of the so called Teichmiiller modular
group acting on T9" (it generalizes the classical modular group PSL(2,Z), see
§2.6.3).

By the Riemann Mapping Theorem, the disk D does not have moduli. However,
if we mark its boundary T, then the space of moduli, M(ID, T), becomes infinitely
dimensional! By definition, M(ID, T) is the space of all Beltrami differentials p on
D up to the action of the group of qc homeomorphisms A : D — I whose boundary
restrictions are Mobius: h|T € PSL(2,R). It is called the universal Teichmiiller
space, since it contains all other deformation spaces. It plays an important role in
holomorphic dynamics.

18.2. Definitions. Let us consider the Riemann sphere with a tuple of n
marked points Z = (z1,...,2,) (or, equivalently, n punctures). The punctures
are considered to be “colored”, or, in other words, the set P is ordered. Two such
spheres (C, Z) and (C, Z2’) are considered to be equivalent if there is a Mobius
transformation ¢ : (C, Z) — (C, Z’) (preserving the colors of the punctures, i.e.,
¢(z;) = z!). The space of equivalence classes is called the moduli space M,,.

If n < 3 then the moduli space M,, is a single point. If n > 4, we can place
the last three points to (0,1, 00) by means of a Mébius transformation. With this
normalization (C, Z) ~ (C, 2’) if and only if Z = Z’, and we see that

My ={z=(21,...,2n-3) 1 2 #0,1; z; # z;}.

This shows that M,, an (n — 3)-dimensional complex manifold.

Let us fix some reference normalized tuple Z, = (ay, ... a,—3,0,1,00). Then we
can also define M,, as the space of homeomorphisms h : (C, Z,) — C normalized
by h(0) =0, k(1) = 1, up to equivalence: h ~ h' if h(Z,) = h'(Z,).

Let us now refine this equivalence relation by declaring that h ~ h’ if h is
homotopic (or, equivalently, isotopic) to h' rel Z,, and let [h] stand for the cor-
responding equivalence classes. It inherits the quotient topology from the space
of homeomorphisms (endowed with the uniform topology). This quotient space is
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called the Teichmiiller space T,. Since the equivalence relation ~ is obviously
stronger than ~ we have a natural projection « : 7,, — M,,.

18.3. Spiders. The homotopy class [h] can be visualized as the punctured
sphere marked with a “spider”. A spider S on the punctured sphere (C, Z) is a
family of disjoint paths o; in C \ Z connecting z; to 0o, i =1,...n— 1. We let [S]
be the class of isotopic spiders (rel Z).

LEMMA 18.2. There is a natural one-to-one correspondence between points of
Tn and classes of isotopic spiders, (C, Z,[S]).

PROOF. Let us fix a reference spider (C, Z,,S,). Then to each homeomorphism
h € T, we can associate a spider S = h(S,). Isotopy h; rel Z, induces isotopy of
the corresponding spiders rel Z. Hence we obtain a map [h] — [S].

Vice versa, let us have a spider (C, Z,S). Then there exists a homeomorphism
h:(C 25,8) — (CZ,8). If (C,Z,8) is an isotopic spider then the isotopy
Sy rel Z, 0 <t < 1, lifts to an isotopy h; rel Zy. Given any parameterizing
homeomorphism i’ : S; — &', we can isotopy hi so that it will coincide with A’ on
So. Since two homeomorphisms of a topological disk coinciding on the boundary
are isotopic rel the boundary, we are done. (I

18.4. Universal covering. The spiders can be labeled by tuples of n — 1
elements of the fundamental group m (C \ Z) ~ F,,_; (where the latter stands for
the free group in n — 1 generators). Indeed, let us consider a bouquet of circles
\/,?z_l1 C; in C; ~ Z based at some point a € C \ Z and such that the circle C;
surrounds z; but not the other points of Z. These circles oriented anti-clockwise
represent generators of the fundamental group m1(C \ Z, a). Accordingly, any loop
in \/ C; is homotopic to a concatenation of the loops C; and their inverse. Let us
select a proper arc 7., connecting a to oo in the complement of \/ C;, and n — 1
arcs ; in the punctured disks bounded by the C;. Since \/ C; is a homotopy
retract for C \ Z, any arc connecting z; to oo is homotopic to the concatenation
of the v;, a loop in \/ C;, and . Thus, any spider leg is labeled by an element of
m(C\ Z, a).

PrROPOSITION 18.3. The natural projection w : T, — M, 1is the universal
covering over M,,.

PRrROOF. Let us first show that 7 is a covering. Take some base tuple Z, =
(29,...20_4) € M,, and consider a bouquet of circles C; and the paths v, v5, in
C \ Z as above. Consider a neighborhood Uy X --- x U,_3 of Z, in M,,, where
the U; are little round disks around 27 fully surrounded by the circle C;. Let us
connect any point z; € U; to z; with a straight interval. Concatenating them with
vy, we obtain a path v; connecting z; to @ and continuously depending on z; € U;.

Select now any element 7 € 7(C \ Z,a).

O

18.5. Infinitesimal theory. A tangent vector to the moduli space M,, at
point z = (z1...,2,—3,0,1,00) can be represented as a tuple

v=(v(21),...v(2n_3))

of tangent vectors to C at points z;. Since the natural projection 7, — M, is a
covering, tangent vectors to 7, can be represented in the same way.
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Any such tuple of vectors admits an extension to a smooth vector field v van-
ishing at points (0, 1, 00) (such vector field will be called “normalized”). So, we can
view the tangent space to M,, (and 7y,) as the space Vect = Vect(C, Z) of smooth
normalized vector fields modulo equivalence relation: v ~ w if v(z;) = w(z),
i=i,...,n—3.

With this in mind, we can give a nice description of the cotangent space to
M,, and T,,. Let us consider the space Q' = Ql((@, Z) of integrable holomorphic
quadratic differentials ¢ = ¢(z) dz? on C with poles in Z. Such differentials must
have at most simple poles (at co it amounts to ¢(z) = O(1/|23])).

EXERCISE 18.4. Show that this space Q' of quadratic differentials has complex
dimension n — 3. Moreover, the map q — (A1,..., \n—3), where \; = Res,, ¢, is an
isomorphism between Q' and C"3.

It turns out that it is not an accident that dim Q' = dim M,,.

PRrROPOSITION 18.5. The space Ql((@ N\ 2Z) of quadratic differentials is naturally
identified with the cotangent space to My, (and Ty ). The pazrmg between a cotan-
gent vector q € Ql((C N Z) and a tangent vector v € Vect((C Z) is given by the
formula:

n—3
1 _
18.1 =—— ov = AiVs,
(18.1) <q,v> 7r//q v ;:1 v

where v; = v(z;), \i = Resy, q

PROOF. Let us first note that this pairing is well defined. Indeed, as we saw in
§2.11, Qv is a Beltrami differential, and the product g v as a conformal Riemannian
metric that can be identified with its area form

qov ~ % q(2) Ov(2) dz A dz.
Moreover, this area form is integrable since ¢ is integrable and dv is bounded.
Let us calculate the integral. Since ¢ is holomorphic, we have!*
qOsvdz NdzZ = 05(qv)dz NdzZ = —9(qudz) = —d(qvdz).

Let v-(z;) be the e-circles centered at finite points of Z, i =1,...,n—1, and let
I'. be the e~ !-circle centered at 0 (where all the circles are anti-clockwise oriented),
and let D. be the domain of C bounded by these circles. Then by the Stokes

formula
1
dz) = — E dz — — dz.
27m// (qvdz) " omi //E(zi)qv - 2mi /quv :

But near any z; € C we have:

)\i’U Zi
qu = (z4) + O(1).
z— Z;
Hence 1
—/ qudz — A\v(z;) as € — 0.
2mi Ve (2i)

11y this calculation & and 8 are interpreted as external derivatives rather than their tensor
counterparts
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Note that these integrals asymptotically vanish at z,_o = 0 and z,_1 = 1 since v
vanishes at these points. The integral over I'. asymptotically vanishes as well since
q(z) = O(]z|~3) while v(z) = o(|2]?) near oo (as the vector field v/dz vanishes at
00).

Finally, we obtain:

n—3
1 _
%//qagvdz/\dzf ;)\Zv(zz)

So, the pairing (18.1) depends only on the values of v at the points z1, ..., z,_3,
and hence defines a functional on tangent space TM,,. This gives an isomorphism
between Q' and the cotangent space T*M,, since (A1, ..., \,_3) are global coordi-
nates on the both spaces (see Exercise 18.4). O

18.6. Teichmiiller metric. Let us endow the space Q'(C . Z) with the L!-

norm:
Il :/m,

and the dual space Vect(C, Z) with the dual norm:
[v]lx = inf [|9v]o,

where the infimum is taken over all smooth vector fields v with v(z;) = v;, i =
1,...,n — 3, that vanish at 0,1 and oco.

EXERCISE 18.6. Check that the above two metrics are dual in the usual sense:

gl = sup | <q,v>].

llvll=1

Recall that a Finsler metric on a manifold X is a continuous family of norms
lv]|; on the tangent spaces T, X (where continuity means that the function (x,v) —
lv]|; is continuous on the tangent bundle). Equivalently, it is a continuous family
of norms on the cotangent bundle.

Given a Finsler metric, we can measure the length of rectifiable paths:

I(y) = / @)1l d,

which induces the Finsler distance on X:
dist(x,y) = inf (%),
v

where the infimum is taken over all rectifiable curves v connecting x to y.

EXERCISE 18.7. Show that the above norms on Q' and Vect endow T, (and
M,,) with a Finsler metric (i.e., check continuity).

Obviously, the projection 7 : T, — M,, is a local isometry with respect to the
corresponding Finsler metrics.

The Teichmailler metric on T, is defined as follows. Let us consider two marked
Riemann surfaces h : (S%,P) — (C,2) and /' : (S%,P) — (C, Z’) representing
points 7 = [h] and 7" = [1] of T,,. Then

dist(r,7') = igf log Dil ¢,

where ¢ runs over all qc maps (C, Z) — (C, Z') such that h/ >~ ¢ o h.
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EXERCISE 18.8. Check that this is a metric.

THEOREM 18.9. The above Finsler metric on T, coincides with the Teichmiiller
metric.

18.7. Compactness in M,,.

LEMMA 18.10. A subset KK C M, is precompact if and only if there exists an
€ > 0 such that for any ((C Z) € K the marked points z; € C are e- -separated in the
spherical metric.

PROOF. The space C" is a natural compactification of M,: a point z =
(z1,...,2n) € C") belongs to M,, if and only if z; # z; for any 7 # j. For any
sequence (z*) in M,, we can take a limit in C". This limit belongs to M,, if and
only if the coordinates of the z* are e-separated for some & > 0. |

A topological annulus A C S? \ Z is called trivial/peripheral if so are its
horizontal curves (see §1.7.10).

It is important to formulate the above compactness criterion in the conformally
invariant /hyperbolic terms:

LEMMA 18.11. A subset K C M,, is precompact if and only if one of the
following equivalent properties hold:

e There exists 1 > 0 such that mod A < u for any non-peripheral annulus A C
C\ Z;
o There exists 6 > 0 such that lnyp(y) > 6 for any closed hyperbolic geodesic in
C\Z.

18.8. Appendix 1: General Teichmiiller spaces.

18.8.1. Marked Riemann surfaces. The previous discussion admits an exten-
sion to an arbitrary qc class QC' of Riemann surfaces that we will outline in this
section. Take some base Riemann surface Sy € QC' (without boundary), and let
Sy be the ideal boundary compactification of Sy. Given another Riemann surface
S € QC (with compactification S), a marking of S is a choice of a qc homeomor-
phism ¢ : So — S (parametrization by Sp) up to the following equivalence relation.
Two parametrized surfaces (S, ¢) and (S’,¢’) are equivalent if there is a conformal
isomorphism h : S — S’ that makes the following diagram homotopically com-
mutative rel the ideal boundary (i.e., there is a qc homeomorphism (,Z; S = S
homotopic to ¢ rel &S, such that ho ¢ = @'). A marked Riemann surfaces is
an equivalence class 7 = [S, ¢] of this relation. The space of all marked Riemann
surfaces is called the Teichmiiller space T (So).

REMARK 18.12. Fixing a set A of generators of 7;(Sp) and parametrizations
of the boundary components of Sy by the standard circle T, we naturally endow
any marked Riemann surface [S, ¢| with a set of generators of 7 (.S) (up to an inner
automorphism of 71(S)) and with a parametrization of the components 95 by T.
Thus, we obtain a marked surface in the sense of §1.7.15.
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18.8.2. Representation variety. Let us now uniformize the base Riemann sur-
face Sy by a Fuchsian group T'g. The (Fuchsian) representation variety Rep(To)
is the space of faithful'® Fuchsian representations i : Iy — PSL(2,R) up to con-
jugacy in PSL(2,R) endowed with the algebraic topology. In this topology i, — 4
if after a possible replacement of the i, with conjugate representations, we have:
in(7) = i(7) for any v € I'.

LEMMA 18.13. There is a natural embedding e : T (So) — Rep(So).

PROOF. Let ¢ : Sy — S be a qc parametrization of some Riemann surface S €
QC, and let I' be a Fuchsian group uniformizing S. Then ¢ lifts to an equivariant
qc homeomorphism @ : (H,y) — (H,T), so there is an isomorphism i : 'y — T’
such that ® oy =y o ® for any vy € T'g and v = i(7o).

If we replace ® with another lift 7' o ®, where T" € T', then ¢ will be replaced
with a conjugate representation v +— T~ ! oi(vyy) o T.

If we replace ¢ with a homotopic parametrization ¢ : Sy — S then the induced
representation I'y — I' will not change. Indeed, a homotopy ¢; connecting ¢ to ¢Z
lifts to an equivariant homotopy ®; : (H,Tg) — (H,T') inducing a path of represen-
tations 4; : Do — I'. Then for any vy € T'g, the image i;(7y) € T’ moves continuously
with ¢. Since I is discrete, i¢(y) cannot move at all.

If we further replace é with ho (;3, where h : S — S’ is a conformal isomorphism
then the representation ¢ : I'g — I' will be replaced with a conjugate by T': H — H
where T' € PSL(2,R) is a lift of h.

Thus, we obtain a well defined map e : T(Sp) — Rep(Sp) that associates to
a marked surface [S, ¢] the induced representation ¢ : T'y — I' up to conjugacy in
PSL(2, R).

Let us now show that e is injective. Let ¢ : Sg — S and ¢’ : Sy — S’ be two
parametrizations whose lifts ® and ®’ to H induce two representations 7 and i’ of T’
that are conjugate by 7' € PSL(2,R). Then ® and ¥ = T~! 0 ® are two equivariant
homeomorphisms (H, T'g) — (H, T') that induce the same representation i : T'g — T'.
We need to show that they are equivariantly homotopic.

To this end let us consider the following diagram encoding equivariance of ®
and U:

Let 6(z) be the hyperbolic geodesic connecting ®(z) to ¥(z). Since v is a
hyperbolic isometry, it isometrically maps §(z) to d(yox). Let t — P(z) be a
uniform motion along 6(z) from ®(z) to ¥(z) with such a speed that at time ¢ = 1
we reach the destination (in other words, ®;(x) is the point on §(z) on hyperbolic
distance t disthyp(®(z), U(x)) from ®(z)). Then v(P.z) = Pi(y0x), and we obtain
a desired equivariant homotopy. (I

18.8.3. Teichmiiller metric. Let us endow the space T (Sp) with the following
Teichmiiller metric. Given two marked surfaces 7 =[S, ¢] and 7/ = [S’, @], we let
distr(7,7") be the infimum of dilatations of q¢c maps h : S — S’ that make the
above diagram homotopically commutative.

LEMMA 18.14. distt is a metric.

PrOOF. Triangle inequality for distp follows from submultiplicativity of the
dilatation under composition. So, distT is a pseudo-metric. Let us show that it

151‘6., injective
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is a metric, Indeed, if distr(7,7") = 0 then there exists a sequence h,, : S — S’
of qc maps in the right homotopy class with Dil(h,,) — 0. Let H, : H — H be
the lifts of the h,, that induce the same isomorphism between I' and IV. Then the
H,, is a sequence of qc maps with uniformly bounded dilatation whose extensions
to R = OH all coincide. Now Compactness Theorem 13.2 implies that the H,
uniformly converge to an equivariant conformal isomorphism 7' : (H,Ty) — (H,T).
It descends to a conformal isomorphism A : S — S’ in the same homotopy class as
the h,,. O

EXERCISE 18.15. Show that the embedding e : T (So) — Rep(T'o) is continuous.
(from the Teichmiiller metric to the algebraic topology).

Notes

The local version of the “MRMT” goes back to Gauss who proved that any
real analytic metric can be locally brought to a conformal form p(z)|dz|* thus,
solving the “Beltrami equation” with an analytic coefficient). Once the Uniformiza-
tion Theorem becomes available, the global version follows (with the corresponding
regularity of the metric.)

Apparently, the theory of quasiconformal maps originated in the work on car-
tography by Tissot in mid XIXth century: see a historical account in [Pap|. The
official birth is usually associated with Groztsch’s 1928 paper [Gr|, where the ex-
tremal problem for rectangle diffeomorphisms was considered (making one of the
first applications of the length-area method). Probably, the Koebe Distortion The-
orem played a motivating role in this story.'® Groztsch developed this circle of ideas
through the early 1930s. It was further advanced in the work of Teichmiiller around
1940 who connected extremal maps on Riemann surfaces to quadratic differentials.
(See [Ku] for more comments on this early history.)

In 1935, the notion of quasiconformality was rediscovered by Lavrentiev (al-
ready for homeomorphisms) who proved solvability of the Beltrami equation with a
continuous coefficient. In 1938, Morrey proved the measurable version. (Lavrentiev
was motivated by the geometric problem of bringing Riemannian metrics to a con-
formal form, while Morrey’s interest came from the PDE side). Lavrentiev called
these maps “pseudo-analytic”; the name “quasiconformal” was given by Ahlfors [A4]
(p. 185).

However, a systematic development of the theory (under proper regularity as-
sumptions) was undertaken only after the war, by Lavrentiev, Bers and Nierenberg,
Vekua and Bojarski, Ahlfors and Bers, Volkovyskii, Belinskii and Pesin, Strebel,
Pfluger and Mori, followed by many others.

Let us mention, in particular, the following contributions:'”

Definition of quasiconformality in terms of the uniform bound on the upper circular
dilatation was introduced by Lavrentiev [Lav]|. This class of maps was systemati-
cally studied by I.N. Pesin [Pes] who proved that the absolutely continuity property,
as well as compactness of the space of K-qc maps. The quasisymmetry property

16Gréztsch was a student of Koebe.

17Unfortunaﬂ;ely7 the history of the theory of qc maps, though quite recent, is not readily
decipherable. The author has browsed through the literature of those days in a non-systematic
way, so some important contributions (and causality relations between them) can certainly be
overlooked.
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also appeared in [Pes| with attribution to Belinskii. It is also mentioned that such
maps are absolutely continuous on lines, with a reference to Menshov (1937).

With this regularity in hands, the Grétzsch method implies the quasi-invariance
of moduli. Mori’s paper [Mori, Lemma 4] closes up the loop by showing that
the quasi-invariance of moduli implies local quasisymmetry (and hence a uniform
bound on the upper circular dilatation).

As far as we can tell, distributional derivative were introduced into the subject
by Vekua [Vel].

The Ahlfors-Beurling criterion appeared in [ABeul].

As we have already mentioned, the local version of the MRMT is due to Morrey
[Mor]. A global approach via integral representations was developed by Vekua
[Ve2]| and Bojarski [Bo]. It was further explored by Ahlfors and Bers [AB] (see
also [A2]), with the emphasis on the parameter dependence, who followed up with
numerous deep applications to Teichmiiller theory and theory of Kleinian groups.
Various contemporary views appeared in [DB, IM]. We have taken as qualitative
path as we could get, making a minimalistic use of integral representations.

The idea of the Moduli spaces of Riemann surfaces goes back to Riemann.
The idea of marked surfaces leading to “Teichmiiller spaces” is usually attributed
to Teichmiiller, though apparently it had appeared already in Fricke’s work early
in the of the 20th century. (In fact, sometimes the spaces are called Fricke, see
[Ab]).

As we have mentioned above, quasiconformal maps found deep applications in
the work of Ahlfors and Bers (in the 1960-70’s) to the theory of Kleinian groups
(with a feedback to the qc theory). In particular, qc welding appeared in [Bersl|
in this context.

Quasiconformal maps attained even greater prominence in the work of Mostow
(late 1960s), Thurston, and Sullivan in the 1970s, relating them in a deep way to
Hyperbolic Geometry and Ergodic Theory. They were introduced to Holomorphic
Dynamics by Sullivan in the early 1980s, and have become an indispensable tool in
this field ever since.

The First A-Lemma (extension to the closure) appeared in [L7] and [MSS] in
the dynamics context. The Second A-Lemma (quasiconformality) is due to Mané-
Sad-Sullivan [MSS|. The Third A-Lemma (the canonical extension) is due to Bers
and Royden [BR]. Independently, existence of some extension to the whole sphere
over some ball B, (of a universal radius r € (0,1)) was proved by Sullivan and
Thurston [STh]|. The Fourth A-Lemma was proved by Slodkovski [S]], based on

the Forstenri¢ machinery [For]|

The first text book on the basic theory of qc maps was written by Volkovysski
[V] (who applied them to the type problem for Riemann surfaces). It followed
with many more, in Russian and English, see [A2, Bel, Kr, LV], with the book
by Ahlfors remaining the most popular source. Among more recent sources let us
mention [GaL, He|, where the former focuses on applications to the Teichmiiller
theory, while the latter develops a contemporary general theory of quasisymmetric
maps on metric spaces.

Quasiconformal maps remain an active area of research, with many important
applications. In the upcoming volumes, we will encounter them frequently.
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19. Glossary of Dynamics

This glossary collects some basic notions, examples and results of Ergodic The-
ory and Dynamics. In particular, we give a nearly complete account of the theory of
expanding circle maps that serves as a good prototype for many dynamic