Show that the function defined by means of the equations

\[f(z) = \begin{cases}
(1 - \cos z) / z^2 & \text{when } z \neq 0 \\
\frac{1}{2} & \text{when } z = 0
\end{cases} \]

is entire.

Solution: \(\cos z \) is represented by convergent series:

\[\cos z = 1 - \frac{z^2}{2!} + \frac{z^4}{4!} - \frac{z^6}{6!} \ldots \]

for \(z \neq 0 \)

\[\frac{(1 - \cos z)}{z^2} = \frac{1}{2} - \frac{z^2}{4!} + \frac{z^4}{6!} - \ldots \quad (*) \]

So for \(z \neq 0 \) \(f(z) \) is represented by series \((*)\) \(\text{The value of} \)

By definition of \(f \), \(f(0) = \frac{1}{2} \) is equal to the series \((*)\) at 0.

So \(f(z) = \frac{1}{2} - \frac{z^2}{4!} + \frac{z^4}{6!} - \frac{z^6}{8!} \ldots \) is representation of \(f \)

by a series convergent in the whole plane.

\(f \) is entire.