Problem Set #5

due Monday, March 1, 2004

Note: The definition of a regular surface that I gave in class is not the same as the one in the book. doCarmo assumes that his coordinate patches are homeomorphisms. It is a theorem (Proposition 4 in section 2.2) that this is equivalent to the coordinate patches being 1-1. You may use whichever definition is more convenient.

1. doCarmo, section 2.2, # 2, 4, 10

2. Let \(c(s) = (x(s), 0, z(s)) \) be a simple regular curve in the \(xz \)-plane with \(x(s) > 0 \) for all \(s \). Let \(S \) be the set of points formed by rotating \(c(s) \) about the \(z \)-axis.

(a) Show that \(F(s, \theta) = (x(s) \cos \theta, x(s) \sin \theta, z(s)) \) is a coordinate patch for some open set in the \(s\theta \)-plane.

(b) Prove that the set \(S \) is a regular surface (called a surface of revolution).

(c) Prove that \(S \) is still a regular surface if \(c(s) \) is a simple closed curve.