Problem Set #3

due Monday, February 16, 2004

1. doCarmo, section 1.5, # 2, 9, 14

2. Let \(\alpha(s) \) be a regular curve, parameterized by arclength, such that \(\kappa(s) \neq 0 \) and \(\tau(s) \neq 0 \) for all \(s \).
 (a) Prove that if \(\alpha \) lies on the sphere of radius \(r \), centered at \(p \), then
 \[
 \frac{\tau}{\kappa} = \left(\frac{\kappa'}{\tau \kappa^2} \right)'
 \]
 (b) Prove that the center of the sphere, \(p \), satisfies
 \[
 p = \alpha(s) + \frac{1}{\kappa(s)} N(s) + \frac{\kappa'(s)}{\tau(s) \kappa^2(s)} B(s)
 \]
 for all \(s \).
 (c) Prove the converse of part (a).

3. Find a minimal set of first-order, linear differential equations which are equivalent to the Frenet–Serret equations for a curve in \(\mathbb{R}^3 \). (Hint: You will need at least three equations.)