MAT 141
Problem Set #12
due in recitation on November 23 or 24, 2004

1. Prove that if \(f(x) \) is bounded on \([a, b]\) and discontinuous at only finitely many points of \([a, b]\), then \(f(x) \) is integrable on \([a, b]\).

2. Assume that \(f(x) \) is continuous on \([a, b]\). You are asked to defend the statement \(\lim_{x \to p} f(x) = f(p) \). Given a challenge, \(\epsilon \), describe a strategy for finding your response, \(\delta \), that does not depend on \(p \). (Hint: You will need to use the small span theorem.)

3. Consider the function

\[
g(x) = \begin{cases}
x^2 & \text{if } x \text{ is rational} \\
0 & \text{if } x \text{ is irrational}
\end{cases}
\]

Prove that \(g(x) \) is differentiable at \(x = 0 \). Compute \(g'(0) \).