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In this note, all models will be over the ground field R. Formality of manifolds descends to subfields,
so all conclusions will hold over Q as well.

A manifoldX is said to be formal if its minimal model can be constructed by finding the minimal model
of its cohomology algebra. That is, we have the following diagram (“zig-zag”) of quasi-isomorphisms:

de Rham forms with exterior derivative

minimal model of X

H∗(X) with zero differential

∼

∼

Equivalently, we could require that there exists a map of differential graded algebras from the minimal
model of X to the cohomology algebra that induces the identity on cohomology.

We follow the proof given in [1] Fernández-Muñoz “Formality of Donaldson Submanifolds” that simply
connected manifolds of dimensions two through six are formal. First a characterization of formality is
given, upon which a weaker notion of formality is introduced (s-formality) by relaxing the conditions
of this characterization.

The mentioned characterization of formality is the following, used in Deligne-Griffiths-Morgan-Sullivan
(wherein they prove that all closed Kähler manifolds are formal):

Proposition. Denote the underlying algebra of the minimal model of a manifold X by M = ΛV , where
V is a graded vector space of generators of the minimal model. Let Vi denote the i-th grading in V ,
and let Ci denote the subspace of closed elements in Vi. The manifold X is formal if and only if we
can choose complements Ni to the Ci (so that Vi = Ci⊕Ni) such that any closed element in the ideal
generated by ⊕iNi in ΛV is exact.

Proof. Suppose X is formal, i.e. we have a map of dga’s f : M → H∗(X) inducing the identity on
cohomology. Since the differential in the minimal model is decomposable (by definition of the model),
the inclusion of the closed elements in the space of degree i generators Vi into the cohomology algebra
is injective (because no sums can be made exact, by minimality). Hence f is injective on Ci as well.
Setting Ni to be the kernel of f within Vi, we obtain Vi = Ci ⊕Ni. If some a ∈ ideal(⊕iNi) is closed,
then f(a) = 0 and thus 0 = f∗(a) = [a], so a is exact.

Conversely, suppose we have complements Ni to the Ci as described above. On each Vi, define a
map f : Vi → H∗(X) by projecting to Ci and taking its cohomology class. Extend this map by
multiplicativity to all of ΛV . We show that this map is a map of dga’s, i.e. df = fd. Since the image
of f lies in the cohomology algebra, which has trivial differential, we have df = 0. We now show that
f(d(a)) = 0 for all a ∈ ΛV . Write da = c+n, where c consists of elements purely in the spaces Ci, and
n lies in the ideal generated by ⊕iNi. Observe dn = dda−dc = 0 (since c is closed), so by assumption
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n is exact, n = dn′. Then c = d(a − n′), so [c] = 0 and thus f(d(a)) = [c] = 0. Note that f induces
the identity on cohomology.

Now we define the notion of s-formality, where s is any non-negative integer. For a minimal dga
M = ΛV , we say it is s-formal if, for i ≤ s we can choose complements Ni to the space of closed
generators Ci in Vi such that any closed element in the ideal ⊕i≤sNi within ΛV ≤s is exact in ΛV . We
say a space is s-formal if its minimal model is s-formal (this property is dga-homotopy invariant).

Note first that s-formality imples s− 1-formality, and that formality implies s-formality for all s. The
utility of this new notion becomes apparent once it is proved that a manifold of dimension 2n or 2n−1
is formal if and only if it is n− 1-formal. To assist us in proving this result, we need two preliminary
observations.

Lemma. An n-manifold X is formal if and only if it is n-formal.

Proof. As is evident from the definition of n-formality and the preceding proposition, formality
implies n-formality. Conversely, suppose X has an n-formal minimal model ΛV . We will show that
the conditions of the proposition hold, i.e. we will find subspaces Ni ⊂ Vi complementary to the
subspaces of closed generators Ci such that any closed element in the ideal generated by ⊕iNi is
exact. For i ≤ n take the Ni to be the ones provided by virtue of n-formality. For i > n set Ni = Vi.
Now consider a closed element a in the ideal generated by ⊕iNi in all of ΛV . If the degree of a is no
more than n, then a is in fact in the ideal generated by ⊕i≤n in ΛV ≤n for degree reasons, and so by
assumption it is exact. If the degree of a is greater than n, then we know that it must be exact since
X has no cohomology above its dimension.

Let us omit the proof of the following lemma. Details can be found in [1] (along with everything else
discussed here).

Lemma. The product of two manifolds, X × Y , is s-formal (for any s) if and only if both X and Y
are s-formal.

Now we come to the result that will let us easily conclude formality of manifolds with some connectivity
assumptions.

Theorem. An oriented manifold X of dimension 2n− 1 or 2n is formal if and only if it is n− 1-formal.

Proof. The orientability hypothesis is necessary since we will use that top cohomology is one-
dimensional, and we will use Poincaré duality.

Dimension 2n. Suppose we have a minimal model ΛV of X which is n − 1 + r-formal, for some
r ≥ 0. (The case r = 0 is the initial assumption.) We construct an n + r-formal minimal model
of X. Consider the generators {x1, x2, . . .} of V n+r (where V n+r is the vector space of pure degree
n + r elements in V ), ordered so that if dxi does not contain xi+1, xi+2, . . .. We will go one by
one through these generators, defining spaces V̂i which decompose into V̂i = Ĉi ⊕ N̂i such that any
closed element in the ideal generated by N̂i in ΛV̂i will be exact in ΛV . Each of V̂i, Ĉi, N̂i will be
contained in V̂i+1, Ĉi+1, N̂i+1 respectively, and so this construction will give us the desired conclusion
of n+ r-formality when we go through all of the (finitely many) generators x1, x2, . . . of V n+r.

If xi is a generator of V n+r such that there exists a y ∈ ΛV ≤n−1+r with dy = dxi (note that
this happens, in particular, if xi is closed), then define x̂i = xi − yi, observe dx̂i = 0, and set
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V̂i = V ≤n−1+r ⊕ span(x̂1, . . . , ˆxi−1). Start the procedure announced in the previous paragraph by
reordering the generators x1, x2, . . . so that all generators such that there exists such a y are at the
beginning of the sequence (their order among themselves does not matter), and define V̂i as above. Set
Ĉi = Ĉi−1⊕ span(x̂i) and N̂i = N̂i−1, with initial data V̂0 = V ≤n−1+r, Ĉ0 = C≤n−1+r, N̂0 = N≤n−1+r.
The elements in Ĉi are certainly all closed, by construction, so it just remains to check that any closed
element η in N̂i · ΛV̂i is exact in ΛV . Observe N̂i · ΛV̂i = N̂i−1 · Λ(V̂i−1 ⊕ span(x̂i)) and so

η = η0 + η1x̂i + η2x̂i
2 + · · ·+ ηkx̂i

k

with ηi ∈ N̂i−1 ·ΛV̂i−1. Since dη = 0 and dx̂i = 0, we conclude that dη0 + dη1 · x̂i + · · ·+ dηk · x̂ik = 0
and so, since ΛV is free, every dηj is zero, and so each ηj is exact by induction on i. Therefore η is
exact as well.

Now consider the remaining generators, i.e. those for which we cannot find such a y as above. In
the steps we do for these generators, we will have Ĉi = Ĉi−1. To define N̂i, we will add the span of
a modified xi to N̂i−1. We discuss this modification of xi now. Let us pretend that no modification
of xi is necessary, and let us set Ni = N̂i−1 ⊕ span(xi). Take a closed element in the ideal of Ni in
Λ(V̂i ⊕ span(xi)) and let us see what we can say about it (ideally, it would be closed).

So, take a closed element η ∈ (N̂i−1 ⊕ span(xi)) · Λ(V̂i ⊕ span(xi)). We can write

η = η0 + η1xi + · · · ηkxki ,

with ηj ∈ N̂i−1 · ΛV̂i−1. If k = 0, that is η = η0, then by induction on i this is exact. If k ≥ 3,
then the degree of η is strictly greater than 2n since the degree of xi is at least n, and so η is exact.
If k = 2 and the degree of xi is n + 1 or greater, then we have the same conclusion. If k = 2
and xi has degree n, we can write η = η0 + η1xi + cx2i , where c is a real number. Since dη = 0,
we have (dη0 + η1dxi) + (dη1 + 2cdxi)xi = 0, so again by freeness of the model d(η1 + 2cxi) = 0.
Since η1 is obtained from the previous stages, we can write η1 = a + b, with a ∈ ΛV ≤n−1 and
b ∈ span(x1, . . . , xi−1). Since d(b−2cxi) = da, we conclude that b−2cxi should be a linear combination
of those generators we considered first (two paragraphs ago). However, by construction this is not the
case, since we are considering the “remaining generators” xi (introduced in the previous paragraph).

Now it remains to consider the case where our closed element η is of the form η = η0 + η1xi. Note
that we can decompose η into a sum of elements of pure degree, so we can assume η is of some pure
degree. If the degree of η is 2n + 1 or more, then η is exact since X is a 2n-manifold. Let us now
focus on the case of η with degree 2n. Observe that dη = (dη0 + η1dxi) + (dη1)xi, so η1 is closed, and
since the degree of xi is n+ r, the degree of η1 is n− r. We will show that we can modify xi slightly
so that every expression of the form η0 + η1xi with η0 ∈ N̂i−1 · ΛV̂i−1 and η1 ∈ ΛV̂i−1 (as we have)
is exact if η1 is closed. Take a basis {η̂j} of the vector space of elements of degree n − r in ΛV̂i−1
such that there exists an element rj ∈ N̂i−1 · ΛV̂i−1 of degree 2n such that rj + η̂jxi is closed. The
element rj + η̂jxi is to mimic the element η0 + η1xi, with rj acting as η0 and η̂j acting as η1. We are
assuming this sum is of pure degree 2n. Note that each of these elements is of top degree. Therefore,
denoting by ω a volume form for X (here we finally use orientability of X), there is a real number λj
and a 2n− 1-form ξj such that rj + η̂jxi = λjω + dξj for each of the basis elements η̂j . This number
λj does not depend on the choice of rj or ξj for a given η̂j . Indeed, if we have an alternate equation
r′j + η̂jxi = λ′j + dξ′j alongside rj + η̂jxi = λj + dξj , then

rj − r′j = (λj − λ′j)ω + d(ξj − ξ′j)

is a closed element in N̂i−1 · ΛV̂i−1, and so it is exact by induction, so λj = λ′j .

Now we show that with an appropriate modification of xi, we can make all the λj equal to 0, and so
our desired conclusion of η0 +η1xi being exact would follow. First let us consider those basis elements
η̂j which are exact. Then η̂j = dα for some α of degree n − r − 1. Writing α as a sum of a closed
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element and an element in the ideal generated by N≤n−r−1, we see that we can forget about the closed
summand and just take α ∈ N≤n−r−1 · ΛV ≤n−r−1. Then

rj + η̂jxi = rj + (dα)xi = rj + d(αxi)± αdxi,

so rj ± αdxi is closed and hence exact by induction since it lives in N̂i−1 · ΛV̂i−1. Therefore rj + η̂jxi
is exact as well, and so λj = 0.

Let us now consider those basis elements η̂j which are not exact. By scaling and adding up their
Poincaré dual elements (due to orientability again), we find a closed element y of degree n + r such
that [η̂j ][y] = λj [ω] for all considered j. Since y is closed, it must be a combination of elements in
ΛV ≤n−r−1 and generators xl of V n+r of the first kind considered. So, y comes from one of the previous
stages (in relation to our current xi). Now we do the announced modification of xi by setting

x̂i = xi − y.

Note that this modification does not change the conclusion of exactness in the cases where η was of
the form η = η0 or η = η0 + η1xi + · · · + ηkx

k
i since the actual form of xi did not matter. Also, the

conclusion of λj = 0 for the exact basis elements η̂j still holds. Now observe that, for the non-exact
basis elements η̂j , we have

[rj + η̂j x̂i] = [rj ] + [η̂j ][xi]− [η̂j ][y]

= λj [ω]− λj [ω] = 0.

So, finally, we have the desired conclusion that η0 + η1x̂i is exact (albeit along the way we have
modified xi; however, the end goal is to construct an n+ r-formal minimal model, so modification of
the originally chosen basis of V n+r is no issue).

Let us set N̂i = N̂i−1 ⊕ span(x̂i). It only remains to check that η = η0 + η1x̂i as considered earlier,
but now of degree at most 2n− 1, is exact. Note that [η0 + η1x̂i] is in the upper half of cohomology,
since its degree is at least that of x̂i, which is n + r. Taking test elements [γ] in the corresponding
dual class (which is in the lower half), we have

[γ][η0 + η1x̂i] = [(γη0) + (γη1)x̂i].

Since γη0 is in N̂i−1·ΛV̂i−1 and γη1 is closed (since both γ and η1 are), we conclude that [γ][η0+η1x̂i] = 0
(the modification of xi to x̂i was done for this very reason, to make such elements exact). Since the
pairing on cohomology is nondegenerate, this can only mean that η0 + η1x̂i itself if exact. Now we
have finally gone through all the possible cases, and constructed an n+ r-formal minimal model from
an n+ r−1-formal one. By induction we conclude that we can construct an n-formal model, and thus
(by an earlier lemma) X is formal.

Dimension 2n−1. If X is of dimension 2n−1 and has an n−1-formal minimal model, then consider
the 2n-manifold X × S1. The circle is formal, and so it is 2n− 1-formal, so X × S1 is as well. By the
preceding case, we have that X × S1 is thus formal, and so the factor X is formal as well.

Now let us consider oriented manifolds of low dimension. Observe that a connected manifold is 0-
connected. Therefore 1-manifolds and 2-manifolds are formal. However, there was no need for such
machinery. Circles are formal (their minimal model is Λ(x1)) and oriented surfaces are connect sums
of tori. A torus is formal (as a product of circles), and formality is preserved under connect sum.

Three-manifolds need not be formal. The quotient of the real Heisenberg group by its integer lattice
is a non-formal closed manifold of dimension three. Let us consider its details some other time. A
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simply connected three-manifold, however, is (integrally) homotopy equivalent to a sphere, and hence
formal.

The integral homotopy type of a simply connected four-manifold is determined by its intersection form,
which is equivalent information to its cohomology ring. Therefore simply connected four-manifolds
are formal.

The theorem lets us conclude more: simply connected manifolds of dimensions 5 and 6 are also formal.
Indeed, it suffices to show that they are 2-formal. Consider the minimal model ΛV of such a manifold.
Then V1 = 0. Note that every element in degree two in closed. Indeed, applying the differential to
any degree two element gives a decomposable degree three element, but there are no such elements
(except 0) since V1 = 0. Therefore taking C1 = N1 = 0 and C2 = V2, N2 = 0, we see that ΛV is
2-formal and thus formal.

The preceding argument for formality has the following slight generalization.

Theorem. An l-connected (l ≥ 1) manifold X is formal if dimX ≤ 4l + 2.

Proof. We show that X is 2l-formal. The assumption of l-connected gives us that there is a minimal
model of X with no elements of degree l or less. Since the differential is decomposable, this means
that the lowest degree on which the differential can act non-trivially is 2l + 1 (since the differential
of such an element can be a sum of products of two elements of degree l + 1). Therefore we can take
Ci = Vi and Ni = 0 for i ≤ 2l, and we have 2l-formality.

We can extend the previous theorem to l = 0 (i.e., connected manifolds) if we add the assumption of
orientability. This additional assumption is necessary. Indeed, RP2 has the real cohomology ring of a
point, though it has non-trivial homotopy groups.
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