
CLOSED LIE GROUPS ARE RATIONALLY PRODUCTS OF ODD
SPHERES

Abstract. Following Félix-Halperin-Thomas section 12(a) Example 3, we show that
a closed Lie group (meaning, a Lie group which is closed as a manifold) has minimal
model given by the exterior algebra in generators in odd degrees, with trivial differen-
tial. In fact, the proof that follows works for any closed manifold with a continuous
multiplication m : X ×X → X.

Let X be a closed Lie group with multiplication m : X ×X → X. The multiplication
induces a map on rational cohomology, which by Künneth we can write as

m∗ : H∗ → H∗ ⊗H∗,

where H∗ = H∗(X). Let H+ denote the positive degree elements in H∗(X). Denote by
V the vector space of indecomposable elements in H+, i.e. those that cannot be written
as the sum of products of positive degree elements. We have the decomposition H+ =
V ⊕(H+ ·H+) (meaning, every element is a sum of indecomposable and decomposables).
The inclusion of vector spaces V ↪→ H+ induces a map of exterior algebras

ϕ : ΛV → H∗.

Observe that this map is surjective, since indecomposables are certainly hit, and de-
composables can be decomposed into indecomposables. Now let us show that is also
injective. We do this inductively over the filtration

ΛV ≤0 ⊂ ΛV ≤1 ⊂ ΛV ≤2 ⊂ · · · ,
where ΛV ≤n denotes the exterior algebra on those elements of V which have degree
at most n. Certainly ϕ is injective on ΛV ≤0, since there we have only the constants.
Suppose ϕ is injective on ΛV ≤n−1 and take a w ∈ ΛV ≤n such that ϕ(w) = 0. Since H∗

is finitely generated, we can write w as a finite sum,

w =
∑
I

vk11 · · · vkrr aI ,

where the vi are a basis for the degree n elements in V , a is in ΛV ≤n−1, and I an index
set with elements kj.

We want to show that w = 0. We consider m∗(ϕ(w)), which is the sum of all a ⊗ b
such that m(a, b) = ϕ(w). There are many elements that multiply to w, but let us
consider only those such that the first factor, a, is an element of degree n in V . So,
we are considering the projection of m∗(ϕ(w)) ∈ H∗ ⊗H∗ in V n ⊗H∗. This projected
element looks like

r∑
i=1

(
±vi ⊗ ϕ(

∑
I

kiv
k1
1 · · · v

ki−1
i · · · vkrr aI)

)
.

Here we chipped off one vi from the right side of the tensor and put it to the left.
We can do this once for every instance of vi on the right, hence the factor of ki in
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the smaller sum. The factor of ± on the left shows up due to graded commutativity
in moving vi out to the left. Now, since ϕ(w) was assumed 0, this sum is 0. The
vi are linearly independent, so we have, for every i, ϕ(

∑
I kiv

k1
1 · · · v

ki−1
i · · · vkrr aI) = 0.

Within this inductive step, we can do another induction on the degree of w (meaning,
the highest degree pure element that shows up in w written as a sum of elements) for
the desired conclusion that ϕ(w) = 0 implies w = 0. The base case is trivial since
then we are only dealing with constants. Now by this second layer of induction, from
ϕ(
∑

I kiv
k1
1 · · · v

ki−1
i · · · vkrr aI) = 0 we conclude

∑
I kiv

k1
1 · · · v

ki−1
i · · · vkrr aI = 0 since we

have decreased the degree of w by n. Now, assuming none of the products of powers
of the vi’s are zero (due to, say, graded commutativity), these products of powers are
linearly independent in their common grading. Therefore, all the aI are 0, and hence
w = 0. That, or all the exponents attached to the vi are zero, in which case w is a sum of
aI ’s, which would mean w ∈ ΛV ≤n−1, and so we could apply our first layer of induction
to conclude w = 0.

Therefore, ϕ defines an isomorphism of dga’s from ΛV to H∗. Note that since H∗

is zero for sufficiently high gradings (since X is a manifold), this isomorphism with the
exterior algebra ΛV tells us that there can be no elements of even degree in V (since
otherwise we would have elements of arbitrarily high grading in ΛV and thus in H∗).

In general, if we have that the cohomology algebra H∗(X) of a space X is isomorphic
to some exterior algebra ΛV via a map ϕ : ΛV → H∗, we can define a new map to the
rational polynomial forms on X by mapping an element w of ΛV to a form whose class
in cohomology is ϕ(w). Since ϕ is an isomorphism, and the cohomology algebra of ΛV is
itself, this map is a quasi-isomorphism. Therefore ΛV is a minimal model for the space
X.

So, we have shown that the minimal model of a Lie group is an exterior algebra on
odd generators with trivial differential.

As an immediate consequence of the above, we obtain the following:

Corollary 0.1. All of the even homotopy groups of a closed Lie group G are purely
torsion.

Proof. The only non-zero rational homotopy group of an odd sphere Sn is πn(Sn)⊗Q =
Q, since the minimal model of such a sphere is given by Λ(xn), the exterior algebra in
one generator in degree n. From the multiplicativity of the πk functors we conclude that
πk(G)⊗Q can be non-zero only for odd k. �

Corollary 0.2. A closed simply connected Lie group G does not admit a symplectic
structure.

Proof. Again from the minimal model we conclude that H2(G,Q) = 0. (Observe that
for this conclusion it suffices to assume just that there is at most one factor of S1 in the
decomposition of G as a product of odd spheres.) Therefore, any element ω ∈ H2(G,Z)
is torsion. A symplectic form would have to have some positive power be a non-trivial
element in top cohomology, and therefore could not be torsion. Therefore G cannot be
symplectic. �



CLOSED LIE GROUPS ARE RATIONALLY PRODUCTS OF ODD SPHERES 3

Now let us work out an example to illustrate how to see exactly which odd spheres
show up in the decompositions of some commonly used Lie groups. This method will
use knowledge of the rational cohomology ring of the classifying space of the group.

Example 0.3. Let us figure out the rational homotopy type of SO(6). In order to do
so, we use that SO(6) is the homotopy fiber of the map {·} → BSO(6) (where {·} is the
set with one element, thought of as ESO(6)). The cohomology algebra of BSO(6) is
the exterior algebra Λ(p1, p2, e6) with trivial differential, where p1 and p2 are Pontryagin
classes (in degrees 4 and 8), and e6 is the Euler class (in degree 6). (We omit p3 from the
algebra since e26 = p3.) In this situation, where the cohomology algebra is an exterior
algebra with trivial differential, the minimal model and cohomology algebra coincide (in
particular, the space considered is formal).

Consider now the induced map on cohomology algebras (or, minimal models)
H∗(BSO(6),Q)→ H∗({·},Q),

that is,
Λ(p1, p2, e6) −→ {0}.

To find the homotopy fiber of a map between topological spaces, we convert that map
into a fibration and take its fiber. In this dual, algebraic situation, converting this map
into a fibration means finding a differential graded algebra E containing Λ(p1, p2, e6)
with a quasi-isomorphism f to the zero algebra, such that this diagram commutes:

E

Λ(p1, p2, e6) 0

f

We wantE to be quasi-isomorphic to the zero algebra, so we add variables to Λ(p1, p2, e6)
to kill everything in cohomology. Namely, introduce η3, η7, and η5 such that dη3 = p1,
dη7 = p2, and dη5 = e6. So, we will take E to be the exterior algebra Λ(p1, p2, e6, η3, η7, η5)
with differential given by dη3 = p1, dη7 = p2, dη5 = e6. The map f : E → 0 is necessarily
the zero map, and it is a quasi-isomorphism by construction of E. (Observe that E
has trivial cohomology. All the closed forms were made exact by introducing these new
variables, and these new variables are not closed.)

The homotopy fiber of the map {·} → BSO(6) has model equal to the “fiber” of the
inclusion Λ(p1, p2, e6) ↪→ E. This “fiber” is by definition the quotient of E by the ideal
generated by the generators in the “base”, i.e. the ideal generated by p1, p2, e6. We obtain
Λ(η3, η7, η5) with trivial differential as our fiber. This algebra is also the minimal model
of S3 × S5 × S7, so rationally

SO(6) ∼=
Q
S3 × S5 × S7.


