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Following [1], we construct the minimal model of the free loop space LX of a simply connected space
X from the minimal model of X. Recall that the free loop space of X is the space of all maps of the
circle into X,

LX = Map(S1, X).

In order to describe the minimal model of LX, we will express its universal property via some diagram,
then dualize to obtain a diagram of differential algebras. The universal object in this dual diagram
will thus be a model for LX.

The object LX is such that for any test space K there is a bijective correspondence between maps
from K to LX and maps from K × S1 to X (by “currying”). Indeed, we have the following diagram:

LX × S1 X

K × S1

ev

f×id f̃

Here ev(γ, z) = γ(z) for a loop γ and z ∈ S1, and f̃(k, z) = f(k)(z). Turning this into a diagram of
minimal models, we have

M(LX)(ξ) M(X)

M(K)(ξ)

f∗⊗Idξ f̃∗

u

Here by M(−) we denote the minimal model of a given space. The minimal model of S1 is the free
differential algebra in a single generator in degree one, denoted ξ, with trivial differential. For the
product K × S1, we have M(K × S1) = M(K) ⊗M(S1), where the differential in the latter is the
tensor product of the differentials in the components. So, M(K × S1) = M(K) ⊗ Λ(ξ), which we
denote for simplicity by M(K)(ξ) (and likewise for M(LX)(ξ)). On the level of differential algebras
we denote by f∗ the map induced by f .

Now let us make a guess at what the minimal model M(LX) of the free loop space should look like.
Consider the fibration

ΩX LX

X
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where ΩX denotes the based loop space. The vertical map sends a loop to its starting (equivalently,
ending) point. Note that this fibration admits a section. Namely, send a point in X to the constant
loop at that point. Due to this section, the long exact sequence in homotopy

· · · → π∗(ΩX)→ π∗(LX)→ π∗(X)→ π∗−1(ΩX)→ · · ·

splits at the LX terms, giving us

π∗(LX) = π∗(ΩX)⊕ π∗(X).

Since πk(ΩX) = [Sk,ΩX] = [ΣSk, X] = [Sk+1, X] = πk+1(X), we have

π∗(LX) = π∗(X)⊕ π∗+1(X).

The generators in the minimal model are dual to (a prescribed set of) generators of the rational
homotopy groups. What the above formula tells us, rationally, is that for every generator x of the
minimal model of X, in the minimal of LX we have both x (since X naturally sits inside LX) and a
generator x̄ somehow related to x, in one degree lower than x. So, the minimal model M(LX) of the
free loop space of X, is the exterior algebra on these x and x̄, which we will denote by Λ(x, x̄). Now
we have to figure out what the differential in this algebra should be.

A natural candidate for the universal map u : M(X)→M(LX)(ξ) in the “dual” diagram above, since
it should be degree-preserving (and x̄ is related to x), is the map u(x) = x + ξx̄. We have not yet
checked that u is multiplicative, nor have we considered what x̄y should be, for generators x and y in
M(X). So consider

u(x)u(y) = (x+ ξx̄)(y + ξȳ)

= xy + ξ(x̄y + xȳ)± ξ2x̄ȳ
= xy ± ξ(x̄y + xȳ),

where we write ± since graded commutativity took effect when we moved ξ around, and we used ξ2 = 0
since ξ is of odd degree. So, if we define a function i on M(LX) = Λ(x, x̄) by i(x) = x̄ and i(x̄) = 0,
we have that i is both a derivation and a differential on M(LX). Thus defining u(a) = a+ ξ · i(a) for
an arbitrary a ∈M(X) (not necessarily a generator) gives us a multiplicative map.

Now let us verify that this universal map u indeed gives us a bijective correspondence, for an arbitrary
test space K, between maps f∗ : M(LX)→ M(K) and f̃∗ : M(X)→ M(K)(ξ). Given f∗, define f̃∗

by
f̃∗(a) = f∗(a) + f∗(i(a))ξ.

This makes the dual diagram commute. On the other hand, given f̃∗, define

f∗(x) = f̃∗(x)|ξ=0

f∗(x̄) = f̃∗(x)|ξ=1,

for generators x and x̄ of Λ(x, x̄) = M(LX).

Finally, let us see what the differential in Λ(x, x̄) should be. The differential in M(LX) should be
an extension of the one in M(X), so let us call both of them d. For the universal map u to be
a map of differential algebras, we need u to respect the differential, i.e. d(u(x)) = d(x = ξi(x) =
dx+dξ · i(x)− ξ ·d(i(x)) has to equal u(dx) = dx+ ξ · i(dx). From here we read that di+ id = 0. This
uniquely defines d on Λ(x, x̄). Indeed, on the generators x it is already defined, and for x̄ we have

d(i(x)) + i(dx) = 0,

so therefore
dx̄ = −i(dx).
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To summarize, the minimal model of the free loop space LX of X simply connected is given by
taking the minimal model Λ(x) of X, adding a new generator x̄ for every generator x in Λ(x), so that
deg(x̄) = deg(x) − 1, and extending the differential d from Λ(x) to Λ(x, x̄) by setting dx̄ = −i(dx),
where i is a differential and derivation of degree −1 given by i(x) = x̄.

Example. Using the above we can immediately express the minimal model of the free loop space of,
say, the six-sphere. First of all, M(S6) = Λ(x, y), where deg(x) = 6, deg(y) = 11, dx = 0, dy = x2. To
create M(LS6), we introduce x̄ and ȳ in degrees 5 and 10, respectively, and set dx̄ = −i(dx) = 0 and
dȳ = −i(dy) = i(x2) = −2xi(x) = −2xx̄. Therefore,

M(LS6) = Λ(x6, x̄5, y11, ȳ10 ; dx = 0, dx̄ = 0, dy = x2, dȳ = −2xx̄).

Example. In another note (on Lie groups being products of odd spheres, rationally) we showed that
rationally SO(6) = S3 × S5 × S7. Therefore on the level of minimal models,

M(LSO(6)) = M(LS3 × LS5 × LS7) = M(LS3)⊗M(LS5)⊗M(LS7) = Λ(a3, ā2, b5, b̄4, c7, c̄6)

with trivial differential (triviality of the differential follows easily from di+ id = 0). In [1] it is shown
that the Betti numbers of the free loop space of a given space can be arbitrarily large if and only
if the cohomology ring of the given space requires at least two generators. The cohomology ring of
S3 × S5 × S7 requires three generators, so we have the Betti numbers of LSO(6) are unbounded.
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