A NILMANIFOLD IS EITHER FORMAL OR HAS A NON-TRIVIAL TRIPLE MASSEY PRODUCT

Abstract. We review the standard result [1] that a nilmanifold is formal if and only if it is a torus, and we do an explicit example of computing the minimal model of a nilmanifold. We then observe that the non-formality of a nilmanifold is detected by a triple Massey product.

1. Nilmanifolds and formality

Take any simply connected nilpotent Lie group G with a cocompact discrete subgroup Γ (cocompact meaning G/Γ is compact). We call the closed manifold $M = G/\Gamma$ a nilmanifold. A theorem of Malcev guarantees that such a subgroup exists if and only if there is a basis for the Lie algebra of G in which the structure constants are rational numbers.

Now consider $\Omega^G(G)$, the dga (over \mathbb{R}) of forms on G that are left-invariant with respect to all elements of G. Denote by $\Omega^\Gamma(G)$ the forms on G that are left-invariant just with respect to G. Note that $\Omega^\Gamma(G)$ are exactly those forms which descend to forms on the nilmanifold M. A theorem of Nomizu tells us that the inclusion $\Omega^\Gamma(G) \hookrightarrow \Omega^G(G)$ induces an isomorphism on cohomology. Therefore the real minimal models of these two dga’s are isomorphic.

Let us therefore compute $\text{Model}(\Omega^G(G))$ (and so we will have the real minimal model of M). The model of a Lie group can be obtained from the complex of left-invariant vector fields that compute its Lie algebra cohomology. Namely, take a basis of left-invariant one-forms $\{x_1, x_2, \ldots, x_n\}$ (where $n = \text{dim}(M)$) dual to the left-invariant vector fields, ordered so that $dx_1 = dx_2 = \cdots = dx_p = 0$ and $dx_k = \sum_{i<j<k} c_{ij}^k x_i x_j$.

That we can order the basis so follows from nilpotency of the Lie algebra of G (which in turn follows from the nilpotency of G by considering the second-order term of the Taylor expansion of the derivative $Dm(e,e)$ of multiplication $G \times G \rightarrow G$). Namely, we can order the basis so follows from nilpotency of the Lie algebra of G which is not of interest here.) From x_k onward, the basis elements are not closed, but rather non-trivial sums of products of two basis elements coming before it.

So, $\text{Model}(M) = \Lambda(x_1, \ldots, x_p, x_{p+1}, \ldots, x_n; d)$, where the differential d is described above. Let us consider how we can detect if M is formal from this real minimal model.

Theorem. The nilmanifold M^n is formal if and only if it is a torus $(S^1)^n$.

Proof. First let us argue that $M = G/\Gamma$ is a torus if and only if G is abelian. If M is a torus, then $G = (\mathbb{R}^n, +)$ by the uniqueness of a simply connected Lie group with given Lie algebra. In this case Γ is a lattice (a free discrete subgroup of rank n), as all discrete
subgroups of \mathbb{R}^n are free. Conversely, if G is abelian, by uniqueness it is $(\mathbb{R}^n, +)$, and so Γ must be a lattice and hence M is a torus.

The Lie group G is abelian if and only if its Lie algebra \mathfrak{g} is abelian (i.e. has vanishing bracket). This follows from the Baker-Campbell-Hausdorff formula and the surjectivity of the exponential map in this situation.

So, M is a torus if and only if \mathfrak{g} is abelian, i.e. $[X_i, X_j] = 0$ for all vector fields X_i, X_j dual to the basis one-forms x_1, \ldots, x_n. Dualizing this equality (in general, the relations $[X_i, X_j] = -\sum_k c^k_{ij} X_k$ for $[-, -]$ dualize to the relations $dx_k = \sum_{i,j} c^k_{ij} x_i x_j$ for the differential) gives us $dx_k = 0$ for all basis one-forms x_k. So, in our ordering of the basis one-forms, we can take $p = n$, i.e. all of them are closed. Therefore M is a torus if and only if all the basis one-forms are closed.

Now we show that $p = n$ (i.e. all the basis one-forms are closed) if and only if M is formal. If $p = n$, then the model of M is a free exterior algebra with trivial differential, thus formal. Conversely, suppose $p < n$. Then $dx_l = \sum_{i,j,l} c^l_{ij} x_i x_j$, for all $l > p$. Now suppose M is formal, i.e. there is a quasi-isomorphism $\Lambda(x_1, \ldots, x_n) \xrightarrow{\Phi} (H^*(M, \mathbb{R}), d \equiv 0)$. Then Φ sends the closed one-forms to their cohomology classes, $\Phi(x_1) = [x_1], \ldots, \Phi(x_p) = [x_p]$, and on the rest we have $\Phi(x_l) = \sum_i \leq pc_i[x_i]$. Now, consider $x_1x_2 \cdots x_n$. We have that $\Phi(x_1x_2 \cdots x_n)$ is some non-zero (since $H^n(M, RR)$ is one-dimensional) multiple of the cohomology class of the volume form. On the other hand, $\Phi(x_1 \cdots x_n) = [x_1] \cdots [x_p] \cdot \Phi(x_{p+1}) \cdots \cdots \Phi(x_n) = 0$ since every summand in this expression will contain the square of some element $[x_i]$, and all squares are 0 (since the x_i are of degree 1).

Therefore M is formal if and only if $n = p$, that is, if and only if M is a torus. \hfill \Box

Observe that we only proved formality over \mathbb{R}, but since formality descends to subfields, we also have the analogous statement for formality over \mathbb{Q}.

2. An explicit example

Consider the real Heisenberg group of 3×3 upper triangular matrices with one’s on the diagonal, with matrix multiplication,

$$H = \left\{ \begin{pmatrix} 1 & x & y \\ 0 & 1 & z \\ 0 & 0 & 1 \end{pmatrix} \right\}, \quad x, y, z \in \mathbb{R}. $$

Consider the cocompact discrete subgroup Γ consisting of integer-valued matrices in H, and denote the three manifold obtained as the quotient H/Γ by N. To compute the real minimal model Model(N), we will figure out the Lie algebra structure on G and dualize to obtain a basis of left-invariant one-forms with corresponding differential.

For computation’s sake, let us think of H rather as triples of real numbers, (x, y, z), with multiplication given by

$$(x_1, y_1, z_1) \cdot (x_2, y_2, z_2) = (x_1 + x_2, y_1 + y_2, z_1 + z_2 + x_1y_2).$$

Take a basis $(1, 0, 0), (0, 1, 0), (0, 0, 1)$ for the tangent space at the identity $T_eH = T_{(0,0,0)}\mathbb{R}^3$. We will push these basis elements around by left multiplication to obtain the left-invariant vector fields on H. So, take an arbitrary $g = (a, b, c) \in H$. Left multiplication by g on any $(x, y, z) \in H$ gives us

$$L_g(x, y, z) = (x + a, y + b, z + c + ay).$$
This is a smooth map from \(\mathbb{R}^3 \) to \(\mathbb{R}^3 \). We compute the differential \(L_g \) at \((x, y, z) = (0, 0, 0) \) and obtain
\[
L_{g*}(0, 0, 0) = \begin{pmatrix}
\frac{\partial}{\partial x} (x+a) & \frac{\partial}{\partial y} (y+b) & \frac{\partial}{\partial z} (z+c+ay) \\
\frac{\partial}{\partial x} (y+b) & \frac{\partial}{\partial y} (y+b) & \frac{\partial}{\partial z} (z+c+ay) \\
\frac{\partial}{\partial x} (z+c+ay) & \frac{\partial}{\partial y} (z+c+ay) & \frac{\partial}{\partial z} (z+c+ay)
\end{pmatrix} = \begin{pmatrix}1 & 0 & 0 \\0 & 1 & 0 \\
0 & a & 1\end{pmatrix}.
\]

Applying this matrix to our basis of tangent vectors at the origin, we obtain
\[
L_{g*}(0, 0, 0) \frac{\partial}{\partial x} = \frac{\partial}{\partial x},
\]
\[
L_{g*}(0, 0, 0) \frac{\partial}{\partial y} = \frac{\partial}{\partial y} + a \frac{\partial}{\partial z},
\]
\[
L_{g*}(0, 0, 0) \frac{\partial}{\partial z} = \frac{\partial}{\partial z}.
\]

Denoting \(g = (x, y, z) \), this means we have
\[
L_{g*}(0, 0, 0) \frac{\partial}{\partial x} = \frac{\partial}{\partial x},
\]
\[
L_{g*}(0, 0, 0) \frac{\partial}{\partial y} = \frac{\partial}{\partial y} + x \frac{\partial}{\partial z},
\]
\[
L_{g*}(0, 0, 0) \frac{\partial}{\partial z} = \frac{\partial}{\partial z}.
\]

So, \(\{ \frac{\partial}{\partial x}, \frac{\partial}{\partial y} + x \frac{\partial}{\partial z}, \frac{\partial}{\partial z} \} \) is a basis for our Lie algebra of left-invariant vector fields. Now, we can see just by inspection that \(\{dx, dy, dz - xdy\} \) constitutes a dual basis. We can compute the differential on these one-forms either directly, or by dualizing the bracket on the left-invariant vector fields. For illustration let us take this latter approach. Denote from now on \(\frac{\partial}{\partial x} \) by \(\partial_x \) (and similarly for \(y \) and \(z \)). Observe
\[
[\partial_x, \partial_y + x \partial_z] = \partial_z,
\]
\[
[\partial_x, \partial_z] = 0,
\]
\[
[\partial_y + x \partial_z, \partial_z] = 0.
\]

Reading off the coefficients, this tells us that the differential applied to the dual of \(\partial_x \) is 0, applied to the dual of \(\partial_y + x \partial_z \) is 0, and applied to the dual of \(\partial_z \) is the product of the dual of \(\partial_y \) and the dual of \(\partial_x + x \partial_z \). On the dual basis we already found, we can verify that this is true: \(d(dx) = 0, d(dy) = 0 \), and \(d(dz - xdy) = -dxdy \) (note the sign).

Denoting \(\alpha = dx, \beta = -dy, \gamma = dz - xdy \), we have that a model of \(N \) is given by \(\Lambda(\alpha, \beta, \gamma) \) with differential prescribed by \(dx = 0, d\beta = 0, d\gamma = \alpha \beta \). We can compute \(H^2(N) \) from this model to be two-dimensional, generated by \([\alpha \gamma] \) and \([\beta \gamma] \), and so \(N \) is not a torus (of the appropriate dimension three), and therefore \(N \) is not formal. \(\square \)

3. Detection of non-formality

Now let us focus on the non-formal case, and note that the non-formality of a nilmanifold is always detected by a non-vanishing triple Massey product. Let \(M \) be a nilmanifold and \(\Lambda(x_i) \) be its minimal model. We can order the variables so
that the closed generators come first, Model(M) = $\Lambda(x_1, x_2, \ldots, x_k, u, \ldots)$. Here we are denoting by u the first non-closed generator. In general, $du = \sum_{i,j} c_{ij}x_i x_j$. For simplicity, let us reorder and rescale the closed variables x_i so that we have

$$du = x_1 x_2 + \sum_{i,j>2} c_{ij} x_i x_j.$$

Observe

$$x_3 x_4 \cdots x_k du = d(x_3 x_4 \cdots x_k u) = x_1 x_2 x_3 x_4 \cdots x_k,$$

and consider the Massey product

$$M([x_2 x_3 \cdots x_k], [x_1], [x_1]).$$

A generic element in this set looks like $(x_3 \cdots x_k u + c_{k-1}) x_1 \pm x_2 \cdots x_k c_1$, where c_{k-1} and c_1 are closed elements of degree $k - 1$ and 1 respectively. So, our generic element is of the form

$$x_3 \cdots x_k u x_1 + c_{k-1} x_1 - x_2 \cdots x_k c_1.$$

Observe that c_1 is in the span of x_1, \ldots, x_k. So, if this was to be zero for some choice of c_1 and c_{k-1} (which would mean by definition that the Massey product vanishes), we would need c_{k-1} to be of the form $c_{k-1} = u x_3 \cdots x_k$. But, $d(u x_3 \cdots x_k) = x_1 x_2 x_3 \cdots x_k \neq 0$. So, this triple Massey product is non-trivial.

References