
COMPLEX, ALMOST COMPLEX, AND STABLE ALMOST
COMPLEX STRUCTURES

Consider the following table depicting the relationship between the sets of complex,
almost complex, and stably almost complex manifolds of even dimension. (For a manifold
to be C, AC, or SAC means that it admits such a corresponding structure.)

dim C ⊂ AC ⊂ SAC non-
SAC

2 = = ∅

4 $ 6© $ 1© ∅ 4©

6 ? = 3© 6= ∅ 5©

8 ? $ 2© 6= ∅ 5©

10 ? $ 2© 6= ∅ 5©

· · · · · · · · · · · ·

The circled numbers indicate the order in which we will demonstrate the claimed
equality or inequality of sets. We will address 1© – 5©. For 6© and some of the necessary
background, you can check my page.

An even-dimensional manifold has a complex structure if there exists an atlas on it
with holomorphic transition maps. An almost complex structure on a manifold M is
an endomorphism J of the tangent bundle TM such that J2 = −Id. A stable almost
complex structure is an endomorphism squaring to −Id on TM ⊕ εkR, where εkR is some
trivial real line bundle. If a manifold admits one of the above structures, we will say
it is C, AC, or SAC, respectively. Note that being C implies being AC, and being AC
implies being SAC.

1© Let us show that there are SAC manifolds which are not AC. Concretely, S4 admits
a stable almost complex structure, but no almost complex structure. Namely, embed
S4 into R5 in the usual way, and observe that the normal line bundle is trivial. So,
TS4 ⊕ ε1 = ε5. We add another trivial line bundle to obtain TS4 ⊕ ε2 = ε5 ⊕ ε1 = ε6,
on which we can put an almost complex structure by choosing a frame {e1, . . . , e6} and
defining Je1 = e2, Je2 = −e1, Je3 = e4, Je4 = −Je3, Je5 = e6, Je6 = −e5.
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Now let us show that S4 admits no almost complex structure. If it did, we could
consider the Chern classes corresponding to some J . From the general relation

(1− p1 + p2 − · · · ) = (1− c1 + c2 − · · · ) · (1 + c1 + c2 + · · · )
between the Pontryagin and Chern classes of an AC manifold, we conclude

p1(TS
4) = c1(TS

4, J)2 − 2c2(TS
4, J).

(The Pontryagin classes do not depend on the almost complex structure like the Chern
classes do.) From the Hirzebruch signature formula, we know that

∫
S4 p1(TS

4) = 3·σ(S4),
where σ(S4) is the signature. Since S4 has no middle cohomology, σ(S4) = 0. Combining
all this, we conclude ∫

S4

c1(TS
4, J)2 − 2

∫
S4

c2(TS
4, J) = 0.

From the construction of the Chern classes, it holds in general that the integral of the
top Chern class is equal to the Euler characteristic of the manifold considered. So,∫
S4 c2(TS

4, J) = 2. So we conclude
∫
S4 c1(TS

4, J)2 = 4. However, c1 lives in H2(S4,Z),
which is empty, so this equation cannot be satisfied. So, S4 cannot be AC.

2© We show that for dimensions 8, 10, 12, . . . there are SAC manifolds that are not
AC. Again, these will be spheres Sn as above. The same consideration shows that all the
spheres are SAC. To show that these spheres are not AC using the above method gets
messy (and is only applicable in dimensions 4n) though, so we take another approach.

Denote by BU(n) the classifying space of the unitary group U(n). (Isomorphism
classes of complex rank n vector bundles over a closed manifold M are in bijective
correspondence with [M,BU(n)], i.e. homotopy classes of maps from M to BU(n). The
space BU(n) can be realized concretely as the Grassmannian of n-planes in C∞.) To
say that a manifold M2n is AC is to say that the map M

f→ BSO(2n) classifying the
tangent bundle TM lifts to a map to BU(n). That is, we have the commutative diagram

BU(n)

M BSO(2n)

We can consider the union of all such Grassmannians BU(k), and obtain the classifying
space of the stable unitary group, BU . The inclusion U(n) ↪→ U induces a map on
classifying spaces BU(n)→ BU . Bott showed that the sequence of homotopy groups π∗
of BU is 0,Z, 0,Z, 0,Z, 0, . . . (starting at π1(BU)). So, for even spheres, [S2k, BU ] = Z.
Take a map φ that corresponds to 1 ∈ Z in this homotopy group π2k(BU). Bott also
showed that φ∗(ck) = (k − 1)! · ι, where ck ∈ H2k(BU,Z) is the universal k-th Chern
class, and ι denotes the generator for H2k(S2k,Z) such that

∫
S4 ι = 1.

Now suppose S2k had an almost complex structure, for k ≥ 4. We would then have a
classifying map f for its tangent bundle, from S2k to BU(k). Following this map by the
map BU(k)→ BU induced by inclusion, we obtain a map S2k → BU (let us denote this
map by f as well). The map f represents some multiple of the generator φ ∈ [S2k, BU ],
so we obtain f ∗(ck) = m ·(k−1)! ·ι, where m denotes the integer that f corresponds to in
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the homotopy group. Now, since f is the classifying map for the tangent bundle, f ∗(ck)
is the top Chern class of this almost complex structure on S2k. Therefore integrating it
over the fundamental class [S4] should give us 2. On the other hand, since

∫
S4 ι = 1, and

f ∗(ck) = m · (k − 1)! · ι, we conclude m · (k − 1)! = 2, which cannot be, since (k − 1)! is
at least 6.

3© Note that the argument used above does not work to conclude that S6 is not AC.
The six-sphere is in fact one of only two spheres (the other being S2) to admit an almost
complex structure. Let us describe one such structure.

Think of S6 as sphere of imaginary octonions of unit length, sitting inside the sphere S7

of unit octonions. We can think of S6 as being those unit octonions that are orthogonal to
the element 1 (with respect to the standard inner product on O = R8). Now, take a unit
imaginary octonion q ∈ S6, and consider the tangent space to S6 at this point. We can
identify the tangent space with those quaternions that are orthogonal to both 1 and q. On
this tangent space, define Jq to be multiplication from the left by q. Since multiplication
by q is an orthogonal transformation, (qx, 1) = 0 and (qx, q) = (x, 1) = 0, so this
is a well-defined operation on the tangent space. This defines a global endomorphism
squaring to −Id.

It is an open problem to determine whether S6 is C. In fact, there are no known
examples of manifolds in dimension 6 or greater that are AC but not C.

It turns out that all SAC 6-manifolds are AC. A standard result tells us that an
orientable 6-manifoldM is AC if and only if the second Stiefel-Whitney class w2(TM) ∈
H2(M,Z2) has an integral lift (i.e. there is a class c ∈ H2(MZ) such that its mod
2 reduction is w2). Suppose M is only SAC. Then TM ⊕ εk has an almost complex
structure, so we can consider c1(TM ⊕ εk). The mod 2 reduction of a Chern class is
the corresponding Stiefel-Whitney class in that degree. So, w2(TM ⊕ εk) = c1(TM ⊕
εk). The Stiefel-Whitney classes are unchanged under sums with trivial bundles, so we
have w2(TM ⊕ εk) = w2(TM). So, we have found an integral lift of w2(TM), namely
c1(TM ⊕ εk), and therefore M is AC.

4© All orientable 4-manifolds are SAC. Indeed, to be SAC means that there is a lift
to BU of the stabilized classifying map from the manifold X to BSO.

BU SO/U

X BSO(4) BSO

The (homotopy) fiber of the map BU → BSO (which is induced by inclusion) is the
quotient SO/U . The obstructions to lifting the classifying map X

f→ BSO to a map

X
f̃→ BU are in H∗(X, π∗−1(SO/U)). To compute π∗−1(SO/U), we use the fact that,

by Bott, O/U is homotopy equivalent to ΩO. By Bott periodicity,

π∗(O) = Z2,Z2, 0,Z, 0, 0, 0,Z,Z2,Z2, 0,Z, 0, 0, 0,Z, . . .
(starting at π0(O). So, ΩO (meaning in fact the loop space of a connected component
of O) has homotopy groups Z2, 0,Z, 0, 0, 0,Z,Z2,Z2, 0,Z, 0, 0, 0,Z, . . . (just a shift left
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by one from those of O). Now, SO/U is connected since SO is, so we have, starting at
π0(SO/U),

π∗(SO/U) = 0, 0,Z, 0, 0, 0,Z,Z2,Z2, 0,Z, 0, 0, 0,Z, . . .
Since we are taking X to be a 4-manifold, all cohomology above degree 4 vanishes.

So we see that in fact the only obstruction to lifting the classifying map to BU lies in
H3(X, π2(SO/U)) = H3(X,Z). This obstruction is the third integral Stiefel-Whitney
class W3. This class vanishes (and so X is SAC) if and only if w2(TX) has an integral
lift.

Indeed, from the short exact sequence of groups 0 → Z 2→ Z → Z2 → 0, we obtain a
long exact sequence in cohomology, part of which is

· · · → H1(X,Z2)
β→ H2(X,Z)

2→ H2(X,Z)
mod 2→ H2(X,Z2)

β→ H3(X,Z)
2→ · · ·

The integral third Stiefel-Whitney class W3 ∈ H3(X,Z) can be defined to be β(w2). By
exactness of the sequence, this is zero if and only if w2 is in the image of the mod 2 map,
i.e. if and only if w2 has an integral lift. Requiring that w2 has an integral lift is one
way of saying that the manifold we are considering is spinc.

Lemma 0.1. An orientable closed 4-manifold is spinc (i.e. w2 has an integral lift).

Proof. Denote by r the mod 2 reduction map H2(M,Z)
r→ H2(M,Z2), and denote by T i

the torsion in H i(M,Z). Note that on the Z2 -vector space H2(M,Z2), every element x
determines a functional x̂ by setting x̂(y) = x∪ y (where we interpret x∪ y ∈ H4(M,Z2)
as 0 or 1). Making no distinction between an element x and its associated functional, we
will show that the annihilator of r(T 2) is precisely r(H2(M,Z)), i.e. those elements with
integral lifts. With the observation that w2 annihilates all of r(T 2), we will conclude
that w2 has an integral lift.

First, let us observe that w2 annihilates r(T 2). Take x ∈ r(T 2) and consider x ∪ w2.
By considerations involing the Wu formula and Steenrod squares, it follows that on an
orientable 4-manifold, x ∪ w2 = x2. Since x is the mod 2 reduction of a torsion integral
class x̃, we can obtain x2 by taking the mod 2 reduction of x̃2. But x̃2 is a torsion
element in the free group H4(M,Z), therefore x̃2 = 0 and so x2 = 0.

Now we show that the annihilator of r(T 2) is r(H2(M,Z)). The group r(H2(M,Z))
is certainly contained in the annihilator of r(T 2), since for any x ∈ r(H2(M,Z)) and
y ∈ r(T 2), we can take integral lifts x̃ and ỹ, observe that x̃ ∪ ỹ is torsion in H4(M,Z)
and hence 0, and reduce mod 2 to conclude x ∪ y = 0. To show that the annihilator of
r(T 2) is in fact equal to r(H2(M,Z)), we show that it has the right dimension, i.e.

we show that dimH2(M,Z2)− dim r(T 2) = dim r(H2(M,Z)).

Denote by bi the rank of H i(M,Z), i.e. the number of Z summands, and denote by ci
the number of summands of one of the types Z2,Z4,Z8, . . . in T i.

Consider the following stretch of long exact sequence corresponding to the short exact
sequence of coefficients,

· · · → H2(X,Z)
r→ H2(X,Z2)

β→ H3(X,Z)
2→ H3(M,Z)→ · · ·

Observe that r will convert the Z factors in H2 into Z2’s, it will convert Z2k ’s into Z2’s,
and it will convert everything else into 0. So, dim r(H2) = b2+c2, and dim r(T 2) = c2. To
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figure out the total dimension of H2(M,Z2), we consider H2(M,Z2)/image(r), which is
by exactness equal to H2(M,Z2)/ ker(β) = image(β) = ker(·2). This last kernel obtains
one dimension for every Z2k factor in H3(M,Z) (since Z2k−1 ⊂ Z2k will be sent to zero
under multiplication by two), so we conclude that ker(·2) has dimension c3. Therefore
H2(M,Z2) has dimension

dimH2(M,Z2) = dim image(r) + dimH2(M,Z2)/image(r) = b2 + c2 + c3.

So, dimH2(M,Z2) − dim r(T 2) = b2 + c2 + c3 − c2 = b2 + c3. On the other hand,
dim r(H2(M,Z)) = b2 + c2. Since by Poincaré duality we have that the torsion in
H2(M,Z) is the torsion in H2(M,Z), which by the universal coefficient theorem is the
torsion in H3(M,Z), we conclude that c2 = c3 and we have the desired equality of
dimensions. �

So, every 4-manifold is spinc, and so the only obstruction to being SAC (i.e. having
an integral lift for w2) vanishes. Therefore, every orientable 4-manifold is SAC.

5© Every orientable 2-manifold is C, so in particular it is SAC, and as we just saw,
every orientable 4-manifold is SAC. In dimensions 6 and greater, there are manifolds that
are not SAC. We will construct an example in each dimension by crossing one particular
manifold with spheres of the appropriate dimension.

The particular manifold we consider is the Wu manifold W = SU(3)/SO(3), obtained
by embedding a 3 × 3 orthogonal matrix with determinant 1 into SU(3) by just rein-
terpreting the coefficients to be complex instead of real, and taking the quotient. Our
examples of non-SAC manifolds will be W ×Sk for varying k. First let us consider some
properties of the Wu manifold.

The inclusion SO(3) ↪→ SU(3) induces a map on classifying spaces BSO(3)→ BU(3)
whose (homotopy) fiber is SU(3)/SO(3). That is, we have the fibration

SU(3)/SO(3) BSO(3)

BSU(3)

Consider the long exact sequence in homotopy groups for this fibration,

· · · → π3BSU(3)→ π2W → π2BSO(3)→ π2BSU(3)→ π1W → π1BSO(3)→ · · ·
The homotopy groups of the classifying space BG of a group G are just the homotopy
groups of G shifted to the right by one. So, for example, π3BSU(3) = π2SU(3), and
π2SU(3) is already in the range where Bott periodicity applies, i.e. π2SU(3) = π2SU = 0
(the groups SU and U have the same higher homotopy groups, since the second is just
an extension of the first by a circle group). We also have π2BSU(3) = π1SU(3) = 0,
and π1BSO(3) = π0SO(3) = 0. So, our long exact sequence actually looks like this:

· · · → 0→ π2W → π2BSO(3)→ 0→ π1W → 0→ · · ·
By exactness, we conclude π1W = 0 and π2W = π2BSO(3) = π1SO(3) = π1RP 3 = Z2.
By the Hurewicz theorem we conclude that H1(W,Z) = 0 and H2(W,Z) = Z2. From
the universal coefficient theorem we obtain H1(W,Z) = 0 and H2(W,Z) = 0. Now
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Poincaré duality gives usH3(W,Z) = Z2, H4(W,Z) = 0, H5(W,Z) = Z, and again by the
universal coefficient theorem we conclude H3(W,Z) = 0, H4(W,Z) = 0, H5(W,Z) = Z.
Yet again by the universal coefficient theorem, now for Z2 coefficients, we conclude that
H∗(W,Z2) = Z2, 0,Z2,Z2, 0,Z2.

Now, let us argue that W is not spinc, and therefore not SAC. If w2 had an integral
lift, this integral lift would have to be 0, since H2(W,Z) = 0. So, if W was spinc, we
would have w2 = 0, i.e. that W is spin. We can appeal to the fact that W is non-trivial
in the fifth oriented cobordism group to conclude that W cannot be spin, but let us
argue more directly.

A result of Smale tells us that we can write a cellular decomposition of W with
as many k-cells as the rank of k-chains in a chain complex which computes the same
integral homology as that of W . So, in our example, since H∗(W,Z) = Z, 0,Z2, 0, 0,Z,
we conclude that we can write W as a 0-cell, 2-cell, 3-cell, and 5-cell, corresponding to
the chain complex

Z→ 0→ Z 2→ Z→ 0→ Z.
It can be shown that by collapsing the 2-cell to a point,

5
3

2

collapse

5
3

the resulting space is the suspension ΣCP2 of CP2. On CP2, we have w2(TCP2)·x = x2

for all x ∈ H2(CP2,Z2), as we saw before for 4-manifolds. What is really happening
here is that the second Steenrod square Sq2 : H2(−,Z2) → H4(−,Z2) is realized by
multiplication by w2 on an orientable 4-manifold. The Steenrod squares are stable under
suspension, here meaning S̃q2(x) = Sq2(x̃),
where ˜ denotes the image of the considered class under the suspension isomorphism
H∗(−) → H∗+1(Σ−). So, Sq2 : H3(ΣCP2,Z2) → H5(ΣCP2,Z2) is non-trivial, and
so after pulling back by the collapse map, which induces isomorphisms on H3(−,Z2)
and H5(−,Z2), and using the naturality of Sq2, we conclude that Sq2 : H3(W,Z2) →
H5(W,Z2) is non-trivial as well.

H5(W,Z2) H5(ΣCP2,Z2)

H3(W,Z2) H3(ΣCP2,Z2)

∼

Sq2

∼

Sq2

On an orientable manifold X of any dimension n, Sq2 : Hn−2(X,Z2)→ Hn(X,Z2) is
realized by multiplication by w2. Since we saw that Sq2 : H3(W,Z2) → H5(W,Z2) is a
non-trivial operation, we conclude by the non-degeneracy part of Poincaré duality that
w2(TW ) 6= 0.

Therefore W is not spin, and therefore (since H2(W,Z) = 0) it is not spinc. In any
dimension 2n for n ≥ 3, we can consider the manifold W × S2n−5. From the Künneth
theorem over Z and the universal coefficient theorem, we can argue that a product of
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manifolds is spinc if and only if each factor is spinc. Therefore these manifoldsW×S2n−5

are not spinc, and hence not SAC.
Question. In dimensions 2 and 4, there are no non-SAC manifolds. In dimension 6,

being non-SAC is equivalent to being non-spinc. The constructed examples of non-SAC
manifolds in dimensions 8 and greater were all non-spinc. Construct examples of spinc

non-SAC manifolds in dimensions ≥ 8. Even better, construct examples of manifolds all
of whose even Stiefel-Whitney classes w2i have integral lifts, but such that the manifold
is not SAC.


