
The Betti numbers of the free loop space of a simply connected closed manifold are
bounded if and only if the cohomology ring of the manifold is singly generated

Following a paper of Sullivan and Vigué-Poirrier, we show that a simply connected closed manifold
has non-singly generated cohomology ring if and only if the sequence of Betti numbers of its free loop
space is unbounded. Invoking a theorem of Gromoll-Meyer, we can conclude that such a manifold has
infinitely many geometrically distinct closed geodesics for any metric.

We begin with several lemmas, and then move on to the main result. Throughout, x will denote
even-degree generators in a given minimal dga, and y will denote odd-degree generators.

Lemma 1. The cohomology ring H∗(Λ, d) of a minimal dga is singly-generated if and only if
Λ = Λ(y) or Λ = Λ(x, y) with dx = 0, dy = xk for some k ≥ 2.

Proof. A direct computation shows that H∗(Λ(y)) and H∗(Λ(x, y)) are singly-generated (by [y]
and [x], respectively). Conversely, assume H∗(Λ, d) is singly-generated. Take a generator of lowest
degree in Λ. If this is an odd generator, call it y, observe that dy = 0 and any other generator of
the same or next lowest degree would have to be closed as well, since the algebra is minimal and
y2 = 0. So, in this case, Λ = Λ(y). If this generator of lowest degree is instead even, call it x, observe
dx = 0 and consider any other generator of the same or next lowest degree. (If there is no such other
generator, then Λ = Λ(x), a case which we are not too interested in since this algebra has infinite
cohomology and so cannot correspond to a closed manifold). If this other generator is also even, then
it is closed as well, giving us two generators for H∗(Λ, d), contrary to assumption. So, if another
generator exists, it is odd. Call it y, and note that it cannot be closed, so we have dy = cxk for some
c 6= 0. A change of variable lets us say instead dy = xk. Note k ≥ 2 by minimality. Now suppose
there is yet another generator in the algebra. Take one of the next lowest degree. If it is even, call
it x′, then (again changing variables to remove constants) dx′ = xly, which after differentiating gives
us xl+k = 0, which cannot be. If this third generator is odd instead, call it y′, then dy′ = xl. Now
yxl−k − y′ gives us another generator in cohomology, contrary to assumption. So, there could have
only been the original x and the y such that dy = xk. Therefore, in this case Λ = Λ(x, y). �

Lemma 2. In a free dga Λ, suppose we have an odd generator y such that dy contains a non-zero
summand consisting only of even degree factors. Then

H∗(Λ/ideal(y, dy), d′) = H∗(Λ, d),

where d′ : Λ/ideal(y, dy)→ Λ/ideal(y, dy) is the induced differential.

Proof. First observe that d′ is well-defined. Indeed, for any ay + bdy in the ideal generated
by y and dy, we have d(ay + bdy) = (da)y ± ady + (db)(dy), which is also in the ideal. Now,
H∗(Λ/ideal(y, dy), d′) = ker d′

image d′ , so let us figure out what ker d′ is first. If [ξ] ∈ ker d′, then ξ ∈ Λ is
such that dξ = ay + bdy. Note that we can rewrite ay + bdy as (a− db)y + d(by), so let us just write
dξ = ay + d(by). From here we see that ay ∈ yΛ is in the kernel of d. Any such element is 0. Indeed,
0 = d(ay) = (da)y ± a(product of even terms) ± a(product of mixed terms). From freeness of Λ we
can conclude that a itself must have a factor of y, and so since y2 = 0 we have ay = 0. So, we have
dξ = d(by), i.e. we can write ξ = (ξ − by) + by ∈ ker d + yΛ. As we just saw, ker d ∩ yΛ = 0, so we
conclude ker d′ = ker d⊕yΛ

ideal(y,dy) .

As for image d′, from d′(a+ideal(y, dy)) = da+ideal(y, dy) we have image d′ = image d+yΛ
ideal(y,dy) , but since

image d′ in inside ker d′, the sum is a direct sum, and so image d′ = image d⊕yΛ
ideal(y,dy) . Taking the quotient

we see that ker d′

image d′ = ker d
image d . �

For conclusions relating to boundedness of Betti numbers, it is useful to consider the Poincaré
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series
SΛ,d(t) =

∑
n≥0

(dim Λn)tn, SH∗(Λ,d)(t) =
∑
n≥0

(dimHn(Λ, d))tn.

Here Λn is the vector space spanned by the generators of degree n.

Lemma 3. If y is a closed odd generator in a dga (Λ, d), then

SH∗(Λ/yΛ,d′)(t) ≤
SH∗(Λ,d)(t)

1− t|y|−1
.

Here d′ is the induced differential Λ/yΛ → Λ/yΛ, well-defined since d(ya) = (dy)a − yda = yda
because y is closed. Inequality between Poincar’e series means termwise inequality.

Proof. Consider the short exact sequence of dga’s

0 −→ Σ|y|(Λ/yΛ)
f−→ Λ

π−→ Λ/yΛ −→ 0.

Here Σ|y| is obtained by taking a graded vector space basis for the dga, raising all degrees by |y| (let
us denote this by moving ξ from the original dga up to ξ̂ in the suspended dga), setting d(ξ̂) = d̂ξ,

and declaring the multiplication to be trivial. The map f takes ˆ[ξ] ∈ Σ|y|(Λ/yΛ) and sends it to ξy.
Due to the suspension by an appropriate amount, this map preserves degree. It is also well defined,
since if we take ξ + yγ in the same class as ξ in Λ/yΛ, applying f to ˆξ + yγ gives us y(ξ + yγ) = yξ
since y2 = 0. The map π is the canonical projection. It is immediate from the definitions of these two
outer dga’s that the maps respect the differential, and that the sequence is exact.

So, we obtain a long exact sequence in cohomology,

· · · −→ Hn(Σ|y|(Λ/yΛ))
f∗n−→ Hn(Λ)

π∗−→ Hn(Λ/yΛ) −→ Hn+1(Σ|y|(Λ/yΛ)) −→ · · · .

As for spaces, there is a suspension isomorphism, which lets us rewrite this long exact sequence as

· · · −→ Hn−|y|(Λ/yΛ)
f∗n−→ Hn(Λ)

π∗−→ Hn(Λ/yΛ) −→ Hn+1−|y|(Λ/yΛ) −→ · · · .

From this long exact sequence we can make a sequence of long exact sequences by interpolating the
images of f∗,

0 −→ image(f∗n) ↪→ Hn(Λ)
π∗−→ Hn(Λ/yΛ) −→ Hn+1−|y|(Λ/yΛ)

f∗n+1−→ image f∗n+1 −→ 0.

Taking the Euler characteristic of this sequence, summing over all n, and discarding negative degree
terms gives us

(1 +
1

t
)Simage(f∗)(t)− SH∗(Λ,d)(t) + (1− t|y|−1)SH∗(Λ,yΛ,d′).

Now, observe that all the terms of (1 + 1
t )Simage(f∗)(t) are non-negative, and so we obtain the desired

inequality. �

Lemma 4. If x is a closed even generator in a dga (Λ, d), then

SH∗(Λ/xΛ,d′)(t) ≤ (1 + t|x|−1)SH∗(Λ,d)(t).

Proof. The proof is analogous to that of the previous Lemma, starting from the short exact
sequence

0 −→ Σ|x|Λ
f−→ Λ

π−→ Λ/xΛ −→ 0

instead. �

Now we can prove the main result. Our space M will be a simply connected closed manifold, and
we denote its minimal model by Λ. Denote the minimal model of the free loop space LM by (Λ′, d′).

2



Theorem. The (rational) cohomology ring H∗M requires at least two generators if and only if
the sequence of Betti numbers {bi(LM)}i is unbounded.

Proof. First let us suppose the cohomology ring H∗M is singly generated. By Lemma 1, Λ = Λ(y)
or Λ = Λ(x, y) with dy = xk. If Λ = Λ(y), then Λ′ = Λ(y, y) with d′y = d′y = 0. From here we see that
the dimension of any Hk(LM) is bounded by 1 (the cohomology group being generated by a power
of y or by a power of y multiplied by y). If Λ = Λ(x, y), then Λ′ = Λ(x, y, x, y), with d′x = d′x = 0,
d′y = xk, and d′y = −kxk−1x. Now, apply Lemma 2 to conclude H∗Λ′ = H∗(Λ′/(y, xk)). From here
we see that in a given cohomology group, a generator is obtained by choosing to include a factor of
x or not, choosing a power of x less than k, and multiplying by and appropriate power of y. So, the
Betti numbers of Λ′ are bounded by 2k.

Now assume H∗M requires at least two generators. First let us show that this is equivalent to
Λ having at least two odd generators. If Λ has two or more odd generators, then by Lemma 1 we
conclude that H∗M is not singly generated. Conversely, assume Λ has one or zero odd generators.
Since H∗M is finite, it cannot be the case that Λ has no odd generators. So suppose Λ has only one
odd generator, call it y. Then Λ = Λ(xi, y) for some even generators xi. If dy 6= 0, then dy is some
polynomial P in the xi, and we can apply Lemma 2 to conclude H∗(Λ) = H∗(Λ(xi)/P · Λ(xi)). This
can only be finite dimensional (as necessary) if there is but one xi. So, Λ = Λ(x, y), dy = xk, and so
H∗M is singly generated. If instead dy = 0, we can apply Lemma 3 to conclude

SH∗(Λ(xi)),(t) ≤
SH∗(Λ)(t)

1− t|y|−1
.

Since H∗M is bounded, the right hand side is bounded as well, and so the left hand side is, as well.
Again, this implies there is but one xi. So, Λ = Λ(x, y) with dy = 0, and so Λ has infinite cohomology
contrary to assumption. (If there was more than one even generator, say x1 and x2, we could have
dx2 = x1y and the desired contradiction would not follow).

So, assuming H∗M requires at least two generators is equivalent to Λ having at least two odd
generators. Denote the odd generators of lowest degree by y1 and y2. We make use of them to show
bi(Λ

′) is unbounded.

Since M is simply connected, the model Λ of M has finitely many generators in each degree. So,
we can order the generators close to y1 and y2 as

x1, x2, . . . , xn, y1, xn+1, . . . , xr, y2, . . . .

Note that x1, . . . , xn are closed. Suppose now that dy1 6= 0. So, dy = P (x1, . . . , xn), some poly-
nomial in the preceding even generators. From here we can show that xn+1, . . . , xr are closed as well.
Indeed, consider dxn+1 = Q(x1, . . . , xn)y1. Differentiating, we obtain Q(x1, . . . , xn)P (x1, . . . , xn) = 0.
Since P 6= 0, we conclude Q = 0 and so xn+1 is closed. Analogously we conclude dxn+2 = · · · =
dxr = 0. Finally, moving over to Λ′, we conclude that all elements of the form x̄1x̄2 · · · x̄rȳ1

aȳ2
b are

closed, for any choice of a, b. Moreover, since d′ applied to anything results in an element containing a
factor of some xi, we conclude that all of these x̄1x̄2 · · · x̄rȳ1

aȳ2
b are independent in cohomology. For

sufficiently high multiples of the lowest common multiples of the degrees of y1 and y2, shifted up by the
sum of the degrees of the xi, we conclude that we can obtain arbitrarily many such cohomologically
independent elements. Therefore, {bi(Λ′)}i is unbounded.

If in fact dy1 = 0, then we take a different approach. If dy2 = 0 as well, we

consider the cohomologically independent elements ȳ1
aȳ2

b and obtain the desired conclusion of
unboundedness of {bi(Λ′)}i again. If dy2 6= 0, then since dy2 is of even degree, dy2 = P (x1, . . . , xr).
Since d′x1 = 0, we can consider Λ′1 = Λ/x1Λ with the induced differential d′1, and applying Lemma 4
we obtain

SH∗(Λ′1,d′1) ≤ (1 + t|x1|−1)S∗H(Λ′, d′).

Inductively, suppose we have (Λ′k, d
′
k), and define Λ′k+1 = Λ′k/xk+1Λ′k. Since d′y1 = 0, we see that the

induced differential d′k+1 is well-defined. Applying Lemma 4 to this situation we obtain

SH∗(Λ′k+1,d
′
k+1) ≤ (1 + t|xk+1|−1)S∗H(Λ′k, d

′
k).
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So, in the end, we obtain

SH∗(Λ′r,d′r) ≤
r∏
i=1

(1 + t|xi|−1)S∗H(Λ′, d′).

If the left hand side is unbounded, it follows that the right hand side is unbounded, from which we
can conclude that H∗(Λ′, d′) itself is unbounded. Observe that d′ry2 = 0, and so the cohomologi-
cally independent elements ȳ1

aȳ2
b give us unbounded cohomology for H∗(Λ′r, d

′
r). Thus, H∗(Λ′, d′) is

unbounded. �
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