
THE EXISTENCE OF (STABLE) ALMOST COMPLEX STRUCTURES
ON LOW-DIMENSIONAL MANIFOLDS

Let us consider the obstruction theory in determining whether an even-dimensional
oriented manifold M2n admits an almost complex structure (inducing the given orienta-
tion). A choice of almost complex structure J is equivalent to a reduction of the structure
group of the tangent bundle of the manifold from SO(2n) to U(n), which is equivalent to
a section of the associated SO(2n)/U(n) bundle over M . So, the obstructions to finding
a section (i.e. an almost complex structure) are in H∗(M,π∗−1(SO(2n)/U(n))), and the
obstructions to uniqueness are in H∗(M,π∗(SO(2n)/U(n)).

In dimensions 2, 4, and 6, these spaces SO(2n)/U(n) have very explicit descriptions.
Dimension 2. The space SO(2)/U(1) is a point, and so every oriented 2-manifold

has a (homotopically unique) almost complex structure.
Dimension 4. The space SO(4)/U(2) is diffeomorphic to S2. The obstructions to

the existence of an almost complex structure in this situation are in H3(M,π2(S
2)) =

H3(M,Z) and H4(M,π3(S
2)) = H4(M,Z), A theorem of Wu tells us that these ob-

structions are precisely the third integral Stiefel-Whitney class W3 ∈ H3(M,Z), which
is made zero by choosing an integral lift c ∈ H2(M,Z) of w2(TM) ∈ H2(M,Z2) (which
will be the first Chern class c1(M,J) of the almost complex structure obtained if the
next obstruction vanishes) followed by the obstruction c2−3σ(M)−2χ(M) ∈ H4(M,Z)
depending on the chosen integral lift. Here σ and χ denote the signature and Euler
characteristic, respectively. The necessity of these obstructions vanishing follows from

3 · σ(M) = p1(TM) = c1(M,J)2 − 2c2(M,J) = c1(M,J)2 − χ(M),

which holds for any almost complex structure J on TM . Here we are identifying
H4(M,Z) = Z via integration over the fundamental cycle, and we are using the Hirze-
bruch signature formula p1 = 3σ along with the fact that the top Chern class of any
almost complex structure on TM evaluates to the Euler characteristic.

Remark. The spaces SO(2n)/U(n) fiber over each other in a nice way. Think of
J(2n) = SO(2n)/U(n) as the space of almost complex structures on R2n. Fix a unit
vector e in R2n. An almost complex structure J on R2n must take e to a unit vector in
the plane R2n−1 orthogonal to e. So, J(e) must be something in the unit sphere S2n−2.
Once that is chosen, any choice of J on the 2n− 2–plane orthogonal to e and J(e) will
give an almost complex structure on the total space R2n. So, J(2n−2) fibers over S2n−2,
and the total space of this fibration is J(2n). That is, we have the fibration

SO(2n− 2)/U(n− 1)→ SO(2n)/U(n)→ S2n−2.

In the case of n = 3, we have a fibration S2 → SO(6)/U(3) → S4. This is the same
fibration as the one considered above, S2 → Z → S4, where sections of the second map
correspond to almost complex structures on S4.

Dimension 6. In dimension 6, the space SO(6)/U(3) turns out to be CP3. The
homotopy groups of CP3 relevant to doing obstruction theory on a six–manifold are,
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starting at π1,

0,Z, 0, 0, 0.

This can be seen from the fibration S1 → S7 → CP3. So, the only obstruction to
the existence of a J on M6 is in H3(M,Z). It is equal, again, to the third integral
Stiefel-Whitney class W3 (see Massey [2], Remark 1). Peculiar to dimension 6 is that
the requirements for an almost complex structure are less demanding than in dimension
4. This is related to the fact that 4k–manifolds have a signature, which imposes an
additional relation on its Pontryagin classes and hence on the Chern classes of any
almost complex structure.

The almost complex structures on M6 are in bijective correspondence with inte-
gral lifts of w2. A given integral lift will be the first Chern class c1(M,J) of the
corresponding almost complex structure J . We can then determine c2(M,J) from
p1(TM) = c1(M,J)2 − 2c2(M,J), so

c2(M,J) = 1
2
· (c1(M,J)2 − p1(TM)).

The top Chern class c3(M,J) is pre-determined by the requirement that it be the Euler
class.

Dimension 8. The space SO(8)/U(4) does not turn out to have an even simpler
description, but its homotopy groups relevant to obstruction theory on an 8–manifold
are known. In general, the first 2n − 2 homotopy groups of SO(2n)/U(n) are stable,
i.e. they coincide with those of the stable space SO/U , which has homotopy groups
corresponding to a shift of those found in BSO,

π∗SO/U = 0,Z, 0, 0, 0,Z,Z2,Z2, 0,Z, 0, 0, 0,Z,Z2,Z2, 0,Z, 0, 0, 0,Z, . . . .

The first unstable group of SO(2n)/U(n), that is π2n−1SO(2n)/U(n), depends on n mod
4. In dimension 8, we have n = 0 mod 4, and π7(SO(8)/U(4)) = Z⊕ Z2 (see [2]).

In summary, the relevant homotopy groups of SO(8)/U(4) are

π∗SO(8)/U(4) = 0,Z, 0, 0, 0,Z,Z⊕ Z2.

The first obstruction to the existence of an almost complex structure on an 8–manifold
M is, as before, W3 ∈ H3(M,Z). Next up, we have an obstruction in H7(M,Z). In
([2], Remark 1) it is observed that this obstruction is in fact the seventh integral Stiefel-
Whitney class W7 of the tangent bundle. In ([3], Theorem 2) it is shown that the
second-to-last integral Stiefel-Whitney class of an orientable even-dimensional manifold
always vanishes (i.e. the third-to-last Stiefel-Whitney class has an integral lift), so this
obstruction vanishes. The next and final obstruction is some class o ∈ H8(M,Z⊕Z2) =
H8(M,Z)⊕H8(M,Z2). This obstruction class splits as the sum o = os + ou of a stable
obstruction class o2 ∈ H8(M,Z2) and an unstable class ou ∈ H8(M,Z).

Remark. The stable obstruction class is what we would meet if we were just looking for
a stable almost complex structure. (Since the pair (SO/U, SO(2n)/U(n)) is (2n − 2)–
connected, the obstructions to the existence of an almost complex structure coincide
with those for the existence of an almost complex structure, up to but not including the
top skeleton.)
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In [4] we find the following descriptions of os and ou (relying on results of Massey and
Heaps),

os = r2(χ(M) + 1
2
c1c3),

ou = 1
4
(2χ(M)− 2c1c3 + c22 − p2(TM)).

Here c1, c2, c3 denote the Chern classes of the almost complex structure that has been
built up to (including) the 7–skeleton ofM (assuming the previous obstruction vanished),
and r2 denotes the mod 2 reduction map.

Example. Let us see which of the connected sums of quaternionic projective planes
HP2#k

#HP2
#l

admit almost complex structures (here HP2 denotes HP2 with the re-
versed orientation). First, consider just HP2. The first potentially non-trivial obstruc-
tion to finding an almost complex structure is in H4(HP2, π3(SO(8)/U(4))). However,
π3(SO(8)/U(4)) = 0, so there is no obstruction. Note that this gives us the existence
of an almost complex structure on the 4–skeleton of HP2 (which is S4). The obstruc-
tions to its uniqueness lie in H4(HP2, π4(SO(8)/U(4))), which is also trivial. So, there
is a unique (up to homotopy, as always) almost complex structure on THP2|S4 . The
next obstruction we meet is the o at the top, o ∈ H8(HP2,Z ⊕ Z2), which splits as
o = os + ou. By the above formulas, os = χ(HP2) mod 2 = 1, since c1 ∈ H2(HP2,Z) = 0
and c3 ∈ H6(HP2,Z) = 0. We also have

ou = 1
4
(6 + c22 − p2(THP2)).

The total Pontryagin class of HP2 is given by

p(THP2) =
(1 + a)6

1 + 4a
= 1 + 2a+ 7a2,

where a ∈ H4(HP2,Z) is a generator such that
∫
HP2 a

2 = 1. From the relation p1(THP2) =
c21−2c2 for any contending almost complex structure, and c1 ∈ H2(HP2,Z) = 0, we con-
clude 2a = −2c2. This is an equation inH4(HP2,Z) = Z, so we have c2 = −a. Therefore,

ou = 1
4
(6 + a2 − 7a2),

and so (since we are identifying a top cohomology class with its integral over HP2),

4 · ou = 6− 6 ·
∫
HP2

a2 = 0,

that is, ou = 0. So our top obstruction is o = (ou, os) = (0, 1) ∈ Z ⊕ Z2. In particular,
HP2 does not admit an almost complex structure.

Now we consider how the top obstruction to an almost complex structure behaves
under the operation of connect sum. Suppose we have two 8–manifolds M and N , and
almost complex structures JM , JN on their respective 7–skeleta. Then there is a canonical
almost complex structure J on the 7–skeleton of M#N such that the obstruction to
extending it over all of M#N is given by

o(M#N, J) = o(M,JM) + o(N, JN)− o(S8),

where the terms involved are the mentioned obstructions, and o(S8) is the (only) ob-
struction to having an almost complex structure on S8, which we interpret as the sphere
obtained by collapsing both M and N in M#N to points.
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We can also consider the situation of reversing orientation. If we have an almost
complex structure J on the 7–skeleton of an 8–manifold M , then there is canonical
almost complex structure J on the 7–skeleton of M . The obstructions to extending over
the respective 8–skeleta are related by

o(M,J) = −o(M,J) + χ(M)o(S8).

To apply these two results, all that remains is to compute the term o(S8). The first
obstruction to an almost complex structure on S8 is the one at the top, which is o(S8),
and which splits as os + ou. The above formulas for these terms give us

os = χ(S8) mod 2 = 0,

ou = 1
4
(4− p2(TS8)).

The Chern class terms c1, c2, c3 vanish due to the absence of cohomology in the appropri-
ate degrees. To compute p2(TS8), we can use the Hirzebruch signature formula in this
degree, which tells us σ(S8) = 1

45
(7p2 − p21). Since p1 ∈ H4(S8,Z) = 0 and σ(S8) = 0,

we conclude p2 = 0. Therefore ou = 1, and so o = (os, ou) = (1, 0) for the 8–sphere.
These two results (on connected sum and reversing orientation) are discussed in [1].

From the second result, we see that the only obstruction to putting an almost complex
structure on HP2 is given by

o(HP2) = −(0, 1) + 3 · (1, 0) = (3, 1) ∈ Z⊕ Z2.

Combining all of this, we have that the top (and only) obstruction to an almost
complex structure on HP2#k

#HP2
#l

is given by

k · o(HP2) + l · o(HP2)− (k + l − 1) · o(S8) = k · (0, 1) + l · (3, 1)− (k + l − 1) · (1, 0)
= (2l − k + 1, k + l).

In order for this to be zero in Z⊕Z2, we conclude that k and l have to have the same
parity, and k = 2l + 1. In particular, k and l both have to be odd. So, HP2#k

#HP2
#l

has an almost complex structure if and only if (k, l) = (4n+ 3, 2n+ 1) for some n ≥ 0.
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