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Abstract. We prove that in formal dimension ≤ 20 the Hilali conjecture holds,
i.e. that the total dimension of the rational homology bounds from above the total
dimension of the rational homotopy for a simply connected rationally elliptic space.

1. Introduction

The Hilali conjecture [HM08a] in rational homotopy theory states that for a mini-
mal commutative differential graded algebra over the rationals (ΛV, d) with V 1 = 0
whose cohomology H∗(ΛV, d) =

⊕
iH

i(ΛV, d) and space of indecomposables V are
both finite–dimensional, we have H∗(ΛV, d) ≥ dimV . Translated into a geometric
statement, this says that the total dimension of the rational cohomology of a simply
connected space bounds the total dimension of the rational homotopy from above if
the latter quantity is finite.

Simply connected spaces with such minimal models, called rationally elliptic spaces,
are known to satisfy very restrictive topological conditions. For such a space X, the
topological Euler characteristic is non-negative and the homotopy Euler character-
istic

∑
i(−1)iπi(X) ⊗ Q is non-positive; furthermore, one is non-zero if and only if

the other is zero [FHT, Prop. 32.10]. Such spaces are akin to closed manifolds,
as they satisfy a Poincaré duality on their rational cohomology [FHT Prop. 38.3]:
H∗(X;Q) ∼= Hn−∗(X;Q), where n is the formal dimension fd(X) ofX, i.e. the largest
index for which the rational cohomology does not vanish. In fact, if the homotopy
Euler characteristic of X is negative, one can find a simply connected closed smooth
manifold M and a rational homotopy equivalence M → X by the Barge–Sullivan
theorem [FrH79, p.124].

Friedlander and Halperin [FrH79] identified the condition under which a set of
integers occurs as the degrees of a homogeneous basis of π∗(X) ⊗ Q of a rationally
elliptic space X. Namely, the sequence (2a1, . . . , 2ar, 2b1 − 1, . . . , 2bq − 1) denotes
the degrees of a homogeneous basis of π∗(X) ⊗ Q of some elliptic X if and only if
the following strong arithmetic condition is satisfied: for every subsequence A∗ of
(a1, . . . , ar) of length s, at least s many elements bj in (b1, . . . , bq) can be written as
bj =

∑
ai∈A∗ γijai, where the γij are non-negative integers whose sum for any fixed j is

at least two. Call such a sequence a homotopy rank type; note that the homotopy rank
type does not uniquely determine the space X up to rational homotopy equivalence,
even amongst elliptic spaces.
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Using this characterization, Nakamura and Yamaguchi [NaYa11] wrote a C++ pro-
gram to output all the homotopy rank types of simply connected elliptic spaces up to
a given formal dimension. In the present paper, after establishing some preliminary
results, we will verify the Hilali conjecture up to formal dimension 20 by employing
our results into the code of [NaYa11] to significantly reduce the number of homo-
topy rank types that need to be considered manually. In [HM08b], the conjecture is
claimed to be verified up to formal dimension 10; in [NaYa11] this claim was pushed
to formal dimension 16. However, the tables of homotopy rank types in [HM08b]
are slightly incomplete (for example the homotopy rank type (2; 11) corresponding to
CP5 is not present in Table 1 therein), and the current authors failed to understand
how an inequality in the proof of the crucial Proposition 4.3 in the latter article was
obtained. We hence reverify the conjecture in these dimensions carefully and extend
the verification up to dimension 20. In the next section the reader may see how the
number of homotopy rank types increases considerably with the formal dimension.

Throughout, (ΛV, d) will denote a minimal commutative differential graded algebra
modelling a given space X; V k will denote the degree k elements of the space of
indecomposables V , and (ΛV )k the degree k elements in the algebra. Likewise ΛV ≤m

will denote the subalgebra of ΛV generated by the elements of degree at most m, and
(ΛV ≤m)k will denote the vector space of degree k elements in this subalgebra. For
ease of notation we will denote by H∗ the total cohomology

⊕
iH

i(ΛV, d).

Acknowledgments. The authors would like to acknowledge the support of the Di-
rected Reading Program at Stony Brook University, under which this project was
initiated. Several computations were carried out with the Commutative Differential
Graded Algebras module for SageMath [Sage] written by Miguel Marco and John
Palmieri, for which the authors are duly grateful.

2. Verification in dimension ≤ 20

We now collect some general statements and ad hoc arguments which we will
implement into the code found in [NaYa11] in order to reduce the verification of
the Hilali conjecture in formal dimension ≤ 20 to several cases, which we will then
rule out by hand. Following the notation of [NaYa11], homotopy ranks types will
be denoted by (2a1, . . . , 2an : 2b1 − 1, . . . , 2bn+p − 1), where the sequences ai and bi
are (not necessarily strictly) increasing. Note that −p equals the homotopy Euler
characteristic of any space X realizing the given homotopy rank type.

Proposition 2.1. If p = 0, then the Hilali conjecture holds.

Proof. The vanishing of the homotopy Euler characteristic χπ implies that the Euler
characteristic of any such space is positive. This now implies the space admits a pure
minimal model (the existence of a pure model is stated in [FHT Prop. 32.10], and
minimality of this model can be seen from the proof therein), and so by [BFMM14
Section 3] the conjecture holds. �

Remark 2.2. In the lemmas to follow we will rely on the existence of elements of
V in degree strictly smaller than half the formal dimension. We thus verify now
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that the Hilali conjecture holds for simply connected spaces X of formal dimension
n for which b1, . . . , bdn2 e−1 = 0. If the formal dimension is odd or if bn

2
= 0, then

by Poincaré duality X is rationally homotopy equivalent to a sphere, for which the
conjecture holds. If the formal dimension is even, n = 2k, and dimVk = 1, then X
has minimal model Λ(xk, y3k−1) with dx = 0, dy = x3, and so the conjecture holds.
If dimVk = 2, the space X will admit a minimal model over the complex numbers
of the form Λ(xk, x

′
k, y2k−1, y

′
2k−1) with dx = dx′ = 0 and dy = x2 − x′2, dy′ = xx′

(tensoring with the complex numbers has the advantage of making the nondegenerate
pairing in the middle degree cohomology equivalent to the pairing represented by the
identity matrix). We see that dimH∗(X;C) = 4 and dimπ∗(X)⊗C = 4; since these
dimensions are independent of the choice of coefficient field of characteristic zero, the
conjecture is verified. In the case of dimVk ≥ 3, one can build the minimal model
over the complex numbers (again to simplify the intersection pairing) and see that
one must introduce at least two generators in degrees > n, showing that this space is
not elliptic [FHT p.441] (cf. with the rational hyperbolicity of #k

i=1CP2 for k ≥ 3).
Alternatively, any rational Poincaré duality space with b1, . . . , bdn2 e−1 = 0 is formal
by [Mi79] and hence satisfies the Hilali conjecture by [HiMa08a, Theorem 2].

Lemma 2.3. Let X be a simply connected rationally elliptic space with p > 0. Sup-
pose the smallest degree in which π∗(X)⊗Q is nonzero is strictly less than fd(X)

2
, and

denote the dimension of this space by k. If fd(X) is odd, then dimH∗(X;Q) ≥ 2k+2.
If fd(X) is even, and the smallest degree in which π∗(X)⊗Q is nonzero is odd, then
dimH∗(X;Q) ≥ 4k. Otherwise, if the smallest nonzero degree of π∗(X)⊗Q is even,
we have dimH∗(X;Q) ≥ 4k + 4.

Proof. Note that every element in the smallest nonzero degree of π∗(X) ⊗ Q corre-
sponds to a closed, non-exact element in the minimal model of X for degree reasons.
The first statement now follows from dimH0(X;Q) = 1 and Poincaré duality. If
the formal dimension of X is even, and the smallest nonzero degree of π∗(X)⊗Q is
odd, Poincaré duality ensures 2k independent cohomology classes of odd degree in
X. Since p 6= 0, the Euler characteristic of X is zero, providing us with another 2k
independent cohomology classes, of even degree. If fd(X) is even and the smallest
nonzero degree of π∗(X) ⊗ Q is even, then Poincaré duality gives us at least 2k + 2
independent cohomology classes in even degree, since dimH0(X;Q) = 1. The vanish-
ing of the Euler characteristic then provides another 2k+ 2 independent cohomology
classes, now of odd degree. �

Lemma 2.4. Let X be a simply connected rationally elliptic space with p > 0. Sup-
pose the smallest degree d in which π∗(X)⊗Q is nonzero is even, and denote the di-
mension of this space by k. Suppose further that the second smallest nonzero degree of
π∗(X)⊗Q is 2d−1, of dimension l, with 2d−1 < fd(X)

2
−1. Then is fd(X) is even and(

k+1
2

)
≤ l, then dimH∗ ≥ 4(1+k+l−

(
k+1
2

)
); if

(
k+1
2

)
> l, then dimH∗ ≥ 4(

(
k+1
2

)
−l).

If fd(X) is odd, then in either case dimH∗ ≥ 2(1 + k +
∣∣l − (k+1

2

)∣∣).
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Proof. We note that (ΛV ≤d)2d has dimension k +
(
k
2

)
(spanned by squares of a basis

of generators in degree d and products of two distinct generators). These elements
are closed, and the dimension of the image of d in this space is bounded by l. Now
the lemma follows by combining this with dimH0(X;Q) = 1, Poincaré duality, and
χ(X) = 0 as in Lemma 2.4. �

Remark 2.5. In the above Lemma 2.5, if the smallest nonzero degree of odd rational
homotopy is strictly less than 2d−1, then the corresponding elements in the minimal
model are closed and non-exact, and so by Poincaré duality we have dimH∗(X;Q) ≥
2(1 + k + l).

Lemma 2.6. Let X be a simply connected rationally elliptic space. Suppose the
smallest degree d in which π∗(X)⊗Q is nonzero is even, and denote the dimension of
this space by k. Suppose further that the second smallest nonzero degree of π∗(X)⊗Q
is 2d−1. Denote l = dimπ2d−1(X)⊗Q and m = dimπ3d−2(X)⊗Q. If 3d−1 < fd(X)

2
,

then

dimH∗(X;Q) ≥ 2(k + 1 +

∣∣∣∣l − (k + 1

2

)∣∣∣∣+ max(0, kl − k2 −
(
k

3

)
−m)).

Proof. Note that dim(ΛV ≤d)3d = k2 +
(
k
3

)
. In (ΛV )3d−1, there is a kl dimensional

subspaceW spanned by products of degree d generators and degree 2d−1 generators.
The image of d applied to this subspace W lies in (ΛV ≤d)3d. Since W is spanned by
quadratic elements, an element in it is exact only if it is in the image of the differential
applied to the m–dimensional V 3d−2. Hence we have at least max(0, kl−k2−

(
k
3

)
−m)

independent cohomology classes in degree 3d − 1. Combining this with the degree
0 class, the k-dimensional cohomology we obtain in degree d, and the

∣∣l − (k+1
2

)∣∣-
dimensional cohomology in degree 2d−1 or 2d as in Lemma 2.5, along with Poincaré
duality, we obtain the desired bound. �

Remark 2.7. Note that if the smallest nonzero degree d of π∗(X) ⊗ Q is odd, of
dimension l, and the smallest nonzero even degree d′ of π∗(X) ⊗ Q is strictly less
than 3d− 1, these two vector spaces must correspond to closed, non-exact elements
in the minimal model of X for degree reasons. Indeed, the differential applied to a
generator in the smallest even degree would have to land in the subalgebra of odd
degree elements, producing a polynomial all of whose monomials are at least cubic
and hence of degree at least 3d. If furthermore we denote m = dimπ2d−1(X)⊗Q, we
have an additional

∣∣( l
2

)
−m

∣∣ independent cohomology classes in degree 2d− 1 or 2d.
Indeed, the differential applied to a degree 2d−1 generator must land in the subspace
of quadratic polynomials in the degree d generators for degree reasons, which is of
dimension

(
l
2

)
. If 2d and d′ are both strictly less than fd(X)

2
, then Poincaré duality

gives us dimH∗(X;Q) ≥ 2(1 + l + dim πd′(X)⊗Q +
∣∣( l

2

)
−m

∣∣).
Remark 2.8. Two more quick observations that will rule out several homotopy rank
types are the following:

(1) Every even generator whose degree is smaller than than the lowest degree
among odd generators is closed and non-exact; likewise all products of such
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generators (for our purposes we will only need squares) whose total degree is
smaller than the lowest odd degree are closed and non-exact.

(2) A homotopy rank type in fd ≥ 9 of the form (2, a; 3, b, c), where fd−2 > a ≥ 4
and fd − 2 > b ≥ 5, satisfies the conjecture. Indeed, let us denote the
generators by their degree for simplicity of notation. Note that 2 is closed and
non-exact, and so by Poincaré duality, since dimH0 = 1, we have dimH∗ ≥ 4.
If we find one more independent cohomology class the conjecture is verified.
If a < b, then da = α(3 · 2k) for some α ∈ Q, k ≥ 1. Now, either 3 is closed
and we are done, or d3 = β22 for some β 6= 0; however, this would mean da is
not closed, which cannot be. If b < a, then db = α2k for some α ∈ Q, k ≥ 3.
Either 3 or b is closed and we are done, or b plus a multiple of 3 ·2k−2 is closed
and necessarily non-exact by minimality.

We now list the homotopy rank types remaining upon implementation of the above
observations into the code of [NaYa11], and for illustration include the total number
of homotopy rank types in a given formal dimension. Recall that we adopt the
convention that we list the subsequences of even and odd numbers in ascending order
in a given homotopy rank type.

fd = 3 : number of homotopy rank types = 1, all ruled out

fd = 4 : number of homotopy rank types = 3, all ruled out

fd = 5 : number of homotopy rank types = 2, all ruled out

fd = 6 : number of homotopy rank types = 6, all ruled out

fd = 7 : number of homotopy rank types = 4, all ruled out

fd = 8 : number of homotopy rank types = 13, all ruled out

fd = 9 : number of homotopy rank types = 9, all ruled out

fd = 10 : number of homotopy rank types = 22, all ruled out

fd = 11 : number of homotopy rank types = 17, all ruled out

fd = 12 : number of homotopy rank types = 45, all ruled out

fd = 13 : number of homotopy rank types = 32

p = 1 : (2, 4, 4 : 3, 3, 7, 7),

fd = 14 : number of homotopy rank types = 73, all ruled out

fd = 15 : number of homotopy rank types = 58

p = 1 : (2, 4, 4 : 3, 5, 7, 7), (2, 4, 6 : 3, 3, 7, 11), (2, 2, 4, 4 : 3, 3, 3, 7, 7),

fd = 16 : number of homotopy rank types = 134, all ruled out

fd = 17 : number of homotopy rank types = 103

p = 1 : (2, 4, 4 : 3, 3, 7, 11), (2, 4, 4 : 3, 7, 7, 7), (2, 4, 6 : 3, 3, 9, 11), (2, 4, 6 : 3, 5, 7, 11),

(2, 4, 8 : 3, 3, 7, 15), (2, 2, 4, 4 : 3, 3, 5, 7, 7), (2, 2, 4, 6 : 3, 3, 3, 7, 11), (2, 4, 4, 4 : 3, 3, 7, 7, 7),

p = 3 : (2 : 3, 5, 5, 5),

fd = 18 : number of homotopy rank types = 217, all ruled out

fd = 19 : number of homotopy rank types = 173

p = 1 : (8, 8 : 3, 15, 15), (2, 4, 4 : 3, 5, 7, 11), (2, 4, 4 : 3, 7, 7, 9), (2, 4, 6 : 3, 3, 11, 11), (2, 4, 6 : 3, 5, 9, 11),

(2, 4, 6 : 3, 7, 7, 11), (2, 4, 8 : 3, 5, 7, 15), (2, 4, 10 : 3, 3, 7, 19), (2, 6, 6 : 3, 5, 11, 11),

(4, 6, 6 : 3, 7, 11, 11), (2, 2, 4, 4 : 3, 3, 3, 7, 11), (2, 2, 4, 4 : 3, 3, 7, 7, 7), (2, 2, 4, 6 : 3, 3, 3, 9, 11),

(2, 2, 4, 6 : 3, 3, 5, 7, 11), (2, 2, 4, 8 : 3, 3, 3, 7, 15), (2, 4, 4, 4 : 3, 5, 7, 7, 7), (2, 4, 4, 6 : 3, 3, 7, 7, 11),

(2, 2, 4, 4, 4 : 3, 3, 3, 7, 7, 7),
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p = 3 : (2 : 3, 5, 5, 7), (2, 4 : 3, 3, 5, 5, 7),

fd = 20 : number of homotopy rank types = 373

p = 2 : (2, 4, 4, 4 : 3, 3, 3, 7, 7, 7).

Theorem 2.9. The Hilali conjecture holds in formal dimension ≤ 20.

Proof. We now deal with the remaining cases listed above. When counting arguments
fail to rule out a given case, we instead detect Massey products to obtain the sought
after amount of cohomology.

In formal dimension 13, it only remains to verify the conjecture for spaces with
homotopy rank type (2, 4, 4 : 3, 3, 7, 7). Denote the generator in degree 2 by x,
and choose a basis {y, y′} of V 3. If dy = dy′ = 0, then we are done as dimH∗ ≥
2(dimH0 + dimH2 + dimH3) = 8. Otherwise, after a change of basis for V 3 we have
dy = x2 and dy′ = 0. Then ker d∩(Λ≤3)5 is spanned by xy′, and so dim ker d∩V 4 ≥ 1,
giving dimH∗ ≥ 2(dimH0 + dimH2 + dimH3 + dimH4) ≥ 8.

In formal dimension 15, we rule out (2, 4, 4 : 3, 5, 7, 7) by noting that if the generator
in degree 3 is closed, we are done as the square of the degree 2 generator is then non-
exact and so dimH∗ ≥ 2(dimH0 + dimH2 + dimH3 + dimH4) = 8. Otherwise,
upon rescaling the generator in degree 3 maps to the square of the degree 2 generator
under the differential, in which case ker d ∩ (ΛV ≤3) = {0}, and so dimH4 ≥ 2 and
dimH∗ ≥ 8.

For the case of (2, 4, 6 : 3, 3, 7, 11), note that if d vanishes on V 3, we are done
as dimH∗ ≥ 2(1 + dimH2 + dimH3) = 8. Otherwise, we may choose bases {x}
and {y, y′} of V 2 and V 3 such that dy = 0, dy′ = x2. Then either the degree 4
generator z is closed and we are done as dimH3 + dimH4 = 2, or upon scaling z we
have dz = xy, in which case the Massey product [yy′ + xz] spans H6 and we have
dimH3 + dimH6 ≥ 2.

The last remaining homotopy rank type in dimension 15 is (2, 2, 4, 4 : 3, 3, 3, 7, 7);
let (ΛV, d) be a minimal cdga realizing it. The degree 2 generators and degree 0 give
us three independent cohomology classes, so by Poincaré duality it remains to find
three more independent cohomology classes; again by Poincaré duality, it will suffice
to find two more independent classes in degree ≤ 7. If the kernel of V 3 d→ (ΛV )4

is non-trivial, then dimH3 + dimH4 ≥ 2 (since dimV 3 = dim(ΛV ≤2)4) and we are
done. If the kernel of V 3 d→ (ΛV )4 is trivial, we can choose a basis {y, y′, y′′} of
V 3 such that dy = x2, dy′ = x′2, dy′′ = xx′. Now ker d ∩ (ΛV )5 is spanned by
xy′ − x′y′′ and x′y − xy′′. If V 4 d→ (ΛV )5 is not injective, then we are done as
dimH4 + dimH5 ≥ 2. If this d is injective, we can choose a basis {z, z′} of V 4 such
that dz = xy′−x′y′′, dz′ = x′y−xy′′. We then have the Massey products [y′y′′+x′z],
[yy′′ + xz′], [yy′ − xz + x′z′] forming a basis for H6(ΛV, d).

In formal dimension 17, there are eight cases left to check for p = 1. To rule out
the homotopy rank type (2, 4, 4 : 3, 3, 7, 11), note that if d vanishes on V 3 we are
done; otherwise ker d ∩ V 3 is one–dimensional, which implies that ker d ∩ (ΛV ≤5) is
one–dimensional, yielding ker d ∩ V 4 ≥ 1 since dimV 4 = 1. In any case, we have
dimH∗ ≥ 8.
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Next, (2, 4, 4 : 3, 7, 7, 7, ) is ruled out by noting that if the generator in degree 3
is closed, we are done as dimH4 ≥ 1. Otherwise the differential sends the degree 3
generator to a nonzero multiple of the square of the degree 2 generator, which implies
ker d ∩ (ΛV ≤3)5 = {0}, giving dimH4 = 2 and thus dimH∗ ≥ 8.

The types (2, 4, 6 : 3, 3, 9, 11) and (2, 4, 8 : 3, 3, 7, 15) are verified in the same way
as (2, 4, 6 : 3, 3, 7, 11) in dimension 15. Due to the generator in degree 5, (2, 4, 6 :
3, 5, 7, 11) requires a slightly more involved argument: label the generator in degree
i by xi. If dx3 = 0, we are done as x22 is non-exact; so suppose that, upon rescaling,
we have dx3 = x22. This implies there are no non-zero closed elements in (ΛV ≤3)5,
and so dx4 = 0. Now, dx5 = ax2x4 + bx32 for some a, b ∈ Q. We see that ker d ∩
(ΛV ≤5)7 is spanned by x2x5 − ax3x4 − bx22x3. Now, either x6 is closed and we have
dimH∗ ≥ 8, or upon rescaling dx6 = x2x5−ax3x4−bx22x3. Since d(x2x6) = d(x3x5) =
x22x5−ax2x3x4−bx32x3, we have that ker d∩(ΛV )8 is spanned by {x42, x22x4, x24, x2x6−
x3x5}. The vector space (ΛV )7 is spanned by {x22x3, x3x4, x2x5, x7}, with the image
of the differential on the first three vectors being two dimensional. We conclude that
dimH7 + dimH8 ≥ 1 and thus dimH∗ ≥ 8.

For the homotopy rank type (2, 2, 4, 4 : 3, 3, 5, 7, 7), note that if d is not injective
on V 3, we are done as dimH2 = 2 and dimH4 ≥ 2. If d is injective on V 3, then
inspection of a matrix for (ΛV ≤3)5

d→ (ΛV ≤2)6 yields dim ker d ∩ (ΛV ≤3)5 ≤ 1, and
so dim ker d ∩ V 4 ≥ 1, giving us dimH4 ≥ 2.

For (2, 2, 4, 6 : 3, 3, 3, 7, 11), note that if d is not injective on V 3, we are done since
we have dimH3 ≥ 1 and dimH4 ≥ 1. Suppose therefore that for some bases {x, x′},
{y, y′, y′′} of V 2 and V 3 respectively we have dy = x2, dy′ = x′2, dy′′ = xx′. Then
ker d∩ (ΛV )5 is spanned by xy′− x′y′′ and xy′′− x′y. Now, if the degree 4 generator
z is closed, we are done. Otherwise, if dz = xy′′ − x′y, then [y′y′′ − xz] 6= 0 gives
dimH6 ≥ 1; if dz = p(xy′ − x′y′′) + q(xy′′ − x′y) for some non-zero p ∈ Q, then
[− q

p
yy′ − q2

p2
yy′′ + y′y′′ + q

p2
xz + 1

p
x′z] 6= 0. In any case, dimH∗ ≥ 2(3 + dimH3 +

dimH4 + dimH5 + dimH6) ≥ 10.
For the homotopy rank type (2, 4, 4, 4 : 3, 3, 7, 7, 7), note that dim ker d ∩ V 3 ∈
{1, 2}. Since dimV 2 = 1 we have dim ker d∩(ΛV )5 = dim ker d∩V 3, and so dimH4 ≥
3 − dim ker d ∩ (ΛV )5, giving dimH∗ ≥ 2(dimH0 + dimH2 + dimH3 + dimH4) ≥
2(2 + dim ker d ∩ (ΛV )5 + (3− dim ker d ∩ (ΛV )5)) = 10.

For p = 3 in formal dimension 17, it only remains to verify (2 : 3, 5, 5, 5). Since
dim(ΛV )6 = 1, there is a two–dimensional space of closed degree 5 indecomposables.
Further, every element in degree 4 is closed (since (ΛV )4 is spanned by the square
of the generator in degree 2), so dimH5 ≥ 2 and we have dimH∗ ≥ 2(dimH0 +
dimH2 + dimH5) ≥ 8.

In formal dimension 19, there are eighteen cases left to check for p = 1. The
homotopy rank type (8, 8, 3, 15, 15) is ruled out by noting that the degree 8 generators
must be closed. The cases of (2, 4, 4 : 3, 5, 7, 11) and (2, 4, 4, 3, 7, 7, 9) are ruled out
as (2, 4, 4, 3, 7, 7, 7) in dimension 17. Next, (2, 4, 6 : 3, 3, 11, 11) is verified as (2, 4, 6 :
3, 3, 9, 11) in dimension 17.
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The case of (2, 2, 4, 4 : 3, 3, 3, 7, 11) is covered in the same way as (2, 2, 4, 4 :
3, 3, 3, 7, 7) in formal dimension 15. The homotopy rank type (2, 2, 4, 4 : 3, 3, 7, 7, 7) is
ruled out in the same way as (2, 2, 4, 4 : 3, 3, 5, 7, 7) in formal dimension 17. Further,
(2, 2, 4, 6 : 3, 3, 3, 9, 11) is ruled out as (2, 2, 4, 6 : 3, 3, 3, 7, 11) in formal dimension 17,
and (2, 4, 6 : 3, 5, 9, 11) is ruled out as (2, 4, 6 : 3, 5, 7, 11).

For (2, 4, 6 : 3, 7, 7, 11), note that if the degree 3 generator is closed, we have that
the square of the degree 2 generator is non-exact. Otherwise, the degree 4 generator
must be closed (since the kernel is trivial in degree 5), and its product with the degree
2 generator closed and non-exact. In either case, dimH∗ ≥ 8.

The homotopy rank type (2, 4, 8 : 3, 5, 7, 15) is covered similarly to (2, 4, 6 : 3, 5, 7, 11)
(let us denote the generator in a given degree i by xi as we did in that case): if x3 is
closed, we are done, so suppose dx3 = x22. Then dx4 = 0 and dx5 = ax2x4 + bx32 for
some a, b ∈ Q, yielding the closed element x2x5 − ax3x4 − bx22x4 which is non-exact
due to the absence of a generator in degree 6.

We rule out (2, 4, 10 : 3, 3, 7, 19) as we did (2, 4, 6 : 3, 3, 7, 11) in dimension 15.
For (2, 6, 6 : 3, 5, 11, 11), label by x, y, u the generators of degree 2,3,5 respectively.
Note that y is closed, it and xy provide two independent cohomology classes and
we have dimH∗ ≥ 8. Suppose then that dy = x2. If u is closed we are done as x3
is non-exact; otherwise we may assume du = x3, in which case ker d ∩ (ΛV ≤5)7 is
spanned by x2y − xu. It follows from here that dim ker d ∩ V 6 ≥ 1, and the product
of a non-zero class in this kernel with x must be closed and non-exact since there are
no degree 7 generators to make this quadratic element exact; thus dimH∗ ≥ 8.

Next, (4, 6, 6 : 3, 7, 11, 11) is verified by noting that the degree 3 and 4 generators
must be closed and non-exact, along with at least one non-zero element in V 6.

For the case of (2, 2, 4, 6 : 3, 3, 5, 7, 11), note that if d is not injective on V 3, we have
dimH∗ ≥ 2(dimH0 + dimH2 + dimH4) ≥ 10 as dim(ΛV ≤2)4 = 3. Suppose then
that d is injective on V 3; from here it follows that (ΛV ≤3)5

d→ (ΛV )6 has at most
3–dimensional image (note dim(ΛV ≤3)5) = 4) as in the case of (2, 2, 4, 4 : 3, 3, 5, 7, 7).
Denote by {x, x′}, {y, y′}, {z} bases of V 2, V 3, V 4 respectively. The injectivity of d
on V 3 tells us dy = ax2 + bx′2 + cxx′ and dy′ = a′x2 + b′x′2 + c′xx′ for independent
(a, b, c), (a′, b′, c′) ∈ Q3. If the image of (ΛV ≤3)5

d→ (ΛV )6 is 4–dimensional, i.e.
the kernel is trivial, the generator in degree 4 must be closed and hence we are
done. So suppose the kernel is one–dimensional and that the generator z in degree
4 maps to a non-zero element in this kernel (otherwise it is closed and we are done).
We will show that the one–dimensionality of ker((ΛV ≤3)5

d→ (ΛV )6) and dz 6= 0
implies the existence of a closed element in the span of {yy′, xz, x′z}; combined
with the fact that every element in the 4–dimensional space (ΛV ≤2)6 is closed, and
dim im((ΛV )5

d→ (ΛV )6) ≤ 4, we will have dimH6 ≥ 1 and hence dimH∗ ≥ 10.
Now, dim ker(ΛV ≤3)5

d→ (ΛV )6 = 1 tells us that some non-trivial linear combination
kxy + lxy′ +mx′y + nx′y′ is closed, k, l,m, n ∈ Q. This yields the equations

ka+ la′ = 0

kc+ lc′ +ma+ na′ = 0
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kb+ lb′ +mc+ nc′ = 0

mb+ nb′ = 0

If a 6= 0, we can rearrange our basis for V 3 so that dy = x2 + bx′2 + cxx′, dy′ =
b′x′2 + c′xx′. If furthermore b′ 6= 0, we may take b′ = 1 and b = 0, yielding d(yy′ −
xz − cx′z) = 0. If a 6= 0 and b′ = 0, then upon change of basis for V 3 we have (using
the above four equations to conclude b = 0) dy = x2, dy′ = xx′. Then d(yy′−xz) = 0.
The case of b 6= 0 is analogous to the case of a 6= 0. Suppose now that c 6= 0 and
a, b = 0; after change of basis we have dy = xx′, dy′ = a′x2 + b′x′2. If b′ 6= 0, upon
change of basis we have dy = xx′ and dy′ = a′x2 + x′2. Note however that the above
four equations yield n = 0 and hence ma′ = 0. Since m = 0 implies k, l,m, n = 0
(which we are assuming is not the case), we have a′ = 0, and d(yy′ + x′z) = 0. If
b′ = 0, we may assume dy = xx′, dy = x2, giving d(yy′ + x′z) = 0.

The homotopy rank type (2, 2, 4, 8 : 3, 3, 3, 7, 15) is covered by the argument for
(2, 2, 4, 6 : 3, 3, 3, 7, 11) in formal dimension 17.

For (2, 4, 4, 4 : 3, 5, 7, 7, 7), note that if the generator in degree 3 is closed, we have
dimH4 ≥ 3; if it is not closed, then d is injective on (ΛV ≤3)5 and so dimH4 = 3. In
either case, we obtain dimH∗ ≥ 10.

In the case of (2, 4, 4, 6 : 3, 3, 7, 7, 11), note that if d vanishes on V 3 we have
dimH3 = 2 and dimH4 ≥ 1, and so dimH∗ ≥ 10. Otherwise, denoting by x the
generator in degree 2, we can choose a basis {y, y′} of V 3 such that dy = x2 and
dy′ = 0. Then ker d ∩ (ΛV ≤3)5 is spanned by xy′, and so dim ker d ∩ V 4 ≥ 1. If d
vanishes on V 4, we are done, so choose a basis {z, z′} of V 4 such that dz = xy′ and
dz′ = 0. Then [xz′] 6= 0 gives us dimH∗ ≥ 2(2 + dimH3 + dimH4 + dimH6) ≥ 10.

Now we consider the homotopy rank type (2, 2, 4, 4, 4 : 3, 3, 3, 7, 7, 7). Suppose first
that d is injective on V 3. Then, as in the case of (2, 2, 4, 6 : 3, 3, 3, 7, 11) in formal
dimension 17, we see that ker d ∩ (ΛV )5 is two–dimensional. Since V 4 is three–
dimensional, there is a closed degree four element, so dimH4 ≥ 1, and dimH6 ≥ 2
since the product of this closed element with any degree two element is closed and non-
exact (because there are no degree five generators to make such a quadratic element
exact). Therefore, dimH∗ ≥ 12. If V 3 d→ (ΛV )4 has trivial or one–dimensional
image, then we see dimH∗ ≥ 12 by considering only ΛV ≤3 up to degree 4. Now
suppose that the image of V 3 d→ (ΛV ≤2)4 is two–dimensional. We can choose bases
{x, x′} and {y, y′, y′′} of V 2 and V 3 respectively such that dy = ax2 + bx′2 + cxx′,
dy′ = a′x2+b′x′2+c′xx′, dy′′ = 0, where (a, b, c) and (a′, b′, c′) are linearly independent.
This implies the kernel of d on the six–dimensional space (ΛV ≤3)5 has dimension two
or three. If the dimension is two, then dim ker d ∩ V 4 ≥ 1 and so dimH∗ ≥ 12
since dimH3 = 1 and dimH4 ≥ 2. If the dimension is three, then either d is not
injective on V 4 in which case we are done, or we can choose a degree four generator
z so that dz = xy′′. Then [y′′z] is a non-zero class in H7, and we have dimH∗ ≥
2(3 + dimH3 + dimH4 + dimH7) ≥ 12.

In formal dimension 19 when p = 3, the case (2 : 3, 5, 5, 7) is verified by the
same reasoning as for (2 : 3, 5, 5, 5) in formal dimension 17, with the modification
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that we only have dimH5 ≥ 1. For the case of (2, 4 : 3, 3, 5, 5, 7), note that the
degree two generator and at least one element of degree three contribute to the
cohomology; if d vanishes on V 3 then we are done, so assume that for some basis
{y, y′} of V 3 we have that dy = x2 is the square of the degree two generator x, and
dy′ = 0. Now, if the fourth degree generator z is closed, we are done as dimH∗ ≥
2(dimH0 + dimH2 + dimH3 + dimH4) ≥ 8. If z is not closed, then d2 = 0 tells us
dz = xy′. Note that ker d∩(ΛV )6 is spanned by x3 and yy′−xz, and since d(xy) = x3

we conclude that there is a closed element in (ΛV )5 with a non-zero term in V 5 (and
so by minimality it is not exact), yielding dimH∗ ≥ 8.

In formal dimension 20, the only remaining homotopy rank type is (2, 4, 4, 4 :
3, 3, 3, 7, 7, 7). If d vanishes on V 3, we are done as dimH∗ ≥ 2(dimH0 + dimH2 +
dimH3) = 10. Otherwise, we can choose a basis {y, y′, y′′} of V 3 such that dy =
x2, dy′ = dy′′ = 0, where x denotes a degree two generator. We see now that
dim ker d ∩ (ΛV )5 = 2, and so dim ker d ∩ V 4 ≥ 1. Therefore dimH∗ ≥ 2(dimH0 +
dimH2 + dimH3 + dimH4) ≥ 10.

�
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