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A FINITENESS THEOREM FOR LOW-CODIMENSIONAL

NONSINGULAR SUBVARIETIES OF QUADRICS

MARK ANDREA A. DE CATALDO

Abstract. We prove that there are only finitely many families of codimension
two nonsingular subvarieties of quadrics Qn which are not of general type, for
n = 5 and n ≥ 7. We prove a similar statement also for the case of higher
codimension.

0. Introduction

There are only finitely many families of codimension two nonsingular subvarieties
not of general type of the projective spaces Pn, for n ≥ 4; see [7] and [4]. More
generally, a similar statement holds for the case of higher codimension; see [16].

In this paper we concentrate on the case of codimension two subvarieties of
quadrics. Our main result is Theorem 4.3: there are only finitely many families of
nonsingular codimension two subvarieties not of general type in the quadrics Qn,
n = 4, 5 or n ≥ 7. The case n = 4 is proved in [1], §6. The case of n = 5 is at
the heart of the paper; the main tools are the semipositivity of the normal bundles
of nonsingular subvarieties of quadrics, the double point formula, the generalized
Hodge index theorem, bounds for the genus of curves on Q3, Proposition 1.5 and
Corollary 3.4. The case n = 6 is still open1. The case of codimension two with
n ≥ 7 is covered by Theorem 2.1, which hinges upon the result of [16]; it also gives
a finiteness result in codimension bigger than two in the same spirit as [16].

The paper is organized as follows. Section 1 records, for the reader’s convenience,
some results used in the paper. A generalization of a lifting criterion of Roth’s is
contained in section 1.1; we shall need the particular case expressed by Proposition
1.4. Section 2 deals with higher codimensional cases. Sections 3 and 4 are modeled
on [4]. Section 3 contains the lengthy proof of Theorem 3.1 and of its Corollary
3.4. Section 4 contains the proof of Theorem 4.3.

Notation and conventions. Our basic reference is [10]. We work over any alge-
braically closed field of characteristic zero. A quadric Qn, here, is a nonsingular
hypersurface of degree two in the projective space Pn+1. Little or no distinction
is made between line bundles, associated sheaves of sections and Cartier divisors;
moreover the additive and tensor notation are both used.
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1. Preliminary material

Proposition 1.1 (Cf. [6] or [5]; for the case of d > 2k(k − 1) see [1], §6). Let C
be an integral curve of degree d contained in an integral surface of degree 2k in
Q3. Then the following bound holds for the genus g of C:

g − 1 ≤ d2

4k
+

1

2
(k − 3)d.

Proposition 1.2 (Cf. [1], Proposition 6.4). Let C be an integral curve in Q3, not
contained in any surface in Q3 of degree strictly less than 2k. Then

g − 1 ≤ d2

2k
+

1

2
(k − 4)d.

Let S be a nonsingular surface in Q4, N its normal bundle, C a nonsingular
hyperplane section of S, g its genus, d its degree. Let Vs ∈ |IS,Q4(s)|, where
s is some positive integer, be an integral hypersurface and µl := c2(N(−l)) =
(1/2)d2 + l(l− 3)d− 2l(g − 1), ∀l ∈ Z.

Lemma 1.3 (Cf. [5], Lemma 2.35). In the above situation,

0 ≤ µs ≤ s2d.

The following proposition follows immediately from Theorem 1.5 when the am-
bient space Pn+2 is chosen to be a quadric Qn+2.

Proposition 1.4. Let X be an integral subscheme of degree d and codimension two
in Qn, n ≥ 4. Assume that for the general hyperplane section Y of X we have

h0(Qn−1, IY,Qn−1(σ)) 6= 0,

for some positive integer s such that d > 2σ2. Then

h0(Qn, IX,Qn(σ)) 6= 0.

Let X be a degree d, nonsingular 3-fold in Q5, L ' OP6(1)|X , S the surface

general hyperplane section of X , C the general curve section of S and g the genus
of C. Using the double point formula (cf. [8]) for the embedding X ↪→ Q5, we get
the following formulæ for KX ·L2, K2

X ·L, K3
X as functions of d, g, χ(OX), χ(OS):

KX · L2 = 2(g − 1)− 2d,(1)

K2
X · L =

1

4
d2 +

3

2
d− 8(g − 1) + 6χ(OS),(2)

K3
X = −9

4
d2 +

27

2
d+ gd+ 18(g − 1)− 30χ(OS)− 24χ(OX).(3)

Finally we record the expression for the Hilbert polynomial of X :

χ(OX(t)) =
1

6
dt3 + [

1

2
d− 1

2
(g − 1)]t2 + [

1

3
d− 1

2
(g − 1) + χ(OS)]t + χ(OX).

(4)

For the details concerning the above formulæ see [5], §1.
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1.1. A Roth-type lifting criterion. If the general curve section of a degree d
linearly normal surface S in P4 lies on a surface of degree σ in P3, then S lies on
some hypersurface of degree σ, provided d > σ2 (cf. [15]). A generalization of this
fact to codimension two integral linearly normal subschemes of Pn, n ≥ 4, has been
known for some time.

In this section we generalize Roth’s lifting criterion to a larger class of spaces;
see Theorem 1.5 and Example 1.8. The proof does not require the concept of linear
normality, which was virtually automatic in the case that Roth considered.

The proof given below was inspired by [1], Lemma 6.1.
First we fix some notation. Let Pn+2 be a nonsingular projective variety of

dimension (n + 2), n ≥ 2, L = OPn+2(1) an ample and spanned line bundle on it
with δ := Ln+2. Assume that Pic(Pn+2) ' Z[L]. Let Xn be an integral subscheme
of Pn+2 of dimension n and d := Ln ·X . Denote by P i+2 the intersection of (n− i)
general elements of |L| and by X i the intersection of the same elements of |L| with
Xn.

Theorem 1.5. Assume that the natural restriction maps below are surjective ∀m:

ρm := H0(Pn+2,mL) → H0(Pn+1,mL|Pn+1).

If h0(IXn−1,Pn+1(s)) 6= 0 for some s such that d > δs2, then h0( IXn,Pn+2(s)) 6= 0.
If s is the minimum such number, then h0(IXn,Pn+2(s)) = 1.

Proof. Let us assume that we have proved the theorem for

s = σ := min{t ∈ N| h0(IXn−1,Pn+1(t)) 6= 0};
we call σ the postulation of Xn−1. Then the theorem holds also for all s ≥ σ. We
can thus assume, without loss of generality, that s = σ.

Pick any Vσ ∈ |IXn−1,Pn+1(σ)|.
Claim. Vσ is integral. This follows easily from the minimality of σ and the fact
that, under our assumptions, Pic(Pn+1) ' Z[L|Pn+1].

Claim. Vσ is the unique element of |IXn−1,Pn+1(σ)|. For a contradiction, assume

that we have two distinct V i
σ . By the above claim they are both integral. By

an easy Bertini-type argument we see that, intersecting everything with n general
members of |L|, we get two distinct integral curves W i

σ ∈ |OP2(σ)| containing
X0 = {d points}. Since the curves do not have common components, we see that
d ≤W 1

σ ·W 2
σ = δσ2; the intersection product here is on P2. This is a contradiction,

and the claim is proved.

Let us choose a general line ` ⊆ |L|∨. Define P̃ to be the blowing up of Pn+2

along the intersection of all the members of `. Denote by p and q the natural
projections to ` and Pn+2, respectively. By intersecting with general elements of
|L| we get the following diagram, where Y i denotes q−1X i:

Y 0 ⊆ Y 1 ⊆ . . . ⊆ Y n ⊆ P̃ p−→ `
↓ ↓ ↓ ↓ q
X0 ⊆ X1 ⊆ . . . ⊆ Xn ⊆ Pn+2

We have the following injections, where, for simplicity (and by abuse) of notation,
we denote a twist by q∗OPn+2(σ) simply by a twist by σ:

IY n,P̃(σ) → IY n−1,P̃(σ) → . . .→ IY 1,P̃(σ) → IY 0,P̃(σ),
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so that, applying p∗, we obtain the following injections:

p∗IY n,P̃(σ) → p∗IY n−1,P̃(σ) → . . .→ p∗IY 1,P̃(σ) → p∗IY 0,P̃(σ).

The existence of Vσ, for a general point of `, ensures that p∗IY n,P̃ (σ) is not the
zero sheaf. Since p is dominant and the ideal sheaves IY i,P̃ are torsion free, we

see that the sheaves p∗IY i,P̃(σ) are torsion free ∀i. But ` is a smooth curve, so
that these sheaves are actually locally free. The uniqueness statement, which was
shown above, implies that these sheaves are actually line bundles on `. Since each
of the above injections has torsion free cokernel on ` we deduce that they all are
isomorphisms, i.e.:

p∗IY n,P̃(σ) ' p∗IY n−1,P̃(σ) ' . . . ' p∗IY 1,P̃(σ) ' p∗IY 0,P̃(σ) ' O`(τ),

for some τ ∈ Z.
For a contradiction, assume τ < 0. Then

0 = h0(p∗IY n−1,P̃(σ)) = h0(IY n−1,P̃(σ)) = h0(q∗IY n−1,P̃(σ)) = h0(IXn−1,Pn+2(σ)).

By our assumptions we can lift a section defining Vσ to a nonzero element of
H0( IXn−1,Pn+2 (σ)). This contradiction proves τ ≥ 0.

This proves the first assertion of the theorem. As to the second, we need to
prove that τ = 0. But τ being strictly positive would violate the usual uniqueness.

2

Remark 1.6. We used the surjectivity of the restriction maps only for m = σ.

Remark 1.7. The cases (Pn+2, L) ∼= (Pn+2, OPn+2(1)), (Q4, OQ4(1)) seem to be
well known. See for example [1], [14], and of course [15]. However in the case of
projective space it seems that the linear normality of X was usually required; after
Zak’s theorem on tangencies linear normality is automatic, for a nonsingular X ,
unless n = 4 and X is the Veronese surface.

Example 1.8. The variety Pn+2 can be, for example, a projective space, a nonsin-
gular complete intersection or a Grassmannian; in all these cases L is the hyperplane
bundle for the natural embedding. But it can also be chosen to be a Fano variety,
of index r, with −KP = rL, L generated by global sections and Pic(P) ' Z (this is
always the case if r > n/2), some weighted complete intersections or, more gener-
ally, low degree branched coverings of projective spaces [12] or Grassmannians [11].
In the last batch of examples, L does not need to be very ample.

The following gives a lifting criterion in any codimension; see [14]. Again linear
normality is not required.

Corollary 1.9. Let Xν be an integral subscheme of Pn+2 of dimension ν, Xν−1

the intersection of X with a general member of |L|, σ the postulation of Xν−1.
Assume that h0(IXν−1(σ)) = 1 and that ρσ is surjective. Then h0(IXν (σ)) = 1.

2. Finiteness on Qn, n ≥ 7

In this section we remark that, for a nonsingular variety of dimension ν ≥ n+3
2

in Qn not of general type, the bound d ≤ 2nn−ν holds. This gives the finiteness of
the corresponding number of families.

We thank M. Schneider for pointing out to us that the result of this section could
be proved along the lines of his paper [16].
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Theorem 2.1. There are only finitely many components of the Hilbert scheme of
Qn corresponding to nonsingular subvarieties of dimension ν ≥ n+3

2 which are not
of general type.

Proof. It suffices to bound the degree d of any such X . The normal bundle N of
X in Qn is generated by global sections. The proposition of [16] is valid, on X ,
with “ample” replaced by “generated by global sections”; see [8], Example 12.1.7.
It follows that

cn−ν(N) · c1(N)2ν−n ≤ c1(N)ν .(5)

By the self intersection formula for X on Qn and the structure of the cohomology
ring of quadrics we have cn−ν(N) = 1

2dL
n−ν .

By [2], Theorem 2.3.11 we get that Pic(X) ' Z[L], so that, if X is not of general
type, then KX = eL, with e ≤ 0. The adjunction formula gives c1(N) = (e+ n)L.
By plugging into (5) we get

1

2
d2(e+ n)2ν−n ≤ (e + n)νd,

which gives, after observing that 0 ≤ −e ≤ dimX + 1 < n, that

d ≤ 2(e+ n)n−ν ≤ 2nn−ν .

2

3. 3-folds on a hypersurface of fixed degree

In this section we generalize to the case of Q5 the main result of §3 of [4], which
deals with bounds associated with nonsingular 3-folds contained in a hypersurface
of P5. For the analogous result on Q4 see [1], Proposition 6.7. However in both
of the above references the result is proved under the assumption that “d is big
enough” with respect to the degree of the hypersurface. Of course this assumption
is not a real restriction, since the residual cases are automatically taken care of
by the fact that having a bounded degree bounds everything. However, it seems
convenient to prove our statements without restrictions.

The importance of this bound is more or less theoretical: it can be used to assert
the finiteness of special families of 3-folds in Q5. One should not expect to make an
effective use of them and get sharp results. The paper [7], which deals with surfaces
in P4, is the original source of the main ideas used in [4], in §6 of [1], and in this
section. The theoretical bound given there, for the degree of nonsingular surfaces
not of general type in P4, is not an effective one. In the paper [3] an effective bound,
d ≤ 105, is proved using initial ideals.

Let X be a 3-fold of degree d in Q5 contained in an integral hypersurface V ∈
|OQ5(σ)|, S a general hyperplane section of X , C a general hyperplane section of

S, and g its genus. As a convention, when we write something like “+ l.t. in
√
d,”

we mean that the coefficients of the lower terms depend only on σ.

Theorem 3.1. Let X ⊆ V ⊆ Q5 be as above. There is a degree eight polynomial
Pσ(

√
d), depending only on σ and with positive leading coefficient, such that

−χ(OX) ≥ Pσ(
√
d).

Proof. Look at the following three exact sequences:

0 → OP6(t− 2) → OP6(t) → OQ5(t) → 0,
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0 → OQ5(t− σ) → OQ5(t) → OV (t) → 0,

0 → IX,V (t) → OV (t) → OX(t) → 0.

One can use the first one to compute χ(OQ5 (t)), the second one to compute

χ(OV (t)) =
1

12
σt4 + (−1

6
σ2 +

5

6
σ)t3 + (

1

6
σ3 − 5

4
σ2 + 3σ)t2

+(− 1

12
σ4 +

5

6
σ3 − 3σ2 +

55

12
σ)t

+
1

60
σ5 − 5

24
σ4 + σ3 − 55

24
σ2 +

149

60
σ,

and finally we use (4), µ := µσ = 1
2d

2 + σ(σ − 3)d − 2σ(g − 1) (cf. the notation
fixed before Lemma 1.3), and the third short exact sequence to compute

χ(IX,V (t)) =
1

12
σt4 +

1

6
[(5− σ)σ − d]t3

+[
1

6
σ3 − 5

4
σ2 + 3σ +

1

4σ
(
d2

2
+ dσ(σ − 3)− µ)− d

2
]t2

+[− 1

12
σ4 +

5

6
σ3 − 3σ2 +

55

12
σ − d

3

+
1

4σ
(
d2

2
+ dσ(σ − 3)− µ)− χ(OS)]t

+
1

60
σ5 − 5

24
σ4 + σ3 − 55

24
σ2 +

149

60
σ − χ(OX)

=: Q(t)− χ(OX).

It follows that

−χ(OX) = χ(IX,V (t))−Q(t).

Define

t1 := min{t ∈ N| δ := 2σt− d > 0 and
δ2

2
− µ− δσ(σ − 3) > 0};

by [1], page 89,

d

2σ
≤ t1 ≤ d

2σ
+

√
2d

2
+ σ.

By plugging t1 into the above we get, using the above inequalities for t1 and Lemma
1.3,

−χ(OX) = χ(IX,V (t1))−Q(t1) ≥ χ(IX,V (t1))− 1

64σ3
d4 +

1

2σ
χ(OS)d+ l.t. in

√
d;

by [1], pages 88–89, we also know that

χ(OS) ≥ 1

24σ2
d3 + l.t. in

√
d,

so that

−χ(OX) ≥ χ(IX,V (t1)) +
1

192σ3
d4 + l.t. in

√
d.

To conclude it is enough to bound conveniently from below χ(IX,V (t1)) = h0 −
h1 + h2− h3 + h4. This, in turn, can be accomplished by bounding h1 and h3 from
above. This is the content of the following technical lemmata. 2
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First we fix some notation. By taking general hyperplane sections we obtain the
following diagram:

Q3 ⊆ . . . ⊆ Qn+1 ⊆ Qn+2

∪ ∪ ∪
Ṽ 2 → V 2 ⊆ . . . ⊆ V n ⊆ V n+1 = V

∪ ∪ ∪
X1 ⊆ . . . ⊆ Xn−1 ⊆ Xn = X,

where Ṽ 2 is the normalization of V 2.
The following lemma is the analogue of [4], Lemma 3.3. It is proved in the same

way using [1], Lemmata 6.10, 6.11 and 6.12, instead of the lemmata from [7] quoted
in [4].

Lemma 3.2. Let X = Xn be a degree d nonsingular n-dimensional subvariety of
Qn+2, n ≥ 2. Assume that X is contained in an integral hypersurface V = V n+1

∈ |OQn+2(σ)|. Define t1 as above. Then there are constants A1, A2, depending only
on σ, such that

∞∑
ν=t1

h1(IX1,Ṽ 2(ν)) ≤ A1

√
d3 + l.t. in

√
d,

and
t1−1∑
ν=0

h1(IX1,Ṽ 2(ν)) ≤ A2

√
d5 + l.t. in

√
d.

The next lemma merely generalizes Lemma 3.4 of [4]. It should be noted that the
proof of it in [4] has a flaw since the argument does not work in the case i = n+ 1.
However that case is not needed for our (and their) purposes. In any case we easily
prove a bound also in that case.

Lemma 3.3. Let things be as in the previous lemma. Then

h0(IX,V (t1)) ≤ B0

√
d2n−1 + l.t. in

√
d;

for i = 1,

h1(IX,V (t1)) ≤ B1

√
d2n+1 + l.t. in

√
d,

for i = n− 1, n

hi(IX,V (t1)) ≤ Bi

√
d2i+1 + l.t. in

√
d,

and for i = n+ 1

hn+1(IX,V (t1)) ≤ Bn+1d
n+1 + l.t. in

√
d,

where the Bi’s are positive constants depending only on σ.

Proof. By looking at the sequences

0 → IXi,V i+1(k − 1) → IXi,V i+1(k) → IXi−1,V i(k) → 0,(6)
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we deduce that

h0(IX,V (t1)) ≤ h0(IXn−1,V n(t1)) + h0(IXn,V n+1(t1 − 1))

≤
t1∑
k=1

h0(IXn−1,V n(k))

...

≤
t1∑
k=1

· · ·
t1∑
k=1

h0(IX1,V 2(k)) ((n− 1) summands)

≤ tn−2
1

t1∑
k=1

h0(IX1,V 2(k)) ≤ tn−2
1

t1∑
k=1

h0(IX1,Ṽ 2(k))

≤ tn−2
1 (A0

√
d3 + l.t. in

√
d),

where the last inequality can be found in [1], Lemma 6.15, and A0 depends only on

σ. Since t1 ≤ 1
2σd+

√
2d
2 + σ, we have bounded h0(IX,V (t1)) as wanted.

To bound h1 we argue as above.
h1(IX,V (t1)) ≤

∑t1
k=1 h

1(IXn−1,V n(k))+ h1(IXn,V n+1), but this last dimension
is zero as one can check by looking at the long cohomology sequences associated
with the following two exact sequences:

0 → IXn,Qn+2 → OQn+2 → OXn → 0,(7)

0 → OQn+2(−σ) → IXn,Qn+2 → IXn,V n+1 → 0.(8)

An easy induction argument, already seen before, using (6) allows us to infer that

h1(IX,V (t1)) ≤ tn−2
1

t1∑
k=1

h1(IX1,V 2(k)).

To obtain the desired bound on h1 it is enough to prove that:

t1∑
k=1

h1(IX1,V 2(k)) ≤ F
√
d5 + l.t. in

√
d,

where F is a constant depending only on σ.
This can be proved as follows. The idea is to couple the previous lemma with

the cohomology sequences associated with the exact sequences

0 → IX1,V 2(k) → IX1,Ṽ 2(k) → Q(k) → 0.

Clearly we have h1(IX1,V 2(k)) ≤ h1(IX1,Ṽ 2(k)) + h0(Q(k)), ∀k, so that, in view
of Lemma 3.2, it is enough to prove the following

Claim. h0(Q(k)) ≤ D(k + 1), ∀k ≥ 0, where D is a positive constant depending

only on σ. In particular,
∑t1

k=0 h
0(Q(k)) ≤ (1/2)Dt21+ l.t. in t1.

Proof. Q is the structural sheaf of the non-normal locus of V 2 twisted by the ideal
sheaf of X1. By taking a general hyperplane section we get the following exact
sequences:

0 → Q(k − 1) → Q(k) → QΓ(k) → 0,

where QΓ(k) ' QΓ is the structural sheaf of the singular locus of Γ, a general
hyperplane section of V 2. As usual h0(Q(k)) ≤ h0(Q(k− 1))+ length(QΓ), so that
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h0(Q(k)) ≤ length(QΓ)(k+1)+h0(Q(−1)). This length is bounded from above by
a function of σ only (that is, an irreducible curve of degree 2σ on a two dimensional
quadric cannot have too many singularities). As for h0(Q(−1)), one has to exercise
caution since the non-normal locus may be non-reduced. However by looking at
the cohomology sequences associated with (7) we see that h1(IX1,V 2(−1)) = 0, so
that h0(Q(−1)) = 0, and the claim is proved.

Now we prove the bound for i = n.
We start by remarking that for i = n− 1, n, n+ 1 and all k ≥ d− 1,

hi(IX,V (k)) = 0.

If X2 is nondegenerate then IX2,P5 is (d − 2)-regular (cf. [13]) in the sense of
Castelnuovo-Mumford. By looking at the sequences

0 → IX2,P5(−2 + k) → IX2,P5(k) → IX2,Q4(k) → 0,

we deduce the vanishings, for n = 2. An easy inductive argument (cf. [4], page
326) gives the desired vanishings.

If X2 ⊆ P5 were degenerate, then either X2 = P2, or X2 would be a hypersurface
of P3, or it would be a nondegenerate surface in P4. In any of these cases we apply
the bound for the regularity of the ideal sheaves in [13] to obtain vanishings for the
higher cohomology of IX2,P4 which are easy to lift to the desired vanishings for X2.
Again the inductive procedure allows us to reach the desired conclusion.

We have the following chain of inequalities:

hn(IXn,V n+1(t1)) ≤
∑
k>t1

hn−1(IXn−1,V n+1(k)) ≤
d−4∑
k=1

hn−1(IXn−1,V n+1(k))

≤ . . . ≤
d−4∑
1

. . .

d−4∑
1

d−4∑
k=1

h1(IX1,V 2(k))

≤ (d− 4)n−2
d−4∑
k=1

h1(IX1,V 2(k))

≤ Bn

√
d2n+1 + l.t. in

√
d,

where Bn depends only on σ and the last inequality follows from Lemma 3.2.
The case i = n− 1 is analogous.
Finally, the bound for the case i = n + 1 can be obtained as in the case i = n

except for the fact that we end up having to bound h2(IX1,V 2(k)) for k = 1, . . . ,
d− 4, and not h1:

hn+1(IX,V (t1)) ≤ dn−2(

d−4∑
k=1

h2(IX,V (t1)).

To bound this summand we look at the exact sequences

0 → IX1,V 2(k) → OV 2(k) → OX1(k) → 0,

and deduce that

h2(IX1,V 2(k)) ≤ h1(OX1(k))+h2(OV 2(k)) = h0(ωX1(−k))+h0(OX1(−3 + σ − k))

where the last equality stems from Serre duality. We are thus left with bounding
the two h0 above. The first one can be bounded using Proposition 1.1 on h0(ωX1) =
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g(X1): the worst upper bound is of the form (1/4σ)d2+ l.t. in d. As for the second
h0, its worst upper bound is of the form (1/2)σ2. Adding up for k = 1, . . . , d− 4,
we get that the worst upper bound is (1/4σ)d3+ l.t. in d. 2

The following generalizes [4], Corollary 3.1.

Corollary 3.4. Let σ be any positive integer. There are only finitely many compo-
nents of the Hilbert scheme of Q5 corresponding to nonsingular 3-folds in Q5 which
are not of general type and are contained in some hypersurface of degree σ.

Proof. It is enough to bound from above the degree of such 3-folds, since ωX(−1)
does not have sections h0(ωX) ≤ h0(ωS), where S is any nonsingular hyperplane
section of X . By the generalized Castelnuovo-type bounds of Harris (cf. [9]) we
have

h0(ωS) ≤ Ad3 + l.t. in d,

where A is some constant; the Lefschetz hyperplane theorem, coupled with Propo-
sition 1.1, ensures that

h1(OX) = h1(OS) ≤ h1(OC) ≤ 1

4σ
d2 + l.t. in d.

It follows that

h0(ωS) ≥ h0(ωX) = 1 + h2(OX)− h1(OX)− χ(OX) ≥ 1

192σ3
d4 + l.t. in

√
d.

Comparing the two inequalities for h0(ωS), we conclude that d is bounded. 2

4. Finiteness for 3-folds not of general type in Q5

Proposition 4.1. Let X be a nonsingular 3-fold in Q5 and k a positive integer.
Then

χ(OS) ≤ 2

3

(g − 1)2

d
− 1

24
d2 +

5

12
d.(9)

If X is not of general type, then

− χ(OX) ≤ χ(OS) +
1

2
d2 − 2d+ 2;(10)

if d > 2k2 and X is not of general type and not contained in any hypersurface of
degree strictly less than 2 · k, then

− χ(OX) ≤ χ(OS) +
1

k
d2 + (k − 4)d+ 2.(11)

Proof. The first inequality stems from the generalized Hodge index theorem con-
tained in [4]:

d(K2
XL) ≤ (KXL

2)2;

we make explicit the left hand side using (2) and the right hand side using (1).
For the second one we look at

0 → KX(−1) → KX → KS(−1) → 0.

Since X is not of general type h0(KX(−1)) = 0, as otherwise KX would be big,
i.e. a |mKX | would define a birational map. It follows that h3(OX) = h0(KX) ≤
h0(KS(−1)) ≤ h0(KS) = h2(OS).

We thus have

−χ(OX) ≤ h1(OX) + h3(OX) ≤ χ(OS) + 2h1(OX),
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where we have used the Lefschetz theorem on hyperplane sections to ensure that
h1(OX) = h1(OS). We have h1(OS(−1)) = 0 by Kodaira Vanishing, so that
h1(OX) = h1(OS) ≤ g.

If C were contained in a P3 we would use Proposition 1.1 with k = 1 to conclude.
If C were not in any surface of degree strictly less than 2·2 we would use Proposition
1.2 with k = 2.

The third inequality is proved exactly as the second one by using Proposition 1.5
to ensure that a general curve section C is not in any surface of the corresponding
Q3 of degree strictly less than 2 · k, and Proposition 1.2 to bound the genus g from
above. 2

Proposition 4.2. Let X be a nonsingular 3-fold in Q5. Then

60χ(OS) ≥ 3

2
d2 − 12d+ (d− 48)(g − 1) + 24χ(OX).

Proof. Denote by si and ni the Segre and Chern classes respectively of the normal
bundle N of X in Q5. Since N is generated by global sections we have s3 ≥ 0.
Since s3 = n3

1 − 2n1n2 we get

0 ≤ (KX + 5L)3 − 2(KX + 5L)
1

2
dL2

= K3 + 15K2
XL+ 75KXL

2 + 125d− d(KX + 5L)L2.

We conclude by (3), (2) and (1). 2

Theorem 4.3. Let n = 4, 5 or n ≥ 7. There are only finitely many components of
the Hilbert scheme of Qn corresponding to nonsingular (n− 2)-folds not of general
type.

Proof. By [1], §6, and Theorem 2.1 it is enough to consider the case n = 5. It is
enough to bound from above the degree d of such 3-folds.

Fix a positive integer k and let d be a positive integer such that d > 2k2. Let X
be a degree d 3-fold in Q5 not lying on any hypersurface of Q5 of degree strictly
less than 2 · k; by Proposition 1.5, a general curve section of X does not lie on any
surface of the corresponding Q3 of degree strictly less than 2 · k.

We couple Proposition 4.2 and inequality (11) of Proposition 4.1:

84χ(OS) ≥ (
3

2
− 24

k
)d2 − (24k − 84)d− 48 + (d− 48)(g − 1).

We plug inequality (9) of Proposition 4.1 into the above and get:

52

d
(g − 1)2 − 21

6
d2 + 35d ≥ (

3

2
− 24

k
)d2 − (24k − 84)d− 48 + (d− 48)(g − 1).

A simple manipulation gives

(g − 1)[
52

d
(g − 1)− d+ 48] + (

24

k
− 5)d2 + (24k − 49)d+ 48 ≥ 0.(12)

Let us now first assume that g > 0. The aim is to choose k such that the coefficients
α := (52

d (g − 1) − d + 48) and β := (24
k − 5) of (g − 1) and d2, respectively, are

negative. Once they are negative, since k is fixed, the inequality (12) will force d
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to be bounded from above. By Proposition 1.3 we get

52

d
(g − 1)− d+ 48 ≤ 52

d
[
d2

2k
+

1

2
(k − 4)d]− d+ 48

= (
26

k
− 1)d+ 26k − 56.

Let k = 27; then α is negative for d � 0. For the same value of k, β is negative
as well. By the above we infer that d is bounded from above if g > 0 and X is
not in a hypersurface of degree strictly less than 2 · 27. We apply Corollary 3.4 to
see that d is bounded from above for 3-folds X , not of general type, contained in
hypersurfaces of degrees less than or equal to 2 ·27. This proves the theorem in the
case g > 0.

Assume that g = 0. Then, by (12),

52

d
+ d− 48 + (

24

k
− 5)d2 + (24k − 49)d+ 48 ≥ 0.

We argue as above with k = 5. 2
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