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Singular hermitian metrics on vector bundles
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By Mark Andrea A. de Cataldo at Bonn

Abstract. We introduce a notion of singular hermitian metrics (s.h.m.) for holo-
morphic vector bundles and de�ne positivity in view of L2-estimates. Associated with a
suitably positive s.h.m. there is a (coherent) sheaf 0-th kernel of a certain d FF-complex. We
prove a vanishing theorem for the cohomology of this sheaf. All this generalizes to the
case of higher rank known results of Nadel for the case of line bundles. We introduce a new
semi-positivity notion, t-nefness, for vector bundles, establish some of its basic properties
and prove that on curves it coincides with ordinary nefness. We particularize the results
on s.h.m. to the case of vector bundles of the form E^F�L, where F is a t-nef vector
bundle and L is a positive (in the sense of currents) line bundle. As applications we
generalize to the higher rank case (1) Kawamata-Viehweg Vanishing Theorem, (2) the
e�ective results concerning the global generation of jets for the adjoint to powers of ample
line bundles, and (3) Matsusaka Big Theorem made e�ective.1

0. Introduction

In this study I introduce a notion of singular hermitian metrics (s.h.m.) on holo-
morphic vector bundles over complex manifolds. The original motivation was to explore
the possibility of employing, in the setting of vector bundles, the new transcendental
techniques developed by Demailly and Siu in order to study global generation problems
for (adjoint) line bundles. The notes G10H are an excellent introduction to these techniques
and to the results in the literature. One can consult the lucid notes G13H for an algebraic
counterpart to these techniques.

Let me discuss the case of line bundles. Let X be a non-singular projective manifold
of dimension n, L and E be an ample and a nef line bundle on X, respectively, a be a
non-negative integer and m be a positive one.
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Under which conditions on a and m will the line bundle

P:K�a
X

�L�m�E

be generated by its global sections ( free)?

More generally, we can ask for conditions on a and m under which the simultaneous
generation of the higher jets of P at a prescribed number of points on X is ensured.

It is clear that m~~0 answers the question. However, how big m should be could
depend, a priori, on X. For example, Matsusaka Big Theorem asserts that L�m is very
ample for every m~M:M (n,Ln, K

X
� Ln+1). An e�ective value for M has been recently

determined in G25H and G11H; see also G14H for the case of surfaces.

The presence of the canonical line bundle, i.e. a~0, changes dramatically the shape
of the lower bound on m. Fujita's Conjecture speculates that K

X
� L�m should be free as

soon as m~n ^1. This conjecture is true for n ~4 by the work of Reider, Ein-Lazarsfeld

and Kawamata. In the papers G1H and G28H it is proved that m~
1
2
(n2^ n ^2) gives

freeness.

E�ective results depending only on n are proved for a~1 by several authors. The
seminal paper is G9H where it is proved, by (di�erential-geometric-) analytic methods, that
K�2
X

�L�m is very ample for all m~12nn. Then followed the paper G18H, where a similar
result is proved using algebraic-geometric methods. Since then, several papers have appeared
on the subject. The reader may consult the following references to compare the various
results and techniques: G10H (an account of the analytic approach with a rather complete
bibliography), G13H (an account of the algebraic approach and of how many of the analytic
instruments may be re-tooled and made algebraic), G1H and G28H (freeness; written in the
analytic language, but apt to be completely translated into the algebraic language after
observations by Kolla> r G19H, * 5; see also G27H), G11H, G26H and G24H (very ampleness;
analytic), G25H and G11H (an e�ective version of Matsusaka Big Theorem; analytic).

An extra nef factor E plays a minor role and all of the results quoted above hold in
its presence. This simple fact was the starting point of my investigation.

Question 0.0.1. Can we obtain e�ective results on a and m for the global generation
of the vector bundle P by assuming that E is a suitably semi-positive vector bundle of
rank r? More generally, can we obtain similar results about the simultaneous generation
of the higher jets of P at a prescribed number of points on X ?

I expected that the statements in the aforementioned literature concerning the line
bundles P with the nef line bundle E should carry over, unchanged, to the case in which
E is a nef vector bundle.

On a projective manifold a nef line bundle can be endowed with hermitian metrics
whose curvature forms can be made to have arbitrarily small negative parts (cf. De�nition
3.1.2). In the analytic context this fact can be used to make the presence of a nef line
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bundle E harmless. The same is true in the algebraic context because of the numerical
properties of nefness.

A natural algebraic approach to the case of higher rank is to consider an analogous
question for the tautological line bundle m of the projectivized bundle n : P (E )1X. The
results I obtain with the algebraic approach are for P� detE ; compare Remark 5.2.5
with the sample e�ective global generation result presented below; see G5H. On the analytic
side, the problem is that the nefness of a vector bundle E does not seem to be linked to
a curvature condition on E itself.

As far as Question 0.0.1 is concerned, nefness does not seem to give enough room
to work analytically with higher rank vector bundles.

Instead I introduce, for every vector bundle E and every positive integer t, the notion
of t-nefness which is a new semi-positivity concept for vector bundles. In some sense it is
in between the algebraic notion of nefness and the di�erential-geometric notion of t-
semipositivity. It is a natural higher rank curvature analogue of the aforementioned cha-
racterization of nef line bundles. The property of t-nefness is checked by considering tensors
in T

X
�E of rank at most t; such tensors have ranks never bigger than

N:min (dimX, rankE ) .

Incidentally, (t ^1)-nefness implies t-nefness for all positive integers t, 1-nefness implies
nefness and I do not know whether nefness implies 1-nefness.

Though, as I show in Theorem 3.3.1, on curves 1-nefness is equivalent to nefness,
the notion of t-nefness is rather di�icult to check in an algebraic context. However, see
Example 3.1.4 for a list of nef bundles which I know to be N-nef or from which it is easy
to obtain N-nef bundles (e.g. nef bundles on curves, nef line bundles, �at bundles, nef
bundles on toric or abelian varieties, the tangent bundles of low-dimensional K{hler
manifolds with nef tangent bundles, pull-backs, etc.).

Assuming that E is N-nef, I prove for the vector bundles P the same statements as
the ones in the literature for the line bundle case; see Theorem 5.2.2. Moreover, if E is
1-nef, then the same results hold replacing E by E �detE. The scheme of the proofs is
the same as in the rank one case (see Proposition 2.2.2, * 5.2, and of course G10H, * 5 and
* 8). However, at each and every step we need higher rank analogues of the analytic package
developed for the line bundle case by Demailly and Nadel: regularization, L2-estimates,
coherence of relevant sheaves and vanishing theorems. For the purpose of proving these
e�ective results for the vector bundles P, one would have to make precise the notion of
singular hermitian metrics with positivity and prove their relevant properties in a special
case: the one of a hermitian vector bundle twisted by a line bundle endowed with a singular
metric. Then one would have to prove the relevant vanishing theorems. All this can be
done by building on G7H, * 5 and * 9.

However, I felt that it should be worthwhile to develop a general theory of singular
hermitian metrics on vector bundles with special regards towards positivity.
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Inspired by the case of line bundles, in this paper I develop such a theory and obtain
as an application the e�ective results mentioned above. To get a �avor of the results let
me state (5.2.2.1F), which constitutes an answer to Question 0.0.1 (see Remark 5.2.3 for a
geometric interpretation of these kind of results):

E�ective global generation. Let E be N-nef. Then K
X
�L�m�E is globally generated

by its global sections for all m~
1
2

(n2^ n ^ 2). Moreover, if E is 1-nef, then the previous

statement is true if we replace E by E �detE.

The paper is organized as follows.

* 1 �xes the notation. * 2 is devoted to s.h.m. which are de�ned in * 2.1. The case of
line bundles is discussed in * 2.2. In * 2.3 we introduce the sheaf E(h) which generalizes
Nadel multiplier ideal sheaf. In * 2.4 we de�ne positivity for s.h.m. and study some of its
properties. * 3 revolves about the notion of t-nefness. The de�nition and the basic properties
are to be found in * 3.1 and * 3.2, respectively. * 3.3 is devoted to the proof of Theorem
3.3.1 which ensures that on curves the algebraic-geometric notion of nefness can be cha-
racterized by the di�erential-geometric notion of 1-nefness. * 3.4 consists of a footnote to
G12H, Theorem 1.12: ampleness for a vector bundle E can be characterized by a curvature
condition on a system of metrics on all symmetric powers S pE of E, though positivity
may occur only for p~~0. * 4 is devoted to vanishing theorems. The basic one is Theorem
4.1.2, a generalization of Nadel Vanishing Theorem; Proposition 4.1.3 asserts that E(h) is
coherent in the presence of suitable positivity. * 4.2 links t-nefness and positivity via va-
nishing; see Theorem 4.2.3. Theorem 4.2.4 is a generalization of Kawamata-Viehweg
Vanishing Theorem. * 5 contains the e�ective results concerning the vector bundlesP. * 5.1
contains, for the reader's convenience, a summary of the results of Anghern-Siu and Siu
concerning special s.h.m. on line bundles which, transplanted to N-nef vector bundles,
will provide the global generation of jets. We also o�er the simple Lemma 5.1.2, which
constructs metrics with similar properties starting from free line bundles. * 5.2 contains
our e�ective results concerning the vector bundles P; see Theorem 5.2.2.

Acknowledgments. I heartily thank J.-P. Demailly for reading a preliminary and
rough version of this paper and for suggesting some improvements. I am indebted to J.
Kolla> r for posing a question similar to Question 0.0.1. I thank L. Ein and R. Lazarsfeld
for convincing me to think about an algebraic proof of the results of Theorem 5.2.2; this
has lead me to the statements of Remark 5.2.5; see G5H. It is a pleasure to thank the
participants of the lively algebraic geometry seminar at Washington University in St. Louis
for their encouragment and useful criticisms: V. Masek, T. Nguyen, P. Rao and D. Wright.
I would like to thank N.M. Kumar for many pleasant and useful conversations.

1. Notation and preliminaries

Our basic reference for the language of complex di�erential geometry is G17H. Su�icient
and more self-contained references are G7H, * 2 and G10H, * 3.

All manifolds are second countable, connected and complex; the dimension is the
complex one. All vector bundles are holomorphic. The term hermitian metric always refers
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to a hermitian metric of class C2. A hermitian bundle (E, h) is the assignment of a vector
bundle E together with a hermitian metric h on it.

Duality for vector bundles is denoted by the symbol ""<'' and End(E ) is the vector
bundle of endomorphisms of E. We often do not distinguish between vector bundles and
associated sheaves of holomorphic sections; at times, we employ simultaneously the additive
and multiplicative notation for line bundles.

_ d^d F^ d FF denotes the natural decomposition of the exterior derivative d into its
(1, 0) and (0,1) parts; d FF denotes also the usual operator associated with a vector bundle E.

If (E, h) is a rank r hermitian vector bundle on a manifold X of dimension n, then
we denote by:

_ D
h
(E ) the associated hermitian connection which is also called the Chern connection;

_ ?
h
(E )^ iD2

h
(E ) the associated curvature tensor;

in particular, if L is a line bundle with a metric h, represented locally on some open set
U by e+2R, then we have ?

h
(L)

�U
^2 id Fd FFr ;

_ ?�
h
(E ) the associated hermitian form on T

X
� E.

If h is a hermitian form on a complex vector space V, we denote h (v,v) by h (v); if
in addition, h is positive de�nite, then we denote h (v) by �v �2H .

_ Herm
h
(V ) is the set of endomorphisms a of a hermitian vector space (V, h) such

that h(a (v),w)^h(v, a (w)), �v, w `V.

Given ?, a real (1,1)-form with values in Herm
h
(E ), we denote the associated her-

mitian form on T
X
� E by ?

h
, or by ?, if no confusion is likely to arise. The hermitian

form ?�
h
(E ) will be denoted from now on by ?

h
(E ). If u is a real (1,1)-form, e.g. the one

associated with a hermitian metric on X, then u� Id
E
has values in Herm

h
(E ) and we

denote the associated hermitian form by u� Id
Eh

so that u� Id
Eh
(t � e)^u (t, it) �e �2

h
,

�x ` X, �t `T
X,x

and �e ` E
x
.

The rank of a tensor. Let V and W be complex vector spaces of �nite dimensions
r and s, respectively, v^Jv

i
Kr
i:1

and w^JwAKsA:1 be bases for V and W, respectively;
tensor products are taken over C.

Every tensor q `V�W de�nes two linear maps aQ :W<1V and bQ : V<1W;
moreover, we can write q^\

iA
q
iAvi�wA and associate with q the r^s matrix ��q

iA ��. The

integer o (q):rank(aQ)^rank(bQ)^ rank ��q
iA �� is called the rank of the tensor q.

Tensors of rank zero or one are called decomposable; they have the form q^v� w,
for some v `V and w `W. For any non-zero tensor q `V�W we have that
1~o (q)~min(r, s). In particular, if either r ^1, s^1, or both, then every tensor q `V�W
is decomposable.
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Inequalities associated with the rank. Given two hermitian forms h
1

and h
2

on
V�W, we can compare them on tensors of various rank. Let t be any positive integer.
We write h

1
~
t
h
2
if the hermitian form h

1
^h

2
is semi-positive de�nite on all tensors in

V�W of rank o~ t. If h~
t
0, then h~

tD
0 for every t F~ t. If h

1
~
min(r,s)

h
2
, then h

1
~
t
h
2

for every t. The symbol ~
t
can be de�ned analogously and it enjoys similar properties.

These considerations and this language are easily transferred to vector bundles.

2. Singular hermitian metrics on vector bundles

In this section we de�ne singular hermitian metrics on vector bundles, discuss the
case of line bundles, introduce the sheaf E(h) and de�ne positivity.

2.1. The de�nition of singular hermitian metrics. Let X be a manifold of dimension
n, E be a rank r vector bundle over X and E
 the conjugate of E. Let h be a section of the
smooth vector bundle E<� E
 < with measurable coe�icients, such that h is an almost
everywhere (a.e.) positive de�nite hermitian form on E ; we call such an h a measurable
metric on E. A measurable metric h on E induces naturally measurable metrics on E<, on
any tensor representation of E, e.g. T AE, S BE, �CE etc., on any quotient bundle of E, etc.

In practice these metrics h occur as degenerate metrics of some sorts, e.g. h is a
hermitian metric outside a proper analytic subset & of X, so that the curvature tensor is
well-de�ned outside &.

We are interested in those h for which the curvature tensor has a global meaning.
We propose the following simple-minded de�nition.

De�nition 2.1.1 (s.h.m). Let X, E and h be as above and &�X be a closed set of
measure zero. Assume that there exists a sequence of hermitian h

s
such that:

lim
sU'

h
s
^ h in the C2-topology on X ]& .

We call the collection of data (X, E,&, h, h
s
) a singular hermitian metric (s.h.m.) on E. We

call ?
h
(E
�X ]D) the curvature tensor of (X,E,&, h, h

s
) and we denote it by ?

h
(E ). ?

h
(E )

has continuous coe�icients and values in Herm
h
(E ) away from &; we denote the a.e.-

de�ned associated hermitian form on T
X
� E by the same symbol ?

h
(E ).

If no confusion is likely to arise, we indicate an s.h.m by (E, h) or simply by h.

The guiding principle which subtends this de�nition can be formulated as follows.

Assume that we would like to prove a property P for h which is true for all metrics h F
of class C2 in the presence of a certain curvature condition C on h F; if h has the required
property C and we can �nd hermitian metrics h

s
which regularize h ""maintaining'' C, then

P holds for all h
s

and we can try to prove, using limiting arguments, that P holds for h.
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This principle has been successfully exploited in G7H, * 5; see * 2.2 for a brief discussion.
We will take this principle as the de�nition of positivity; see De�nition 2.4.1 and Proposition
4.1.1, where P is the solution to the d FF-problem with L2-estimates and C is ""positivity.''

Because of the convergence in the C2-topology, the notion of s.h.m. is well behaved
under the operations of taking quotients, dualizing, forming direct sums, taking tensor
products, forming tensor representations, etc.

2.2. Discussion of the line bundle case: curvature current, positivity, Nadel ideal, Nadel
Vanishing Theorem, and the production of sections. We now remark that the singular
metrics on line bundles to be found in the literature are s.h.m. We also discuss some of
the relevant features of these metrics in the presence of positivity. Basic references for
what follows are G10H, * 5, G7H, * 9 and * 5. A technical remark: for the mere purpose of
being consistent with De�nition 2.1.1, in what follows we assume that plurisubharmonic
(psh) functions are C2 outside a closed set of measure zero. In all the applications one
uses algebraic singular metrics as in G11H, so that this condition is automatically satis�ed.
However, all the theory described below and its applications work without this restriction;
see also G8H, * 3.

Note that in what follows we can replace the hermitian line bundle (L, h
0
) by a

hermitian vector bundle (E, h
0
) by operating minor changes.

A singular metric on a line bundle L over a manifold X is, by de�nition, a metric of
the form h^ h

0
e+2R, where h

0
is a hermitian metric on L and r is a locally integrable

function on X. We shall always assume that X is K{hler and that r is almost psh, i.e. it
can be written, locally on X, as the sum r^ a^t, where a is a local function of class
C2 and t is a local psh function. By taking d Fd FF in the sense of distributions, we can
de�ne the associated curvature (1,1)-current:

T:?
h0
(L)^2 id Fd FFr

ac
^ 2 id Fd FFr

sing
,

where 2 id Fd FFr
ac

and 2 id Fd FFr
sing

are the absolutely continuous and singular part of
2 id Fd FFr, respectively; 2 id Fd FFr

ac
has locally integrable coe�icients and 2 id Fd FFr

sing
is sup-

ported on some closed set & of measure zero. A regularizing-approximating result of
Demailly's exhibits these singular metrics on line bundles as s.h.m. by constructing the
necessary regularizing hermitian metrics Jh

s
K'
s:1

. We have ?
h
(L)^?

h0
(L)^ id Fd FFr

ac
.

Similar considerations hold for metrics dual to metrics as above.

Example 2.2.1 (cf. G10H, Example 3.11 and G11H, page 246). Let D^\ m
i

D
i
be a

divisor with coe�icients m
i
` Z. The associated line bundle carries a singular metric with

curvature current T^2n\ m
i
GD

i
H where the GD

i
H are the currents of integration over the

subvarieties D
i
. These currents are positive if and only if all m

i
~0. More generally, given

a �nite number of non-trivial holomorphic sections of a multiple of a line bundle L, we
can construct an s.h.m. on L. This metric will be singular only at the common zeroes of
the sections in question.

The Nadel ideal I(h) (see * 2.3) is coherent. This is an essential feature in view of the
use of this ideal in conjunction with Riemann-Roch Theorem.
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Let u be a K{hler metric on a weakly pseudoconvex manifold X. Assume that
?
h
(L)~eu as a (1,1)-current, for some positive and continuous function e on X. Then

we have Nadel Vanishing Theorem: H q(X, K
X
�L �I(h))^0, �q~0; see G22H. This can

be seen as a consequence of the solution to the d FF-problem for (L, h) with L2-estimates;
see G10H, * 5.

As an easy consequence of Nadel Vanishing Theorem we have the following result
which lays the basis for the e�ective results for the global generation of adjoint line bundles
etc. See G10H, Corollary 5.12.

Proposition 2.2.2. Let (X,u) be as above and L be a line bundle over X equipped
with an s. h.m. h such that ?

h
(L)~eu for some continuous and positive function e on X.

Assume that p is a positive integer and that s
1
, . . . , s

p
are non-negative ones. Let x

1
, . . . , x

p
be distinct isolated points of the complex space V (I(h)) such that I(h)�msi;1

xi
. Then there

is a surjective map

H0 (X,K
X

^L) �
p
�
i:1

O(K
X

^L)�O
X,xi

�msi;1
xi

.

Once the analytic package (de�nition of s.h.m., regularization-approximation, solu-
tion of d FF with L2-estimates, coherence of Nadel ideal and Nadel Vanishing Theorem)
has been developed, in order to solve the global generation problem one needs s.h.m. as
in Proposition 2.2.2. This requires hard work and it has been done by Anghern-Siu,
Demailly, Siu and Tsuji. The coherence and the vanishing theorem are utilized together
with a clever use of noetherian induction.

We are about to provide a similar analytic package for the case of vector bundles.

2.3. The subsheafE(h) associated with a measurable metric (E, h). If h is a measurable
metric on E and e is a measurable section of E, then the function �e �

h
is measurable.

De�nition 2.3.1. Let h be a measurable metric on E.

Let I(h) be the analytic sheaf of germs of holomorphic functions on X de�ned as
follows:

I(h)
x
: J f

x
` O
X,x

: � f
x

e
x
�2
h
is integrable in some neighborhood of x, �e

x
` E

x
K .

Analogously, we de�ne an analytic sheaf E(h) by setting:

E(h)
x
: Je

x
` E

x
: �e

x
�2
h
is integrable in some neighborhood of xK .

Remark 2.3.2. It is easy to show, using the triangle inequality, thatI(h)� E�E(h).

We call I(h) the multiplier ideal of (E, h). Note that if E is a line bundle together
with a measurable metric h, then E(h)^I(h)� E.

There are other subsheaves of E, associated with a measurable metric h.
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Given any measurable metric h on a vector bundle E, the tautological line bundle
m:OP(E) (1) inherits a natural measurable metric h, the quotient metric of the surjection
n<E1 m; here n : P (E )1 X is the structural morphism of the projectivized bundle and
we are using Grothendieck's notation. We thus get two sheaves I(h) and m�I(h). If we
apply n

<
, then we get two other subsheaves of E.

In summary, associated with (E, h) there are four subsheaves of E :

I(h)�E�E(h) , n
<
I(h)� E and n

<
m�I(h) .

Remark 2.3.3. The inclusion above may be strict. In fact, consider the vector bundle
[^C2, where ([, z) is the unit disk in C1; de�ne an s.h.m. by setting

h ^diag (e+2 log�z�, e+4 log�z�) .

Then one checks that I(h)^z2 � O[ and that E(h)^z � O[� z2 � O[. The same example
shows that E(h) is not in general equal to neither n

<
m�I(h), nor n

<
I(h)�E. In fact,

a direct computation shows that: I(h)^n<(z). We have

I(h)� E!E(h)!n
<
I(h)� m^ n

<
I(h)�E .

What is, among the four sheaves above, the ""right'' object to look at? To answer
this question we consider:

The complex (L., d FF). Let h be a measurable metric on a vector bundle E and u
be a hermitian metric on X. By following the standard conventions in G30H, we obtain a
metric with measurable coe�icients for the �bers of Tp,q�

X
�E ; we denote this metric again

by h. We de�ne a complex (L., d FF) of sheaves on X as follows. This complex is independent
of the choice of u.

Let Lq be the sheaf of germs of (n, q)-forms u with values in E and square-integrable
coe�icients such that �u �2

h
is locally integrable, d FFu is de�ned in the sense of distributions

with square-integrable coe�icients and �d FFu �2
h
is locally integrable.

The kernel of d FF in degree zero is K
X
�E(h) (cf. G17H, page 380). A solution to the d FF-

problem with L2-estimates for (E, h) would imply the vanishing of the higher cohomology
of K

X
�E(h). See Theorem 4.1.2.

If we are aiming at vanishing theorems as in the line bundle case, then the sheaf E(h)
seems to be the right object to look at.

2.4. Positivity. As is well-known, the curvature tensor ?
h
(L) of a hermitian line

bundle (L, h) is decomposable and can be identi�ed with a real (1,1)-form on X. This latter
is a positive (1,1)-form if and only if the hermitian form ?

h
(L) is positive on T

X
�L.

It is therefore natural to de�ne positivity for singular metrics on line bundles using
the notion of positive currents according to Lelong; see G20H, * 2.
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In the higher rank case the curvature tensor is not, in general, decomposable. We
introduce a notion of positivity which incorporates what is needed to obtain L2-estimates-
type results.

Let u be a hermitian metric on X, h be a hermitian form on T
X
with continuous

coe�icients and (X,E,&, h, h
s
) be a s.h.m.; in particular, the curvature tensor and the

curvature form ?
h
(E ) are de�ned a.e. (i.e. outside of &) and have measurable coe�icients.

De�nition 2.4.1 (~K
t
; compare with G7H, * 5). Let things be as above and t be a po-

sitive integer. We write:

?
h
(E )~K

t
h� Id

Eh

if the following requirements are met.

There exist a sequence of hermitian forms h
s
on T

X
�E with continuous coe�icients,

a sequence of continuous functions j
s
on X and a continuous function j on X subject to

the following requirements:

(2.4.1.1) �x ` X : �e
x
�
hs

~ �e
x
�
hs�1

, �s `N and �e
x
` E

x
;

(2.4.1.2) h
s
~
t
h� Id

Ehs
;

(2.4.1.3) ?
hs
(E )~

t
h
s
^j

s
u� Id

Ehs
;

(2.4.1.4) h
s
1?

h
(E ) a.e. on X ;

(2.4.1.5) j
s
1 0 a.e. on X;

(2.4.1.6) 0~j
s

~j, �s .

Conditions (2.4.1.1) and (2.4.1.6) are needed to apply Lebesgue's theorems on
monotonic and dominated convergence. In order to obtain L2-estimates-type results, we
also need the remaining four conditions to make precise the sought-for control of the
curvature by the regularizing and approximating metrics h

s
.

Remark 2.4.2. As an application of the L2-estimates, we will see that if
?
h
(E )~K

N
h� Id

Eh
, for some continuous h, then the sheaf E(h) is coherent; see Proposi-

tion 4.1.3.

Example 2.4.3. If (E, h) is a hermitian bundle with?
h
(E )~

t
h� Id

Eh
, then it is easy

to exhibit h as a s.h.m. such that ?
h
(E )~K

t
h� Id

Eh
; just set h

s
:h�s, etc.

Example 2.4.4. Let (E, h) be a vector bundle together with a continuous s.h.m.
metric. Under certain positivity conditions on the current id Fd FFh< which is de�ned on the
total space of E< (see G21H, * 7.1) we can exhibit h as a s.h.m. with positivity in the sense
of De�nition 2.4.1. This is achieved in two steps. In the �rst one h< is regularized by using
riemannian convolution coupled with the parallel transport associated with an arbitrary
hermitian metric on E< (see G21H, Lemme 7.2). In the second one the resulting metrics are
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modi�ed so that they have the prescribed properties; this technical modi�cation follows
ideas in G7H, * 8. Details will appear elsewhere.

Example 2.4.5. Let h^h
0

e+2R be a singular metric on a line bundle L with T~h
as currents where h is a continuous and real (1,1)-form. G7H, The> ore>me 9.1, exhibits these
data as a s.h.m. h with ?

h
(L)~K

1
� Id

Lh
.

Conversely, if we have a s.h.m. h with ?
h
(L)~K

1
h� Id

Lh
, then we have

?
hs
(L)~ h

s
^j

s
u and T ~T

ac
~ h .

Remark 2.4.6. The existence of a s.h.m. h on a line bundle L for which ?
h
(L)~K

1
0

does not imply that L is nef. See G12H, Remark 1.6.

What is true is that if L is nef, then L will admit a metric h ^h
0

e+2R with h
0
a her-

mitian metric on L and r almost psh such that ?
h
(L)~K

1
0. This can be seen by using

G12H, Proposition 1.4, G8H, Proposition 3.7 and G7H, The> ore>me 9.1.

Similar remarks hold for big line bundles on projective manifolds (cf. G10H, Propo-
sition 6.6).

The following lemma is elementary.

Lemma 2.4.7. Let (E,&
E
, h, h

s
) and (F,&

F
, g, g

s
) be s.h. m. on two vector bundles E

and F over X, p
1

and p
2

be two real (1,1)-forms with continuous coe�icients such that

?
h
(E )~K

t1
p
1
� Id

Eh
and ?

g
(F )~K

t2
p
2
� Id

Fg
.

Then H:h � g on E �F can be seen as a s. h.m. by setting H
s
:h

s
� g

s
and

?
H
(E �F )~K

min (t1, t2)
(p
1

^p
2
)� Id

(E�F)H
.

Note that if the rank of F is one, then min(t
1
, t
2
)^ t

1
.

We now prove that positivity is inherited by quotient metrics.

Lemma 2.4.8. Let (X, E,&, h, h
s
) be a s.h.m such that ?

h
(E )~K

t
h� Id

Eh
, � : E1Q

be a surjection of vector bundles with kernel K. Then Q admits a s.h.m. (Q,& F�&, q
s
, q)

such that ?
q
(Q)~K

1
h� Id

Qq
.

Proof. Consider the dual exact sequence 01Q<1 E<1 K<1 0. Each hermitian
metric h<

s
de�nes by restriction a hermitian metric q<

s
on Q<; analogously we get q<:h<

�Q�
.

Clearly (Q<,& F, q, q
s
) is a s.h.m. for an appropriate & F�&. For every s we have

that ?
qs�
(Q<)^?

h�s
(E<)

�Q�
^ ib<

s
)b

s
, where b

s
is a (1, 0)-form with values in

Hom(Q<, K<),

C1 coe�icients and b< is its adjoint. Moreover ib<
s
)b

s
~

1
0; see G7H, Lemme 6.6. The

statement follows easily by dualizing again, which has the e�ect of transposing and changing
the signs. ;
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More generally, a s.h.m. on E ""with positivity'' will induce s.h.m. ""with positivity''
on T AE, SBE and �CE. We leave the various formulations and elementary proofs to the
reader.

3. t-nef vector bundles

3.1. The de�nition of t-nefness. Let X be a compact manifold of dimension n, u be
a hermitian metric on X, E be a vector bundle of rank r on X, N:min(n, r) and L be a
line bundle on X. Every tensor in T

X
� E has rank o~ N.

There are notions of semi-positivity associated with every positive integer t. The
standard one is the following.

De�nition 3.1.1 (t-semi-positive vector bundle). We say that a vector bundle E is t-
semi-positive, if E admits a hermitian metric h such that ?

h
(E )~

t
0.

Note that E is 1-semi-positive if and only if it is Gri�iths-semi-positive, and that E
is N-semi-positive if and only if it is Nakano-semi-positive. A similar remark holds for
strict inequalities.

In algebraic geometry the most natural semi-positivity concept is nefness. A di�eren-
tial-geometric characterization of this concept can be given as follows.

De�nition 3.1.2 (nef line bundle and nef vector bundle). We say that L is nef if for
every e~0 there exists a hermitian metric hE on L such that ?

he
(L)~^eu as (1,1)-forms

or, equivalently, if ?
he
(L)~

1
^eu� Id

Lhe
as hermitian forms on T

X
� L.

We say that E is nef if the tautological line bundle m:OP(E) (1) is nef.

Note that the compactness of X implies that the de�nitions given above are inde-
pendent of the choice of u. The same holds true for all the other de�nitions given below
which involve a choice of u.

If X is projective, then De�nition 3.1.2 is equivalent to the usual one: L is nef if
L � C~0, for every integral curve C in X; see G10H, Proposition 6.2.

Unfortunately a nef line bundle is not necessarily 1-semi-positive (~
1
0). See G12H,

Example 1.7, where an example is given of a nef rank two vector bundle E on an elliptic
curve such that the nef tautological line bundle m on P (E ) is not ~

1
0. Moreover, E is not

~
1
0 (otherwise m would be ~

1
0); this shows that even on curves nefness and Gri�iths-

semi-positivity do not coincide. Recall Theorem 1.12, G12H, which states that nefness of a
vector bundle E can be characterized by the presence of a system of hermitian metrics on
all bundles SAE such that they are suitably semi-positive for a~~0. I do not know if
nefness can be characterized in terms of hermitian metrics on the vector bundle itself.

The two facts above and the need to express semi-positivity in terms of curvature
have motivated my introducing the notion of t-nefness.

De�nition 3.1.3 (t-nef vector bundle). We say that a vector bundle E is t-nef if for
every e~0 there exists a hermitian metric hE on E such that ?

he
(E )~

t
^eu� Id

Ehe
.
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Every �at vector bundle is N-nef.

If E is t-semi-positive, then E is t-nef. As pointed out above, the converse is not true
in general; see G12H, Example 1.7.

If E is t-semi-positive (t-nef, respectively), then E is t F-semi-positive (t F-nef, respec-
tively), for every t F such that 1~ t F~ t.

By de�nition, a line bundle is nef if and only if it is 1-nef. A 1-nef vector bundle is
nef as we will see in Proposition 3.2.4. The converse is true on curves as we will see in
Theorem 3.3.1. We do not know whether the converse is true or false when dimX~2.
This problem is the analogue of Gri�ith's question: does ampleness imply Gri�iths-
positivity?

We have checked that if E is nef and is the tangent bundle of a compact complex
surface or of a compact K{hler threefold, then E is 1-nef. This is done by using the
classi�cation results contained in G12H and Proposition 3.2.4. According to conjectures in
G12H, the same should be true for compact K{hler manifolds of arbitrary dimension.

From nefness to 1-nefness. On special manifolds, such as toric and abelian varieties,
we have that if E is nef, then E �detE is 1-nef; see G21H, * 7.2.1. By the following paragraph,
if E is a rank r nef vector bundle on such a variety, then E� (detE )�r;2 is N-nef.

From 1-nefness to N-nefness. On any compact manifold, if E is 1-nef, then E� detE
is N-nef. See G6H.

Example 3.1.4 (some N-nef vector bundles). The results mentioned above and the
ones of sections * 3.2 and * 3.3 give us the following list of examples.

(1) A nef vector bundle over a curve is N-nef. A nef line bundle is t-nef for every t.

(2) A �at vector bundle is N-nef.

(3) If X is a special manifold such as a toric or an abelian variety and E is nef of
rank r, then E �detE is 1-nef and E � (detE )�r;2 is N-nef.

(4) If X is a K{hler manifold of dimension n ~3 with nef tangent bundle T
X
, then

T
X
is 1-nef and K�+1

X
�T

X
is N-nef.

(5) Every Nakano-semipositive vector bundle is N-nef (the converse is not true). If
E is a Gri�iths-semipositive vector bundle, then E �detE is N-nef.

(6) The extension of two t-nef vector bundles is t-nef. Positive tensor representations
of a t-nef vector bundle are t-nef. If E

1
and E

2
are t-nef, then E

1
� E

2
is t-nef. If E is

t-nef and L is a nef line bundle, then E �L is t-nef.

(7) If E is 1-nef, then E �detE is N-nef.
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(8) If f : X1Y is a morphism and E is a t-nef vector bundle on Y, then f <E is
t-nef. If t^1 and, either f is �nite and surjective, or X is projective and f has equidimen-
sional �bers, then the converse is true.

At this point the following question is only natural.

Question 3.1.5. Is every nef vector bundle 1-nef ?

3.2. Basic properties of t-nefness. Let us list and prove some basic properties of t-nef
vector bundles. We start with functorial ones.

Proposition 3.2.1. Let f : X1Y be a holomorphic map, where X and Y are compact
manifolds and E is a vector bundle on Y.

(1) If E is t-nef, then f <E is t-nef.

(2) Assume that f is surjective and that the rank of E is one.

Then f <E is 1-nef (^nef ) if and only if E is 1-nef (^nef ).

(3) Assume that f is �nite and surjective, that Y (and thus X ) is K{hler and let E be
of any rank. Then f <E is 1-nef if and only if E is 1-nef.

Proof. (1) Let u and u F be two hermitian metrics on X and Y, respectively. Let A

be a positive constant such that Au~ f <u F. Fix e~0 and let e F:
e
A
. Let h F be a hermitian

metric on E such that ?
hD
(E )~

t
^e Fu F� Id

EhD
. Endow f <E with the pull-back metric

h: f <h F. The claim follows from the formula ?
h
( f <E )^ f <?

hD
(E ).

(2) See G12H, Proposition 1.8. ii for the case of equidimensional �bers and G23H for
the general statement.

(3) It follows easily from G21H, * 7.1: assign to E the appropriate trace metrics and
regularize. ;

Remark 3.2.2. As pointed out in Example 2.4.4, the regularizing metrics in (3) can
be chosen to satisfy favorable conditions towards L2-estimates.

Question 3.2.3. Can we drop the assumption of �niteness from (3)? A.J. Sommese
has pointed that the answer is positive when X is projective and the �bers are equidimen-
sional: slice X with su�iciently ample general divisors to reduce to the case in which the
morphism is �nite. Is (3) true if we replace 1-nef by t-nef, with t~1?

Proposition 3.2.4. Let X, E and r be as above. Then:

(1) Let E1Q be a surjection of vector bundles. If E is 1-nef, then Q is 1-nef.

(2) If E is 1-nef, then E is nef.
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(3) If SmE is 1-nef, then E is nef.

(4) Let 01 K1 E1 Q1 0 be an exact sequence of vector bundles. If K and Q are
t-nef, then E is t-nef.

(5) Let E^E
1
�E

2
. The vector bundle E is t-nef if and only if E

1
and E

2
are t-nef.

(6) Let F be another vector bundle. Assume that E and F are t-nef and t F-nef respec-
tively; then E �F is min (t, t F)-nef.

(7) Assume that E is t-nef. Then SmE and �lE are t-nef for all m~0 and for
0 ~ l ~ r.

Moreover, !AE is t-nef, where !AE is the irreducible tensor representation of Gl(E )
of highest weight a^ (a

1
, . . . , a

r
) ` Zr, with a

1
~ �� � ~a

r
~0.

(8) Let 01 E1 E F1 q1 0 be an exact sequence with E F a vector bundle on X and
q a coherent sheaf, quotient of a 1-nef vector bundle E FF. If E is 1-nef, then so is E F.

(9) Let 01 K1 E1Q1 0 be an exact sequence of vector bundles. If E and det Q<
are 1-nef, then K is 1- nef.

(10) Assume that detE is hermitian �at ; the vector bundle E is t-nef if and only if
E < is t-nef.

(11) Let E be 1- nef and s ` !(E <). Then s has no zeroes.

Proof. Fix, once and for all, u a hermitian metric on X.

(1) Let e~0 and hE be a hermitian metric on E with?
he
(E )~

1
^eu� Id

Ehe
. Endow

Q with the quotient metric h FE ; Q can be seen as a smooth sub-bundle of E via the C'
orthogonal splitting of E1Q determined by hE, so that hE�Q^h FE. It is well-known (e.g.
G7H, Lemme 6.6) that ?

hDe
(Q)~

1
?
he
(E )

�QhDe
and it is clear that Id

Ehe�Q
^ Id

QhDe
. The claim

follows.

(2) Let n : P (E )1X be the canonical projection.By virtue of 3.2.1 (1) we have that
n<E is 1-nef; (1) and the canonical surjection n<E1 OP(E) (1) imply that this latter line
bundle is 1-nef.

(3) n<SmE is 1-nef by 3.2.1 (1), so that OP(E) (m), being a quotient of n<SmE, is 1-
nef, by (1). It follows that OP(E) (1) is 1-nef and thus nef.

(4) Fix a C' vector bundle isomorphism ' : E1 K�Q. Let e~0. By assumption,
there are metrics h

K,E and h
Q,E such that

?
hK,e

(K )~
t
^
e
3
u� Id

KhK,e
and ?

hQ,e
(Q)~

t
^
e
3
u� Id

QhQ,e
.
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Fix an arbitrary positive real number o~0 and consider the automorphism �O : Q1Q
de�ned by multiplication by the factor o+1.

Let 'O: (Id
K
��O) � ' : E1 K�Q ; denote the �rst component of 'O by 'K,O andthe second one by '
Q,O.

De�ne a hermitian metric on E by setting hE,O:'<K,O hK,E�'<Q,O hQ, E. Its associatedChern connection has the form:

D
he,o

^ � D
hK,e
bO

^b<O
D
hQ, e
� ,

where bO^ob1 is a (1,0)-form with values in Hom(K, Q). By calculating D2 we see that

?
he,o

(E )~
t
^

2
3
eu� Id

Ehe,o
^ O (o)u� Id

Ehe,o
.

The claim follows by recalling that X is compact and by taking o su�iciently small.

(5) The ""if '' part follows from (4). The converse follows by observing that if E has
a metric h, then each E

i
inherits a metric h

i
for which D

hi
^D

h�Ei
. The same holds for

the curvature tensors.

(6) The proof is immediate once one recalls the formula for the curvature of the
tensor product of two hermitian metrics:

?
h1�h2

(E
1
� E

2
)^?

h1
(E

1
)� Id

E2
^Id

E1
�?

h2
(E

2
) .

(7) The tensor powers T n (E ) are t-nef by virtue of (6). S n (E ) and �n (E ) are both
direct summands of T n (E ) so that they are t-nef by (5). Recall that !AE is a direct sum-

mand of the vector bundle
r
�
i:1

S ai (�iE ) which is t-nef by what above, (5) and (6).

(8) The ""pull-back'' construction gives the following commutative diagram of
coherent sheaves:

0 __B E __B E F __B q __B 0

� � �
0 __B E __B E FFF __B E FF __B 0 ,

Id
E

q

where q is surjective. Since E and E FF are locally free and 1-nef, so is E FFF by (4). Since q
is surjective, it follows that E F is 1-nef by (1).

The proofs of (9) and (10) are the same as in the nef case; the proof of (11) is in fact
easier. The reader can consult G12H. ;

Remark 3.2.5. It is easy to show, using (6), that if E is t-nef and L is a positive line
bundle, then E� L admits a hermitian metric h with curvature ?

h
(E� L)~

t
0. In parti-
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cular, if E is N-nef, then E� L is Nakano-positive. A similar remark holds for the symbol
~K

t
; see Lemma 4.2.1.

Remark 3.2.6. As far as (1) above is concerned, it is not true that if E is t-nef, then
Q is t-nef. In fact, consider the canonical surjection O3P21TP2(^1): O3P2 is 2-nef, but if
TP2 (^1) were 2-nef, then TP2^TP2 (^1)�OP2 (1) would be ~

2
0, i.e. Nakano-positive

and this is a contradiction. This example also shows that 1-nefness is strictly weaker than
2-nefness. We do not know whether (8) is false when we replace 1 by t.

3.3. Nefness and t-nefness on curves. It is an outstanding problem in Hermitian dif-
ferential geometry to determine whether an ample vector bundle is Gri�iths-positive. In
G29H, Umemura proves that on curves ampleness and Gri�iths-positivity coincide. As it
was pointed out to me by N.M. Kumar, the part of the argument that needs a result
analogue to Proposition 3.2.4 (8) is omitted in G29H.

We now prove that on curves nefness and 1-nefness coincide: the algebraic notion
of nefness can be characterized in di�erential-geometric terms. Recall that Example 1.7,
G12H, implies that even over a curve, a nef vector bundle is not necessarily Gri�iths-
semi-positive.

Theorem 3.3.1. Let X be a nonsingular projective curve and E be a vector bundle of
rank r on X. The following are equivalent.

(i) E is 1-nef.

(ii) E is nef.

(iii) Every quotient bundle of E, and in particular E, has non-negative degree.

Proof. (i) & (ii). This is Proposition 3.2.4 (2).

(ii) & (iii). In fact they are equivalent by G4H, Proposition 1.2.7.

(iii) & (i). We divide the proof in three cases, according to whether g^0, g^ 1 or
g~2. Let d be the degree of E. By assumption d~0.

If the genus g (X )^0, then E splits into a direct sum of line bundles and the statement
follows easily.

Let g (X )^1. It is enough to consider the case when E is indecomposable. Let us
�rst assume that d~r. By G2H, Lemma 11, E admits a maximal splitting (L

1
, . . . , L

r
) with

L
i
ample line bundles on X. It follows that E could then be constructed inductively from

(ample^) positive line bundles by means of extensions. A repeated use of Proposition
3.2.4(4) would allow us to conclude. We may thus assume, without loss of generality, that
0~ d~r. If r^1, then E is either ample or hermitian �at; in both cases we are done. We
now proceed by induction on the rank of E. Assume that we have proved our contention
for every vector bundle of rank strictly less than r. By G2H, Lemma 15 and Theorem 5, E
sits in the middle of an exact sequence:
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0 1 A 1 E 1 B 1 0 ,

where B, being a quotient of E, enjoys property (iii) and A is either a trivial vector bundle
(if d~0) or a hermitian �at line bundle (if d^0). In any case A is clearly 1-nef and B is
1-nef by the induction hypothesis. We can apply 3.2.4(4) and conclude that E is 1-nef.
This proves the case g (X )^ 1.

We now assume that g (X )~2. The proof will be by induction on r. If r^1, then
we are done since deg E~0 implies that either E is ample or it is hermitian �at. Assume
that we have proved our assertion for every vector bundle of rank strictly less than r.

There are two cases.

In the �rst one we suppose that E contains a non-trivial vector sub-bundle K which
is 1-nef. Consider the exact sequence of coherent shaves:

0 1 K 1 E 1 Q:E �K 1 0 .

There are two sub-cases. In the �rst onewe assume thatQ is locally free. By assumption
every quotient vector bundle of Q, being in turn a quotient bundle of E, has positive
degree. The induction hypothesis forces Q to be 1-nef. Proposition 3.2.4(4) allows us to
conclude that E is 1-nef as well.

In the second sub-case Q�F � q, with F locally free and q has zero-dimensional
support; in particular there is a surjection Om

X
1 q. If K F is the kernel of the surjection

E1 F, then we have the exact sequence

0 1 K 1 K F1 q 1 0 ,

so that, by 3.2.4(8), K F is 1-nef and we are reduced to the �rst sub-case.

In the second case we are allowed to assume that E does not contain properly any
non-trivial vector bundle K which is 1-nef.

Claim. E is stable.

To prove this we start a new proof by induction. Let K be a vector bundle contained
in E, neither trivial nor equal to E. Since (iii) implies that deg(E )~0, to prove that E is
stable it is enough to show that deg K~0. Seeking a contradiction, let us assume that
degK~0. Let s be the rank of K. If s^1, since K is not 1-nef by the working assumption
of this second case, we see that degK~0 (otherwise K would be either ample or hermitian
�at) and we have reached a contradiction if s^1. Assume that, for every non-trivial
K FF�E with rank strictly less than s, deg K FF~0. Each sub-bundle of K has, by this second
inductive hypothesis, negative degree. Since we are assuming that degK~0, it follows
that every quotient of K, including K itself has non-negative degree, so that, by the �rst
induction hypothesis, K is 1-nef and we have reached a contradiction for every s : the
degree of K must be negative, E is stable and the claim is proved.
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Since det E has non-negative degree by assumption, det E is 1-nef. Since E is stable,
for any hermitian metric h on detE of curvature ?

h
(detE ), a standard calculation (see

G29H, Lemma 2.3) yields a hermitian metric H on E of curvature
1
r
?
h
(detE )� Id

E
. This

proves that E is 1-nef also in the second case. ;

3.4. A di�erential-geometric characterization of ampleness for vector bundles. We
now prove a characterization of ampleness by means of curvature properties which is a
simple consequence of G12H, Theorem 1.12.

Proposition 3.4.1. Let X be a compact manifold equipped with a hermitian metric u
and E be a vector bundle on X. Then E is ample if and only if there exists a sequence of
hermitian metrics h

m
on SmE such that

(i) the sequence of metrics on OP(E) (1) induced by the surjective morphisms

n< SmE 1 OP(E) (m)

converges uniformly to a hermitian metric h of positive curvature on OP(E) (1) and

(ii) there exist g~0 and m
0
` N such that �m~m

0
:

?
hm
(Sm (E ))~

1
mgu� Id

SmEhm
.

Remark 3.4.2. If E is ample, then the fact that some metrics h
m
with property (ii)

exist for all m~~0 is a well known consequence of G16H, theorems F and A. The point
made by the statement above is that the metrics h

m
are constructed on all symmetric powers

Sm(E ), and that they are all built starting from a suitable metric on OP(E) (1); see G8H,
Theorem 4.1.

Proof. The proof of the implication ""
'' follows easily from (i): OP(E) (1) is positiveby the existence of h so that E is ample.

For the reverse implication ""&'' we argue as follows. Fix a hermitian metric u F on
P (E ). The ampleness of E implies the ampleness of OP(E) (1), which then admits a hermitian
metric h of positive curvature; the compactness of X ensures us that there exist a~0 and
A~0 such that

?
h
(OP(E) (1))~ au F~ aAn<u .

De�ne g:
2
3
aA. We are now in the position of using G8H, Theorem 4.1 with v:

3
2
gu

and e:
1
2
g. ;

4. Vanishing theorems

In this section we link the positivity of h to the vanishing of the cohomology of
K
X
�E(h).
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4.1. The basic L2-estimate and vanishing theorem, and the coherence of E (h). Follow-
ing Demailly, G7H, * 5, we say that a s.h.m. (X,E,&, h, h

s
) is t-approximable if ?

h
(E )~K

t
0

(cf. De�nition 2.4.1). We denote the space of ( p, q)-forms with values in E and coe�icients
which are locally square-integrable by L2

p,q
(X, E, loc). As usual, n^dimX, r is the rank

of E and N:min(n, r).

Proposition 4.1.1 (see G7H, The> ore>me 5.1). Let (X,u) be K{hler, where either u is
complete or X is weakly pseudoconvex. Assume that (E, h) is a s. h.m. with the property
that ?

h
(E )~K

n+q;1
eu� Id

Eh
, where e is a non-negative and continuous function on X and

q~0 is a positive integer.

Let g ` L2
n,q

(X,E, loc) be such that

d FFg^ 0 , O
X
� g �2

h
d VU~^8 and O

X

1
e
� g �2

h
d VU~^8 .

Then there exists f ` L2
n,q+1

(X,E, loc) such that

d FFf ^ g and O
X
� f �2

h
d V ~

1
q
O
X

1
e
� g �2

h
d VU .

Sketch of proof. The> ore>me 5.1 states something slightly di�erent but it is immediate
to recover the statement of the proposition. We merely point out, for the reader's con-
venience, the minor changes to be implemented to obtain the above statement. The notation
is from G7H.

The assumption?
h
(E )~K

+n+q+1
eu� Id

Eh
has two consequences. The former is that

h is n^q ^ 1-approximable. The latter is that, by virtue of G7H, Lemme 3.2 (3.4):

� g �2Kh(E)~
1

qe
� g �2

h
a.e.

We can apply the aforementioned theorem and conclude.

The following generalizes Nadel Vanishing Theorem. It is an easy consequence of
the proposition above.

Theorem 4.1.2. Let (X,u) be K{hler with X weakly pseudoconvex. Assume that (E, h)
is a s.h.m. such that ?

h
(E )~K

N
eu� Id

Eh
for some positive and continuous function e. Then,

H q(X, K
X
�E(h))^0, �q~0.

Proof. The complex (L., d FF) of * 2.3 is exact by Proposition 4.1.1 applied to small
balls. This complex is therefore an acyclic resolution of K

X
�E(h) whose cohomology is

isomorphic to the cohomology of the complex of global sections of (L., d FF). This latter
cohomology is trivial for every positive value of q by Proposition 4.1.1 (modify the metric
as in G10H, Proposition 5.11). ;

We now prove that if h is suitably positive, then E(h) is coherent. The line bundle
case is due to Nadel.
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Proposition 4.1.3. Let X be a complex manifold, (X,E,&, h, h
s
) be a s.h.m., and h be

a continuous real (1,1)-form on X such that ?
h
(E )~K

N
h� Id

Eh
. Then E(h) is coherent.

Proof. We make the necessary changes from the line bundle case (cf. G10H, Propo-
sition 5.7).

Note that the condition ?
h
(E )~K

N
h� Id

Eh
implies that h~h

1
a.e.

The statement being local, we may assume that X is a ball centered about the origin
inCnwith holomorphic coordinates (z), that E is trivial and that h has bounded coe�icients.
Let u be the (1,1)-form associated with the euclidean metric on X. Let S be the vector
space of holomorphic sections f of E such that O

X
� f �2

h
dj~8, where dj is the Lebesgue

measure on Cn. Consider the natural evaluation map ev :S�COX1 E. The sheaf
E:Im(ev) is coherent by Noether Lemma (cf. G15H, page 111) and it is contained in E(h).

We want to prove that E(h)
x
^E

x
for all x ` X. In view of Nakayama's Lemma, G3H,

Corollary 2.7, it is enough to show that E
x

^mC
x
� E(h)

x
^E(h)

x
for some c~1.

Step I. Assume that we could prove that:

( .) E
x

^E(h)
x
3ml

x
� E

x
^E(h)

x
for every positive integer l .

By the Artin-Rees Lemma, G3H, Corollary 10.10, there would be a positive integer k^k (x)
such that

E(h)
x
^E

x
^E(h)

x
3ml

x
� E

x
�E

x
^ml+k

x
� E(h)

x
�E

x
^m

x
� E(h)

x
�E(h)

x

for all l~k. All symbols ""�'' could be replaced by equalities and we could conclude that
E
x
^E(h)

x
by Nakayama's Lemma as above.

Step II. We now prove (.).

Let f be a germ in E(h)
x
and p be a smooth cut-o� function such that it is identically

1 around x and that it has compact support small enough so that pf is smooth on X.

For every positive integer l de�ne a strictly psh functionr
l
: (n ^ l ) ln �z^x �^ C �z �2

where C is a positive constant chosen so that 2 id Fd FF(C �z �2)^h~eu, for some positive
constant e.

De�ne a metric on E by setting H
l
:he+2Rl. Since both ln �z^x � and �z �2 are psh,

we can apply the results of G7H, * 9 to r and deduce, with the aid of Lemma 2.4.7, that
H
l
is a s.h.m. on E with ?

Hl
(E )^?

h
(E )^2 id Fd FFr

l
� Id

E
and such that

?
Hl
(E )~K

N
eu� Id

EHl
.

Consider the smooth (0,1)-form g:d FF(pf ) which has compact support and is iden-
tically zero around x. The function �z^x �+2n+2l is continuous outside x. It follows that:
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O
X
� g �2
Hl

dj^ O
X
� g �2

h
�z^x �+2n+2le+2C�z�2dj~8 .

We solve, for every index l, the equation d FFu^g with L2-estimates relative to H
l
using

Proposition 4.1.1. We obtain a set of solutions u
l
such that

O
X
�u
l
�2
Hl

dj^ O
X
�u
l
�2
h
�z^x �+2n+2le+2C�z�2dj~8 .

Since the factor e+2C�z�2 does not a�ect integrability we get that

O
X
�u
l
�2
h
�z^x �+2n+2ldj~8 .

Since d FF(pf^u
l
)^0 and h ~ H

l
, we see that pf^u

l
�F

l
` E (cf. G17H, page 380). The

germ u
l,x
^ f^F

l,x
is holomorphic. Since h~h

1
and h

1
is continuous, there is a positive

constant B such that:

O
X

B �u
l
�2 �z^x �+2n+2ldj~ O

X
�u
l
�2
h

�z^x �+2n+2ldj~8 .

Let u'j(
l

be the j-th coordinate function of u
l
, j^1, . . . , r. By a use of Parseval's formula

(cf. G10H, 5.6. (b)) we see that u'j(
l
`ml

x
for every index j. It follows that (.) holds and we

are done. ;

4.2. t-nefness and vanishing. We now show how to use Theorem 4.1.2 to infer the
vanishing of cohomology in the case of an N-nef vector bundle twisted by a line bundle
which can be endowed with a positive s.h.m.

The following is an elementary consequence of Lemma 2.4.7:

Lemma 4.2.1. Let E be a t-nef vector bundle on a compact manifold X,u be a hermitian
metric on X, h be a real (1,1)-form with continuous coe�icients and (F, g, g

s
) be a vector

bundle endowed with a s.h.m. such that ?
g
(F )~K

t
h� Id

Fg
.

Then for every constant g~0 there is a s.h.m. HG on E �F for which :

?
Hg

(E �F )~K
t
(h^gu)� Id

(E�F)Hg
.

Moreover, if F is a line bundle and?
g
(F )~h as (1,1)-forms, then the same conclusion holds.

Lemma 4.2.2. Let (F, h
F

) be a hermitian vector bundle on a manifold X and (L, h
L

)
be a line bundle on X endowed with a singular metric h

L
as in * 2.2. Consider the vector

bundle E:F� L endowed with the measurable metric h:h
F
� h

L
.

Then E(h)^I(h
L
)�E and E(h) is coherent.

Proof. The statement E(h)^I(h
L
)�E is local on X so that we may assume that

X is a ball in Cn, that F and L are trivial, that h
L
^e+2R with r almost psh and that h

Fhas bounded coe�icients.
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Let us �rst prove that I(h
L
)
x
� E

x
�E(h)

x
. Let e

x
` E

x
and f

x
`I(h

L
)
x
. Since h

F
is

continuous, we have that � f
x

e
x
�2
h
^ � f

x
�2 �e

x
�2
hF

e+2R is locally integrable.

Let us prove the reverse inclusion E(h)
x
�I(h

L
)
x
�E

x
for every x in X. There exists

a constant e�~0 such that h
F
~e�[, where [ is the standard euclidean metric on the �bers

of E. Fix x ` X. Assume that E(h)
x
� e

x
^V f

1
, . . . , f

r
W. Then

�e
x
�2
h
^ �e

x
�2
hF

e+2y~ e� \ � f
i
�2e+2R .

As the left hand side of the inequality is integrable around x, so is each summand on the
right. This proves the reverse inclusion. To conclude recall that I(h

L
) is coherent (or apply

Proposition 4.1.3). ;

The following result is the key to the proofs of the e�ective statements to be found
in * 5. See Ex. 3.1.4 for examples of N-nef vector bundles.

Theorem 4.2.3. Let (X,u) be as in Theorem 4.1.2, and (F, h
F
), (L, h

L
) and (E, h) be

as in Lemma 4.2.2.

If ?
h
(E )~K

N
eu� Id

E
for some positive and continuous function e, then

H q(X, K
X
�F �L �I(h

L
))^ H q(X, K

X
�E(h))^ 0, �q~ 0 .

Moreover, if X is compact, F is N-nef and (L, h) is such that ?
h
(L)~eu, for some positive

constant e, then the same conclusion holds.

Proof. By Lemma 4.2.2, we have that E(h)^I(h
L
)� E. We conclude in view of

Theorem 4.1.2. The case of X compact is a special case after Lemma 4.2.1. ;

The following is not needed in the sequel. We include it since it is a generalization
of Kawamata-Viehweg Vanishing Theorem (K-V) and it can be proved along the lines of
G10H, 6.12 by using Theorem 4.2.3 instead of Nadel Vanishing Theorem. The ""1-nef '' case
follows easily from K-V Theorem and the Leray spectral sequence by looking at the
projectivization of E. The statement in the ""N-nef '' case seems new for 0~q~rankE
and the vanishing in the complementary range follows from K-V and Le-Potier spectral
sequence. See G10H for the particular language employed in the statement below.

Theorem 4.2.4. Let (X,E, F ) be the datum of : X a projective manifold, E an N-nef
vector bundle on X, F a line bundle on X such that some positive multiple mF can be written
as mF^L ^ D, where L is a nef line bundle and D is an e�ective divisor. Then

H q �X,K
X
�E �F �I � 1m D��^ 0 for q~dim X^l (L) ,

where l (L) is the numerical dimension of L and I � 1m D� is the multiplier ideal of the

singular local weights associated with the m-roots of the absolute values of local equations
for D.
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As a special case, we have that if F is a nef line bundle, then

H q(X, K
X
� E� F )^ 0 for q~dimX^l (F ) ;

in particular, if F is nef and big, then

H q (X, K
X
� E� F ) ^ 0 for q~0 .

5. E�ective results

5.1. Special s.h.m. on line bundles after Anghern-Siu, Demailly, Siu and Tsuji. The
following proposition is at the heart of the e�ective base-point-freeness, point-separation
and jet-separation results in G1H, G28H, G26H, G24H and G11H; it provides us with the neces-
sary s.h.m. which we transplant to the vector bundle case and use in connection with
Theorem 4.2.3.

First we need to �x some notation.

Let F be a rank r vector bundle on a complex manifold X and p be any positive
integer. We say that the global sections of F generate simultaneous jets of order s

1
, . . . , s

p
`N

at arbitrary p distinct points of X if the natural maps

H0 (X,F )1
p
�
=:1

O (F )
xi
�O

X
�msi;1

xi

are surjective for every choice of p distinct points x
1
, . . . , x

p
in X.

We say that the global sections of F separate arbitrary p distinct points of X if the
above holds with all s

i
^0.

Assume that X is compact. Let V:H0 (X,F ) and h0:h0 (X, F ):dimC H0 (X, F ).
Consider G:G (r, h0) the Grassmannian of r-dimensional quotients of V, Q the universal
quotient bundle of G and q the determinant of Q.

As soon as F is generated by its global sections (which corresponds to the above
conditions being met for p ^1 and s

1
^0), we get a morphism f : X1 G assigning to each

x ` X the quotient F
x
� k (x) and such that F� f <Q. The Pl}cker embedding de�ned by

q gives a closed embedding into the appropriate projective space = : G1 P. We obtain a
closed embedding f\: = � f : X1 P. It is clear that:

_ V separates arbitrary 2 points of X i� f is bijective birational onto its image.

_ If V separates arbitrary pairs of points of X and generates jets of order 1 at an
arbitrary point of X, then f is a closed embedding.

Given n, p and Js
1
, . . . , s

p
K as above let us de�ne the following integers:
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m
1
(n, p):

1
2
(n2^2 pn^n ^2) ,

m
2
(n, p; s

1
, . . . , s

p
)^ 2n

p
\
i:1

B (3n ^2 s
i
^3, n)^2pn ^1 ,

where B (a, b) denotes the usual binomial coe�icient,

m
3
(n, p ; s

1
, . . . , s

p
)^ �p n ^

p
\
i:1

s
i� m

1
(n, 1)

and
m
4

(n) ^ (n ^ 1) m
1

(n, 1) .

Proposition 5.1.1. Let X be a projective manifold of dimension n and L be an ample
line bundle on X. Fix a K{hler form u on X.

(5.1.1.1) (Cf. G1H and G28H.) Let p be a positive integer. Assume that m~m
1
(n, p).

Then for any set of p distinct points Jx
1
, . . . , x

p
K of X, there exists a nonempty subset

J
0
!J1, . . . , pK with the following property:

There exist e~0, a s.h. m. h for mL with ?
h

(mL)~K
1
eu� Id

Lh
and with the property

that the multiplier ideal I(h) of h is such that the closed subscheme given by I(h) has the
points x

i
as isolated points �i ` J

0
and contains all the points Jx

i
K.

(5.1.1.2) (Cf. G24H; see also G11H.) Fix a positive integer p and a sequence of non-
negative integers Js

1
, . . . , s

p
K. Assume that m~m

2
(n, p ; s

1
, . . . , s

p
).

Then for any set of p distinct points Jx
1
, . . . , x

p
K of X there exist e~0, a s.h. m. h for

K
X

^ m L with ?
h
(K
X

^ mL)~K
1
eu� Id

Lh
and with the property that the multiplier ideal

I(h) satis�es I(h)
xi
�msi;1

xi
, for every 1~ i ~ p, and is such that the closed subscheme

given by I(h) has all the points x
i

as isolated points.

The easy lemma that follows is probably well-known and makes precise a well-under-
stood principle: it is easy to go from global generation to the generation of higher jets.
Though the presence of the nef line bundle M is redundant in the statement, we use it
because of the application of this lemma to the case of higher rank.

Lemma 5.1.2 (from freeness to the generation of jets). Let X, n, p and Js
1
, . . . , s

p
K

be as above, F, A and M be line bundles on X such that F is ample and generated by its
global sections, A is ample and M is nef. Then the global sections of

K
X

^ �pn ^
p
\
i:1

s
i� F ^ A ^ M

generate simultaneous jets of order s
1
, . . . , s

p
at arbitrary distinct points x

1
, . . . , x

p
of X.

Morover, K
X

^ (n ^ 1) F ^ A ^ M is very ample.
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Proof. Fix u a hermitian metric on X and g a hermitian metric on A with positive

curvature ?
h
(A)~

3
2
eu for some e~0.

Since F is ample and the linear system �F � is free of base-points, for every index i
there are n sections Jp

ij
Kn
j:1

of F such that their common zero locus is zero-dimensional at x
i
.

De�ne a s.h.m. h on ( pn ^ \
i

s
i
) F by �rst de�ning metrics h

i
on (n ^ s

i
) F:

h+1
i
: � n

\
j:1

�p2
ij
�� n;si

and then by multiplying them together

h:
p
]
i:1

h
i
.

Since M is nef, one can choose a hermitian metric l on it such that ?
l
(M )~^

1
2
eu.

De�ne a metric H on �pn ^
p
\
i:1

s
i� F ^ A ^ M by setting

H: h � g� l .

We have that ?
hi
((n ^ s

i
) F )~0, �i so that ?

h
((np ^\ s

i
) F )~0. It follows that

?
H
~ eu.

Since g and l are continuous, I(H )^I(h).

By virtue of G10H, Lemma 5.6.b, we have that I(H )
xi
^I(h)

xi
�msi;1

xi
, �i and that

the scheme associated with I(H ) is zero-dimensional at all the points x
i
. We conclude by

Proposition 2.2.2. The second part of the statement is G1H, Lemma 11.1 (the proof of which
contains minor inaccuracies but it is correct). ;

5.2. E�ective results on vector bundles. We now see how to ""transplant'' the metrics
of Proposition 5.1.1 to vector bundles and how to use the results of * 4 to prove e�ective
results for the vector bundles of the form P as in the Introduction.

Let us remark that the lower bounds on m given in the various statements of the
theorem that follows are only indicative. Any improvement of these bounds in the line
bundle case that can be obtained using strictly positive singular metrics would give an
analogous improvement in the vector bundle case; see G24H, Proposition 5.1 for example.

Let n, p, Js
1
, . . . , s

p
K and the various m

i
be as in section * 5.1. Assume that E is a

rank r vector bundle on X and let N:minJn, rK.

Remark 5.2.1. See Ex. 3.1.4 for examples of N-nef vector bundles.
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Theorem 5.2.2. Let X be a projective manifold of dimension n, E be N-nef, A and L
be ample line bundles on X.

(5.2.2.1) If m~m
1

(n, p), then the global sections of K
X
�E � (mL) separate arbi-

trary p distinct points of X.

(5.2.2.1F) If m~
1
2

(n2^ n ^ 2), then K
X
�E � (mL) is generated by its global

sections.

(5.2.2.2) If m~m
2

(n, p ; s
1
, . . . , s

p
), then the global sections of 2 K

X
� E� (mL)

generate simultaneous jets of order s
1
, . . . , s

p
`N at arbitrary p distinct points of X.

(5.2.2.2 F) If m~m
2

(n,1;1), then the global sections of 2 K
X
�E � (mL) separate

arbitrary pairs of points of X and generate jets of order 1 at an arbitrary point of X.

(5.2.2.3) If m~m
3

(n, p ; s
1
, . . . , s

p
), then the global sections of

( pn ^ \ s
i

^1) K
X
� E� (mL) � A

generate simultaneous jets of order s
1
, . . . , s

p
`N at arbitrary p distinct points of X.

(5.2.2.4) If m~m
4

(n), then the global sections of (n ^ 2) K
X
� E� (mL) �A sepa-

rate arbitrary pairs of points of X and generate jets of order 1 at an arbitrary point of X.

(5.2.2.5) The global sections of E� (mL) separate arbitrary pairs of points of X and
generate jets of order 1 at an arbitrary point of X as soon as

m~ C
n

(Ln)3(n�2) �n ^2^
Ln+1 � K

X
Ln �3(n�2)

( n2;34);14 ,

where C
n
^ (2 n)3(n�1)+12 (n3^n2^n^1)3(n�2)( n2;34);14.

Remark 5.2.3. Let us give a geometric interpretation to, say, (5.2.2.2 F). We employ
the notation of * 5.1. Let (X,E, L,m) be as in (5.2.2.2 F). Let E F:E� (K

X
^ m L) and

LF^ (r ^ 1)(2K
X

^ m L)^detE ; note that h0:h0 (X,E F)^s (X,E F) and that LF is very
ample. Then there is a closed embedding

�: f^g : X 1 G (r, h0)^Pn

such that E� f < (Q� q)� g<OPn (^1), deg f\ (X )^ (detE F)n and g is �nite surjective with
deg g^LF n.

Let JX
i
, E

i
, L

i
K
i`I

be a set of triplets as above. If we can bound from above
h0
i
, deg f\

i
(X

i
) and LFn

i
, then we can �nd embeddings �

i
: X

i
1 G^Pn with

G^G (r, max
I
(h0
i
)) such that the relevant invariants are bounded from above. This applies,

for example, to the set of �at vector bundles of �xed rank over a (family of) projective
manifold(s), to the set of all nef vector bundles of �xed rank over curves of �xed genus,
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to the set of projective surfaces with nef tangent bundles, etc. By virtue of Remark 5.2.5,
a similar remark holds, more generally, for nef vector bundles.

Proof of Theorem 5.2.2. Note that (5.2.2.1F) and (5.2.2.2 F) are special cases of
(5.2.2.1) and (5.2.2.2), respectively. We shall prove (5.2.2.1) and (5.2.2.2) in detail to
illustrate the method. The remaining three assertions are left to the reader and can be
proved using the same method with the aid of Lemma 5.1.2 for the second and third to
last, and with the guideline of G11H, 4.7 for the last one.

Proof of (5.2.2.1). We follow closely G1H. The proof is by induction on p. Let p^1.
Let x ` X be arbitrary. By (5.1.1.1) we have a strictly positive s.h.m. h on mL such that
x is an isolated point of the scheme associated with I(h). By virtue of Theorem 4.2.3,
H1(X, K

X
�E � (mL)�I(h))^0 and the following surjections imply the case p^ 1:

H0(X, K
X
�E � (mL)) � H0(X,K

X
�E � (mL)�O

X
�I(h))

� H0 (X,K
X
�E � (mL)�O

X
�m

x
) .

Let us assume that (5.2.2.1) is true for all integers o~ p ^1 and prove the case o^p. Let
h be as in (5.1.1.1) and I(h) be its multiplier ideal. By virtue of Theorem 4.2.3, we have
that H1(K

X
� E� (mL)�I(h))^0. Let J be the ideal sheaf on X which agrees with

I(h) on X ]J
0
and which agrees with O

X
on J

0
. Relabel the points so that J

0
^J1, . . . , lK.

By tensoring the exact sequence

0 1 I(h) 1 J 1 J�I(h) 1 0

with K
X
�E �m L we get the surjection:

H0(X,K
X
� E� (mL) �J) �

l
�
i:1

O(K
X
�E � (mL))

xi
�O

X,xi
�m

xi

which implies that we can choose sections a
1,j
`H0(X, K

X
�E � (mL)) vanishing at

x
2
, . . . , x

p
, but generating the stalk (K

X
�E � (mL))

x1
. We now apply the induction

hypothesis to the set of p^1 points Jx
2
, . . . , x

p
K. By repeating the above procedure, and

keeping in mind that at each stage we may have to relabel the points, we obtain sections
Ja
i, ji

K ` H0(X,K
X
�E � (mL)), �1~ i ~ p vanishing at Jx

i;1
, . . . , x

p
K but generating the

stalk (K
X
�E � (mL))

xi
. Given any point x

i
, with 1~ i ~ r, and any vector

w ` (K
X
�E � (mL))

xi
�O

X,xi
�m

xi
it is now easy to �nd a linear combination of the

sections a
i, ji

which is w at x
i
and zero at all the other p^1 points. This proves (5.2.2.1).

Proof of (5.2.2.2). We �x the integers p, s
1
, . . . , s

p
and p arbitrary distinct points on

X. We take a singular metric h on K
X

^ mL with m ~m
1
for which the associated multiplier

ideal I(h) has the properties ensured by (5.1.1.2). Theorem 4.2.3 gives us the vanishing
of H1(K

X
�K

X
�E � (mL)�I(h)) which, in turn, gives the wanted surjection in view

of the obvious surjections

O
X,xi

�I(h)
xi
1 O

X,xi
�msi;1

xi
, �1~ i ~ p . ;
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Remark 5.2.4. Both statements in Proposition 5.1.1 have counterparts entailing not
powers mL of an ample line bundle L, but directly an ample line bundle L which has
""intersection theory'' large enough. See G1H, Theorem 0.3, G11H, Theorem 2.4. b and G24H.

As a consequence one has statements similar to the ones of Theorem 5.2.2 with mL
substituted by an ample line bundle L with intersection theory large enough; we omit the
details.

Remark 5.2.5. Let X, n, E, L be as in this section except that E is only assumed to
be nef. Using algebraic techniques we can see that K

X
�E �det E� Lm is globally gene-

rated for m~
1
2
(n2^ n ^2). Statements involving higher jets can be proved as well. Details

will appear in G5H.

Question 5.2.6. Let X, E and L be as above. Is the vector bundle K
X
�E �L�m

generated by global sections for every m~
1
2
(n2^ n ^2)?
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