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Abstract

We describe the perverse filtration in cohomology using the Lefschetz hyper-
plane theorem.
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1. Introduction

In this paper we give a geometric description of the middle perverse filtration
on the cohomology and on the cohomology with compact supports of a complex
with constructible cohomology sheaves of abelian groups on a quasi projective vari-
ety. The description is in terms of restriction to generic hyperplane sections and it is
somewhat unexpected, especially if one views the constructions leading to perverse
sheaves as transcendental and hyperplane sections as more algebro-geometric.

The results of this paper are listed in Section 4, and hold for a quasi projective
variety. For the sake of simplicity, we describe here the case of the cohomology of
an n-dimensional affine variety Y � AN with coefficients in a complex K.

The theory of t-structures endows the (hyper)cohomology groups H.Y;K/
with a canonical filtration P , called the perverse filtration,

P pH.Y;K/D Im fH.Y; p���pK/ �!H.Y;K/g;

which is the abutment of the perverse spectral sequence. Let

Y� D fY � Y�1 � � � � � Y�ng

be a sequence of closed subvarieties; we call this data an n-flag. Basic sheaf the-
ory endows H.Y;K/ with the so-called flag filtration F , abutment of the spectral
sequence Ep;q1 DHpCq.Yp; Yp�1; KjYp

/ H) H�.Y;K/. We have F pH.Y;K/
D Ker fH.Y;K/!H.Yp�1; KjYp�1

/g. For an arbitrary n-flag, the perverse and
flag filtrations are unrelated.

In terms of filtrations, the main result of this paper is that if the n-flag is
obtained using n hyperplane sections in sufficiently general position, then

(1) P pH j .Y;K/D F pCjH j .Y;K/:

More precisely, we construct a complex R�.Y;K/ endowed with two filtrations
P and F and we prove (Theorem 4.1.1) that there is a natural isomorphism in the
filtered derived category DF .Ab/ of abelian groups

(2) .R�.Y;K/; P /D .R�.Y;K/;Dec.F //;

where Dec.F / is the shifted filtration associated with F . Then (1) follows from (2).
Our methods seem to break down in the non quasi projective case and also

for other perversities.
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The constructions and results are amenable to mixed Hodge theory. We offer
the following application: let f W X ! Y be any map of algebraic varieties, Y
be quasi projective and C be a bounded complex with constructible cohomology
sheaves on X: Then the perverse Leray spectral sequences can be identified with
suitable flag spectral sequences on X: In the special case when K DQX ; we obtain
the following result due to M. Saito: the perverse spectral sequences for H.X;Q/
and Hc.X;Q/; are spectral sequences of mixed Hodge structures. Further Hodge-
theoretic applications concerning the decomposition theorem are mentioned in Re-
mark 7.0.5 and will appear in [6].

The isomorphism (2) lifts to the bounded derived category Db.PY / of per-
verse sheaves with rational coefficients. This was the basis of the proof of our
results in an earlier version of this paper. The present formulation, which short-
circuits Db.PY /, is based on the statement of Proposition 5.6.1 which has been
suggested to us by an anonymous referee. We are deeply grateful for this sugges-
tion. The main point is that a suitable strengthening of the Lefschetz hyperplane
theorem yields cohomological vanishings for the bifiltered complex .R�.Y;K/;
P; F / which yield (2). These vanishings are completely analogous to the ones
occurring for topological cell complexes and, for example, one can fit the classical
Leray spectral sequence of a fiber bundle in the framework of this paper.

The initial inspiration for this work comes from Arapura’s paper [1], which
deals with the standard filtration, versus the perverse one. In this case, the flag
has to be special: it is obtained by using high degree hypersurfaces containing the
bad loci of the ordinary cohomology sheaves. The methods of this paper are easily
adapted to that setting; see [7].

The fact that the perverse filtration is related to general hyperplane sections
confirms, in our opinion, the more fundamental role played by perverse sheaves
with respect to ordinary sheaves. The paper [1] has also directed us to the beautiful
[17] and the seminal [4]. The influence on this paper of the ideas contained in [4],
[17] is hard to overestimate.

2. Notation
A variety is a separated scheme of finite type over the field of complex num-

bers C. A map of varieties is a map of C-schemes. The results of this paper hold
for sheaves of R-modules, where R is a commutative ring with identity with finite
global dimension, e.g. RD Z; R a field, etc. For the sake of exposition we work
with RD Z, i.e. with sheaves of abelian groups.

The results of this paper hold, with routine adaptations of the proofs, in the
case of varieties over an algebraically closed field and étale sheaves with the usual
coefficients: Z=lmZ; Zl ; Ql , Zl ŒE�, Ql ŒE� (E �Ql a finite extension) and Ql :

We do not discuss further these variants, except to mention that the issue of
stratifications is addressed in [5, ��2.2 and 6]. The term stratification refers to an
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algebraic Whitney stratification [14]. Recall that any two stratifications admit a
common refinement and that maps of varieties can be stratified.

Given a variety Y , there is the category DY D DY .Z/ which is the full
subcategory of the derived category of the category ShY of sheaves of abelian
groups whose objects are the bounded complexes with constructible cohomology
sheaves, i.e. bounded complexes K whose cohomology sheaves Hi .K/, restricted
to the strata of a suitable stratification † of Y , become locally constant with fiber
a finitely generated abelian group. For a given †; a complex with this property is
called †-constructible.

Given a stratification † of Y , there are the full subcategories D†Y �DY of
complexes which are †-constructible. Given a map f WX ! Y of varieties, there
are the usual four functors .f �; Rf�; RfŠ; f Š/. By abuse of notation, we denote
Rf� and RfŠ simply by f� and fŠ. The four functors preserve stratifications; i.e. if
f W .X;†0/! .Y;†/ is stratified, then f�; fŠ WD†

0

X !D†Y and f �; f Š WD†Y !D†
0

X :

The abelian categories ShY and Ab WD Shpt have enough injectives. The right
derived functor of global sections is denoted R�.Y;�/: Hypercohomology groups
are denoted simply by H.Y;K/: Similarly, we have R�c.Y;�/ and Hc.Y;K/:

We consider only the middle perversity t -structure on DY [5]. The truncation
functors are denoted p��i W DY !

pD
�i
Y , p��j W DY !

pD
�j
Y , the heart PY WD

pD
�0
Y \

pD
�0
Y is the abelian category of perverse sheaves on Y and we denote the

perverse cohomology functors pHi WD p��0 ı
p��0 ı Œi � WDY �! PY .

The perverse t-structure is compatible with a fixed stratification, i.e. trunca-
tions preserve †-constructibility and we have pHi WD†Y �! P†Y , etc.

In this paper, the results we prove in cohomology have a counterpart in co-
homology with compact supports. If we employ field coefficients, then middle
perversity is preserved by duality and the results in cohomology are equivalent
to the ones in cohomology with compact supports by virtue of Poincaré-Verdier
Duality.

Due to the integrality of the coefficients, middle perversity is not preserved
by duality; see [5, �3.3]. However, we can prove the results in cohomology and
in compactly supported cohomology using the same techniques. For expository
reasons, we often emphasize cohomology.

Filtrations, on groups and complexes, are always finite, i.e. F iK D K for
i � 0 and F jK D 0 for j � 0, and decreasing, i.e. F iK � F iC1K: We say that
F has type Œa; b�, for a � b 2 Z; if GrpFK ' 0 for every i … Œa; b�:

A standard reference for the filtered derived category DF .A/ of an abelian
category is [15]. Useful complements can be found in [5, �3] and in [4, Appendix].
We denote the filtered version of DY by DYF . The objects are filtered complexes
.K; F /, with K 2DY : This is a full subcategory of DbF.ShY /:

We denote a “canonical” isomorphism with the symbol “D :”
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3. The perverse and flag spectral sequences

In this paper, we relate the perverse spectral sequences with certain classical
objects that we call flag spectral sequences.

In order to do so, we exhibit these spectral sequences as the ones associated
with a collection of filtered complexes of abelian groups. These, in turn, arise by
taking the global sections of (a suitable injective model of) the complex K endowed
with the filtrations P;F;G and ı which we are about to define.

In this section, starting with a variety Y and a complex K 2DY , we construct
the multi-filtered complex .K; P; F;G; ı/ and we list its relevant properties. By
passing to global sections, we identify the ensuing spectral sequences of filtered
complexes with the perverse and flag ones.

3.1. .K; P /. The system of truncation maps � � � ! p���pK!
p���pC1K

! : : : is isomorphic in DY to a system of inclusion maps � � �!P pK 0!P p�1K 0

! : : : , where the filtered complex .K 0; P / is of injective type, i.e. all GrpPK
0, hence

all P pK 0 and K 0, have injective entries; see [5, 3.1.2.7]. The filtered complex
.K 0; P / is well-defined up to unique isomorphism in the filtered DYF by virtue of
[5, Prop. 3.1.4.(i)] coupled with the second axiom, “Hom�1 D 0,” of t-structures.
We replace K with K 0 and obtain .K; P /: In particular, from now on, K is injective.

3.2. Flags. The smooth irreducible projective variety F.N; n/ of n-flags on
the N -dimensional projective space PN parametrizes linear n-flags FD fƒ�1 �

� � � �ƒ�ng, where ƒ�p � PN is a codimension p linear subspace.
A linear n-flag F on PN is said to be general if it belongs to a suitable Zariski

dense open subset of the variety of flags F.N; n/: We say that a pair of flags is
general if the same is true for the pair with respect to F.N; n/�F.N; n/: In this
paper, this open set depends on the complex K and on the fixed chosen embedding
Y � PN . We discuss this dependence in Section 5.2.

A linear n-flag F on PN gives rise to an n-flag on Y � PN , i.e. an increasing
sequence of closed subvarieties of Y :

(3) Y� D Y�.F/ W Y D Y0 � Y�1 � � � � � Y�n; Yp WDƒp \Y:

We set Y�n�1 WD∅ and we have the (resp., closed, open and locally closed) em-
beddings:

(4) ip W Yp �! Y; jp W Y nYp�1 �! Y; kp W Yp nYp�1 �! Y:

Let h W Z ! Y be a locally closed embedding. There are the exact functor
.�/Z D hŠh

�.�/, which preserves c-softness, and the left exact functor �Z , which
preserves injectivity and satisfies HZ.Y;K/ D H.Y;R�ZK/; see [16]. If h is
closed, then R�Z D hŠhŠ D h�hŠI and, since K is injective, R�ZK D �ZK: If
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Z0 � Z is closed, then we have the distinguished triangle R�Z0K! R�ZK!

R�Z�Z0K
C
! which, again by the injectivity of K, is the triangle associated with

the exact sequence 0! �Z0K! �ZK! �Z�Z0K! 0:

3.3. .K; F;G; ı/. We have constructed .K; P / of injective type. Let Y �PN

be an embedding of the quasi projective variety Y . Let F;F0 be two, possibly
identical, linear n-flags on PN with associated flags, Y� and Z� on Y: We denote
the corresponding maps (4) by i 0; j 0; k0:

We define the three filtrations F;G and ı on K. They are well-defined, up to
unique isomorphism, in the filtered DYF:

The flag filtration F D FY� D FY�.F/, of type Œ�n; 0�, is defined by setting
F pK WDKY�Yp�1

:

(5) 0 � KY�Y�1
� : : : � KY�Yp�1

� KY�Y�n
� K:

The flag filtration G D GZ� D GZ�.F0/, of type Œ0; n�, is defined by setting
GpK WD �Z�p

K W

(6) 0 � �Z�n
K � : : : � �Z�p

K � �Z�1
K � K:

The flag filtration ı D ı.FY�.F/GZ�.F0//, of type Œ�n; n�, is the diagonal fil-
tration defined by ıpK D

P
iCjDp F

iK \GjK:

Note that one does not need injectivity to define the filtrations. However,
without this assumption, the resulting filtration G and ı would not be canonically
defined in DYF: Moreover, injectivity yields �ZK D R�ZK for every locally
closed Z � Y , a fact we use throughout without further mention.

3.4. The graded complexes associated with .K; P; F;G; ı/. Recall that Grp
ı

D˚iCjDpGriFGrjG and that the Zassenhaus Lemma implies GriFGrjG DGrjGGriF :
Since the formation of F is an exact functor, the formation of G is exact when
applied to injective sheaves, and injective sheaves are c-soft, we have

GrpPK; GrpGK; GrjGGrpP are injective,(7)

GrpFK; GriFGrpPK; GriFGrjGK;(8)

GriFGrjGGrpPK; Grp
ı
K; GraıGrpPK are c-soft.

In particular, P pK; GpK and P pK \ GjK are injective. We have the anal-
ogous c-softness statement for (8), e.g. the F iK \ Gj \ P pK are c-soft. By
construction (�3.1), the filtration P splits in each degree, and the formation of F
and G is compatible with direct sums. Hence, we have the following list of natural
isomorphisms:
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1) GrpPK D
pH�p.K/Œp�,

2) GrpFK DKYp�Yp�1
D kpŠk

�
pK,

3) GrpGK D �Z�p�Z�p�1
K D k0�p�k

0Š
�pK.

4) GrjGGriFKDGriFGrjGK D .�Z�j�Z�j�1
K/Yi�Yi�1

D.k0
�j �

k0
Š
�jK/Yi�Yi�1

.

5) Grp
ı
K D˚iCjDa.�Z�j�Z�j�1

K/Yi�Yi�1
.

6) GriFGrpP D .
pH�p.K/Œp�/Yp�Yp�1

.

7) GrjGGrpP D �Z�j�Z�j�1
. pH�p.K/Œp�/D k0

�j �
k0
Š
�j

pH�p.K/Œp�.

8) GriFGrjGGrpPK D .�Z�j�Z�j�1
. pH�p.K/Œp�//Yi�Yi�1

.

9) GraıGrpPK D˚iCjDa.�Z�j�Z�j�1
. pH�p.K/Œp�//Yi�Yi�1

.

Remark 3.4.1. If the pair of flags is general, then (cf. §5.2, or [4, Complement
to §3])

.�Z�j�Z�j�1
K/Yi�Yi�1

D �Z�j�Z�j�1
.KYi�Yi�1

/:

In general, the two sides differ, for the left-hand side is zero on Yi�1:

3.5. .R�.Y;K/; P; F; ı/ and .R�c.Y;K/; P;G; ı/. Since K is injective, we
have R�.Y;K/D �.Y;K/, R�c.Y;K/D �c.Y;K/: We keep “R” in the notation.

By applying the left exact functors � and �c , we obtain the multi-filtered
complexes of abelian groups

(9) .R�.Y;K/; P; F; ı/; .R�c.Y;K/; P;G; ı/;

by setting, for example, P pR�.Y;K/ WD �.Y; P pK/, etc.
Since injective sheaves and c-soft sheaves are � and �c-injective, we have

R�.Y; pH�p.K/Œp�/D �.Y;GrpPK/D GrpP �.Y;K/;(10)

R�c.Y;
pH�p.K/Œp�/D �c.Y;GrpPK/D GrpP �c.Y;K/;(11)

with analogous formulæ for the following graded objects

(12) GrpF ; GrpG ; GraFGrbP ; GraGGrbP ; GriFGrjG ; Grp
ı
; GriFGrjGGrbP ; Grp

ı
GrbP :

Remark 3.5.1. Though the formation of F does not preserve injectivity, one
can always take filtered injective resolutions. In that case, the resulting F pK is not
exactly KY�Yp�1

, etc., but rather an injective resolution of it. This would allow us
to drop the mention of c-softness. On the other hand, the F -construction is exact
and formulæ like the ones in Section 3.4 are readily proved.
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3.6. The perverse and flag spectral sequences. With the aid of Sections 3.4,
3.5 it is immediate to recognize the E1-terms of the spectral sequences associated
with the filtered complexes .R�.Y;K/; P; F; ı/ and .R�c.Y;K/; P;G; ı/:

Definition 3.6.1 (Perverse spectral sequence and filtration). The perverse spec-
tral sequence for H.Y;K/ is the spectral sequences of the filtered complexes
.R�.Y;K/; P /:

(13) E
p;q
1 DH 2pCq.Y; pH�p.K//H)H�.Y;K/

and the abutment is the perverse filtration P on H�.Y;K/ defined by

(14) P pH�.Y;K/D Im fH�.Y; p���pK/ �!H�.Y;K/g;

similarly, for Hc.Y;K/ using .R�c.Y;K/; P /:

Let f WX ! Y be a map of algebraic varieties and C 2DX :

Definition 3.6.2. The perverse Leray spectral sequences for H.X;C / (resp.
Hc.X; C /) are the corresponding perverse spectral sequences on Y for K WD f�C
(resp. K WD fŠC ).

Let Y � PN be an embedding of the quasi projective variety Y , F;F0 be two
linear flags on PN and Y� and Z� be the corresponding flags on Y .

Definition 3.6.3 (Flag spectral sequence and filtration (F -version)). The F
flag spectral sequence associated with Y� is the spectral sequence associated with
the filtered complex .R�.Y;K/; F /:

(15) E
p;q
1 DHpCq.Y;KYp�Yp�1

/H)H�.Y;K/

and its abutment is the flag filtration F D FY� on H�.Y;K/ defined by

(16) F pH�.Y;K/D KerfH�.Y;K/ �!H�.Yp�1; KjYp�1
/g:

Definition 3.6.4 (Flag spectral sequence and filtration (G-version)). The G
flag spectral sequence associated with Z� is the spectral sequence associated with
the filtered complex .R�c.Y;K/;G/:

(17) E
p;q
1 DHpCq

c .Y; k�p�k
Š
�pK/H)H�c .Y;K/

and its abutment is the flag filtration G DGZ� on H�c .Y;K/ defined by

(18) GpH�c .Y;K/D ImfH�c .Y; �Z�p
K/ �!H�c .Y;K/g:

Definition 3.6.5 (Flag spectral sequence and filtration (ı-version)). The ı flag
spectral sequences associated with .Y�; Z�/ are the spectral sequences associated
with the filtered complexes .R�.Y;K/; ı/ and .R�c.Y;K/; ı/.
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Remark 3.6.6. We omit displaying these spectral sequences since, due to Re-
mark 3.4.1, they do not have familiar E1-terms. If the pair of flags is general, or
merely in good position with respect to † and each other (cf. §5.2), then we have
equality in Remark 3.4.1 and the E1-terms take the following form (we write Hc;Z
for Hc ıR�Z):

E
p;q
1 D

M
iCjDp

H
pCq
Z�j�Z�j�1

.Y;KYi�Yi�1
/H)H�.Y;K/;(19)

E
p;q
1 D

M
iCjDp

H
pCq
c;Z�j�Z�j�1

.Y;KYi�Yi�1
/H)H�c .Y;K/(20)

and their abutments are the flag filtrations ı D ı.Y�; Z�/ on H.Y;K/ and on
H�c .Y;K/ defined by

ıpH�.Y;K/D Im
� M
iCjDp

H�Z�j
.Y;KY�Yi

/ �!H�.Y;K/

�
;(21)

ıpH�c .Y;K/D Im
� M
iCjDp

H�c;Z�j
.Y;KY�Yi

/ �!H�.Y;K/

�
:(22)

3.7. The shifted filtration and spectral sequence. We need the notion and ba-
sic properties ([10]) of the shifted filtration for a filtered complex .L; F / in an
abelian category. We make the definition explicit in Ab:

The shifted filtration Dec.F / on L is:

Dec.F /pLl WD
n
x 2 F pClKl j dx 2 F pClC1LlC1

o
:

The shifted spectral sequence of .L; F / is the one for .L;Dec.F // and we have
(23)

Dec.F /pH l.L/D F pClH l.L/; Ep;qr .L;Dec.F //DE2pCq;�prC1 .L; F /:

4. Results

We prove results for Y quasi projective. The statements and the proofs are
more transparent when Y is affine. We state and prove the results in the affine
case first. The multi-filtered complexes of abelian groups .R�.Y;K/; P; F; ı/ and
.R�c.Y;K/; P;G; ı/, which give rise to the spectral sequences and filtrations we
are interested in, are defined in Section 3.

4.1. The results over an affine base. In this section Y is affine of dimension
n and K 2 DY . Let Y � PN be a fixed embedding and F;F0 be a pair of linear
n-flags on PN .

THEOREM 4.1.1 (Perverse filtration on cohomology for affine varieties). Let
F be general. There is a natural isomorphism in the filtered derived category
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DF .Ab/:
.R�.Y;K/; P /' .R�.Y;K/;Dec.F //

identifying the perverse spectral sequence with the shifted flag spectral sequence
so that

P pH l.Y;K/D F pClH l.Y;K/D KerfH l.Y;K/ �!H l.YpCl�1; KjYpCl�1
/g:

THEOREM 4.1.2 (Perverse filtration on Hc and affine varieties). Let F0 be
general. There is a natural isomorphism in the filtered derived category DF .Ab/:

.R�c.Y;K/; P /' .R�c.Y;K/;Dec.G//

identifying the perverse spectral sequence with the shifted flag spectral sequence
so that

P pH l
c .Y;K/DG

pClH l
c .Y;K/D ImfH l

c .Y;R�Z�p�l
K/ �!H l

c .Y;K/g:

In what follows, f W X ! Y is an algebraic map, with Y affine, C 2 DX ,
and given a linear n-flag F on PN , we denote by X� D f �1Y� the corresponding
pre-image n-flag on X:

THEOREM 4.1.3 (Perverse Leray and affine varieties). Let F be general. The
perverse Leray spectral sequence for H.X;C / is the corresponding shifted X� flag
spectral sequence. The analogous statement for Hc.X; C / holds.

Remark 4.1.4. The ı-variants of Theorems 4.1.1, 4.1.2, and 4.1.3 for coho-
mology and for cohomology with compact supports, hold for the ı filtration as
well, and with the same proof. In this case one requires the pair of flags to be
general.

Remark 4.1.5. Rather surprisingly, the differentials of the perverse (Leray)
spectral sequences can be identified with the differentials of a flag spectral se-
quence. In turn, these are classical algebraic topology objects stemming from a
filtration by closed subsets, i.e. from the cohomology sequences associated with
the triples .Yp; Yp�1; Yp�2/:

4.2. The results over a quasi projective base. In this section, Y is a quasi
projective variety of dimension n and K 2DY :

There are several ways to state and prove generalizations of the results in
Section 4 to the quasi projective case. We thank an anonymous referee for suggest-
ing this line of argument as an alternative to our original two arguments that used
Jouanolou’s trick (as in [1]), and finite and affine Čech coverings. For an approach
via Verdier’s spectral objects see [6].

Let Y be quasi projective, Y � PN be a fixed affine embedding and .F;F0/ be
a pair of linear n-flags on PN . The notion of a ı flag spectral sequence is defined
in Definition 3.6.3; see also Remark 3.6.6.
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THEOREM 4.2.1 (Quasi projective case via two flags). Let the pair of flags be
general. There are natural isomorphisms in DF .Ab/:

.R�.Y;K/; P /' .R�.Y;K/;Dec.ı//; .R�c.Y;K/; P /' .R�c.Y;K/;Dec.ı//

identifying the perverse and the shifted ı flag spectral sequence, inducing the iden-
tity on the abutted filtered spaces.

Moreover, if f W X ! Y and C 2 DX are given, then the perverse Leray
spectral sequences coincide with the shifted ı flag spectral sequences associated
with the preimage flags on X:

5. Preparatory material

5.1. Vanishing results.

THEOREM 5.1.1 (Cohomological dimension of affine varieties). Let Y be
affine and Q 2 PY be a perverse sheaf on Y . Then

H r.Y;Q/D 0; for all r > 0; H r
c .Y;Q/D 0; for all r < 0:

Proof. We give several references. The original proof of the first statement is
due to Michael Artin [2], XIV and is valid in the étale context. [14, �2.5] proved
the theorem for intersection homology with compact supports and with twisted
coefficients on a pure-dimensional variety; the reader can translate the results in
intersection cohomology and intersection cohomology with compact supports on
a pure-dimensional variety; a standard devissage argument implies the result for
a perverse sheaf Q on arbitrary varieties; Q is a finite extension of intersection
cohomology complexes with twisted, not necessarily semisimple, coefficients on
the irreducible components. In [5, Th. 4.1.1] the case of H is proved directly; the
case of Hc is proved for field coefficients by invoking duality; however, one can
prove it directly and for arbitrary coefficients. The textbook [16] proves it for Stein
manifolds (see loc. cit., Th. 10.3.8); the general case follows by embedding Y as
a closed subset of an affine space i W Y ! Cn and by applying the statement to the
perverse sheaf i�Q. �

Let Y be quasi projective. Fix an affine embedding Y �PN . Let ƒ;ƒ0 �PN

be two hyperplanes, H WD Y \ ƒ � Y and j W Y nH ! Y  H W i be the
corresponding open and closed immersions. Note that j Š D j �: Similarly, for ƒ0.

THEOREM 5.1.2 (Strong Weak Lefschetz). Let Y be quasi projective and Q 2
PY : If ƒ is general, then

H r.Y; jŠj
ŠQ/D 0; 8r < 0; H r

c .Y; j�j
�Q/D 0; 8r > 0:

Let .ƒ;ƒ0/ be a general pair. Then jŠj �j 0�j
0ŠQD j 0�j

0ŠjŠj
�Q and

H r.Y; jŠj
�j 0�j

0ŠQ/DH r
c .Y; j

0
�j
0ŠjŠj

�Q/D 0; 8r ¤ 0:
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Proof. We give several references for the first statement. In [4, Lemma 3.3];
this proof is valid in the étale context. The second statement is observed in [4,
Complement to �3], [14, �2.5]. M. Goresky has informed us that P. Deligne has
also proved this result (unpublished). �

We include a sketch of the proof of this result, following [4], in Section 5.2,
where we also complement the arguments in [4] needed in the sequel of the paper.

Remark 5.1.3. Since j Š D j �, we may reformulate the first statement of The-
orem 5.1.2 as follows

H r.Y;QY�H /D 0; 8r < 0; H r
c .Y;R�Y�HQ/D 0; 8r > 0

and similarly for the second one. Moreover, by Theorem 5.1.1, if Y is affine, then
the vanishing results hold for every r ¤ 0.

Remark 5.1.4. It is essential that the embedding Y � PN be affine. For ex-
ample, the conclusion does not hold in the case when Y D A2 n f0g � P2 and
QD ZY Œ2�:

5.2. Transversality, base change and choosing good flags. In this section we
highlight the role of transversality in the proof of Theorem 5.1.2. In fact, transver-
sality implies several base change equalities which we use throughout the paper in
order to prove the vanishing results in Theorem 5.1.2, its iteration Lemma 6.1.1,
its “two-flag-extension” (27) and to observe (29). While the vanishing results are
used to realize condition (32), which is the key to the main results of this paper,
the base change equality (29) is used to reduce the results for the perverse spectral
sequences Theorems 4.1.3, 4.2.1 with respect to a map X! Y , to analogous results
for perverse spectral sequences on Y .

These base change properties hold generically by virtue of the generic base
change theorem [11], and this is enough for the purposes of this paper. On the
other hand, it is possible to pinpoint the conditions one needs to impose on flags;
see Definition 5.2.4 and Remark 5.2.6.

Let Y � PN be an affine embedding of the quasi projective variety Y and
Y � SY be the resulting projective completion. There is a natural decomposition
into locally closed subsets PN D .PN n SY /

`
.SY nY /

`
Y: Let K 2DY :

Definition 5.2.1 (Stratifications adapted to the complex and to the embedding).
We say that a stratification† of PN is adapted to the embedding Y �PN if Y; SY nY;
hence SY , and PN nSY are unions of strata, and† induces by restriction stratifications
on PN ;PN n SY ; SY ; Y; SY nY with respect to which all possible inclusions among
these varieties are stratified maps. We denote these induced stratifications by †Y ;
etc. and we say that † is adapted to K if K is †Y -constructible.
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Remark 5.2.2. Since maps of varieties can be stratified and a finite collection
of stratifications admits a common refinement, stratifications which are adapted to
the complex and to the embedding exist.

Let † be a stratification of PN adapted to K and to the embedding Y � PN .
Let ƒ� P be a hyperplane, H WDƒ\Y and SH Dƒ\ SY . Set SU WD .SY n SH/ and
U WD .Y nH/: Consider the cartesian diagram

(24) H
i //

J
��

Y

J
��

U

J
��

joo

SH
i // SY SU :

joo

We address the following question: when is the natural map

(25) JŠj�j
�K! j�JŠj

�K

an isomorphism? In general the two differ on SH \ .SY n Y /: By the octahedron
axiom, the map (25) is an isomorphism if and only if the natural base change map
J�i
�K! i�J�K is an isomorphism. This latter condition is met ifƒ is general ([4,

Lemma 3.3]). In fact it is sufficient that ƒ meets transversally the strata in †SY�Y .
This is a condition on the stratification, not on K. It follows that the analogous
map jŠJ�J ŠK! J�jŠJ

ŠK is also an isomorphism under the same conditions.

Proof of Theorem 5.1.2 (see [4]). We prove the first statement for cohomology.
The point is that a general linear section produces the isomorphism (25) and this
identifies the cohomology groups in question with compactly supported cohomol-
ogy groups on affine varieties where one uses Theorem 5.1.1. Note that since the
maps of type j and J are affine, all the complexes appearing below are perverse.
We have the following chain of equalities:

H r.Y; jŠj
�Q/DH r.SY ; J�jŠj

�Q/DH r.SY ; jŠJ�j
�Q/;

DH r
c .
SY ; jŠJ�j

ŠQ/DH r
c .
SU ; J�j

ŠQ/

and, since SU is affine and J�j ŠQ is perverse, the last group is zero for r < 0

and the first statement for cohomology follows. The one for compactly supported
cohomology is proved in a similar way.

In order to prove the second statement, we consider the Cartesian diagram

(26) U \U 0
j 0 //

j

��

U

j

��
U 0

j 0 // Y:
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Since the embedding Y � PN is affine, the open sets U;U 0 and U \U 0 are affine.
Note that this fails if the embedding is not affine. We have that jŠ; j�; j Š D j � are
all t -exact and preserve perverse sheaves. The same is true for j 0.

The equality jŠj �j 0�j
0ŠQD j 0�j

0ŠjŠj
�Q is proved using base change consid-

erations similar to the ones we have made for (25).
We prove the vanishing in cohomology. The case of cohomology with com-

pact supports is proved in a similar way. The case r < 0 is covered by the first
statement. We need suitable “reciprocal” transversality conditions which are the
obvious generalization of the ones mentioned in discussion of (25). We leave the
formulation of these conditions to the reader. It will suffice to say that they are met
by a general pair .ƒ;ƒ0/: The case r > 0 follows from Theorem 5.1.1 applied to
the affine U 0: H.Y; j 0�j

0ŠjŠj
�Q/DH.U 0; j 0

Š
jŠj
�Q/: �

Remark 5.2.3. LetQ2PY and† be a stratification of PN adapted to Y �PN

and such that Q 2P†Y

Y : An inspection of the proof of Theorem 5.1.2 reveals that
it is sufficient to choose ƒ so that it meets transversally the strata in SY n Y: It is
not relevant how H meets the strata in †Y : A similar remark holds in the case of
a pair of hyperplanes.

We now introduce a kind of transversality notion that is sufficient for the
purpose of this paper. Let † be as above.

Definition 5.2.4 (Flag in good position wrt †). A linear n-flag F D ƒ0 �

ƒ�1 � � � � �ƒ�n on PN is in good position with respect to † if it is subject to the
following inductively defined conditions:

1) ƒ�1 meets all the strata of †0 WD † transversally; let †�1 be a refinement
of † such that its restriction to ƒ�1 ' PN�1 is adapted to the embedding
Y�1 �ƒ�1;

2) ƒ�2 meets all the strata of †�1 transversally; we iterate these conditions and
constructions and introduce †�2; ƒ�3, . . . , †�nC1; ƒ�n and we require that,
for every i D 1; : : : ; n;

i) ƒ�i meets all the strata of †�iC1 transversally.

We define †0 WD†�n:

Remark 5.2.5. By the Bertini theorem, it is clear that a general linear n-flag F

is in good position with respect to a fixed †: Of course, “general" depends on †:
Note also that if F is in good position, then Yp has pure codimension p in Y .

Remark 5.2.6. There is the companion notion of a pair of linear n-flags .F;F0/
being in good position with respect to † and to each other. We leave the task of
writing down the precise formulation to the reader. The notion is again induc-
tive and proceeds, also by imposing mutual transversality, in the following order:
ƒ�1; ƒ

0
�1; ƒ�2; ƒ

0
�2, etc. It suffices to say that a general pair of flags will do.
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The proof of Theorem 5.1.2 works well inductively with the elements of a
linear flag F on PN in good position with respect to the embedding and to the per-
verse sheaf Q. We use this fact in the proof of Lemma 6.1.1. Similarly, this kind of
argument works well with a pair of flags in good position with respect to the Q, the
embedding and each other. In particular, it works for a general pair of flags. In these
cases, we have the equality �Z�j�Z�j�1

.QYi�Yi�1
/D .�Z�j�Z�j�1

Q/Yi�Yi�1

which follows from repeated use of the equality jŠj �j 0�j
0ŠQ D j 0�j

0ŠjŠj
�Q of

Theorem 5.1.2. By transversality, the shift Œi C j � of these complexes are perverse.
This allows us to apply the vanishing results of Theorem 5.1.2 and deduce, for
general pairs of flags on the quasi projective variety Y , that
(27)
H r.Y; �Z�j�Z�j�1

.QYi�Yi�1
//DH r

c .Y; �Z�j�Z�j�1
.QYi�Yi�1

//D0; 8 r ¤ 0:

Let f WX ! Y be a map of varieties. The diagram (24) induces the cartesian
diagram:

(28) XH
i //

f

��

X

f

��

XU

f

��

joo

H
i // Y U:

joo

The previous base change discussion implies, for ƒ meeting all strata of † transver-
sally, that
(29) f�jŠj

�C D jŠj
�f�C; fŠj�j

ŠC D j�j
ŠfŠC:

Similar base change equations hold for a linear flag F on PN in good position with
respect to fŠC and to the embedding Y � PN (e.g. general) and also for a pair of
flags in good position with respect to fŠC , the embedding and each other (e.g. a
general pair).

5.3. Two short exact sequences.

LEMMA 5.3.1. Let Y � PN be quasi projective and Q 2 PY : If ƒ� PN is a
general linear section, then there are natural exact sequences in

0 �! i�i
�QŒ�1� �! jŠj

ŠQ �!Q �! 0;(30)

0 �!Q �! j�j
�Q �! iŠi

ŠQŒ1� �! 0:(31)

Proof. There are the distinguished triangles in DY :

jŠj
ŠQ �!Q �! i�i

�Q
C
�!; iŠi

ŠQ �!Q �! j�j
�Q

C
�! :

Since j is affine, jŠ and j� are t-exact and jŠj ŠQ and j�j �Q are perverse. We
choose ƒ so that it is transverse to the strata of a stratification for Q. It follows that
i�i
�QŒ�1�D iŠi

ŠQŒ1� is perverse. Each conclusion follows from the long exact
sequence of perverse cohomology of the corresponding distinguished triangles. �



2104 MARK ANDREA A. DE CATALDO and LUCA MIGLIORINI

5.4. The forget-the-filtration map. Let A be an abelian category. [5, Prop.
3.1.4.(i)] is a sufficient condition for the natural forget-the-filtration map

HomDF .A/! HomD.A/
to be an isomorphism. We need the bifiltered counterpart of this sufficient condi-
tion.

The objects .L; F;G/ of the bifiltered derived category DF 2.A/ are com-
plexes L endowed with two filtrations. The homotopies must respect both fil-
trations and one inverts bifiltered quasi isomorphisms, i.e. (homotopy classes of)
maps inducing quasi isomorphisms on the bigraded objects GraFGrbG : It is a routine
matter to adapt Illusie’s treatment of DF .A/ to the bifiltered setting and then to
adapt the proof of [5, Prop. 3.1.4.(i)] to yield a proof of

PROPOSITION 5.4.1. Assume that A has enough injectives and that .L; F;G/,
.M;F;G/ 2DCF2.A/ are such that

HomnDFA..GriGLŒ�i �; F /; .GrjGMŒ�j �; F //D 0; 8n < 0; 8i < j:

The “forget-the-second filtration” map is an isomorphism:

HomDF 2A..L; F;G/; .M;F;G//
'
�! HomDFA..L; F /; .M;F //:

5.5. The canonical lift of a t -structure. The following is a mere special case
of [4, App.]. Let A be an abelian category. The derived category D.A/ admits the
standard t-structure, i.e. usual truncation. The filtered derived category DF .A/
admits a canonical t -structure which lifts (in a suitable sense which we do not need
here) the given one on D.A/. This canonical t-structure on DF .A/ is described
as follows. There are the two full subcategories

DF .A/�0 WD f.L; F / j GriFL 2D.A/
�i
g;

DF .A/�0 WD f.L; F / j GriFL 2D.A/
�i
g:

The heart DF .A/�0\DF .A/�0 is

DF ˇ .A/D f.L; F / j GriFLŒi� 2 Ag;

where ˇ is for bête (see [5, 3.1.7]). The reader can verify the second axiom of t-
structure, i.e. Hom�1.DFA�0;DFA�1/D 0, by a simple induction on the length
of the filtrations, and the third axiom, i.e. the existence of the truncation triangles,
by simple induction on the length of the filtration coupled with the use of Verdier’s
“Lemma of nine” (see [5, Prop. 1.1.11]).

5.6. The key lemma on bifiltered complexes. Let A be an abelian category
and .L; P; F / be a bifiltered complex, i.e. an object in the bifiltered derived cat-
egory DF 2.A/. Recall the existence of the shifted filtration Dec.F / associated
with .L; F /.
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The purpose of this section is to prove the following result, the formulation
of which has been suggested to us by an anonymous referee. This result is key to
the approach presented in this paper.

PROPOSITION 5.6.1. Let .L; P; F / be a bifiltered complex such that

(32) H r.GraFGrbPL/D 0; 8r ¤ a� b:

Assume that L is bounded below and that A has enough injectives. There is a
natural isomorphism in the filtered derived category DF .A/,

.L; P /' .L;Dec.F //

that induces the identity on L and thus identifies

.H�.L/; P /D .H�.L/;Dec.F //:

In particular, there is a natural isomorphism between the spectral sequences asso-
ciated with .L; P / and .L;Dec.F // inducing the identity on the abutments.

In order to prove Proposition 5.6.1, we need the following two lemmata.

LEMMA 5.6.2. Let .L; F / be any filtered complex. Then the bifiltered com-
plex .K; F;Dec.F // satisfies (32).

Proof. This is a formal routine verification. �

LEMMA 5.6.3. With things as in Proposition 5.6.1, the natural map

HomDF 2.A/..L; P; F /; .L;Dec.F /; F // �! HomDF .A/..L; F /; .L; F //

induced by forgetting the first filtration is an isomorphism. The same is true with
the roles of the filtrations P and Dec.F / switched.

Proof. Endow D.A/ with the standard t-structure (i.e. usual truncation). En-
dow DF .A/ with the canonical lift of this t-structure (see �5.5). The hypothesis
(32) implies that, for every b 2 Z;

.GrbPLŒ�b�; F / 2DF ˇ .A/;

i.e., it is in the heart of the canonical lift of the standard t-structure to DF .A/:
Similarly, Lemma 5.6.2 implies that, for every b 2 Z;

.GrbDec.F /LŒ�b�; F / 2DF ˇ .A/:

The hypotheses of Proposition 5.4.1 are met: in fact they are met for every
i; j , due to the second axiom of t -structure. The first statement follows.

If we switch P and Dec.F /; then the hypotheses of Proposition 5.4.1 are still
met, for the same reason, and the second statement follows. �
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Proof of Proposition 5.6.1. By Lemma 5:6:3, the identity on .L; F / admits
natural lifts

�P 2 HomDF 2A..L; P; F /; .L;Dec.F /; F //;

�Dec.F / 2 HomDF 2A..L;Dec.F /; F /; .L; P; F //

which are inverse to each other and hence isomorphisms.
By forgetting the second filtration, we obtain a pair of maps in

HomDFA..L; P /; .L;Dec.F // and HomDFA..L;Dec.F //; .L; P /

which are inverse to each other. By forgetting both filtrations, both maps yield the
identity on L. �

Remark 5.6.4. The results of this section hold if we replace Dec.F / with any
filtration P 0 satisfying (32).

6. Proof of the results

In this section, we prove the main results of this paper and make a connection
with Beilinson’s equivalence theorem [4].

6.1. Verifying the vanishing (32) for general flags. Recall the set-up: Y is
quasi projective of dimension n, K 2DY , Y � PN is an affine embedding, F;F0

is a pair of linear n-flags on PN : We have the bounded multi-filtered complexes of
abelian groups .R�.Y;K/; P; F; ı/; .R�c.Y;K/; P;G; ı/ obtained using suitably
acyclic resolutions. The perverse spectral sequences are the spectral sequences for
the filtration P , the flag spectral sequences are the ones for the filtrations F;G; ı,
similarly, for the perverse Leray spectral sequences. If the flags are arbitrary, then
the perverse and the flag spectral sequences seem unrelated.

Let † be a stratification of PN adapted to K and to the embedding Y �
PN : The proof of Theorem 4.1.1 consists of showing that if the flag F is in good
position with respect to † (see Definition 5.2.4), then the vanishing conditions
(32) hold for the bifiltered complexes .R�.Y;K/; P; F // by virtue of a repeated
application of the strong weak Lefschetz Theorem 5.1.2, so that Proposition 5.6.1
applies and there is a natural identification of filtered complexes .R�.Y;K/; P /D
.R�.Y;K/;Dec.F // and of the ensuing spectral sequences. The other results are
proved in a similar way.

The key to the proof is Lemma 6.1.1 (below) which is suggested by a con-
struction due to Beilinson [4, Lemma 3.3 and Complement to �3], which yields a
technique to construct resolutions of perverse sheaves on varieties by using suitably
transverse flags. The entries of the resolutions satisfy strong vanishing conditions
and realize the wanted condition (32). There are three versions, left, right and
bi-sided resolutions.
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The resolutions are complexes obtained by using the following general con-
struction. Let Q 2 P†Y

Y , where †Y is the trace of † on Y . The connecting maps
associated with the short exact sequences 0 ! Gr�C1F Q ! F �Q=F �C2Q !

Gr�Q! 0 give rise to a sequence of maps in DY

(33) Gr�nF Q
d
�! � � �

d
�! Gr0FQ;

with d2 D 0: We call this a complex in DY . The same is true for the G filtration:
Gr0GQ! � � � ! GrnGQ is a complex in DY . The bigraded objects GrFGrG give
rise to a double complex with associated single complex Gr�nı Q! � � �!GrnıQ in
DY : The transversality assumptions on the flags ensure that these are complexes of
perverse sheaves resolving Q, that they are suitably acyclic and that their formation
is an exact functor. More precisely, we have the following:

LEMMA 6.1.1 (Acyclic resolutions of perverse sheaves). Let Y be quasi pro-
jective, † be a stratification adapted to the affine embedding Y � PN , Q 2 P†Y

Y

be a †Y -constructible perverse sheaf on Y .
Let F be a linear n-flag on PN in good position with respect to †. Then

(i) There is the short exact sequence in P
†0Y
Y � PY W

0 �!QY�n�∅Œ�n� �! : : : �!QY�1�Y�2
Œ�1� �!QY�Y�1

Œ0� �!Q �! 0I

(i0) If , in addition, Y is affine, then H r.Y;QYp�Yp�1
/D 0; 8r ¤ p:

(ii) There exists the short exact sequence in P
†0Y
Y � PY :

0 �!Q �! k0�k
Š
0Q �! k�1�k

Š
�1QŒ1� �! : : : �! k�n�k

Š
�nQŒn� �! 0I

(ii0) If , in addition, Y is affine, then H r
c .Y; k�p�k

Š
�pQ/D 0; 8r ¤ p:

Let .F;F0/ be a pair of linear n-flags which are in good position with respect to †
and to each other. Then

(iii) The single complex Gr�ıQŒ�� associated with the double complex of perverse
sheaves GriFGrjGQŒi C j � is canonically isomorphic to Q in Db.PY /:

(iii0) H r.Y; .k0
�j �

k0
Š
�jQ/Yi�Yi�1

/DH r
c .Y; .k

0
�j �

k0
Š
�jQ/Yi�Yi�1

/D 0 for every
r ¤ i C j .

Proof. Note that, in Lemma 5.3.1,

Y D Y0; jŠj
�QD k0Šk

�
0QDQY0�Y�1

; and j�j ŠQD k0�kŠ0Q:

More generally,

R�Z�j�Z�j�1
D k0�j �k

0Š
�j and .�/Yi�Yi�1

D ki Šk
�
i :



2108 MARK ANDREA A. DE CATALDO and LUCA MIGLIORINI

Statement (i) follows by a simple iteration of Lemma 5.3.1, where one uses at
each step the fact that F is in good position with respect to the initial †: In this step,
the relative position of the linear sections and the strata at infinity are unimportant.

Statement (i0) follows from an iterated use of Theorem 5.1.2 and Remark 5.2.3.
Here it is important that the linear sections meet the strata at infinity transversally.

Statements (ii) and (ii0) are proved in a similar way.
The double complex is obtained as follows: first resolve Q as in (ii), then

resolve each resulting entry as in (i). We thus have quasi isomorphisms in C b.PY /:
Q! Gr�GQŒ�� Gr�ıQŒ�� and (iii) follows. Finally, (iii0) now follows from (27).

�

Remark 6.1.2. The formation of the left, right and bi-sided resolutions of Q 2
P†Y

Y in Lemma 6.1.1 are exact functor with values in C b.PY /:

Assumption 6.1.3 (Choice of the pair of linear flags F;F0). We fix a pair of
linear n-flags F;F0 on PN in good position with respect to † and to each other. A
general pair in F.N; n/�F.N; n/ will do.

Remark 6.1.4. Since K 2 D†Y

Y ; the perverse sheaves pHb.K/ 2 D
†Y

Y and,
with our choice of the pair .F;F0/, the conclusions of Lemma 6.1.1 hold for all the
pHb.K/.

LEMMA 6.1.5. If Y is affine, then

H r.GraFGrbP R�.Y;K//D 0; 8r ¤ a� b;

H r.GraGGrbP R�c.Y;K//D 0; 8r ¤ a� b:

If Y is quasi projective, then

H r.Y;GraıGrbPR�.Y;K//DH
r.Y;GraıGrbPR�c.Y;K//D 0 8r ¤ a� b:

Proof. We prove the first assertion and the second and third are proved in a
similar way. By (12), the group in question is

H r�.a�b/.Y; pH�b.K/Ya�Ya�1
Œa�/

and the required vanishing follows from Assumption 6.1.3, Remark 6.1.4, and
Lemma 6.1.1(i0). �

6.2. Proofs of Theorems 4.1.1, 4.1.2, 4.1.3 and 4.2.1.

Proof of Theorems 4.1.1 and 4.1.2. By the first two assertions of Lemma 6.1.5,
we can apply Proposition 5.6.1 to .R�.Y;K/; P; F / and to .R�c.Y;K/; P;G/ and
prove the first two theorems. �

Proof of Theorem 4.1.3. We prove the version for H.X;C /. The case of
Hc.X; C / is proved in a similar way. Given the fixed embedding Y � PN , pick
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a stratification † of PN adapted to f�C and to the embedding. Choose a linear
n-flag F on PN in good position with respect to †, e.g. general. Let Y� be the
corresponding n-flag on Y and set X� WD f �1Y�: Denote by zi ; zj ; zk the associated
embeddings as in (4).

By Theorem 4.1.1, the perverse spectral sequence for H.Y; f�C/, i.e. the per-
verse Leray spectral sequence for H.X;C /, is the shifted Y� flag spectral sequence
for H.Y; f�C/ (F -version).

Our goal is to identify the Y� flag spectral sequence for H.Y; f�C/ with the
X� spectral sequence for H.X;C /. It is sufficient to show that

(34) .R�.X;C /; FX�/D .R�.Y; f�C/; FY�/I

in fact, the shifted versions would also coincide and we would be done. In general,
the two filtered complexes for Y� and X� do not coincide, due to the failure of
the base change theorem. In the present case, transversality prevents this from
happening.

We assume that C is injective. The filtered complex .C; F / is of c-soft type.
On varieties c-soft and soft are equivalent notions and soft sheaves are fŠ and
f�-injective.

We have the filtered complex .R�.X;C /; FX�/, i.e. the result of applying
�.X;�/ to the C -analogue of (5).

Transversality ensures that we have the first equality in (29): �jpŠ zj �p f�C D
f�jpŠj

�
p C: This implies that, by applying f� to the C -analogue of (5), we obtain

the f�C analogue of (5) on Y with respect to Y�, i.e. (34) holds and we are done.
�

Proof of Theorem 4.2.1. In view of the third assertion of Lemma 6.1.5, the
proof is analogous to the proofs given above. �

6.3. Resolutions in Db.PY /. In an earlier version of this paper, we worked
in the derived category of perverse sheaves Db.PY / which, in the case of field
coefficients, is equivalent to DY ([4]). We are very thankful to one of the anony-
mous referees for suggesting the considerably more elementary approach contained
in this paper which takes place in D.Ab/. On the other hand, the approach in
Db.PY / explains the relation “P DDec.F /” at the level of complexes of (perverse)
sheaves, i.e. before taking cohomology. We outline this approach in the case of the
F -construction on Y affine. We omit writing down the similar details in the case
of the G-construction in the affine case and in the case of the ı.F;G/-construction
in the quasi projective case.

The approach is based on Beilinson’s Equivalence Theorem [4].
In what follows, Y is affine; we work with field coefficients, for example Q,

Db.PY / is endowed with the standard t -structure,DY with the perverse t -structure.
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An equivalence of t -categories is a functor, between triangulated categories with t -
structures, which is additive, commutes with translations, preserves distinguished
triangles, is t -exact (i.e. it preserves the hearts) and is an equivalence.

THEOREM 6.3.1 ([4]). There is an equivalence of t-categories, called the re-
alization functor

rY WD
b.PY /

'
�!DY :

An outcome of this result is that it implies that, up to replacing K 2 DY
with a complex naturally isomorphic to it, there is a filtration B on K such that
GrbBKŒb� 2 PY . When we recall Section 5.5, this means that .K;B/ is in the
heart DYFˇ of the canonical lift to DYF of the perverse t -structure on DY . This
circumstance, coupled with the construction (33), allows us to describe an inverse
sY to rY , i.e. to assign to K a complex of perverse sheaves

sY .K/D sY .K;B/D Gr�BKŒ��DW K
�
2Db.PY /:

Fix a stratification S of Y such that all the finitely many nonzero GrbBK are
S-constructible. Note that if K 2D†

0

Y , then it is possible that GrbBK …D
†0 and

one may need to refine. Choose an embedding Y � PN , a stratification † on PN

adapted (cf. Definition 5.2.1) to S and to the embedding, and a linear n-flag F on
PN in good position (cf. Definition 5.2.4; a general one will do) with respect to †.

Let �D�.F;P / be the diagonal filtration. By transversality, we have that
.K;�/ 2 DYFˇ : We obtain the double complex K�;� WD Gr�FGr�PK, with asso-
ciated single complex s.K�;�/� D sY .K;�/ that maps quasi isomorphically onto
K�: We also have H r.Y;K�;�/ D 0 for every r ¤ 0 so that we have obtained a
resolution with H.Y;�/-acyclic entries.

The single complex s.K�;�/ admits the bête filtration by rows Brow, where
B
q
rows.K

�;�/ is the single complex associated with the double complex K�;��q .
i.e. the result of replacing with zeroes the entries strictly above the q-th row.

There is another filtration, Stdcol; where Stdpcol s.K
�;�/ is the single complex

associated with the double complex obtained by keeping the columns p0 < �p;
replacing the columns p0 > �p with zeroes, and replacing the entries Kp;q in the
.�p/-th column by KerfKp;q! KpC1;qg:

By Remark 6.1.2, the exactness properties of the construction of the resolu-
tion of Lemma 6.1.1 ensure that the natural map .s.K�;�/;Stdcol/!.K

�;Std/ is a
filtered quasi isomorphism.

It is via this construction that the relation Dec.F /D P becomes transparent:
it holds in Db.PY /'DY and it descends to D.Ab/:

1) It is elementary to verify that Dec.Brow/D Stdcol (cf. [3, Rem. 3.11.1]);

2) The filtered complex of perverse sheaves .s.K�;�/;Brow/ corresponds to .K;F /
under the equivalence rY ;
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3) The t-exactness of rY ensures that the filtered complex .s.K�;�/;Stdcol/ '

.K;Std/ corresponds to .K; P /;

4) By the exactness of the construction, the complex s.H 0.Y;K�;�// inherits the
relation Dec.Brow/D Stdcol.

5) The bifiltered complex .s.H 0.Y;K�;�//;Stdcol; Brow/ is a realization in the
bifiltered derived category DF2.Ab/ of .R�.Y;K/; P; F / and by 4) the per-
verse spectral sequence is identified with the shifted flag spectral sequence.

Remark 6.3.2. On the affine Y , the functor H 0
PY
WPY !Ab, Q 7!H 0.Y;Q/

is right-exact. By [4, §3], this right-exact functor admits a left-derived functor
LH 0

PY
WD�.PY /!D�.Ab/. The complex in Step 4) realizes LH 0

PY
.K/.

7. Applications

The following results are due to M. Saito [18] who used his own mixed Hodge
modules. We offer a proof based on the methods of this paper.

THEOREM 7.0.3. Let Y be quasi projective. The perverse spectral sequences

E
p;q
1 DH 2pCq.Y; pH�p.ZY //H)H�.Y;Z/;

E
p;q
1 DH 2pCq

c .Y; pH�p.ZY //H)H�c .Y;Z/

are spectral sequences in the category of mixed Hodge structures.

Proof. We prove the first statement when Y is affine. The other variants are
proved in similar ways. By Theorem 4.1.1, there is an n-flag Y� on Y such that
the perverse spectral sequence for H.Y;Z/ is the shifted spectral sequence of the
flag spectral sequence

E
p;q
1 DHpCq.Yp; Yp�1;Z/H)H�.Y;Z/;

which is in the category of mixed Hodge structures. �

THEOREM 7.0.4. Let f W X ! Y be a map of varieties where Y is quasi
projective. The perverse Leray spectral sequences

E
p;q
1 DH 2pCq.Y; pH�p.f�ZY //H)H�.X;Z/;

E
p;q
1 DH 2pCq

c .Y; pH�p.fŠZY //H)H�c .X;Z/

are spectral sequences in the category of mixed Hodge structures.

Proof. We prove the case of cohomology over an affine base Y and leave
the rest to the reader. By Theorem 4.1.3, the perverse Leray spectral sequence for
H.X;Z/ is the shifted X� flag spectral sequence with respect to a suitable n-flag
X� on X . This latter is in the category of mixed Hodge structures. �
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Remark 7.0.5 (Mixed Hodge structures and the decomposition theorem). In
the paper [8], we endow the cohomology of the direct summands, appearing in the
decomposition theorem for the proper push forward of the intersection cohomology
complex of a proper variety, with natural, pure polarized Hodge structures. These
structures arise as subquotients of the pure Hodge structure of the cohomology
of a resolution of the singularities of the domain of the map. In particular, this
endows the intersection cohomology groups of proper varieties with pure polarized
Hodge structures. In the paper [9], we prove that for projective morphisms of
projective varieties, one can realize the direct sum splitting mentioned above in the
category of pure Hodge structures. The methods of this paper allow us to endow
the intersection cohomology groups IH.Y;Z/ and IHc.Y;Z/ of a quasi projective
variety with a mixed Hodge structure and to extend all the results of [8] to the
case of quasi projective varieties. Furthermore, we compare the resulting mixed
Hodge structures with the ones arising from M. Saito’s work and we show that they
coincide. Details will appear in [6].
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