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Introduction

0.1. Perverse filtrations. Throughout the paper, we work over the complex num-
bers C.

Let π : X → Y be a proper morphism with X a nonsingular algebraic variety.
The perverse t-structure on the constructible derived category Db

c(Y ) with rational
coefficients Q induces a finite and increasing filtration on the rational cohomology
groups H∗(X,Q)

(1) P0H
∗(X,Q) ⊂ P1H

∗(X,Q) ⊂ · · · ⊂ PkH
∗(X,Q) ⊂ · · · ⊂ H∗(X,Q),

called the perverse filtration associated with π. The filtration (1) is governed by
the topology of the morphism π : X → Y . See Section 1 for a brief review of the
subject.

Every cohomology class on X is indexed by the perverse filtration (1). We say
that a class α ∈ Hd(X,Q) has perversity k if α = 0, or

α ∈ PkH
d(X,Q) and α /∈ Pk−1H

d(X,Q).

The purpose of this paper is to study perverse filtrations associated with Hitchin
fibrations in view of the P=W conjecture by de Cataldo, Hausel, and Migliorini [11].
Our method is to use symmetries induced by the monodromy of moduli spaces of
sheaves on abelian surfaces.
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0.2. The P=W conjecture. Let C be an irreducible nonsingular projective curve
of genus g ≥ 2. There are two moduli spaces which are attached to the curve C,
the reductive Lie group GLr and an integer χ with gcd(r, χ) = 1. They are the
twisted versions of Simpson’s Dolbeault and Betti moduli spaces [42]; see [25] for
the non-abelian Hodge theory in the twisted case.

The first moduli space MDol parametrizes stable Higgs bundles on C

(E , θ), θ : E → E ⊗ ΩC

with rank(E) = r and χ(E) = χ. The variety MDol admits a projective morphism
with connected fibers

(2) h : MDol → Λ =

n⊕
i=1

H0(C,Ω⊗i
C )

sending (E , θ) ∈ MDol to the characteristic polynomial char(θ) ∈ Λ. The proper
morphism (2), called the Hitchin fibration, is Lagrangian with respect to the canon-
ical holomorphic symplectic form on MDol given by the hyper-Kähler metric on
MDol; see [27]. The second moduli space is the (twisted) character variety MB. It
can be described (see [25], or [40] for an alternative description) as parametrizing
isomorphism classes of irreducible local systems

ρ : π1(C \ {p}) → GLr,

where ρ sends a loop around a chosen point p to ξχr Ir ∈ GLr, with ξr a primitive
root of unity. The character variety MB is affine.

In [41], Simpson constructed a diffeomorphism between the (un-twisted) mod-
uli spaces MDol and MB , called the non-abelian Hodge theory; see [25] for the
twisted case. A striking prediction, suggested by the parallel between the Relative
Hard Lefschetz [5] and Curious Hard Lefschetz [24] Theorems, was formulated by
de Cataldo, Hausel, and Migliorini [11]; it predicts that the perverse filtration of
MDol with respect to the Hitchin fibration (2) matches the weight filtration of the
mixed Hodge structure on MB under the identification

H∗(MDol,Q) = H∗(MB,Q)

induced by Simpson’s (twisted) non-abelian Hodge theory.

Conjecture 0.1 ([11], P=W). We have

PkH
∗(MDol,Q) = W2kH

∗(MB,Q) = W2k+1H
∗(MB ,Q), k ≥ 0.

Conjecture 0.1 establishes a surprising connection between the topology of
Hitchin fibrations and the Hodge theory of character varieties. It was proven in
[11] in the case of r = 2 for any genus g ≥ 2. See also [12, 39, 45] for certain para-
bolic cases, and [23, 38] for a compact analog concerning Lagrangian fibrations on
projective holomorphic symplectic manifolds.

The first main result of this paper is a proof of Conjecture 0.1 for curves of genus
2 and arbitrary rank r ≥ 1.

Theorem 0.2. The P=W Conjecture 0.1 holds when C has genus g = 2.

For an irreducible nonsingular curve C of genus g ≥ 2, it is a general fact that
P = W for GLr implies P = W for PGLr; see (70) and (90). Hence we conclude
immediately from Theorem 0.2 that the P = W conjecture holds for PGLr when
the curve C has genus g = 2.
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As explained in [11, Section 1], the curious Poincaré duality and the Curious
Hard Lefschetz conjectures [24, Conjectures 4.2.4 and 4.2.7] for character varieties
are consequences of the P=W Conjecture 0.1. Moreover, by [7] and [35, Section
9.3], the P=W Conjecture 0.1 implies the correspondence between Gopakumar–
Vafa invariants and Pandharipande–Thomas invariants [35, Conjecture 3.13] for
the local Calabi–Yau 3-fold T ∗C × C in the curve class r[C]. Hence Theorem 0.2
verifies all these conjectures for genus 2 curves.1

0.3. Tautological classes. Assume that C has genus g ≥ 2 and r ≥ 1. A set of
generators for the cohomology rings identified by the non-abelian Hodge diffeomor-
phism

(3) H∗(MDol,Q) = H∗(MB,Q)

is described in [30] by tautological classes.
Let

pC : C ×MDol → C, pM : C ×MDol → MDol

be the projections. We say that a triple

(Uα, θ) = (U , θ, α)
is a twisted universal family over C ×MDol if (U , θ) is a universal family and

α = p∗Cα1 + p∗Mα2 ∈ H2(C ×MDol,Q),

with α1 ∈ H2(C,Q) and α2 ∈ H2(MDol,Q).
For a twisted universal family (Uα, θ), we define the twisted Chern character

chα(U) as
chα(U) = ch(U) ∪ exp(α) ∈ H∗(C ×MDol,Q),

and we denote by
chαk (U) ∈ H2k(C ×MDol,Q)

its degree k part. The class chα(U) is called normalized if

chα1 (U)|p×MDol
= 0 ∈ H2(MDol,Q), chα1 (U)|C×q = 0 ∈ H2(C,Q),

with p ∈ MDol and q ∈ C points. Since two universal families differ by the pull-
back of a line bundle on MDol, a straightforward calculation shows that normalized
classes on C ×MDol exist and are uniquely determined. We introduce the tauto-
logical classes associated with the normalized class chα(U) as follows.

For any γ ∈ Hi(C,Q), let c(γ, k) denote the tautological class

(4) c(γ, k) :=

∫
γ

chαk (U) = pM∗(p
∗
Cγ ∪ chαk (U)) ∈ Hi+2k−2(MDol,Q).

Markman showed in [30] that the classes c(γ, k) generate the cohomology ring (3)
as a Q-algebra. Furthermore, Shende proved in [40] (cf. Lemma 4.6) that

(5) c(γ, k) ∈ kHdgi+2k−2(MB), ∀ γ ∈ Hi(C,Q),

where
kHdgd(MB) = W2kH

d(MB ,Q) ∩ F kHd(MB,C) ∩ F̄ kHd(MB,C),

with F ∗ and W∗ the Hodge and weight filtrations, respectively. It follows that
the rational cohomology H∗(MB,Q) is split of Hodge–Tate type, and there is a

1As we discuss later, the curious Poincaré and Lefschetz conjectures have been recently shown
by Mellit [36] to hold for all genera.
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canonical decomposition of the graded vector spaces (3) induced by the mixed
Hodge theory of MB ,

(6) H∗(MDol,Q) = H∗(MB,Q) =
⊕
k,d

kHdgd(MB).

The P=W conjecture, which can be restated as predicting that

(7) PkH
∗(MDol,Q) =

⊕
k′≤k

k′
Hdg∗(MB),

is equivalent to the following statements.

Conjecture 0.3 (Equivalent version of P=W). There exists a splitting
G∗H

∗(MDol,Q) of the perverse filtration associated with the Hitchin fibration (2)
satisfying the following two properties.

(a) (Tautological classes) Every tautological class c(γ, k) has perversity k and
in fact

c(γ, k) ∈ GkH
∗(MDol,Q), ∀k ≥ 0, ∀γ ∈ H∗(C,Q).

(b) (Multiplicativity) The perverse decomposition is multiplicative, i.e.,

∪ : GkH
d(MDol,Q)×Gk′Hd′

(MDol,Q) → Gk+k′Hd+d′
(MDol,Q).

We recall that the multiplicativity of the weight filtration

∪ : WkH
d(X,Q)×Wk′Hd′

(X,Q) → Wk+k′Hd+d′
(X,Q)

is standard from mixed Hodge theory. However, the perverse filtration associated
with a proper flat morphism is not multiplicative in general; see [8, Exercise 5.6.8].
It is mysterious why the perverse filtration associated with the Hitchin fibration
(2) should be multiplicative, as is predicted by the P=W conjecture. In fact,
one consequence of this paper is that the full P=W conjecture can be reduced to
the multiplicativity of the perverse filtration; see Theorem 0.6. This approach of
analyzing the P=W conjecture via Conjecture 0.3 goes back to [11] where it is
applied to prove the case of rank 2.

0.4. P=W for tautological classes. Theorem 0.2 is concerned with genus g = 2.
In this section, we state our results for genus g ≥ 2.

0.4.1. Even tautological classes. We consider the Q-subalgebra

R∗(MDol) ⊂ H∗(MDol,Q) = H∗(MB,Q)

generated by all the even tautological classes

c(γ, k), k ≥ 0, γ ∈ H0(C,Q)⊕H2(C,Q).

Theorem 0.4 establishes the P=W conjecture in arbitrary genus and rank, but
restricted to this subalgebra.

Theorem 0.4. The P=W conjecture holds, for any genus g ≥ 2 and rank r ≥ 1
for R∗(MDol), i.e.

PkH
∗(MDol,Q) ∩R∗(MDol) = W2kH

∗(MB,Q) ∩R∗(MDol)

= W2k+1H
∗(MB ,Q) ∩R∗(MDol).



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

HITCHIN FIBRATIONS, ABELIAN SURFACES, AND P=W 915

In fact, in the proof of Theorem 0.4, we obtain a multiplicative decomposition

R∗(MDol) =
⊕
k,d

GkR
d(MDol)

that splits the restricted perverse filtration PkH
∗(MDol,Q) ∩ R∗(MDol) and such

that
GkR

d(MDol) =
kHdgd(MB) ∩Rd(MDol).

We refer to Section 4.6 for more details.

0.4.2. Odd tautological classes. Theorem 0.5 concerns odd tautological classes

(8) c(γ, k) ∈ H2k−1(MDol,Q), ∀k ≥ 0, ∀γ ∈ H1(C,Q).

Theorem 0.5. Any odd tautological class (8) has perversity k.

Theorems 0.4 and 0.5 provide strong evidence for the P=W Conjecture 0.1 (and
for its reformulation Conjecture 0.3) for any genus g ≥ 2. In particular, we obtain
that all tautological generators c(γ, k) satisfy the P = W match:

(9) c(γ, k) ∈ PkH
∗(MDol,Q), ∀ γ ∈ H∗(C,Q).

0.4.3. Multiplicativity is equivalent to P=W. The P=W Conjecture 0.1 implies im-
mediately that the perverse filtration P∗H

∗(MDol,Q) is multiplicative, i.e.

(10) ∪ : PkH
d(MDol,Q)× Pk′Hd′

(MDol,Q) → Pk+k′Hd+d′
(MDol,Q).

Theorem 0.6 shows that the converse is also true. It is a corollary of Theorems
0.4 and 0.5, and of the Curious Hard Lefschetz conjecture recently established by
Mellit [36].

Theorem 0.6. The P=W Conjecture 0.1 is equivalent to the multiplicativity (10)
of the perverse filtration.

In fact, we deduce from (5), (9), and (10) that

W2iH
∗(MB ,Q) ⊂ PiH

∗(MDol,Q), ∀i ≥ 0,

which further implies Conjecture 0.1 by [36, Theorem 1.5.3] and the second para-
graph following [36, Corollary 1.5.4].

Remark 0.7. All the results of this paper hold for arbitrary rank r ≥ 1. The case
r = 1 is classical and easy: the Dolbeault moduli space is the cotangent bundle of
a Jacobian of some degree of the curve and the Betti moduli space is a product of
G2g

m . In this paper, starting with the assumption β2 ≥ 6 in Section 2.1, we focus on
the case of rank r ≥ 2, which corresponds to β2 ≥ 8. The case of rank one could be
dealt with also by using the methods of this paper, but at the price of some easy
modifications that we deemed a distraction.

0.5. Idea of the proof. The key idea in proving our results is to first study
perverse filtrations for certain compact hyperkähler manifolds, motivated in part by
earlier work of the third author and Yin [38]. That is, we consider an abelian surface
A with ample curve class β ∈ H2(A,Z), and prove analogs of our main result for
the moduli space Mβ,A of one-dimensional sheaves with support in the class β; see
Theorem 2.1 for the precise statement. The advantage of the compact geometry is
that we can use results of Markman [34] on monodromy operators for Mβ,A. These
are symmetries, arising from parallel transport and Fourier-Mukai transforms, that
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do not appear in the Hitchin setting and which heavily constrain tautological classes
of universal families. We show that these operators relate perverse filtrations and
tautological classes for different choices of β and, in particular, allow us to pass
from the case of imprimitive β to primitive β, which can be studied directly using
[39, 45].

In order to apply this to Hitchin fibrations, we consider the degeneration to the
normal cone of an embedding of a genus g curve C into an abelian surface

jC : C ↪→ A,

and study the specialization map on cohomology of the associated moduli spaces.
In general, there is a great deal of information loss in this specialization because
the family is non-proper. Nevertheless, we are able to show its compatibility with
tautological classes and perverse splittings. Finally we use these compatibilities to
deduce our main theorems for such a curve C; this implies our results hold for all
curves in view of [13].

0.6. Outline of paper. We briefly outline the contents of this paper. In Section
1, we recall some basic facts about perverse filtrations and earlier results of [39,45]
for Hilbert schemes of points on the special abelian surface E×E′. In Section 2, we
pass to the setting of abelian surfaces. One key result here is the splitting Theorem
2.1. After recalling Markman’s work on monodromy operators, we prove the result
for primitive classes β by a direct analysis, and then we combine the primitive case
with Markman’s results to establish the general case. In Section 3, we formulate
and prove Theorem 3.8, which is a strengthened version of the splitting of Theorem
2.1 and which is more robust for specialization arguments. Finally, in Section 4,
we study specialization maps for our degeneration, and we use them to prove the
main theorems.

While this paper is written in logical order, some readers may prefer to start
from Section 4, and refer backwards as needed.

1. Perverse filtrations

1.1. Overview. We begin with the definition and some relevant properties of the
perverse filtration associated with a proper surjective morphism π : X → Y . Some
references are [5, 15, 16, 43]. Throughout this section, for simplicity, we assume X
and Y are nonsingular.

Following [12,39,45], we discuss the perverse filtration for the Hilbert scheme of
n-points on an abelian surface E × E′ product of two elliptic curves, induced by
the natural second projection morphism

E × E′ → E′.

This example plays a crucial role in Section 2 concerning moduli of sheaves on
abelian surfaces.

1.2. Perverse sheaves. Let Db
c(Y ) denote the bounded derived category of Q-

constructible sheaves on Y , and let D : Db
c(Y )op → Db

c(Y ) be the Verdier duality
functor. The full subcategories

pDb
≤0(Y ) =

{
E ∈ Db

c(Y ) : dim Supp(Hi(E)) ≤ −i
}
,

pDb
≥0(Y ) =

{
E ∈ Db

c(Y ) : dim Supp(Hi(DE)) ≤ −i
}
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give rise to the perverse t-structure on Db
c(Y ), whose heart is the abelian category

of perverse sheaves,

Perv(Y ) ⊂ Db
c(Y ).

For k ∈ Z, let pτ≤k be the truncation functor associated with the perverse t-
structure. Given an object C ∈ Db

c(Y ), there is a natural morphism

(11) pτ≤kC → C.
For the morphism π : X → Y , we obtain from (11) the morphism

pτ≤kRπ∗QX → Rπ∗QX ,

which further induces a morphism of (hyper-)cohomology groups

(12) Hd−(dimX−R)
(
Y, pτ≤k(Rπ∗QX [dimX −R])

)
→ Hd(X,Q).

Here

(13) R = dimX ×Y X − dimX

is the defect of semismallness. The k-th piece of the perverse filtration (1)

PkH
d(X,Q) ⊂ Hd(X,Q)

is defined to be the image of (12).2

We say that a graded vector space decomposition

H∗(X,Q) =
⊕
k,d

GkH
d(X,Q)

splits the perverse filtration if

PkH
d(X,Q) =

⊕
i≤k

GiH
d(X,Q), ∀k, d.

1.3. The decomposition theorem. Perverse filtrations can be described through
the decomposition theorem [5, 15]. By applying the decomposition theorem to the
morphism π : X → Y , we obtain an isomorphism

(14) Rπ∗QX [dimX −R] �
2R⊕
i=0

Pi[−i] ∈ Db
c(Y )

with Pi ∈ Perv(Y ). The perverse filtration can be identified as

PkH
d(X,Q) = Im

{
Hd−(dimX−R)(Y,

k⊕
i=0

Pi[−i]) → Hd(X,Q)
}
.

In general, the isomorphism (14) in the decomposition theorem is not canonical.
Once we fix such an isomorphism φ, we obtain a splitting G∗H

∗(X,Q) of the
perverse filtration,

PkH
d(X,Q) =

⊕
i≤k

GiH
d(X,Q).

Here

GiH
d(X,Q) = Im

{
Hd−(dimX−R)(Y,Pi[−i]) → Hd(X,Q)

}
2Here the shift [dimX − R] is to ensure that the perverse filtration is concentrated in the

degrees [0, 2R].
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with

Hd−(dimX−R)(Y,Pi[−i]) → Hd(X,Q)

the morphism induced by φ−1.

1.4. Perverse filtration for projective bases. We review another description
of the perverse filtration associated with

π : X → Y,

when Y is projective.
We fix η to be an ample class on Y , and we consider

L = π∗η ∈ H2(X,Q).

The class L acts on H∗(X,Q) as an nilpotent operator via cup product

L : H∗(X,Q)
∪L−−→ H∗(X,Q).

Proposition 1.1 shows that the filtration (1) is completely described by an ample
class on the base. It is stated in the special case needed in this paper.

Proposition 1.1 ([15, Proposition 5.2.4]). Assume that

dimX = 2dimY = 2R.

Then we have

PkH
m(X,Q) =

∑
i≥1

(
Ker(LR+k+i−m) ∩ Im(Li−1)

)
∩Hm(X,Q).

1.5. Abelian surfaces and Hilbert schemes. Let A = E × E′ be an abelian
surface with E and E′ elliptic curves, and let n ∈ Z≥0. The natural projection

p : A → E′

induces a morphism

pn : A[n] → E′(n)

from the Hilbert scheme of n points on A to the symmetric product of the elliptic
curve E′. We briefly review the construction [39] of a canonical splitting

(15) H∗(A[n],Q) =
⊕
i,d

G̃iH
d(A[n],Q)

of the perverse filtration associated with pn, which culminates with the explicit
formula (18).

We start with a canonical decomposition

(16) H∗(A,Q) =
⊕
i,d

G̃iH
d(A,Q)

with G̃iH
d(A,Q) the Künneth factor

Hi(E,Q)⊗Hd−i(E′,Q) ⊂ Hd(A,Q).

Since p : A → E′ is a trivial fibration, (16) splits the perverse filtration associated
with p. Assume that we already have decompositions of H∗(X1,Q) and H∗(X2,Q);
a decomposition of H∗(X1 × X2,Q) can be constructed by using the Künneth
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decomposition. In particular, we obtain the direct sum decomposition of H∗(An,Q)
with summands

G̃kH
∗(An,Q) =

〈
α1 � · · · � αn; α ∈ G̃ki

H∗(A,Q),
∑
i

ki = k

〉
,

whose Sn-invariant part induces a decomposition

H∗(A(n),Q) =
⊕

G̃iH
d(A(n),Q).

In turn, by using Künneth decompositions again, this gives us canonical decompo-
sitions for

H∗(A(n1) ×A(n2) × · · · ×A(nk),Q), ni ≥ 1.

Finally, the cohomology of the Hilbert scheme A[n] is related to the cohomology
of symmetric products by [14, 22]. We employ exponential notation for partitions
ν := (νi)

l
i=1, with νi > 0 and

∑
i νi = n, of a positive integer n. Namely, we let ak

be the number of times the integer k appears in the partition, so that the expression

1a12a2 · · ·nan

recovers the partition ν. We use A(ν) to denote the variety A(a1)×A(a2)×· · ·×A(an).
The cohomology group Hd(A[n],Q) admits a canonical decomposition

(17) Hd(A[n],Q) =
⊕
ν

Hd+2l(ν)−2n(A(ν),Q),

where ν runs through all partitions of n and l(ν) is the length of ν. The desired
canonical splitting (15) is then defined by setting

(18) G̃kH
d(A[n],Q) =

⊕
ν

G̃k+l(ν)−nH
d+2l(ν)−2n(A(ν),Q)

to be the sub-vector space of Hd(A[n],Q) under the identification (17). By [45,
Proposition 4.12], this decomposition splits the perverse filtration associated with
pn.

3

In view of [45, Proposition 2.1], by using the Künneth decomposition again, we
obtain a canonical splitting

(19) H∗(A×A[n],Q) =
⊕
i,d

G̃iH
d(A×A[n],Q)

of the perverse filtration associated with

p× pn : A×A[n] → E′ × E′(n).

Theorem 1.2 obtained in [39,45] is concerned with tautological classes and mul-
tiplicativity in the context of Hilbert schemes.

Theorem 1.2. Let In be the universal ideal sheaf on A×A[n].

(a) (Tautological classes) We have

chk(In) ∈ G̃kH
2k(A×A[n],Q).

(b) (Multiplicativity) The decomposition (15) is multiplicative, i.e.

∪ : G̃iH
d(A[n],Q)× G̃i′H

d′
(A[n],Q) → G̃i+i′H

d+d′
(A[n],Q).

3We will give another interpretation of the splitting G̃∗H∗(A[n],Q) in Corollary 3.7.
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Proof. Theorem 1.2(b) was proven in [45]. Although the multiplicativity was shown
only for the perverse filtration in [45], the same proof works for the decomposition
(15). This was explained in [39, Proposition 1.8]. Theorem 1.2(a) follows directly
from the proof of [39, Theorem 0.1] and the proof of [39, Theorem 3.3], where it is
explained how to treat perverse decompositions instead of perverse filtrations. �

2. Moduli of one-dimensional sheaves

2.1. Overview and main results. Throughout this section, we assume A is an
abelian surface and fix χ ∈ Z. Let β ∈ H2(A,Z) be an ample curve class with
β2 ≥ 6; we only consider classes β for which the vector (0, β, χ) ∈ Hev(A,Z) is
primitive. Finally, we assume that we are given a polarization H that is generic
with respect to the vector (0, β, χ). We will typically omit χ and H from our
notation.

Let Mβ,A be the moduli space which parametrizes one-dimensional sheaves sat-
isfying

(20) [supp(F)] = β, χ(F) = χ,

that are Gieseker-stable with respect to our generic polarization. In the paper,
by “support”, we mean Fitting support (see [28]), and the square bracket denotes
the associated homology class. Equivalently, these are Gieseker-stable sheaves on
A with Mukai vector (0, β, χ). By [44], the moduli space Mβ,A is a non-empty,
nonsingular projective variety of dimension β2 + 2.

Let

πA : A×Mβ,A → A, πM : A×Mβ,A → Mβ,A

be the projections. If there exists a universal family Fβ on A × Mβ,A, then, in
analogy to Section 0.3, we define the twisted Chern character associated with a
class

(21) α = π∗
Aα1 + π∗

Mα2 ∈ H2(A×Mβ,A,C)

by setting

chα(Fβ) = ch(Fβ) ∪ exp(α) ∈ H∗(A×Mβ,A,C)

(the use of C-coefficients is for later use in Theorem 2.1), and we denote its degree
2k part by

chαk (Fβ) ∈ H2k(A×Mβ,A,C).

In general, a universal family may not exist; however, as explained in [31, Section
3.1], there exists a universal class

[Fβ ] ∈ Ktop(A×Mβ,A),

which is well-defined up to pullback of a topological line bundle on Mβ,A.
4 As

before, given a choice of α as in (21), we can take its associated twisted Chern
character

chα([Fβ ]) ∈ H∗(A×Mβ,A,C),

which we still denote by chα(Fβ) for notational convenience.
The moduli space Mβ,A admits a natural Hilbert–Chow morphism

(22) πβ : Mβ,A → B, πβ(F) = [supp(F)],

4Here Ktop(X) denotes the Grothendieck ring of topological complex vector bundles on X [1].
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where B is the Chow variety parametrizing effective one-cycles in the class β; see
[28, 29]. The purpose of this section is to prove Theorem 2.1, which can be viewed
as an analog of Conjecture 0.3 for abelian surfaces.

Theorem 2.1. There exists a choice of universal twisted class chα(Fβ) with α of

type (21), and a splitting G̃∗H
∗(Mβ,A,C) of the perverse filtration associated with

the Hilbert-Chow morphism πβ (22), satisfying the following properties.

(a) (Tautological classes) For any γ ∈ H∗(A,C), we have∫
γ

chαk (Fβ) ∈ G̃k−1H
∗(Mβ,A,C).

(b) (Multiplicativity) We have

∪ : G̃iH
d(Mβ,A,C)× G̃i′H

d′
(Mβ,A,C) → G̃i+i′H

d+d′
(Mβ,A,C).

Theorem 2.1 will be deduced from Theorem 1.2 and Markman’s results on the
monodromy of holomorphic symplectic varieties [32, 34]. The strategy of the argu-
ment is to use Theorem 1.2 and direct computations to study the case of primitive
curve classes for special abelian varieties. To pass to imprimitive curve classes
(which form a distinct deformation class of Lagrangian fibrations), we require a
mild extension of Markman’s work to the setting of complex coefficients.

In the next three sections, we review Markman’s work, and in the subsequent
three sections, we prove Theorem 2.1.

2.2. Mukai lattices. Let

H∗(A,Z) = S+
A ⊕ S−

A

be the even/odd decomposition of the cohomology H∗(A,Z) with

S+
A = H0(A,Z)⊕H2(A,Z)⊕H4(A,Z), S−

A = H1(A,Z)⊕H3(A,Z).

The Mukai pairing on S+
A is given by

(23) 〈a, b〉 =
∫
A

(a1 ∪ b1 − a0 ∪ b2 − a2 ∪ b0),

where a = (a0, a1, a2) and b = (b0, b1, b2) are elements in S+
A . We have

(S+
A , 〈 , 〉) ∼= U⊕4

with U the parabolic plane. For a coherent sheaf F on A, its Mukai vector

v(F) = ch(F) ∪
√

tdA ∈ S+
A

coincides with the Chern character ch(F).
Throughout this section, we assume v ∈ S+

A is a primitive vector such that the
moduli spaceMv,A of Gieseker-stable sheaves F on A (with respect to a very general
polarization H) with Mukai vector v(F) = v is non-empty. By [44, Theorem 0.1],
the variety Mv,A is nonsingular and projective of dimension

dim(Mv,A) = 〈v, v〉+ 2,

and it is deformation equivalent to

M(1,0,−n),A = A[n] × Â,

where Â is the dual abelian variety of A and 2n = 〈v, v〉.
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A universal family on

A×M(1,0,−n),A = A× A[n] × Â

is

(24) En = π∗
12In ⊗ π∗

13P,

with In the universal ideal sheaf, P the normalized Poincaré line bundle on A× Â,
and πij the corresponding projections.

2.3. Spin representations. The even cohomology S+
A together with the Mukai

pairing is a unimodular lattice. Consider the corresponding Spin group for this lat-
tice, denoted by Spin(S+

A). We recall certain representations of this group involved
in Markman’s work following [34, Section 3].

Let H∗(A,Z) denote the total cohomology of A equipped with the pairing

(25) (a, b)A =

∫
A

τ (a) ∪ b,

where τ acts on Hi(A,Z) by (−1)i(i−1)/2. The group Spin(S+
A) admits an action

by parity-preserving isometries on H∗(A,Z)

Spin(S+
A) → Aut(H∗(A,Z)),

which extends the natural representation on S+
A .

We consider V to be the lattice

V = H1(A,Z)⊕H1(Â,Z)

carrying a symmetric bilinear form via the canonical identification

H1(Â,Z) = H1(A,Z)∗.

There exists a representation

Spin(S+
A) → Aut(V )

by isometries which we can extend to an action of Spin(S+
A) on

∧k V = Hk(A×Â,Z)
for each k. This action will play a role in the proof of Theorem 2.8.

These constructions are linear-algebraic and make sense for the groups Spin(S+
A⊗

K) with general coefficients

K = Z,Q,R, or C.

2.4. Monodromy representations. In this section, we recall Markman’s mon-
odromy operators [34] for abelian surfaces. They play a crucial role in the proof of
Theorem 2.1. We refer to [32] for a parallel theory concerning K3 surfaces.

Let H∗(A) be the cohomology H∗(A,K) with coefficients K = Z or C. Assume
that

g : H∗(A) → H∗(A)

is a parity-preserving homomorphism induced by an element (cf. Section 2.3)

g ∈ Spin(S+
A ⊗K)

which fixes a primitive Mukai vector v ∈ S+
A . Assume we are given a generic

polarization H with respect to v. We explain how to construct a graded K-algebra
automorphism

γg,v : H∗(Mv,A,K) → H∗(Mv,A,K).
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For a projective variety X, we define

l :
⊕
i

H2i(X,Q) →
⊕
i

H2i(X,Q)

to be the universal polynomial map which takes the exponential Chern character
to its total Chern class,

l(r + a1 + a2 + · · · ) = 1 + a1 + (a21/2− a2) + · · · ,
and we define

(−)∨ :
⊕
i

H2i(X,Z) →
⊕
i

H2i(X,Z), ω �→ ω∨

to be the dualizing automorphism which acts by (−1)i on the even cohomology
H2i(X,Z).

Let [Ev] and [E ′
v] be universal classes on A ×Mv,A, in the sense of Section 2.1.

We denote by xg,v the class

xg,v = π∗
12 [(id⊗ g)ch(Ev)]∨ ∪ π∗

23ch(E ′
v) ∈ H∗(Mv,A ×A×Mv,A,K),

where πij are the projections from the product Mv,A×A×Mv,A to the correspond-
ing factors. Via the formalism of correspondences, to define an endomorphism of
cohomology, it suffices to give a cohomology class in the product; in our case, the
morphism γg,v is defined by the class ()

(26) γg,v([Ev], [E ′
v]) =

(
[l(π13∗xg,v)]

−1
)
deg 2dM

∈ H2dM (Mv,A ×Mv,A,K),

where dM = dim(Mv,A), and −deg k denotes the degree k part of a cohomology
class −.

Markman proves the following statements regarding γg,v([Ev], [E ′
v]) when K = Z

(a) γg,v := γg,v([Ev], [E ′
v]) is independent of the choice of universal classes [Ev]

and [E ′
v].

(b) γg,v is a graded K-algebra automorphism.

Consider the subgroup

Spin(S+
A )v ⊂ Spin(S+

A )

preserving v. By [34, Corollary 8.4], every γg,v with g ∈ Spin(S+
A)v is a graded ring

automorphism of H∗(Mv,A,Z) and the relation

(27) γg1,v ◦ γg2,v = γg1g2,v

holds. Therefore, we have a group homomorphism (Markman’s monodromy oper-
ators)

(28) mon : Spin(S+
A)v → Aut(H∗(Mv,A,Z)), mon(g) = γg,v.

Theorem 2.2 is proved by Markman for Z coefficients in [32, 34]. The extension
of (28) to C-coefficients is crucial in the proof of Theorem 2.1.

Theorem 2.2. For g ∈ Spin(S+
A ⊗C)v, the class γg,v := γg,v([Ev], [E ′

v]) is indepen-
dent of the choice of universal classes [Ev] and [E ′

v]. The morphism (28) extends to
a group homomorphism

mon : Spin(S+
A ⊗ C)v → Aut(H∗(Mv,A,C)).
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Moreover, for a fixed universal class [Ev] and any g ∈ Spin(S+
A ⊗ C)v, there exists

α ∈ H2(Mv,A,C) so that we have

(29) (g ⊗ γg,v)ch(Ev) = ch(Ev) ∪ π∗
Mexp(α),

where πM : A×Mv,A → Mv,A is the second projection.

Proof. We deduce this theorem from the case of integral coefficients using the
Zariski-density of integral points

Spin(S+
A)v ⊂ Spin(S+

A ⊗ C)v,

which follows from the Borel Density Theorem [6] applied to the simple group

Spin(S+
A)v ∼= Spin(v⊥), v⊥ ⊂ S+

A .

The first claim, on the independence of universal classes, expresses a Zariski-closed
condition on the element g, so that it can be deduced from (a) above; see [32, Lemma
3.11].

For the remaining claims, as in the proof of [34, Corollary 8.4], we can reduce
the theorem to the case rank(v) > 0. It follows that the class α in the equation
(29) is uniquely determined by

rank(v) · π∗
Mα = c1([Ev])− [(g ⊗ γg,v)ch([Ev])]deg 2 .

The operator γg,v (26) arises as a grading-preserving element in

End(H∗(Mv,A,C)).

We need to show that for any g ∈ Spin(S+
A ⊗ C)v, we have that:

(i) γg,v is an automorphism of graded C-algebras, and
(ii) the equation (29) holds.

We first show (ii). By [34, Corollary 8.4], for every integral point g ∈ Spin(S+
A),

the homomorphism

g ⊗ γg,v : H∗(A×Mv,A,C) → H∗(A×Mv,A,C)

sends a universal class to a universal class in the sense of [34, Definition 3.4]. It
follows that the equation (29) holds for any integral g. Since this equation expresses
a Zariski-closed condition with respect to the parameter g, we obtain (29) by the
density of integral points in Spin(S+

A ⊗ C)v.
As to (i), we deduce, again, from Zariski-density that γg,v is a graded C

-algebra homomorphism for any g ∈ Spin(S+
A ⊗ C)v. The endomorphism γg,v

being an automorphism is not a Zariski closed condition. However, to prove
γg,v ∈ Aut(H∗(Mv,A,C)), it suffices to show that

(30) γg,v ◦ γg−1,v = id, g ∈ Spin(S+
A ⊗ C)v.

For integral g, the equation (30) follows from (27),

γg,v ◦ γg−1,v = γg·g−1,v = γid,v = id.

Since (30) is a Zariski closed condition, we conclude that it holds for any g, and (i)
follows. �
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2.5. Fourier–Mukai transforms. This section and Sections 2.6 to 2.7 are devoted
to proving Theorem 2.1. We first treat the special case where, if we let E and E′

be two elliptic curves, then we set

(31) A = E × E′, β = σ + nf,

where σ = [pt× E′] and f = [E × pt] are the classes of a section and a fiber with
respect to the elliptic fibration p : A → E′. Note that β2 = 2n.

By [44, Theorem 3.15], we have an isomorphism of moduli spaces

(32) Mβ,A
∼= Mvn,A(= A[n] × Â), vn = (1, 0,−n)

induced by a relative Fourier–Mukai transform with respect to the elliptic fibration
p : A → E′. Our strategy is to compare a universal rank 1 torsion free sheaf on
A×Mvn,A with a universal 1-dimensional sheaf on A×Mβ,A under the isomorphism
(32). Then we reduce the special case (31) of Theorem 2.1 to Theorem 1.2.

The proof of [44, Theorem 3.15] shows that the support of a sheaf F ∈ Mβ,A is
the union of a section and several fibers (with multiplicities). Hence the Hilbert–
Chow morphism (22) is exactly the morphism

(33) pn × q : A[n] × Â → E′(n) × E.

Here we use the identification between Â and A for the abelian surface A = E×E′,
and q is the projection to the first factor. Under the identification

A×A = (E × E)× (E′ × E′),

the kernel for the relative Fourier–Mukai transform associated with the elliptic
fibration p : A → E′ is given by

(34) P ′
E = PE � OΔE′

with
PE = OE×E(ΔE − oE × E − E × oE)

the normalized Poincaré line bundle. Recall the universal family En on A×Mvn,A

defined in (24). A universal family Fβ of 1-dimensional Gieseker-stable sheaves on
A×Mβ,A is induced by En and P ′

E under the isomorphism (32) as follows.
For χ given in (20), we define

N = OA (χ · [E × oE′ ]) = p∗OE′(χ · oE′) ∈ Pic(A).

By [44, Theorem 3.15] together with its proof, every closed point in Mβ,A is given
by (

φP′
E
(IZ ⊗ L)⊗N

)
[1] ∈ Coh(A),

where φP′
E
is the Fourier–Mukai transform with kernel (34), and IZ ⊗L ∈ Mvn,A =

A[n] × Â is a uniquely determined rank one torsion free sheaf on A. In particular,
the sheaf

(35) Fβ = Rπ13∗
(
π∗
12(π

∗
1N ⊗ P ′

E)⊗L π∗
23En

)
[1] ∈ Coh(A×Mβ,A)

is a universal family on A×Mβ,A, where πi, πij are projections from A×A×Mvn,A

to the corresponding factors, and we identify A×Mvn,A with A×Mβ,A via (32).
For notational convenience, we define the shifted normalized universal family

(36) Fn
β = Rπ13∗

(
π∗
12P ′

E ⊗L π∗
23En

)
= Fβ ⊗ π∗

AN
−1[−1]

on A × Mβ,A, whose restriction over every closed point F ∈ Mβ,A recovers the
shifted 1-dimensional coherent sheaf

(
F ⊗N−1

)
[−1] on A.
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We use the universal family (35) and the class α (39) to serve as the ones in
Theorem 2.1 for the special case (31). Next, we construct a decomposition of the
perverse filtration

(37) H∗(Mβ,A,Q) =
⊕
i,d

G̃iH
d(Mβ,A,Q)

which serves as the splitting in Theorem 2.1.
A canonical splitting of the perverse filtration associated with

q : Â = A → E

is given by

G′
kH

d(Â,Q) =
⊕

i+k=d

Hd−k(E,Q)⊗Hk(E′,Q).

We define (37) as the decomposition

(38) G̃kH
∗(Mβ,A,Q) =

⊕
i+j=k

G̃iH
∗(A[n],Q)⊗G′

jH
∗(Â,Q),

where G̃∗H
∗(A[n],Q) was defined by (17). Since G̃∗H

∗(A[n],Q) splits the perverse
filtration (18) associated with

pn : A[n] → E′(n),

the filtration (38) splits the perverse filtration associated with the Hilbert–Chow
morphism (33).

Theorem 2.3 verifies Theorem 2.1 for the special case (31), where we can choose
the twisting class to be

(39) α = −π∗
Ac1(N) ∈ H2(A×Mβ,A,Q).

Theorem 2.3. The decomposition (38) is multiplicative, and, with α as in (39),
we have

(40)

∫
γ

chαk (Fβ) ∈ G̃k−1H
∗(Mβ,A,Q), ∀k ≥ 0, ∀γ ∈ H∗(A,Q).

Proof. The multiplicativity of (38) follows directly from Theorem 1.2(b) and the
Künneth formula. We need to prove (40), which, by the very definition of α and
Fn

β and by the fact that a cohomological shift only changes the signs of Chern
classes, is equivalent to

(41)

∫
γ

chk(Fn
β ) ∈ G̃k−1H

∗(Mβ,A,Q), ∀k ≥ 0, ∀γ ∈ H∗(A,Q).

We consider the product A×Mβ,A and the multiplicative splitting of its cohomology

(42) G̃kH
∗(A×Mβ,A,Q) := H∗(A,Q)⊗ G̃kH

∗(Mβ,A,Q).

This decomposition splits the perverse filtration associated with the morphism

id× πβ : A×Mβ,A → A×B.

The statement (41) is equivalent to the following:

(43) ch(Fn
β ) ∈

⊕
k≥1

G̃k−1H
2k(A×Mβ,A,Q).
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For a nonsingular projective variety X with a decomposition G∗H
∗(X,Q) on

its cohomology, we say that a class α ∈ H∗(X,Q) is balanced with respect to this
decomposition if

α ∈
⊕
k

GkH
2k(X,Q).

We prove (43) by the following 3 steps.

Step 1. We consider the new decomposition

GkH
∗(A×Mβ,A,Q) :=

⊕
i+j=k

Hi(E,Q)⊗H∗(E′,Q)⊗ G̃jH
∗(Mβ,A,Q)

=
⊕

i+j=k

G̃iH
∗(A×A[n],Q)⊗G′

jH
∗(Â,Q)

(44)

of the cohomology H∗(A×Mβ,A,Q). It is a multiplicative decomposition splitting
the perverse filtration associated with the morphism

p× πβ : A×Mβ,A → E′ × B.

We first show that the class

ch(En) ∈ H∗(A×MA,vn ,Q) = H∗(A×Mβ,A,Q)

is balanced with respect to the splitting (44). Here the last identification is given
by (32).

Recall the expression (24) of the universal family En. By Theorem 1.2(a), the
class

ch(In) ∈ H∗(A×A[n],Q)

is balanced with respect to the splitting (19). Hence via pulling back along the
projection

π12 : A×Mβ,A = A×A[n] × Â → A×A[n],

we obtain that the class

π∗
12ch(In) = ch(In) � 1Â ∈ H∗(A×A[n],Q)⊗H0(Â,Q)

⊂ H∗(A×Mβ,A,Q)

is also balanced with respect to (44). A direct calculation shows that the class
π∗
13c1(P) is balanced. Hence we conclude from the multiplicativity of (44) that the

class
ch(En) = π∗

12ch(In)⊗ π∗
13ch(P) = π∗

12ch(In)⊗ π∗
13exp(c1(P))

is balanced.

Step 2. We further consider the multiplicative decomposition

(45) G̃kH
∗(A×A×Mβ,A,Q) := H∗(A,Q)⊗GkH

∗(A×Mβ,A,Q)

of H∗(A × A × Mβ,A), which splits the perverse filtration associated with the
morphism

id× p× πβ : A× A×Mβ,A → A× E′ ×B.

We show that

(46) ch(π∗
12P ′

E ⊗L π∗
23En) ∈

⊕
k≥1

G̃k−1H
2k(A×A×Mβ,A,Q).

Here πij are the projections from A × A × Mβ,A to the corresponding factors;
compare the notation of (36).
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In fact, by Step 1, we obtain that the class

π∗
23ch(En) = 1A � ch(En) ∈ H0(A,Q)⊗H∗(A×Mβ,A,Q)

is balanced with respect to (45). The relative Poincaré sheaf (34) can be expressed
as

(47) π∗
13ch(P ′

E) = π∗
13ch(PE) ∪ π∗

13ch(OΔE′ ).

The class π∗
12ch(PE) is balanced via a direct calculation, and

π∗
12ch(OΔ′

E
) = π∗

12c1(OΔE′ ) ∈ G̃0H
2(A×A×Mβ,A,Q).

Hence by (47) and the multiplicativity of (45), we get

π∗
12ch(P ′

E) ∈
⊕
k≥1

G̃k−1H
2k(A× A×Mβ,A).

This yields (46) since

ch(π∗
12P ′

E ⊗L π∗
23En) = π∗

12ch(P ′
E) ∪ π∗

23ch(En).

Step 3. We finish the proof of (43).
Recall the expression (36) of Fn

β . Applying the Grothendieck–Riemann-Roch
formula to the projection

π13 : A×A×Mβ,A → A×Mβ,A,

we obtain that

ch(Fn
β ) = π13∗ch(π

∗
12P ′

E ⊗L π∗
23En).

Equivalently, the class ch(Fn
β ) corresponds to the Künneth factor of the class

ch(π∗
12P ′

E ⊗L π∗
23En)

in the subspace

H4(A,Q)⊗H∗(A×Mβ,A,Q) ⊂ H∗(A×A×Mβ,A,Q).

Here H4(A,Q) is spanned by the point class in the second factor of the product
A×A×Mβ,A. Hence (43) follows from (46).

�

2.6. Perverse filtrations and H2(Mβ,A,Q). In this section, we assume that A is
any abelian surface and β is an ample curve class satisfying β2 = v2n = 2n. Recall
from Section 2.1 that Mβ,A is the moduli space of Gieseker-stable sheaves with
respect to the primitive Mukai vector

(48) vβ = (0, β, χ) ∈ S+
A

with dimension

dim(Mβ,A) = v2β + 2 = 2n+ 2.

Our goal is to prove Proposition 2.5, which is a variant of Proposition 1.1 for Mβ,A.
More precisely, we introduce a canonical class

(49) Lβ ∈ H2(Mβ,A,Q)

to characterize the perverse filtration P�H
∗(Mβ,A,Q) associated with the mor-

phism

πβ : Mβ,A → B.
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Let F0 ∈ Mβ,A be a general point on the moduli space. We consider the mor-
phisms defined by considering determinants of coherent sheaves

det : Mβ,A → Â, F �→ det(F)⊗ det(F0)
∨

and

d̂et : Mβ,A → A, F �→ det(φP(F))⊗ det(φP(F))∨.

Here φP : DbCoh(A) → DbCoh(Â) is the Fourier–Mukai transform induced by the

normalized Poincaré line bundle P on A× Â. By [44, (4.1) and Theorem 4.1], the
Albanese morphism for Mβ,A with respect to the reference point F0 is

alb = d̂et× det : Mβ,A → A× Â.

The closed fiber over the origin 0 ∈ A× Â, denoted by

Kβ,A = alb−1(0) ⊂ Mβ,A,

is a holomorphic symplectic variety of Kummer type; see [44, Theorem 0.2]. It
parametrizes 1-dimensional sheaves F ∈ Mβ,A satisfying

det(F) = det(F0) ∈ Â, det(φP(F)) = det(φP(F)) ∈ ˆ̂
A = A.

The restriction of the Hilbert–Chow morphism (22) to the subvariety Kβ,A is a
Lagrangian fibration

π′
β : Kβ,A → |OA(β)| = Pn−1.

Here |OA(β)| denotes the linear system associated with the divisor

supp(F0) ⊂ A.

We consider the following commutative diagram,

(50)

Kβ,A ×A× Â Mβ,A

Pn−1 ×A B.

h

π′
β×prA πβ

h′

Here the horizontal arrows are defined by

h(F , a, L) = ta∗F ⊗ L, h′(C, a) = ta∗C

with ta : A
�−→ A the translation by a. Since both h and h′ are finite and surjective,

the map

h∗ : Hk(Mβ,A,Q) → Hk(Kβ,A ×A× Â,Q)

is injective by the projection formula. Moreover, it is an isomorphism when k = 2
since

dimH2(Mβ,A,Q) = dimH2(A[n] × Â,Q) = dimH2(Kβ,A ×A× Â,Q)

by Göttsche’s formula [21] for the Betti numbers of the Hilbert schemes and the
generalized Kummer varieties.

By [44, Theorem 0.1 and (1.6)], the correspondence induced by ch(Fβ) ∈ H∗(A×
Mβ,A) together with the restriction map

H2(Mβ,A,Q) → H2(Kβ,A,Q)
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gives an isometry between v⊥β ⊂ S+
A ⊗ Q and H2(Kβ,A,Q) (endowed with the

Beauville-Bogomolov-Fujiki form)

θ : v⊥β
�−→ H2(Kβ,A,Q).

Therefore, the pullback h∗ induces an isometry (see also [44, Theorem 4.1.(3) eq.
(4.3)])

(51) ϕ : H2(Mβ,A,Q)
�−→ v⊥β ⊕H2(A× Â,Q),

which, by [32, Section 8], is Spin(S+
A ⊗Q)vβ -equivariant.

Remark 2.4. The equivariance means that Markman’s monodromy operators γg,vβ
(28) acting on H2(Mβ,A,Q) are identified, via ϕ, with the action of g on the right-
hand side of (51) described in Section 2.3. We may say that ϕ is compatible with
g and γg,vβ .

We consider the following classes

lβ = θ
(
(0, 0, 1) ∈ v⊥β

)
∈ H2(Kβ,A,Q),

Lβ = ϕ−1
(
(0, 0, 1) + (β � 1Â)

)
∈ H2(Mβ,A,Q).

(52)

Proposition 2.5. We have

PkH
m(Mβ,A,Q) =

⎛⎝∑
i≥1

Ker
(
L
(n+1)+k+i−m
β

)
∩ Im(Li−1

β )

⎞⎠ ∩Hm(Mβ,A,Q).

Proof. We denote by

πK = π′
β × prA : Kβ,A ×A× Â → Pn−1 ×A

the left vertical map of the diagram (50).
By [33, Example 3.1], we have

lβ = π′
β
∗OPn−1(1) ∈ H2(Kβ,A,Q).

Hence

h∗Lβ = lβ � 1A×Â + 1Kβ,A
� (β ⊗ 1Â) ∈ H2(Kβ,A ×A× Â,Q)

is the pullback of an ample class on the base Pn−1×A via the morphism πK . Since
h and h′ are finite, Proposition 2.5 is deduced immediately from the diagram (50)
and Lemma 2.6. �

Lemma 2.6. We consider a commutative diagram

X X ′

Y Y ′,

h

f f ′

h′

where all the varieties are nonsingular and irreducible, the horizontal morphisms
are finite and surjective, and the vertical morphisms are proper. We assume

dim(X) = dim(X ′) = 2dim(Y ) = 2dim(Y ′) = 2R

for some positive integer R, and that there is a class α ∈ H2(X ′,Q) satisfying

h∗α = f∗L
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with L ∈ H2(Y,Q) an ample class on Y . Then the perverse filtration P�H
∗(X ′,Q)

associated with f ′ can be expressed as

(53) PkH
m(X ′,Q) =

⎛⎝∑
i≥1

Ker(αR+k+i−m) ∩ Im(αi−1)

⎞⎠ ∩Hm(X ′,Q).

Proof. The composition of the following maps is multiplication by the degree of h

QX′ → h∗h
∗QX′ = h∗QX → QX′ ,

where the first map is the adjunction and the last map is the trace map. This
composition is nonzero since h has non-zero degree, so it yields the splitting

(54) h∗QX = QX′ ⊕ G, G ∈ Db
c(X

′),

which further induces the embedding

(55) h∗ : H∗(X ′,Q) ↪→ H∗(X,Q)

as a direct summand. After pushing forward (54) along f ′ : X ′ → Y ′, we obtain

pHk
(Rf ′∗h∗QX) = pHk

(Rf ′∗QX′)⊕ pHk
(Rf ′∗G).

On the other hand, by the t-exactness of the finite morphism h′, we have

pHk
(Rf ′∗h∗QX) = pHk

(h′
∗Rf∗QX) = h′

∗
pHk

(Rf∗QX).

Hence the pullback (55) induced by (54) is filtered strict with respect to the perverse
filtrations associated with f and f ′, and we have

(56) PkH
d(X,Q) ∩ Im(h∗) ⊂ PkH

d(X ′,Q), ∀k, d.
We deduce (53) from (56) and Proposition 1.1 (applied to f : X → Y ). �

2.7. Proof of Theorem 2.1. In this section, we complete the proof of Theorem
2.1 by combining the tools developed in the previous sections.

Let A be an abelian surface and β be an ample curve class. A perverse package
associated with the pair (A, β) is defined to be a triple

([Fβ ], αβ, Lβ),

where [Fβ ] is a universal class on A × Mβ,A, Lβ ∈ H2(Mβ,A,C) is the class
introduced in Section 2.6, and α ∈ H2(A×Mβ,A,C) is of the type (21).

An isomorphism between the perverse packages associated with (A, β) and
(A′, β′) is the following:

(i) An isomorphism of graded C-vector spaces

g : H∗(A,C)
�−→ H∗(A′,C).

(ii) An isomorphism of graded C-algebras

φ : H∗(Mβ,A,C)
�−→ H∗(Mβ′,A′ ,C).

(iii) The isomorphisms g and φ satisfy that

(g ⊗ φ)chαβ (Fβ) = chαβ′ (Fβ′),

φ(Lβ) = Lβ′ .

Isomorphisms of perverse packages form an equivalence relation. We call two pairs
(A, β) and (A′, β′) perversely isomorphic if there is a perverse package associated
with (A, β) isomorphic to a perverse package associated with (A′, β′).
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Proposition 2.7. Assume that (A, β) is perversely isomorphic to (A′, β′). If The-
orem 2.1 holds for (A, β), then it also holds for (A′, β′).

Proof. By Proposition 2.5, the condition

φ(Lβ) = Lβ′

implies that the perverse filtrations on H∗(Mβ,A,C) and H∗(Mβ′,A′ ,C) are iden-
tified via φ. Let

H∗(Mβ,A,C) =
⊕
k,d

G̃kH
d(Mβ,A,C)

be the splitting of the perverse filtration for Mβ,A satisfying∫
γ

ch
αβ

k (Fβ) ∈ G̃k−1H
∗(Mβ,A,C).

Then the decomposition

G̃kH
d(Mβ′,A′ ,C) = φ(G̃kH

d(Mβ,A,C))

also splits the perverse filtration for Mβ′,A′ , and the corresponding tautological
classes lie in its correct pieces by condition (iii) in the definition of isomorphism of
perverse package. �

If (A, β) is perversely isomorphic to (A′, β′), then condition (ii) implies that

(57) β2 = dim(Mβ,A)− 2 = dim(Mβ′,A′)− 2 = β′2.

Theorem 2.8, which we deduce from Theorem 2.2, establishes the converse to (57).
In other words, perverse equivalence classes associated with pairs (A, β) are larger
than the equivalence classes given by the deformation types of the fibrations πβ :
Mβ,A → B; see Remark 2.9.

Theorem 2.8. Any two pairs (A, β) and (A′, β′) satisfying

β2 = β′2

are perversely isomorphic.

Proof. As we explain at the end of the proof, it will be sufficient to find an isomor-
phism of graded C-vector spaces

(58) g : H∗(A,C) → H∗(A′,C)

satisfying the following two properties:

(a) g preserves the intersection pairing;
(b) g satisfies the following identities

g(0, 0, 1) = (0, 0, 1),

g(1, 0, 0) = (1, 0, 0),

g(0, β, 0) = (0, β′, 0),

(59)

and a graded C-algebra isomorphism

(60) φ : H∗(Mβ,A,C) → H∗(Mβ′,A′ ,C)

satisfying condition (iii) in the definition of isomorphism of perverse packages.
We construct (g, φ) in two steps.
We note that g1, g2, and g = g2 ◦ g1 constructed below automatically satisfy

condition (a) by construction.
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Firstly, since the Mukai vectors (48) vβ and vβ′ are primitive with the same
Mukai length,

v2β = v2β′ ∈ Z,

we can apply [34, Theorem 8.3] (which follows from Yoshioka [44]) to find isometries

g1 : H∗(A,Z) → H∗(A′,Z), φ1 : H∗(Mβ,A,Q) → H∗(Mβ′,A′ ,Q)

such that g1(vβ) = vβ′ and

(61) (g1 ⊗ φ1)ch(Fβ) = ch(Fβ′)

with [Fβ′ ] a universal class on A×Mβ,A. Moreover, the morphism φ1 satisfies the
evident variant of Remark 2.4, i.e., the morphism

ϕ−1
β′ φ1ϕβ : v⊥β ⊕H2(A× Â,Q) → v⊥β′ ⊕H2(A′ × Â′,Q)

is induced by the isometery g1 : H∗(A,Z) → H∗(A′,Z); see [32, Proposition 8.5].
We may say that the identifications ϕ (51) for β and β′ are compatible with g1 and
φ1.

If β and β′ have different divisibility, then g1 cannot satisfy the condition (b)
above, so that we proceed as follows. We choose g2 ∈ SO(S+

A′ ⊗Q)vβ′ such that the
restriction

g2 ◦ g1|S+
A
: S+

A ⊗Q → S+
A′ ⊗Q

is grading-preserving and satisfies condition (b). We can lift g2 to an element of
Spin(S+

A′ ⊗ C)vβ′ , also denoted by g2, and take the associated isomorphisms

g2 :H∗(A′,C) → H∗(A′,C) (cf. Section 2.3),

φ2 = γg2,vβ′ :H
∗(Mβ′,A′ ,C) → H∗(Mβ′,A′ ,C) (cf. Section 2.4).

By Theorem 2.2, we have

(62) (g2 ⊗ φ2)ch(Fβ′) = chπ
∗
Ma(Fβ′), ∃a ∈ H2(Mβ′,A′ ,C).

We set g = g2 ◦ g1 and φ = φ2 ◦ φ1. Then (61) and (62) imply that

(g ⊗ φ)ch(Fβ) = chπ
∗
Ma(Fβ′).

In particular, for any class αβ ∈ H2(A×Mβ,A,C) of type (21), we have

(g ⊗ φ)chαβ (Fβ) = chαβ′ (Fβ′), with αβ′ = π∗
Ma+ (g ⊗ φ)αβ ,

where the class αβ′ is also of type (21). The first condition appearing in (iii) is thus
met.

It remains to verify that φ(Lβ) = Lβ′ . In view of the compatibility of the ϕ’s for
β and β′ with g1, φ1, and of ϕ for β′ with g2, φ2 (cf. Remark 2.4), and in view of the
construction of g1 and g2, the isomorphism φ sends (0, 0, 1) ∈ v⊥β to (0, 0, 1) ∈ v⊥β′ ,

and sends β � 1Â ∈ H2(A × Â,C) to β′ � 1Â′ ∈ H2(A′ × Â′,C). In particular,
we have φ(Lβ) = Lβ′ , and the desired condition (iii) is met in its entirety. This
completes the proof of Theorem 2.8. �

Theorem 2.1 follows from Theorem 2.3, Proposition 2.7, and Theorem 2.8 (with
n := β2/2, vn and β). In Section 3.5, we prove a strengthened version of Theorem

2.1 to the effect that the decomposition G̃∗H
∗(MA,β,C) is the one induced by a

variant of a construction of Deligne’s.
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Remark 2.9. It was shown in [13] that perverse filtrations behave well under de-
formations. However, for the pairs (A, β) and (A′, β′) such that β and β′ have
different divisibilities in H2(A,Z) and H2(A′,Z), the fibrations πβ and πβ′ are not
deformation equivalent. Therefore, in order to reduce the proof of Theorem 2.1 for
any pair (A, β) to that for a special pair

A = E × E′, β = σ + nf,

it is essential to consider an equivalence relation weaker than deformation equiv-
alences of fibrations πβ . This is our motivation for introducing equivalences of
perverse packages.

3. Splittings of perverse filtrations

3.1. Overview. In this section, we study splittings of the perverse filtration asso-
ciated with a proper surjective morphism π : X → Y with X and Y nonsingular.
As an application, we strengthen Theorem 2.1 by requiring that the decomposition
given by said theorem

(63) H∗(Mβ,A,C) =
⊕
i,d

G̃iH
d(Mβ,A,C)

is induced by a “Lefschetz class” via the mechanisms introduced in [9, 17, 18]; see
Theorem 3.8. As discussed in Remark 4.5, this is crucial in the study of the spe-
cialization morphism (82) in Section 4.

Throughout, we work with Q-coefficients except for Section 3.5, where we need
to switch to C-coefficients in order to apply results in Section 2.7. However, we
note that all discussions in Sections 3.2–3.4 remain valid if we replace Q by C.

3.2. Lefschetz classes. We consider the perverse filtration associated with π :
X → Y ,

(64) P0H
∗(X,Q) ⊂ P1H

∗(X,Q) ⊂ · · · ⊂ P2RH
∗(X,Q) = H∗(X,Q),

where R is the defect of semismallness of π (13). The action of a class η ∈ H2(X,Q)
on the cohomology H∗(X,Q) via cup product satisfies

(65) η : PkH
i(X,Q) → Pk+2H

i+2(X,Q),

which further induces an action on

H =
⊕
�,•≥0

GrP� H
•(X,Q) =

⊕
�,•≥0

(P�H
•(X,Q)/P�−1H

•(X,Q)) .

We say that η ∈ H2(X,Q) is a π-Lefschetz class if its induced action on H

satisfies the hard Lefschetz-type condition in the sense of [9, Assumption 2.3.1],
i.e., the actions

(66) ηk : GrPR−kH
∗(X,Q)

�−→ GrPR+kH
∗(X,Q), ∀k ≥ 0,

are isomorphisms. As a typical example, the relative Hard Lefschetz Theorem [5]
with respect to π : X → Y implies that a relatively ample class for π is a π-Lefschetz
class. Lemma 3.1 gives examples of Lefschetz classes other than relatively ample
classes.
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Lemma 3.1. Let A be an abelian variety of dimension m. Any class η ∈ H2(A,Q)
satisfying

(67) ηm �= 0

is a Lefschetz class with respect to π : A → pt.

Proof. Let W = H1(A,Q). We identify Hk(A,Q) with ∧kW , and therefore η ∈
∧2W . The condition (67) implies that η defines a (constant) symplectic form on
W ∗. In particular, we can write η =

∑m
i=1 ei∧fi under a basis e1, . . . , em, f1, . . . , fm

of W . Hence the pair (W ⊗C, η) is the tensor product of m copies of the symplectic
plane (C2, e ∧ f), for which the statement is clear. �

Recall the Hitchin fibration h : MDol → Λ. Proposition 3.2 is a numerical
criterion for Lefschetz classes with respect to h.

Proposition 3.2. Let F be a closed fiber of h. A class η ∈ H2(MDol,Q) is a
Lefschetz class with respect to h if and only if the following cap product with the
fundamental class of the connected fiber F (counting components with multiplicities)
is non-trivial:

(68) 0 �= ηdim(F) ∩ [F ] ∈ H0(F,Q) � Q.5

Proof. We denote by M̂Dol the corresponding moduli space of stable PGLr-Higgs
bundles with

ĥ : M̂Dol → Λ̂

the Hitchin fibration. By [25, 30], we have

H2(M̂Dol,Q) = Q · α,

where α is the first Chern class of an ĥ-ample line bundle on M̂Dol, and therefore is

an ĥ-Lefschetz class. By the discussion in [11, Section 2.4], we have an isomorphism

(69) H∗(MDol,Q) = H∗(M̂Dol,Q)⊗H∗(Pic0(C),Q)

satisfying that

(70) PkH
∗(MDol,Q) =

⊕
i+j=k

PiH
∗(M̂Dol,Q)⊗Hj(Pic0(C),Q).

Under the identification

H2(MDol,Q) = H2(M̂Dol,Q)⊕H2(Pic0(C),Q) = Q · α⊕H2(Pic0(C)),

induced by (69), we can express any class η ∈ H2(MDol,Q) as

(71) η = μα⊗ 1 + 1⊗ ξ, μ ∈ Q, ξ ∈ H2(Pic0(C),Q).

Lemma 3.1 combined with [9, Appendix] implies that the class η is Lefschetz if and
only if

(72) μ �= 0, ξg �= 0.

Therefore, it suffices to show that (72) is equivalent to the condition (68).
We first consider traceless Higgs bundles

M0
Dol = {(E , θ) ∈ MDol : trace(θ) = 0} ⊂ MDol.

5We note that the condition (68) does not depend on the choice of the fiber F .
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Recall from [11, Proposition 2.4.3] that there is a finite morphism

q : M̌Dol × Pic0(C) → M0
Dol

with M̌Dol the corresponding Dolbeault moduli space of stable SLr-Higgs bundles.
The preimage of a closed fiber F ⊂ M0

Dol of the restricted Hitchin fibration h|M0
Dol

is the product
q−1(F ) = F̌ × Pic0(C),

where F̌ is the corresponding closed fiber of the SLn Hitchin fibration. The pullback
of a class (71) along

F̌ × Pic0(C) ↪→ M̌Dol × Pic0(C)
q−→ M0 ↪→ MDol

is of the type

η̌ = μα̌⊗ 1 + 1⊗ ξ ∈ H2(F̌ ,Q)⊕H2(Pic0(C),Q) ⊂ H2(F̌ × Pic0(C),Q)

with α̌ an ample class on F̌ . Since q : F̌ ×Pic0(C) → F is finite and surjective, the
condition (68) is equivalent to

0 �= η̌dim(F̌×Pic0(C)) ∩ [F̌ ] = η̌dim(F ) ∩ [F̌ ],

which, in turn, is equivalent to (72). This completes the proof. �
3.3. The first Deligne splitting. Given a projective morphism π : X → Y and a
π-ample line bundle onX, Deligne [18] constructs three splittings of the direct image
Rπ∗QX (resp. Rπ∗ICX if X is singular), which induce splittings of the perverse
filtration on the (resp. intersection) cohomology groups H∗(X,Q). In this paper,
we need the variant [9] of this construction where one starts with a π-Lefschetz class
η ∈ H2(X,Q), i.e. one that does not necessarily satisfy the relative Hard Lefschetz
Theorem in the derived category Db

c(Y ), but nonetheless satisfies the cohomological
version (66). We need only the first of the resulting three splittings, which we name
the first Deligne splitting [9, 17, 18].

According to [9], the first Deligne splitting of the perverse filtration (64)

H∗(X,Q) =
⊕
i

GiH
∗(X,Q)

associated with the π-Lefschetz class η (i.e. (66) holds) can be described using only
the action of η on H∗(X,Q). We explain this description explicitly as follows.

For i ≥ 0, we let GrPi := PiH
∗(X,Q)/Pi−1H

∗(X,Q) denote the graded spaces,
which are subquotients of cohomology, and let Gi := GiH

∗(X,Q) denote the corre-

sponding image of GrPi via the first Deligne splitting, i.e. these are the summands
in the last paragraph, which are subspaces of cohomology that we want to charac-
terize.

For 0 ≤ k ≤ R, let

GrPk ⊇ Q′
k := ker{ηR−k+1 : GrPk → GrP2R−k+2}

be the associated graded-primitive spaces (here η acts on the graded spaces of
the perverse filtration on cohomology). Let Qk ⊆ Gk be the image of Q′

k via
the first Deligne splitting. We have Gk =

∑
i≥0 η

iQk−2i for 0 ≤ k ≤ R, and

GR+κ = ηkGR−κ (here η acts on cohomology).
It follows that, in order to have a complete description of the first Deligne split-

ting that involves solely the action of η in cohomology, we only need to describe
Qk ⊆ H∗(X,Q) in such terms.
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We describe Qk following [17, Section 2.7]. Note that its context is the one of
the fist Deligne splitting arising from working in the derived category, but the proof
works verbatim in the present context of cohomology acted upon by a π-Lefschetz
class. By (65), we have

ηjPkH
∗(X,Q) ⊂ Pk+2jH

∗(X,Q).

Let Φ0(η) be the composition of the morphisms

Φ0(η) : PkH
∗(X,Q)

ηR−k+1

−−−−−→ P2R−k+2H
∗(X,Q) → GrP2R−k+2H

∗(X,Q),

where the first map is cup product and the second map is the projection to the
graded piece. We obtain the sub-vector space

Ker(Φ0(η)) ⊂ PkH
∗(X,Q).

The morphisms Φm(η) are defined inductively for m ≥ 0 as follows:

Φm(η) : Ker(Φm−1(η))
ηR−k+m

−−−−−→ P2R−k+2mH∗(X,Q) → GrP2R−k+2mH∗(X,Q).

Therefore for fixed k, we obtain a sequence of sub-vector spaces

· · · ⊂ Ker(Φ1(η)) ⊂ Ker(Φ0(η)) ⊂ PkH
∗(X,Q).

According to [17, Proposition 2.7.1], we have the desired description

Qk = Qk(η) = Ker(Φk(η)) ⊂ PkH
∗(X,Q), ∀0 ≤ k ≤ R.

The description of the first Deligne splitting yields immediately the following
comparison lemma, which expresses a kind of functoriality for the first Deligne
splitting.

Lemma 3.3. Let Xi (i = 1, 2) be nonsingular varieties with proper surjective mor-
phisms fi : Xi → Yi, and let P�H

∗(Xi,Q) be the corresponding perverse filtrations.
Let

φ : H∗(X1,Q) → H∗(X2,Q)

be a morphism of graded Q-algebras satisfying

(a) φ(PkH
d(X1,Q)) ⊂ PkH

d(X2,Q);
(b) φ(η1) = η2, with ηi ∈ H2(Xi,Q) an fi-Lefschetz class for i = 1, 2.

Then we have

φ(GkH
∗(X1,Q)) ⊂ GkH

∗(X2,Q), ∀k ≥ 0,

with H∗(Xi,Q) = ⊕k≥0GkH
∗(Xi,Q) the first Deligne splitting associated with ηi,

i = 1, 2.

Proof. It follows from the description of the first Deligne splittings

H∗(Xi,Q) =
⊕

0≤k≤r

⊕
j≥0

(
ηjiQk−2j(ηi)

⊕
ηr−k+j
i Qk−2j(ηi)

)
i = 1, 2

summarized above, and the fact that the sub-vector spaces

Ker(Φk(ηi)) = Qk(ηi) ⊂ PkH
∗(Xi,Q)

are preserved under the P -filtered morphism φ. �
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Remark 3.4. Since cohomologically, the Hitchin fibration

h : MDol → Λ

behaves like the product of the fibrations ĥ : M̂Dol → Λ̂ and Pic0(C) → pt via the
ring isomorphism

H∗(MDol,Q) = H∗(M̂Dol,Q)⊗H∗(Pic0(C),Q)

given in [11, Section 2.4], we see from the proof of Proposition 3.2 (cf. (72)) together
with [9, Appendix] that the first Deligne splitting associated with any h-Lefschetz
class, i.e. a class of the form μα⊗ 1 + 1⊗ ξ with μ �= 0 and ξg �= 0, has the form

(73) GkH
∗(MDol,Q) =

⊕
i+j=k

GiH
∗(M̂Dol,Q)⊗Hj(Pic0(C),Q),

where GiH
∗(M̂Dol,Q) is the first Deligne splitting associated with the ĥ-Lefschetz

class
α ∈ H2(M̂Dol,Q).

Remark 3.5. In particular, the splitting (73) does not depend on the choice of an
h-Lefschetz class.

For every genus g ≥ 2, we expect, and actually prove in the g = 2 case, that (73)
serves as the splitting in Conjecture 0.3.

3.4. Semismall maps and Hilbert schemes. In this section, we study the sit-
uation where our morphism π : X → Y can be factored as

X
f−→ Z

g−→ Y

with f : X → Z semismall and surjective; in particular, f is generically finite
and dim(X) = dim(Z). We further assume that there are closed irreducible sub-
varieties Zi ⊂ Z such that the decomposition theorem for f takes the form of a
canonical finite direct sum decomposition

(74) Rf∗QX =
⊕
i

ICZi
[−dim(X)],

where each ICZi
is the (perverse) intersection cohomology complex of Zi. Note

that we have the following identity concerning intersection cohomology groups
IHd(Zi,Q) = Hd−dimZi(Zi, ICZi

). One of the Zi is the total variety Z. The
restriction of g to each Zi yields the morphism

gi : Zi → Yi ⊂ Y.

We deduce from (74) a canonical decomposition of the cohomology of X

(75) Hd(X,Q) =
⊕
i

IHd−ci(Zi,Q), ci = dimX − dimZi = codimXZi.

Let R be the defect of semismallness of π and, for each i, let Ri be the defect of
semismallness of gi : Zi → Yi.

Proposition 3.6. Let α ∈ H2(Z,Q) satisfy that, for every i, the restriction

αi = α|Zi
∈ H2(Zi,Q)

is a gi-Lefschetz class with associated first Deligne splitting

IH∗(Zi,Q) =
⊕
k

GkIH
∗(Zi,Q).
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Then η = f∗α ∈ H2(X,Q) is a π-Lefschetz class, whose associated first Deligne
splitting is, under the identification (75), given by

(76) GkH
d(X,Q) =

⊕
i

Gk−R+Ri
IHd−ci(Zi,Q).

Proof. Recall that we have defined the perverse filtration P on H∗(X,Q) concen-
trated in the interval [0, 2R], and similarly, for every i, the perverse filtration P on
IH∗(Zi,Q) is concentrated in the interval [0, 2Ri]. It follows that, according to (74)
and (75), the direct summand IH∗(Zi,Q) contributes to H∗(X,Q) in perversities
in the interval [R −Ri, R+Ri].

We apply the decomposition theorem to the composition

X → Z → Y

and obtain that the perverse filtration P�H
∗(X,Q) can be expressed in terms of

the perverse filtrations P�IH
∗(Zi,Q) under (75), i.e.,

PkH
d(X,Q) =

⊕
i

Pk−R+Ri
IHd−ci(Zi,Q).

By [15, Remark 4.4.3], the action of η = f∗α on the l.h.s. of (75) is the direct
sum of the actions of the classes αi = α|Zi

on the summands of the r.h.s.
Since every αi is a gi-Lefschetz class, we deduce that η is a π-Lefschetz class

with associated first Deligne splitting decomposition (76). �

Next, we show that, given a fibered abelian surface

p : A = E × E′ → E′

as in Section 1.5, the splitting (15) of the perverse filtration on H∗(A[n],Q) asso-
ciated with the natural morphism pn : A[n] → E′(n) is the first Deligne splitting
induced by a pn-Lefschetz class.

The morphism pn : A[n] → E′(n) admits the natural factorization

(77) A[n] f−→ A(n) g−→ E′(n),

where the Hilbert–Chow morphism f is semismall [22]. There are canonical mor-
phisms

κν : A(ν) → A(n)

together with a canonical stratification of A(n) indexed by the partitions ν of n,

A(n) =
⋃
ν

Aν , Aν = Im(κν) ⊂ A(n).

Note that the resulting morphism κν : A(ν) → Aν is the normalization of the target,
so that

(78) H∗(A(ν),Q) = IH∗(Aν ,Q).

By [22, Theorem 3], the decomposition theorem associated with f takes the form
analogous to (74),

Rf∗QA[n] =
⊕
ν

ICAν
[−2n],
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and the restriction of g : A(n) → E′(n) to each Aν is described by the commutative
diagrams

(79)

A(ν) Aν A(n)

E′(ν) E′
ν E′(n).

κν

pν

We consider the p-ample class

α = pt⊗ 1E′ ∈ H2(E,Q)⊗H0(E′,Q) ⊂ H2(A,Q)

of p : A → E′ which induces a Lefschetz class

(80) α(n) ∈ H2(A(n),Q)

with respect to A(n) → E′(n). It further induces a Lefschetz class

α(ν) ∈ H2(A(ν),Q)

with respect to A(ν) → E′(ν) for every partition ν of n. By the diagram (79), the
pullback of α(n) to every A(ν) via κν coincides with α(ν).

By keeping in mind that codimA(n) Aν = 2n − 2l(ν), that the defects of semis-
mallness of the morphisms pn and pν are n and l(ν), respectively, and the identity
(78), we obtain Corollary 3.7 by applying Proposition 3.6 to the factorization (77).

Corollary 3.7. The decomposition (15) is the first Deligne splitting induced by the
(pn : A[n] → E′(n))-Lefschetz class (f as in (77), α(n) as in (80))

ηA[n] = f∗α(n) ∈ H2(A[n],Q).

3.5. A strengthened version of Theorem 2.1. We study the decomposition
(63) constructed for Theorem 2.1. In the special case (31), we have

Mβ,A
∼= A[n] × Â, A = E × E′,

with the morphism πβ : MA,β → B given by the morphism pn×q in (33). Corollary
3.7 implies that the decomposition (38) is the first Deligne splitting associated with
the (pn × q)-Lefschetz class

ηA,β = ηA[n] � 1Â + 1A[n] � (1E � pt) ∈ H2(A[n] × Â,Q) = H2(Mβ,A,Q).

By Theorem 2.8, a pair (A′, β′) with β′2 = 2n is perversely isomorphic to the
special pair (A, β) given by (31). So there is a graded isomorphism

φ : H∗(Mβ,A,C)
�−→ H∗(Mβ′,A′ ,C)

of C-algebras preserving the corresponding perverse filtrations, and we obtain a
decomposition (63) as

(81) G̃kH
d(Mβ′,A′ ,C) = φ(G̃kH

d(Mβ′,A′ ,C));

see the proof of Proposition 2.7. Hence

ηβ′,A′ = φ(ηβ,A) ∈ H2(Mβ′,A′ ,C)

is a πβ′-Lefschetz class, and Lemma 3.3 implies that the decomposition (81) is the
first Deligne splitting associated with ηβ′,A′ .

This gives the following strengthened version of Theorem 2.1, which, we stress,
is about any pair (A, β) with vβ = (0, β, χ) primitive, not just the special cases
(31).
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Theorem 3.8. Theorem 2.1 holds for a splitting G̃∗H
∗(Mβ,A,C) given by the

first Deligne splitting associated with a suitable πβ-Lefschetz class ηβ, where πβ :
Mβ,A → B is the morphism (22).

4. Topology of Hitchin fibrations

4.1. Overview. Throughout the section, we assume C is a nonsingular projective
integral curve of genus g embedded into an abelian surface A. We study a kind of
specialization morphism

(82) sp! : H∗(Mβ,A,Q) → H∗(MDol,Q),

where MDol is the moduli of stable Higgs bundles of rank r and Euler characteristic
χ, and

β = r[C] ∈ H2(A,Z).

Then we deduce Theorems 0.2, 0.4, and 0.5 from Theorem 2.1 via the properties of
the morphism (82) which we establish hereafter.

4.2. Deformation to the normal cone. The moduli space MDol of stable Higgs
bundles with rank r and Euler characteristic χ can be realized as the moduli space
of 1-dimensional Gieseker-stable sheaves F on the cotangent bundle surface T ∗C
with (cf. see [4])

[supp(F)] = r[C] ∈ H2(T
∗C,Z), χ(F) = χ.

In the following, we describe MDol as the “limit” of a trivial family of Mβ,A. A
similar construction using K3 surfaces was considered in [19].

Assume T = P1 and T ◦ = P1 \ 0 = C. Let

(83) S = BlC×0(A× T ) \ (A× 0) → T

be the total space of the deformation to the normal cone associated with the em-
bedding jC : C ↪→ A. The central fiber of (83) is

S0 = T ∗C → 0 ∈ T,

and the restriction over T ◦ is a trivial fibration

A× T ◦ → T ◦ ⊂ T.

We associate to β a family of homology classes

(84) βt = r[C] ∈ H2(St,Z).

Let M → T be the (coarse) relative moduli space which parametrizes, for each
t ∈ T , pure one-dimensional Gieseker-stable sheaves F on St with χ(F) = χ and
such that the support of F is a proper subscheme in the class βt. Similarly, let
B → T denote the component of the relative Hilbert scheme which parametrizes
Cartier divisors in St with proper support in the class βt. Following [37, Section
5.3], we have a proper morphism

M B

T

hT
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over the base T , which, on the level of points, sends a sheaf F on St to its Fitting
support, viewed as an element in Bt. Clearly both M and B become trivial families
when restricted over T ◦,

Mβ,A × T ◦ B × T ◦

T ◦ .

hT◦

The fibers over 0 ∈ T recover the moduli space MDol, the Hitchin base Λ, and the
Hitchin fibration (2).

Lemma 4.1 seems standard; we include a brief proof since we are not aware of
an adequate reference.

Lemma 4.1.

(i) Both M and B are irreducible varieties and smooth over T .
(ii) There exists a universal class

[FT ] ∈ Ktop(M×T S)

whose restriction to each fiber gives a universal class for Mt × St.

Proof. For part (i), we first argue for B. For notational convenience, we define

g̃ = dim(Bt) = r2(g − 1) + 1, ∀ t ∈ T.

We observe that the closure B◦
in B of

B◦ = B × T ◦

is irreducible of dimension g̃ + 1, so that the intersection

B◦ ∩ B0 ⊂ B0

must have at least dimension g̃ at every closed point. This intersection is non-
empty since it contains the divisor r[C] which clearly deforms to the generic fiber.
Since B0 is irreducible of dimension g̃, we have B0 ⊂ B◦. Therefore B is irreducible.
This implies the flatness of B over the nonsingular curve T . Furthermore, since its
fibers are all nonsingular, the flatness further implies that the morphism B → T is
smooth.

The same argument applies for M. The only thing to check is that there exists a
point in the central fiber M0 which deforms to the generic fiber. By the smoothness
of B/T , we can choose a nonsingular curve Z0 ⊂ S0 which deforms to Zt ⊂ St. Any
line bundle on Z0 with Euler characteristic χ can be deformed as well and this gives
the desired point in M0.

For part (ii), we follow the same argument from [31, Section 3.1]. We denote
by M the relative moduli stack of stable sheaves on S, which is a Gm-gerbe over
M. It suffices to show that this gerbe is topologically trivializable, so that we can
pull back the topological K-theory class of the universal family on M ×T S to
M×T S via a section. To construct a trivialization, we take the nonsingular 3-fold
S ′ = BlC×0(A× T ) which contains S as an open subset,

S ⊂ S ′.
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Let MS′ be the (coarse) moduli space of stable sheaves on S ′ with Chern character
given by w = ch(it∗F) ∈ H∗(S ′,Q), where

it : St
�−→ A× t ⊂ S ′, t �= 0

is the inclusion of a nonsingular fiber, and F ∈ M is a coherent sheaf supported on
St. The moduli space MS′ contains M as an open subvariety; therefore it is enough
to show that the corresponding Gm-gerbe MS′ → MS′ is topologically trivial. As
in [31, Section 3.1], a trivialization can be constructed with a topological K-theory
class in S ′ whose pairing with w is 1. For this, we can use the pullback to S ′ of a
class on A, whose pairing with (0, r[C], χ) is 1, via the natural projection

S ′ = BlC×0(A× T ) → A. �

4.3. Specializations. Specialization morphisms with respect to perverse filtra-
tions have been studied systematically in [10,13]. We provide a concrete description
of the specialization morphism in our setting as follows.

As before, we assume T = P1 and T ◦ = P1 \ 0. Let f : W → T be a smooth
morphism, whose restriction over T ◦ is a trivial product

f◦ : W ◦ = Wt × T ◦ → T ◦, ∀ t �= 0,

with Wt proper. By Deligne’s Global Invariant Cycle Theorem, see [16, Theorem
1.7.1] for example, the restriction

rest : H
∗(W,Q) → H∗(W ◦,Q) = H∗(Wt,Q)

is surjective for t �= 0. Let

α1, α2 ∈ H∗(W,Q)

be two liftings of a class α ∈ H∗(Wt,Q) with t �= 0. Since H∗(W ◦,Q) = H∗(Wt,Q),
the long exact sequences for the pairs (W,Wt) and (W,W ◦) are isomorphic. Since
W is nonsingular, the relative cohomology for (W,W ◦) can be identified with the
Borel-Moore homology of W0. It follows that

(85) α1 − α2 = i0∗γ,

for some class γ in the Borel–Moore homology of W0. Here i0 : W0 ↪→ W is the
closed embedding of the central fiber, and we identify the Borel–Moore homology
and the cohomology of the nonsingular W in the equation (85). The excess inter-
section formula [20, Corollary 6.3], together with the triviality of the normal bundle
NW0/W , implies that we have

res0(α1)− res0(α2) = i∗0i0∗γ = c1(NW0/W ) ∩ γ = 0.

We define the specialization morphism6

(86) sp! : H∗(Wt,Q) → H∗(W0,Q), t �= 0

as

(87) sp!(α) = res0(α̃) ∈ H∗(W0,Q),

6In the literature, often, one defines a specialization morphism sp∗ in the opposite direction,
as it is dictated by the morphism σ : i∗0 → ψf with ψf nearby cycle-functor. In the present set-up,
since W0 is not proper, such an arrow sp∗ does not exist; by dualizing σ, one sees that an arrow in
the opposite direction always exists, but if W0 is singular, for example, this arrow is not a familiar
object.
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where α̃ ∈ H∗(W,Q) is any lifting of α. The discussion above implies that the class
(87) does not depend on the lifting α̃. Since res0 is a homomorphism of Q-algebras,
so is sp! (86).

Example 4.2. Let S → T be the relative surface (83) associated with the embed-
ding jC : C ↪→ A. We have the specialization morphism

(88) sp! : H∗(A,Q) → H∗(T ∗C,Q) = H∗(C,Q).

By the definition of sp!, the morphism (88) is given by the pullback along

T ∗C ↪→ P(T ∗C ⊕OC) ↪→ BlC×0(A× T ) → A× T → A.

In particular, we have

sp!(γ) = j∗Cγ ∈ H∗(T ∗C,Q) = H∗(C,Q), ∀ γ ∈ H∗(A,Q).

Now we discuss the interaction between sp! and perverse filtrations. Let W/T
be as above. We consider a commutative diagram

W V

T

h

where the morphism h : W → V is proper of relative dimension d. For every
t ∈ T , there is a perverse filtration P�H

∗(Wt,Q) associated with the morphism
ht : Wt → Vt.

Proposition 4.3. The specialization morphism (86) preserves7 the perverse filtra-
tions, i.e.,

sp! (PkH
∗(Wt,Q)) ⊂ PkH

∗(W0,Q), ∀k.

Proof. We show that there exist splittings of the perverse filtrations

H∗(Wt,Q) =
⊕
i

GiH
∗(Wt,Q), ∀ t ∈ T

such that the splitting is constant for t ∈ T o, and

sp! (GiH
∗(Wt,Q)) ⊂ GiH

∗(W0,Q).

We apply the decomposition theorem [5] to the morphism h : W → V , and fix
an isomorphism

φ : Rh∗QW [dimW − d]
�−→

2d⊕
i=0

Pi
V [−i].

Here, the Pi
V are semisimple perverse sheaves on V . By the discussion in Section

1.3, the isomorphism φ induces a splitting of the perverse filtration on H∗(W,Q)
associated with h. By the smoothness of f and the compatibility of vanishing
cycles with the derived pushforward Rh∗, we have ϕ(Rh∗QW ) = 0. As a result,
[13, Corollary 3.1.6] shows that the restriction of Pi

V to a closed fiber over t ∈ T is
a shifted perverse sheaf,

Pi
V,t[−1] = res∗tPi

V [−1] ∈ Perv(Vt), ∀ t ∈ T.

7In fact, the proof shows more, namely that sp! is filtered strict.
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Therefore, the restriction φt of the decomposition φ induces splittings of the per-
verse filtration

H∗(Wt,Q) =
⊕
i≥0

φt(H
∗(Vt,Pi

V,t)), ∀ t ∈ T,

and we conclude from the definition of sp! that

sp!
(
φt(H

k(Vt,Pi
V,t))

)
⊂ φ0(H

k(V0,Pi
V,0)).

This completes the proof. �

Now we consider the family

hT : M → B
over T constructed in Section 4.2, especially Lemma 4.1. Proposition 4.3 implies
that the specialization morphism

sp! : H∗(Mβ,A,C) → H∗(MDol,C)

preserves the perverse filtrations. Let G̃∗H
∗(MA,β ,Q) be a splitting given by

Theorem 3.8. In particular, it is the first Deligne splitting induced by a (πβ =
ht
=0)-Lefschetz class8

ηβ,A ∈ H2(MA,β ,C).

Proposition 4.4. The class

η0 = sp! (ηβ,A) ∈ H2(MDol,C)

is a Lefschetz class for the Hitchin fibration h : MDol → Λ. Assume further that

H∗(MDol,C) =
⊕
k,j

G̃kH
j(MDol,C)

is the first Deligne splitting associated with η0. Then we have (cf. Theorem 3.8)

(89) sp!
(
G̃kH

d(MA,β ,C)
)
⊂ G̃kH

d(MDol,C).
9

Proof. Let Fβ,A ⊂ Mβ,A be a closed fiber of the morphism πβ : Mβ,A → B. We
have

dim(Fβ,A) =
1

2
dim(Mβ,A) = g̃.

Since the fiber class

[Fβ,A] ∈ H2g̃(Mβ,A,C)

lies in P0H
2g̃(Mβ,A,C) by Proposition 1.1, and ηβ,A is a Lefschetz class, we obtain

that

ηg̃β,A ∩ [Fβ,A] = ηg̃β,A ∪ [Fβ,A] �= 0

by the hard Lefschetz condition. Hence after specialization, we have

η
dim(F0)
0 ∩ [F0] = ηg̃β,A ∩ [Fβ,A] �= 0

with F0 a closed fiber of h : MDol → Λ. We conclude from Proposition 3.2 that η0
is a Lefschetz class with respect to h. The inclusion (89) then follows from Lemma
3.3 (applied to φ = sp!). �

8Note that this class was denoted by ηβ′,A′ in Section 3.5, since A was special there.
9Here we use C-coefficients since the Lefschetz class ηA,β lies in H2(Mβ,A,C); see Section 3.5.
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Remark 4.5. Proposition 4.4 implies that sp!(G∗H
∗(Mβ,A,C)) splits the restricted

perverse filtration P∗H
∗(MDol,C) ∩ Im(sp!), i.e.,

PkH
∗(MDol,C) ∩ Im(sp!) =

⊕
i≤k

sp!
(
G̃iH

∗(Mβ,A,C)
)
.

In general, for an arbitrary splitting G∗H
∗(Mβ,A,C) of the perverse filtration

P∗H
∗(Mβ,A,C), it may not be true that

sp! (GiH
∗(Mβ,A,C)) ∩ sp! (GjH

∗(Mβ,A,C)) = {0}, ∀i �= j.

It is thus crucial, in our approach to the results of this paper, to realize the splitting

H∗(Mβ,A,C) =
⊕
k,j

G̃kH
j(Mβ,A,C)

as the first Deligne splitting associated with a Lefschetz class as in Theorem 3.8.

4.4. Normalized classes. Our purpose is to apply the specialization morphism
sp! to the tautological classes. We first discuss some properties of the normalized
classes introduced in Section 0.3.

Following [24, 25, 40], the cohomology

(90) H∗(MDol,Q) = H∗(MB,Q)

can be understood by the associated PGLn-character variety M̂B. More precisely,
let

H∗(MB,Q) ∼= H∗(M̂B,Q)⊗H∗((C∗)2g,Q)

be the isomorphism established in [25, Section 1] and [24, Theorem 2.2.12]. Every

class w ∈ Hi(M̂B,Q) can be naturally viewed as a class

w = w ⊗ 1 ∈ Hi(MB ,Q).

The weights of the tautological classes associated with the universal PGLr-bundle
T on C ×MB (induced by the universal GLr-bundle) were calculated in [40],

(91)

∫
γ

ck(T ) ∈ kHdgi+2k−2(MB), ∀k ≥ 0, ∀ γ ∈ Hi(C,Q).

Lemma 4.6 deduces (5) from (91).

Lemma 4.6. A twisted universal family (Uα, θ) on C ×MDol satisfies

(92)

∫
γ

chαk (U) ∈ kHdgi+2k−2(MB), ∀ γ ∈ Hi(C,Q), ∀ k ≥ 0,

if and only if chα(U) is normalized.

Proof. We define

kHdgd(C ×MB) =
⊕

i+j=d

Hi(C,Q)⊗ kHdgj(MB).

Then (92) is equivalent to

chα(U) ∈
⊕
k

kHdg2k(C ×MB).

By a direct calculation using Chern roots, we have (recall that r is the rank)

chα(U) = ch(T ) ∪ exp

(
c1(U)
r

+ α

)
.
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By using the universal relations between Chern character and total Chern class, we
note that (91) is equivalent to

ch(T ) ∈
⊕
k

kHdg2k(C ×MB).

By [40], we have

H0(MB ,Q) = 0Hdg0(MB), H2(MB,Q) = 2Hdg2(MB),

which implies
1Hdg2(C ×MB) = H1(C,Q)⊗H1(MB,Q).

Therefore, we obtain that (92) holds if and only if

chα1 (U) = c1(U) + rα ∈ H1(C,Q)⊗H1(MB,Q).

This is equivalent to the condition that the class ch(Uα) is normalized. �

Next, in parallel to Lemma 4.6, we give a sufficient criterion involving the per-
verse filtration for a class chα(U) to be normalized.

Lemma 4.7. Suppose we have a twisted universal family (Uα, θ) such that, for
every k ≥ 0 and every γ ∈ H2i(C,Q), the tautological class∫

γ

chαk (U) ∈ H2i+2k−2(MDol,Q)

has perversity k. Then chα(U) is normalized.

Proof. We have

P1H
2(MDol,Q) = 0, P0H

0(MDol,Q) = H0(MDol,Q).

The first vanishing follows from the decomposition (69), and the corresponding

vanishing for M̂Dol due to the fact that its second cohomology is generated by a
relative ample class which must therefore have perversity 2.10 The second equality
is clear in view of the isomorphism H0(MDol,Q) ∼= H0(Λ,Q) via pull-back from
the base of the Hitchin fibration (2). Since by assumption, any Künneth factor of
chα1 (U) in H∗(MDol,Q) has perversity 1, we reach the desired conclusion

chα1 (U) ∈ H1(C,Q)⊗H1(MDol,Q). �

Remark 4.8. In fact, we see from the proofs of Lemmas 4.6 and 4.7 that both
lemmas hold if we use C-coefficients for the cohomology groups and we allow α to
be a C-class. In particular, a C-normalized class chα(U) is unique and rational.

4.5. Specializations and tautological classes. Assume jC : C ↪→ A is the
closed embedding of the curve in an abelian surface. Let S → T and M → T be the
family of surfaces and the relative moduli space of 1-dimensional sheaves introduced
in Section 4.2. In the following, we construct a family of cohomology classes on M
over T whose restriction to every closed fiber Mt is a twisted tautological class.

For our purpose, we take a relative compactification S ⊂ S ′ over T as in the
proof of Lemma 4.1(ii). Then M is the coarse moduli space of Gieseker-stable

10To see that a relative ample class has perversity 2, we apply [11, Theorem 1.4.8] together
with the fact that an ample class does not vanish over a general fiber of the Hitchin morphism.
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1-dimensional sheaves F on S ′ satisfying that supp(F) is proper and contained in
St ⊂ S ′

t with the numerical conditions

χ(F) = χ, [supp(F)] = βt.

Here recall that βt is the class (84). By the proof of Lemma 4.1(ii), there is a
universal K-theory class [FT ] on S ′ ×T M.

Let
πS′ : S ′ ×T M → S ′, πM : S ′ ×T M → M

be the projections. We have the Chern character

ch(FT ) ∈ H∗(S ′ ×T M,C)

defined by the universal class [FT ]. For any class of the type

(93) α̃ = π∗
S α̃1 + π∗

Mα̃2 ∈ H2(S ′ ×T M,C)

with α̃1 ∈ H2(S ′,C), α̃2 ∈ H2(M,C), we consider the relative twisted class

(94) chα̃(FT ) = exp(α̃) ∪ ch(FT ),

whose degree 2k parts

chα̃k (FT ) ∈ H2k(S ′ ×T M,C)

induce a relative tautological class
(95)∫

γ̃

chα̃k (FT ) := πM∗

(
(π∗

S′ γ̃ ∪ chα̃k (FT )) ∩ [S ′ ×T M]
)
∈ HBM

∗ (M,C) = H∗(M,C)

for any γ̃ ∈ H∗(S ′,C). Here we use the Poincaré duality in the last identity, and
we require the properness of πM for the pushforward functor πM∗ : HBM

∗ (S ′ ×T

M,C) → HBM
∗ (M,C).

Now we check that (95) is the desired cohomology class on M which gives a
family of twisted tautological classes over the base T .

For any closed point t ∈ T , base change [20, Proposition 1.7] implies that the
restriction of (95) to a closed fiber Mt is a twisted universal class of the form

(96)

∫
γt

rest

(
chα̃k (FT )

)
∈ H∗(Mt,C), γt ∈ H∗(S ′

t,C).

When t �= 0, we have St = S ′
t, and therefore (96) recovers a twisted universal class

on Mβ,A, ∫
γt

chαk (Fβ) ∈ H∗(Mβ,A,C).

We now calculate the class (96) for t = 0. By [26, Theorem 4.6.5], there exists
a coherent sheaf F0 supported on T ∗C ×MDol which represents a universal class
[F0] on S ′ ×MDol. Moreover, the coherent sheaf F0 is supported on the universal
spectral curve C ⊂ T ∗C ×MDol which is proper over MDol. Hence by [3, Property
2.1], we have

(97) chk(F0) ∩ [S ′
0 ×MDol] =

∑
i

ci[Zi] ∈ CH∗(S ′
0 ×MDol)Q,

where ci ∈ Q and Zi are closed subvarieties in T ∗C ×MDol which are proper over
MDol via the composition

(98) Zi ↪→ T ∗C ×MDol
pM−−→ MDol.
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In particular, the expression (97) together with the properties for Zi implies that
the class ∫

γ0

res0

(
chα̃k (FT )

)
∈ H∗(MDol,C)

only depends on the restrictions of the classes γ0 to H2(T ∗C,C) and res0(α̃) to
H2(T ∗C,C)⊕H2(MDol,C).

Note that a class of the type

(99) pM∗(ω∪chk(F0)) :=
∑
i

ci ·pM∗(ω∩ [Zi]) ∈ HBM
∗ (MDol,Q) = H∗(MDol,Q)

is well-defined for ω ∈ H∗(T ∗C ×MDol,C) due to the properness of (98). We see
from the discussion above that the restriction of the class (95) to M0(= MDol) is
given by the following:

(100) res0

(∫
γ̃

chα̃k (FT )

)
=

∫
sp!(γt)

chα0

k (F0) ∈ H∗(MDol,C).

Here sp!(γt) ∈ H∗(S0,C) = H∗(T ∗C,C), α0 ∈ H2(T ∗C,C) ⊕ H2(MDol,C), and
the class on the r.h.s. of (100) is defined by (99).

Proposition 4.9 shows that the tautological classes (4) on the Dolbeault side
MDol are obtained by specializing certain other tautological classes on the compact
geometry side Mβ,A.

Proposition 4.9. Let ∫
γ

chαk (Fβ) ∈ H∗(Mβ,A,C)

be the classes of Theorem 2.1 with γ ∈ H∗(A,Q) a rational class on A; then we
have

sp!
(∫

γ

chαk (Fβ)

)
= c(k − 1, j∗Cγ) ∈ H∗(MDol,Q).

Proof. By the definition of sp! and (100), we have

sp!
(
rest

(∫
γ̃

chα̃k (FT )

))
= res0

(∫
γ̃

chα̃k (FT )

)
=

∫
sp!(γt)

chα0

k (F0)

for any α̃ of the type (93).
A direct calculation by applying the Grothendieck–Riemann–Roch formula to

the natural projection

pr : T ∗C ×MDol → C ×MDol

(see the paragraph before [34, Remark 8]) together with Example 4.2 yields∫
sp!(γ)

chα0

k (F0) =

∫
j∗Cγ

chα0

k−1(U).

Here U = pr∗F0 is a universal family on C ×MDol.
In conclusion, we obtain that

sp!
(∫

γ

chαk (Fβ)

)
=

∫
j∗Cγ

chα0

k−1(U).

Moreover, we know from Proposition 4.4 that the twisted class∫
j∗Cγ

chα0

k−1(U), ∀γ ∈ H∗(A,Q), ∀k ≥ 1
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has perversity k − 1. Hence Lemma 4.7 and Remark 4.8 imply, by recalling (4),
that ∫

j∗Cγ

chα0

k−1(U) = c(k − 1, j∗Cγ). �

4.6. Proofs of Theorems 0.2, 0.4, and 0.5. Since the perverse filtration with
respect to the Hitchin fibration h : MDol → Λ is locally constant when we deform
the curve C [13], it suffices to prove all the three theorems for a curve which can
be embedded in an abelian surface

jC : C ↪→ A.

After having done so, we can apply the specialization morphism

sp! : H∗(Mβ,A,C) → H∗(MDol,C)

introduced in Section 4.3. The following results are immediate consequences of
Theorem 3.8, Proposition 4.4, and Proposition 4.9:

(i) We have

(101) c(γ, k) ∈ G̃kH
∗(MDol,Q), ∀γ ∈ Im(j∗C) ⊂ H∗(C,Q).

(ii) The restriction of the decomposition

H∗(MDol,Q) =
⊕
k,d

G̃kH
d(MDol,Q)

to the subalgebra of H∗(MDol,Q) generated by the classes (101) is multi-
plicative.

We first prove Theorem 0.2. The Abel-Jacobi morphism embeds a genus 2 curve
C into its Jacobian

jC : C ↪→ Jac(C) = A.

Hence the restriction morphism j∗C is surjective, and Theorem 0.2 follows from (i)
and (ii) above.

The proof of Theorem 0.4 is similar. For any embedding jC , the image of j∗C
always contains the sub-vector space

H0(C,Q)⊕H2(C,Q) ⊂ H∗(C,Q).

Hence the subalgebra
R∗(MDol) ⊂ H∗(MDol,Q)

is contained in the subalgebra generated by the classes (101), and we again conclude
Theorem 0.4 by (i) and (ii).

Finally we treat the odd classes

c(γ, k) ∈ H2k−1(MDol,Q), γ ∈ H1(C,Q)

and prove Theorem 0.5.
When the curve C has genus ≥ 3, the restriction

(102) j∗C : H1(A,Q) → H1(C,Q)

is not surjective. We know from (i) that c(γ, k) has perversity k for any γ lying
in the image of (102). Since the monodromy group of the moduli space Mg of
nonsingular genus g curves is the full symplectic group Sp2g by [2], the sub-vector
space

Im
(
j∗C : H1(A,Q) → H1(C,Q)

)
⊂ H1(C,Q)
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generates the total cohomology H1(C,Q) via the action of the monodromy group.
We deduce Theorem 0.5 from [13].
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no. 5, 693–750, DOI 10.1016/j.ansens.2005.07.001. MR2195257

[16] Mark Andrea A. de Cataldo and Luca Migliorini, The decomposition theorem, perverse
sheaves and the topology of algebraic maps, Bull. Amer. Math. Soc. (N.S.) 46 (2009), no. 4,
535–633, DOI 10.1090/S0273-0979-09-01260-9. MR2525735

[17] Mark Andrea A. de Cataldo and Luca Migliorini, Hodge-theoretic aspects of the decomposi-
tion theorem, Algebraic geometry—Seattle 2005. Part 2, Proc. Sympos. Pure Math., vol. 80,
Amer. Math. Soc., Providence, RI, 2009, pp. 489–504, DOI 10.1090/pspum/080.2/2483945.
MR2483945

https://www.ams.org/mathscinet-getitem?mr=0224083
https://www.ams.org/mathscinet-getitem?mr=535062
https://www.ams.org/mathscinet-getitem?mr=412190
https://www.ams.org/mathscinet-getitem?mr=998478
https://www.ams.org/mathscinet-getitem?mr=751966
https://www.ams.org/mathscinet-getitem?mr=123639
https://www.ams.org/mathscinet-getitem?mr=3221294
https://www.ams.org/mathscinet-getitem?mr=3752459
https://www.ams.org/mathscinet-getitem?mr=3077721
https://www.ams.org/mathscinet-getitem?mr=2912707
https://www.ams.org/mathscinet-getitem?mr=3033732
https://www.ams.org/mathscinet-getitem?mr=4221002
https://www.ams.org/mathscinet-getitem?mr=1919155
https://www.ams.org/mathscinet-getitem?mr=2195257
https://www.ams.org/mathscinet-getitem?mr=2525735
https://www.ams.org/mathscinet-getitem?mr=2483945


This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

952 M. A. DE CATALDO ET AL.
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