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1 Introduction

The language of Bivariant Theory was developed in [6] and it turns out to be extremely
useful in Intersection Theory and in Riemann-Roch-type questions (cfr. [5]). The Chow-

theoretic version associates a graded group A∗(X
f→ Y ) with a morphism f : X → Y of

algebraic schemes.
There are a product structure, a proper push-forward and a pull-back.
In the case of the structural map X → Spec k, we find the Chow groups A∗(X → Spec k) '
A−∗(X), and in the case of the identity map the groups A∗(X Id→ X) are called the Chow
cohomology groups.
When X is nonsingular these latter groups agree with the Chow groups:

A∗(X Id→ X) ' Adim X−∗(X)

and the bivariant product structure agrees with the usual intersection product.

For varieties defined over the field of complex numbers, the topological counterpart,
i.e. Topological Bivariant Theory, admits the characterization

H i(X
f→ Y ) ' HomDb(Y )(Rf!QX , QY [i]),

from which it follows immediately that H∗(X → {point}) ' Hom(H∗
c (X), Q) = HBM

∗ (X),
the Borel-Moore homology groups, and H i(X Id→ X) = HomDb(Y )(QX , QX [i]) = H i(X, Q),
the cohomology groups.

It is quite natural to expect that the topological bivariant groups can be endowed with
natural mixed Hodge structures (MHS) and that the maps arising in the context of the
bivariant formalism should be compatible with MHS.
It seems that this question can be satisfactorily dealt-with only after having developed the
Hodge theory of maps, and in particular the Hodge-theoretic version of the Decomposition
Theorem (cfr. [2]).
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In this note we shall be less ambitious and we shall deal with a very special yet useful
case which does not seem to be available in the literature in the generality which is needed
in some applications. See, for example, those contained in [1], where morphisms between
cohomology groups associated with correspondences between global finite group quotients
of smooth, not necessarily complete, varieties are stated to be maps of MHS.

Consider a codimension d regular embedding h : Y −→ X. There is a refined Gysin
homomorphism [h] ∈ H2d(Y h→ X) ' H2d(X, X \ Y ), cfr. [5], 19.2, which gives, for any
map X ′ −→ X, the so-called refined Gysin maps h! : HBM

∗ (X ′)→ HBM
∗−2d(Y ×X X ′).

Theorem 4.1 states the compatibility of the Gysin map h! with the MHS involved and
it is proved using the definition of the Gysin map via specialization to the normal cone
([5], [9]).

We work with algebraic varieties and algebraic schemes defined over the field of complex
numbers. We use cohomology etc. with rational coefficients.

The first-named author dedicates this paper to the memory of Meeyoung Kim.

2 Remarks on mixed Hodge structures

Given a morphism f : Y → X of algebraic schemes, the relative cohomology groups
H∗(XmodY ) are given a MHS which is functorial in the map f, in the sense that given a
commutative diagram of maps of algebraic schemes

Y ′ i1→ Y
↓ f ′ ↓ f

X ′ i2→ X,

the natural morphism H∗(XmodY ) → H∗(X ′modY ′) is a morphism of Mixed Hodge
structures (cfr. [3], Exemple 8.3.8; see also [4], §2). The relative cohomology groups are
the cohomology groups of the simplicial scheme C(f).
The diagram above gives rise to a map of simplicial schemes C(f ′) → C(f), hence the
morphism of MHS.

Given an algebraic scheme U, one has, for every open immersion U −→ U ′ into a
proper algebraic scheme, H l

c(U) ' H l(U ′, U ′ \ U).
It follows that cohomology with compact supports admits a natural MHS which is func-
torial for open immersions and proper maps.
Dually, since HBM

l (U) ' H l
c(U)∨, the same is true for Borel-Moore homology.

3 The deformation to the normal cone

For more details on what follows, see [5] and [9].
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Let h : Y −→ X be a closed embedding of algebraic schemes, and IY ⊆ OX be the
corresponding sheaf of ideals.
The normal cone to Y in X is defined to be the algebraic scheme

CY X := SpecOY

⊕
n≥0

In
Y /In+1

Y

There are natural maps Y −→ CY X −→ Y, where the second one is the (affine) cone-
bundle projection to Y and the first one is the closed embedding of the zero-section.
If the embedding of Y in X is regular of codimension d, then CY X is naturally identified
with the rank d normal bundle NY,X of Y in X.
The exceptional divisor of the blowing-up BlY X −→ X of X along Y is the projectivisation
P (CY X).

Let us recall how the deformation to the normal cone and the canonical maps which
are associated with it are defined.

Let M = BlY ×{0}X × A1 be the blowing-up of X × A1 along Y × {0}.
The exceptional divisor can be naturally identified with P (CY X ⊕OY ).
The resulting map p̃ : M −→ A1 is flat.

We have that:
– the blowing-up BlY X is naturally embedded in p̃−1(0) ⊆M ;
– p̃−1(0) = P (CY X ⊕OY ) ∪BlY X;
– P (CY X⊕OY )∩BlY X can be viewed either as the exceptional divisor of the blowing-up
BlY X, or as the divisor at infinity of P (CY X ⊕OY );
– CY X embeds in the exceptional divisor P (CY X⊕OY ) as the complement of the divisor
at infinity;
– Y embeds in CY X ⊆ P (CY X ⊕OY ) as the zero section;
– Y ×A1 embeds in M, compatibly with the projection to A1; in particular, over A1 \ {0},
it is just the product embedding into X ×A1 \ {0}; Y × {0} is embedded in p−1(0) as the
zero-section of CY X ⊆ P (CY X ⊕OY ).

Let
M \BlY X =: M ′ p−→ A1

be the natural flat map. The map p is not proper, even if X is complete.

We say that the embedding Y ⊆ X (i.e. the situation at p−1(t 6= 0)) deforms to the
embedding Y ⊆ CY X (i.e. the situation at p−1(0)).
This construction is called the deformation to the normal cone.

There are specialization maps ([9]) :

h? : HBM
l (X) −→ HBM

l (CY X), h?∨ : H l
c(CY X) −→ H l

c(X),

whose construction is recalled in the proof of 4.1.
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In the case of a regular embedding the normal cone is in fact the normal bundle and
the flat pull-back gives an isomorphism HBM

l (Y ) ' HBM
l+2d(CY X).

The Gysin map h! is, by definition, the composition HBM
l (X) −→ HBM

l (CY X) −→
HBM

l−2d(Y ).

4 The main result

Theorem 4.1 Let h : Y −→ X and CY X be as above. The natural maps

h? : HBM
l (X) −→ HBM

l (CY X), h?∨ : H l
c(CY X) −→ H l

c(X)

are maps of MHS of type (0, 0).
If h is regular of pure codimension d, then the Gysin map and its dual

h! : HBM
l (X) −→ HBM

l−2d(Y ), h!∨ : H l
c(Y ) −→ H l+2d

c (X)

are maps of MHS of type (−d,−d) and (d, d), respectively.

Proof. We first consider a commutative diagram of maps of algebraic schemes

U
j−→ X i←− B

p↘ ↓ π ↙ b
S

where j is an open immersion, B := X \ U and π is proper.
We have a distinguished triangle in the bounded derived category Db

cc(X ) of the category
of constructible complexes of rational vector spaces on X :

Rj!j
!QX (' Rj!QU ) −→ QX −→ Ri∗QB

+1−→,

to which we apply Rπ∗ ' Rπ! and get

Rp!QU −→ Rπ∗QX −→ Rb∗QB
+1−→ .

It follows that
Hl(S, Rp!QU ) ' H l(X , B), ∀l.

Let s ∈ S be a point. By the remarks in §2, the map of pairs:

(π−1(s), b−1(s)) −→ (X , B)

induces natural maps H l(X , B)→ H l(π−1(s), b−1(s)) of MHS for every l. Since π is proper,
π−1(s) is compact and the latter group can be identified with H l

c(p
−1(s)). This endows

these latter groups with MHS.
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To summarize, the natural maps

Hl(S, Rp!QU )→ H l
c(p

−1(s))

are of MHS, for every s ∈ S and for every l.

We apply what above to the following situation.
Let Y ′ ⊆ X ′ be an algebraic compactification of Y ⊆ X, X := BlY ′×{0}(X ′ × A1),
B := (X ′ \X)× (A1 \{0})

∐
BlY ′X ′×{0}

∐
CY ′\Y (X ′ \X), U := X \B. Let π : X −→ A1

be the natural map and p and b the induced maps.
Note that p−1({0}) = CY X.
We have maps of MHS by choosing s = 0 and s = s0 6= 0:

H l
c(p

−1(0)) a←− Hl(Rp!QU ) ' H l(X , B) −→ Hc(p−1(s0)).

CLAIM: a is an isomorphism of MHS for every l.
Proof. It is enough to prove that a is an isomorphism. Consider the fundamental system
of neighborhoods of the point {0} ∈ A1 given by disks Dr = {z : |z| < r}. Let Xr :=
π−1(Dr), Ur : p−1(Dr), Br = b−1(Dr), pr := p|Ur

. Since X is a product away from
π−1({0}), the homotopy axiom for relative cohomology ensures that the restriction maps
Hl(A1, Rp!QU ) ' H l(X , B) −→ H l(Xr, Br) ' Hl(Ur, Rpr !QUr) are isomorphisms for every
r > 0.
The complex Rp!QU is constructible with respect to the stratification (A1 \ {0}, {0}) of
A1 and, by [7], §1.4, this implies that the restriction map H l(X , B) ' Hl(A1, Rp!QU )) a−→
H l

c(p
−1(0)) is an isomorphism.

The first assertion of the Theorem follows.

If the embedding Y ⊆ X is regular of codimension d, then CY X is the normal bundle of
Y in X and we have an isomorphism of MHS HBM

l (Y ) ' HBM
l+2d(CY X) of type (d, d) and

the Gysin map h! being, by definition, the composition HBM
l (X) −→ HBM

l (CY X) −→
HBM

l−2d(Y ), is therefore of MHS of type (−d,−d). 2

Remark 4.2 After simple modifications to the statement and to the proof, Theorem 4.1
holds when h is a local complete intersection morphism.

The following corollary can be used when dealing with correspondences:

Corollary 4.3 Let X
p←− Γ

q−→ Y be algebraic maps of algebraic varieties. Assume that
the graph embedding h : Γ −→ Γ × X is regular and that q is proper. Then the natural
map

Γ∗ : HBM
• (X) −→ HBM

•+2(dim Γ−dim X)(Y )

is of MHS of type (dim Γ− dim X, dim Γ− dim X).

Proof. We have Γ∗(x) = q∗(h!([Γ] × x)) and all operations involved are compatible with
MHS. 2
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Remark 4.4 The same statement above holds when X is assumed to be smooth or a
quotient X = X ′/G of a smooth variety by a finite group, in which case one modifies
the statement by working with X ′ and with the distinguished irreducible component of
Γ×X X ′. We leave this task to the reader.

5 Examples

The paper [1] contains several examples of correspondences, stemming from maps between
surfaces, from Hilbert schemes of points on surfaces, semi-small resolutions of singularities
etc. In what follows, for the reader’s convenience, we offer two of the applications of
Theorem 4.1 contained in [1].

5.1 Small resolutions

Let fi : Xi −→ Y, i = 1, 2, be small resolutions of the singularities of an algebraic variety
Y. This means that the Xi are nonsingular, the fi are proper and birational morphisms,
and the not necessarily irreducible algebraic schemes Xi×Y Xi have exactly one component
of maximal dimension dim Y. This component is the unique component dominating the
spaces Xi under either projection. See [1] for more on this notion and more references.
Note that the same will be true for X1 ×Y X2.

Let D12 ⊆ X1×Y X2 be the unique irreducible component of maximal dimension dim Y.

Theorem 4.1 and a simple calculation using the calculus of correspondences imply the
following

Proposition 5.1 The maps

Dij∗ : HBM
• (Xi) −→ HBM

• (Xj)

are isomorphisms of MHS with inverse Dji∗.
In particular, the virtual Hodge-Deligne numbers of the varieties Xi, i = 1, 2, coincide.

Proof. See [1], §3. 2

5.2 Wreath products, rational double points and orbifolds

The combinatorial details of this example are rather lengthy. We omit them in favor of
the end result. The interested reader can see [1], §7.3.

Let Y ′ be a smooth algebraic surface and G ⊆ SL2(C) be a finite group acting on Y ′

with only isolated fixed points.
Let Y := Y ′/G and f : X −→ Y be its minimal resolution.
The semi-direct product Gn (called the Wreath product) of Gn with the symmetric

group in n letters Sn acts on Y ′n.
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The Hilbert scheme of n−points X [n] is a semi-small resolution of the singularities of
Y ′n/Gn.

There is an explicit collection of correspondences that arises in this situation.
There is the notion of orbifold cohomology groups H∗(Y ′n/Gn)orb for the pair (Y ′n, Gn).

These groups carry a natural MHS.
Theorem 4.1 allows to prove, using the aforementioned collection of correspondences,

the following

Proposition 5.2 There is a canonical isomorphism of MHS

H∗(Y ′n/Gn)orb ' H∗(X [n]).
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