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SOME ADJUNCTION-THEORETIC PROPERTIES
OF CODIMENSION TWO

NON-SINGULAR SUBVARITIES OF QUADRICS

MARK ANDREA A. DE CATALDO

ABSTRACT. We make precise the structure of the first two reduction morphisms
associated with codimension two non-singular subvarieties of non-singular quadrics
Q n, n ½ 5. We give a coarse classification of the same class of subvarieties when they
are assumed not to be of log-general-type.

0. Introduction. The study of low codimension subvarieties of projective space
has been a very active area of research in recent years. The papers [15], [6] and their bib-
liographies may serve the reader as a diving board towards a vast sea of general structure
results, classification in low degree and conjectures concerning surfaces in P4 and three-
folds in P5, respectively.

Low codimensional embeddings in projective space are special in many respects be-
cause, for example, of results such as the Barth-Larsen theorem and the double-point
formulæ.

The Barth-Larsen theorem asserts that, given an embedding ì: X !̈ PN, the group
homomorphisms ìŁm: Hm(PN,C) ! Hm(X,C) are isomorphisms in a certain range of
dimensions which depends on the codimension of ì(X) in PN; see [3]. The reader can
consult [7], section 2.3.10 for a precise statement and a set of references concerning
this result and its generalization, due to Sommese, to homogeneous varieties, such as
non-singular quadrics Q n. In this paper we will use frequently these results in the form
summarized by Remark 2.2.

Given an embedding as above, the double-point formulæ provide expressions for the
Chern classes of the normal bundle of ì(X) in terms of the Chern classes of the ambient
space PN and of the embedding line bundle L :≥ ìŁOPN (1). Other information about the
Chern classes of the normal bundle of the embedding can be used in conjunction with
these formulæ to obtain numerical restrictions on X. See [19], Example 4.1.3, where the
double point formulæ are used in conjunction with the self-intersection formulæ to find
a numerical identity between the basic invariants of embedded surfaces in P4. A classical
application is that abelian surfaces in P4 must have degree d ≥ 10.
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The double-point formulæ hold in a wider context, e.g. ì: X ! Y could be any morphism
of non-singular varieties, with X complete; see [17], section 9.3. In this wider context,
their utility is clear only when one has precise information about the cohomology ring
of the target space Y.

In particular, the Barth-Larsen theorem and the double-point formulæ hold in the
more general context of low codimensional embeddings in homogeneous spaces. It
seems natural to the author to explore their consequences in this context. The first homo-
geneous space that should come to mind, after PN , is the non-singular quadric and, since
hypersurfaces and complete intersections are considered trivial in this context, the first
value for the codimension to be considered should be two.

In his dissertation, [11], the author concerned himself with the case of codimension
two embeddings in non-singular quadrics ì: Xn�2 !̈ Q n, n ½ 5. This paper is part
of a series of papers stemming from the results of his dissertation; the other papers are
[12], [13] and [14]. Arrondo and Sols had previously studied surfaces in Q 4, which is
isomorphic to the Grassmannian of lines in P3; see [2].

In this paper we address the following question: what are the special adjunction-
theoretic properties of (n�2)-folds embedded in quadrics Q n? Given a projective man-
ifold X and an ample line bundle L on X, the Adjunction Theory of Fujita et al. and
Sommese et al. studies these polarized varieties (X, L); see [16] and [7]. Roughly speak-
ing, this theory studies the positivity properties of the Q-divisors KX + tL, t 2 Q+. In
general, the lack of this positivity is a detector of the presence of special projective mor-
phisms defined on the variety. There are two cases. In the former one, the morphism is
birational and it is called reduction; it contracts some special subvarieties and provides
a new birational model where the positivity of naturally associated divisors can be in-
vestigated further; one may think of this as a step of an inductive analysis. In the latter
one, the morphism is a fibration onto a lower dimensional variety, with general fibers
Fano manifolds; this is how the special varieties of Adjunction Theory arise. Adjunction
Theory acts as a flowchart. We start with a pair (X, L) and with t ≥ dim X � 1 as above
and take on and inductive analysis using the morphisms as above. At each step we either
perform a reduction and reduce t or we have a special fibration. However, the theory is
complete only for t Ù dim X � 3.

The paper [6] consists of a thorough analysis of the adjunction-theoretic properties of
threefolds X3 in P5. Under this stringent restriction, many of the already precise results
of Adjunction Theory become explicit.

Inspired by the results and by the techniques employed in [6], in this paper we estab-
lish that some of the adjunction-theoretic properties of threefolds in P5 proved in [6] also
hold for codimension two non-singular subvarieties of quadrics Q n, n ½ 5.

The paper is organized as follows. Section 1 contains preliminary material such as a
little background in Adjunction Theory and results from the papers [12]and [14] which
will be used in the subsequent sections. Section 2 contains the precise description of the
first two reduction morphisms of Adjunction Theory for codimension two subvarieties
of quadrics; as it turns out, by analogy with [6], Theorem 1.4, the reduction morphisms
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associated with these varieties are almost always isomorphisms; see Theorem 2.3. In
Section 3 we give a coarse classification theorem for the varieties for which the second
reduction morphism is not defined, the so-called varieties not of log-general-type; see
Theorem 3.1, Theorem 3.2 and Theorem 3.4. In order to prove the third one, we need
to analyze the case of Del Pezzo fibrations and, in the same way as in the paper [10],
the case of conic bundles in Q 5. These two analyses are carried out in Sections 4 and 5,
respectively.

Threefolds not of log-general-type in P5 are completely classified (cf . [10]) by the
efforts of many authors and the complete classification of threefolds in P5 up to degree
11 (see [6] and its references) was instrumental in achieving that goal. The paper [14]
completes the classification of varieties as in its title. In particular the classification is
complete only for degree d � 10. In order to make Theorem 3.4 complete, we would
need the above classification for degree d � 20.

NOTATION AND CONVENTIONS. Our basic reference is [19]. We work over any al-
gebraically closed field of characteristic zero. A quadric Q n, here, is a non-singular hy-
persurface of degree two in the projective space Pn+1. Little or no distinction is made
between line bundles, associated sheaves of sections and Cartier divisors.
By a scroll we mean a variety X � PN, for which (X, OPN (1)jX) ' (PY(E), òE ), where E
is a vector bundle on a non-singular variety Y. An adjunction-theoretic scroll (see [5]) is
not, in general, a scroll; we denote them by a. t. scrolls.

ACKNOWLEDGEMENTS. This paper is an expanded and completed version of parts of
my dissertation. It is a pleasure to thank my Ph. D. advisor A. J. Sommese, who suggested
to me that I study threefolds in Q 5. I am grateful to the referee for suggestions on how
to improve the structure of the paper. I thank the C. N. R. of the Italian Government and
The University of Notre Dame for partial support.

1. Preliminary Material.

1.1 Background in Adjunction Theory. For a self-contained introduction to Adjunction
Theory we refer the reader to [5]. The book [7] summarizes the state of the art in Ad-
junction Theory.

Let us recall the notions of first and second reduction morphism.

Let X be a non-singular projective variety of dimension n and L be an ample line
bundle on X which is spanned at all points by its global sections. We say that a pair
(X0, L0), consisting of a non-singular, projective variety X0 and an ample line bundle L0,
is the first reduction of (X, L) if:

(1) there exists a morphism, the first reduction morphism, û: X ! X0 expressing X
as X0 blown-up at a finite set F of non-singular distinct points,and

(2) L ≥ ûŁL0 � [û�1(F )];
this last relation 2) is equivalent to 20) KX + (n � 1)L ≥ ûŁ(KX0 + (n � 1)L0).

Moreover, û induces a bijection between the smooth elements of jLj and those of jL0j
passing through F ; KX +(n�1)L is nef and big if and only if there exists the first reduction
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(X0, L0) of (X, L), which is unique up to isomorphism. The positive dimensional fibers of
û are exactly the integral divisors D with D ' Pn�1, LjD ' OPn�1(1) and with normal
bundle OPn�1 (�1). Finally, KX0 + (n � 1)L0 is ample on X0

If KX + (n�1)L is not nef and big, then (X, L) is on an explicit list of special polarized
varieties; see [8], page 381.

Assume that (X, L) admits the first reduction (X0, L0) and that KX0 + (n � 2)L0 is nef
and big. Then a suitable positive power of it defines a birational morphism ß: X0 ! X00

onto a normal variety X00. ß will be referred to as the second reduction morphism. Its
positive dimensional fibers are well understood; see [5], (0.2.1) and (0.2.2). The Weil
divisor (ßŁL0)ŁŁ is actually Q-Cartier. The pair (X00, L00) is called the second reduction of
(X, L).

If (X, L) admits a first reduction (X0, L0), but KX0 +(n�2)L0 fails to be nef and big then
the pair (X0, L0) is on an explicit list of polarized varieties; see [8], pages 381–2.

Pairs for which the two reduction morphisms are not defined are called not of log-
general-type.

1.2 Codimension two subvarieties of quadrics. Let ì: X !̈ Q n be the embedding of a
degree d, non-singular subvariety of codimension two of Q n; let L denote the line bundle
ìŁOQ n(1), g the genus of the curve C obtained by intersecting (n � 3) general elements
of jLj. Denote by xi the Chern classes of the tangent bundle of X and by ni the ones of the
normal bundle NX,Q n ; by adjunction KX ≥ �nL+n1 and by the self-intersection formula
n2 ≥ (1Û2)dL2.

The following formulæ, which hold in the Chow ring of X for n ½ 5, are obtained
using the double-point formulæ (see [17]) for ì.

(1) n2 ≥
1
2

(n2 � n + 2)L2 � nx1 Ð L + x2
1 � x2;

(2)
1
6

(n3 � 3n2 + 8n� 12)L3 +
1
2

(�n2 + n� 2)x1L2 + n(x2
1 � x2)L + 2x1x2 � x3

1� x3 ≥ 0.

The following formulæ for surfaces X in Q 4 with balanced cohomology class can be
found in [2].

(3) 2K2
X ≥

1
2

d2 � 3d � 8(g � 1) + 12ü(OX).

In the case of n ≥ 5, using the formulæ (1) and (2), we can express KX Ð L2, K2
X Ð L,

K3
X, x2 Ð L and x3 as functions of d, g, ü(OX), ü(OS); for example, omitting the dots from

now on:

KXL2 ≥ 2(g � 1)� 2d,(4)

K2
XL ≥

1
4

d2 +
3
2

d � 8(g � 1) + 6ü(OS),(5)

K3
X ≥ �

9
4

d2 +
27
2

d + gd + 18(g� 1)� 30ü(OS) � 24ü(OX).(6)
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PROPOSITION 1.1. Let X be a non-singular threefold in Q 5. Then

60ü(OS) ½
3
2

d2 � 12d + (d � 48)(g � 1) + 24ü(OX)

and

ü(OS) �
2
3

(g � 1)2

d
�

1
24

d2 +
5

12
d.

PROOF. Denote by si and ni the Segre and Chern classes respectively of the normal
bundle N of X in Q 5. Since N is generated by global sections, we have s3 ½ 0. Since
s3 ≥ n3

1 � 2n1n2, we get

0 � (KX + 5L)3 � 2(KX + 5L)
1
2

dL2 ≥ K3 + 15K2
XL + 75KXL2 + 125d � d(KX + 5L)L2.

The first inequality follows from (6), (5) and (4).
We use the Generalized Hodge Index theorem of [4]:

d(K2
XL) � (KXL2)2

and we make explicit the left hand side using (5) and the right hand side using (4). The
second inequality follows.

In what follows:
- ((a, b, c), O(1)) denotes the polarized pair given by a complete intersection of type

(a, b, c) in Pn+1 and the restriction of the hyperplane bundle to it;
- (X, L) denotes the polarized pair given by a variety X � Q n and L :≥ OQ n(1)jX;
- g, q and pg denote the sectional genus of the embedding line bundle, the irregu-

larity and geometric genus of a surface section, respectively.

REMARK 1.2. Let X � Q n, n ½ 5, be any subvariety. Then the degree d of X
is even. This follows from the fact that the cohomology class of [X] equals the class
(1Û2) d [Q n�2] in H4(Q n,Z).

PROPOSITION 1.3 (CF. [14]). Let X � Q n, n ½ 5, a codimension two non-singular
subvariety of degree d � 10. Then the pair (X, L) is one of the types below.

Type A) d ≥ 2,
�
(1, 1, 2), O(1)

�
; g ≥ q ≥ pg ≥ 0.

Type B) d ≥ 4,
�
(1, 2, 2), O(1)

�
; g ≥ 1, q ≥ pg ≥ 0.

Type C) d ≥ 4, n ≥ 6,
�
P1 ð P3, O(1, 1)

�
; g ≥ q ≥ pg ≥ 0.

Type D) d ≥ 4, n ≥ 5,
�
P
�
OP1 (1)2 ýOP1 (2)

�
, ò
�

; g ≥ q ≥ pg ≥ 0.

Type E) d ≥ 6,
�
(1, 2, 3), O(1)

�
; g ≥ 4, q ≥ 0, pg ≥ 1.

Type F) d ≥ 6, n ≥ 5,
�
P(TP2 ), ò

�
, embedded using a general codimension one linear

system ¿ � jòT
P2
j; g ≥ 1, q ≥ pg ≥ 0.

Type G) d ≥ 6, n ≥ 5, f : X ! P1ðP2 ≥: Y a double cover, branched along a divisor
of type OY(2, 2), L ' pŁOY(1, 1); g ≥ 2, q ≥ pg ≥ 0.
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Type H) d ≥ 8,
�
(1, 2, 4), O(1)

�
; g ≥ 9, q ≥ 0, pg ≥ 5.

Type I) d ≥ 8,
�
(2, 2, 2), O(1)

�
; g ≥ 5, q ≥ 0, pg ≥ 1.

Type L) d ≥ 8, n ≥ 5,
�
P(E), ò

�
, E a rank two vector bundle over Q 2 as in[20];

g ≥ 4, q ≥ pg ≥ 0.
Type M) d ≥ 10,

�
(1, 2, 5), O(1)

�
; g ≥ 16, q ≥ 0, pg ≥ 14.

Type N) d ≥ 10, n ≥ 5, fjKX+Lj: X ! P1 is a fibration with general fiber a Del Pezzo
surface F, K2

F ≥ 4, KX ≥ �L + f ŁOP1 (1); g ≥ 8, q ≥ 0, pg ≥ 2.

We say that a non-singular threefold X on Q 5 is of Type O), if it has degree d ≥ 12
and it is a scroll over a minimal K3 surface. Such a threefold exists. See [14].

PROPOSITION 1.4 (CF. [14]). The following is the complete list of non-singular codi-
mension two subvarieties of quadrics Q n, n ½ 5, which are scrolls.

Type C) n ≥ 6, d ≥ 4, scroll over P1 and over P3;
Type D) n ≥ 5, d ≥ 4, scroll over P1;
Type F) n ≥ 5, d ≥ 6, scroll over P2;
Type L) n ≥ 5, d ≥ 8, scroll over Q 2;
Type O) n ≥ 5, d ≥ 12, scroll over a minimal K3 surface.

PROPOSITION 1.5 (CF. [12], OR [2] FOR THE CASE d Ù 2k(k � 1)). Let C � Q 3 be
an integral curve of degree d and geometric genus g. Assume that C is contained in a
surface of Q 3 of degree 2k. Then

g � 1 �
d2

4k
+

1
2

(k � 3)d.

PROPOSITION 1.6 (CF. [2], PROPOSITION 6.4). Let C be an integral curve in Q 3, not
contained in any surface of Q 3 of degree strictly less than 2k. Then

g � 1 �
d2

2k
+

1
2

(k � 4)d.

Let S be a non-singular surface in Q 4, N its normal bundle, õ its postulation, C a non-
singular hyperplane section of S, g its genus, d its degree. Let s be a positive integer,
Vs 2 jIS,Q 4 (s)j be integral and ñl :≥ c2

�
N (�l)

�
≥ (1Û2)d2 + l(l � 3)d � 2l(g � 1),

8l 2 Z.

LEMMA 1.7. In the above situation: 0 � ñs � s2d.

PROOF. The left hand side inequality is just Proposition 1.5 above. To prove the
right hand side we first assume s ≥ õ. Using [2], Lemma 6.8 we conclude (from here
on, the hypothesis d Ù 2õ2 was not used there) in the case at hand. Now, for the general
case, let s ≥ õ + t, where t is a non-negative integer. Then, as it is easily checked,
ñs ≥ ñõ + õtd + t(õ + t � 3)d � 2t(g � 1). We conclude by what was proved for ñõ and
by the obvious g ½ 0.
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2. The structure of the reduction morphisms. In this section we give, by a sys-
tematic use of the double-point formulæ, a precise description of the first two reduc-
tion morphisms of Adjunction Theory associated with codimension two subvarieties of
quadrics Q n, n ½ 5. We apply these formulæ also to the case of divisorial contractions
of extremal rays on threefolds in Q 5.

From now on we shall make free use of the language of Adjunction Theory; we shall
give a reference, almost never the original one, for the result used in the sequel.

Let ó :≥ n � 2.

LEMMA 2.1. Let X be a codimension two non-singular subvariety of Q n, n ½ 5.
Let D be a divisor on X with

�
D, OD(D)

�
'
�
Pó�1, OPó�1(�1)

�
and (KX + (ó � 1)L)jD '

OD; then n ≥ 5, 6 and d ≥ 10.
Let n ≥ 5. Then we have the following list of possible degrees according to whether X
contains a divisor of the given form

�
D, OD(D)

�
with

�
KX + (ó � 2)L

�
jD
' OD:

(2.1.1) if
�
D, OD(D)

�
'
�
P2, OP2 (�2)

�
, then d ≥ 20;

(2.1.2) if
�
D, OD(D)

�
'
�
P2, OP2 (�1)

�
, then d ≥ 14;

(2.1.3) if
�
D, OD(D)

�
' (F̃2, G), where 2G ≥ KD, then d ≥ 14;

(2.1.4)
�
D, OD(D)

�
' (F0, G), where 2G ≥ KD, then d ≥ 14;

(2.1.5) the case in which D has two components as in [5], Theorem 0.2.1, case b5),
cannot occur;

(2.1.6) the case
�
D, OD(D)

�
' (F1,�E� f ) cannot occur.

(2.1.7) the cases in which D is as in either a), or b) of [8] Theorem 2.3 cannot occur.
Let n ≥ 6. Assume X contains a surface S such that S ' P2, LjS ' OP2 (1) and such that
the normal bundle NS ,X ' T Ł

P2 (1). Then d ≥ 14.

PROOF. For n ≥ 5 the proof is the same as the one of [6], Proposition 1.1, using (1)
in the place of (0.8) of the quoted paper. For n ≥ 6 we compute all the relevant Chern
classes by using (1), the Euler sequence for S ' P2 and the exact sequence:

0 ! TS ! TX jS ! NS ,X ! 0.

The following remark will be used several times in the sequel of this paper.

REMARK 2.2. Let X be a non-singular codimension two subvariety of Q n. As a
consequence of the Barth-Larsen Theorem (see [3]), we have that: if n ½ 6, then the fun-
damental group ô1(X) is trivial; if n ½ 7, then Pic(X) ' Z, generated by the hyperplane
bundle, so that any projective morphism f : X ! Y with connected fibers onto a normal
variety Y is either trivial or an isomorphism.

THEOREM 2.3 (STRUCTURE OF THE REDUCTION MORPHISMS). Let X be a non-singular
codimension two subvariety of Q n, n ½ 5.
Assume that (X, L) admits a first reduction (X0, L0). Then the first reduction morphism is
an isomorphism: (X, L) ' (X0, L0).
Assume that (X, L) admits, in addition, a second reduction (X00, L00). We have:
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if n ≥ 5 and d Â≥ 14, 20, then (X, L) ≥ (X0, L0) and the second reduction map
ß: X0 ! X00 is the blowing up on a non-singular X00 of a disjoint union of
non-singular integral curves;

if n ≥ 6 and d Â≥ 14, then (X, L) ≥ (X0, L0) and the second reduction map
ß: X0 ! X00 is the blowing up on a non-singular X00 of a disjoint union of
non-singular integral curves. If in addition d Â≥ 16, 22, then the second
reduction morphism is an isomorphism: (X, L) ' (X0, L0) ' (X00, L00);

if n ½ 7, then (X, L) '(X0, L0) '(X00, L00).

PROOF. Since (X, L) admits a first reduction, KX + (n�1)L is nef and big (i.e., out of
the lists of Theorems 3.1 and 3.2 below). Hence KX + (n � 1)L fails to be ample only if
the first reduction is not an isomorphism; in turn, that happens if and only if X contains
some exceptional divisors of the first kind. By Lemma 2.1 this happens only if d ≥ 10.
By Proposition 1.3 the type is either M) or N); neither of them contains an exceptional
divisor of the first kind. It follows that if the first reduction exists, then (X, L) ' (X0, L0).
The statements concerning the second reduction morphism can be proved as follows. For
n ≥ 5, we use Theorem 0.2.1 of [5] coupled with Lemma 2.1.
For n ≥ 6 we use Theorem 0.2.2 of [5] and then we take a general hyperplane section
and reduce to the case n ≥ 5, with the difference that now case b2) of Theorem 0.2.1 of
[5] does not occur. The case of the blowing up of curves yields d ≥ 16, 22, as we now
show. Since X ' X0 we cut (1) with F ' P2, a general fiber of the blowing up. Define
a to be the positive integer such that LjF ' OP2 (a). Since NF,X ' OP2 ý OP2 (�1) and
KXjF ' OP2 (�2) we get

(16 � dÛ2)a2 ≥ 12a� 4.

Since a Ù 0 we see that d � 30. The only integer solutions to the relation above are
(d, a) ≥ (16, 1) and (22, 2). This concludes the proof for n ≥ 6.
Finally, for n ½ 7 we use Remark 2.2.

Lemma 2.1 can also be used to describe Mori contractions for threefolds in Q 5. See
[6], Corollary 1.2 for the analogous result on P5.

PROPOSITION 2.4. Let X be a non-singular threefold in Q 5. Let D be an integral
divisor on X. We have:

(2.4.1) if
�
D, OD(D)

�
'

�
P2, OP2 (�1)

�
, then either d ≥ 10 and LjD ' OP2 (1), or

d ≥ 14 and LjD ' OP2(2);

(2.4.2) if
�
D, OD(D)

�
'

�
P2, OP2(�2)

�
, then either d ≥ 8 and LjD ' OP2 (1), or

d ≥ 16 and LjD ' OP2(2);

(2.4.3) if
�
D, OD(D)

�
' (F0, G), then d � 20;

(2.4.4) if
�
D, OD(D)

�
' (F̃2, G), then d ≥ 14 and LD ≥ �G.

PROOF. The proof is the same as that of [6], Proposition 1.1, using (1) in the place
of (0.8) of the quoted paper.



SOME ADJUNCTION-THEORETIC PROPERTIES 683

PROPOSITION 2.5 (STRUCTURE OF MORI CONTRACTIONS). Let X be a non-singular
threefold embedded in Q 5 with d ½ 22 and KX not nef. Let ö: X ! Y be the contraction of
any extremal ray on X. Then Y is non-singular and either ö is birational and the blowing
up of an integral non-singular curve on Y or ö is a conic bundle in the sense of Mori
Theory. In particular, if d × 0, then only the former case can occur.

PROOF. The proof is the same as the one of [6], Corollary 1.2, using (1) in the place
of (0.8) of the quoted paper. As for the last statement, if dim Y � 2, then X is not of
general type. We refer to the result of our paper [13] that there are only finitely many
components of the Hilbert scheme corresponding to non-singular (n � 2)-folds not of
general type.

The following conjecture is due, in the case of 3-folds in P5, to Beltrametti, Schneider
and Sommese. The idea is that, by virtue of Proposition 2.5, the failure of being a minimal
model is detected, for d × 0, by the presence of special P1-bundles contained in X.
Pushing the methods of Adjunction Theory, it may be possible to show that the degrees
of these P1-bundles are bounded from above and this may, in turn, imply that the degrees
of threefolds X in Q 5 which are not minimal models are bounded from above.

CONJECTURE 2.6. There is an integer d0 such that every non-singular threefold in
Q 5 of degree d ½ d0 is a minimal model.

3. Varieties not of log-general-type. In this section we give a coarse classification
of varieties as in the title. We still make free use of the language of Adjunction Theory.

Let ó :≥ n�2 and (X, L) be a degree d, ó-dimensional non-singular subvariety of Q n

endowed with its embedding line bundle L. The “Types" we shall consider correspond
to the ones of Propositions 1.3 and 1.4.

We start by observing that KX + (ó � 1)L is spanned by its global sections (spanned
for short) except for three special pairs.

THEOREM 3.1. Let (X, L) be as above. Then KX + (ó � 1)L is spanned unless (X, L)
is one of the three pairs A), C) or D). In particular, d � 4.

PROOF. By the list on [8] page 381, and by the fact that there are no codimension two
linear subspaces in Q n, 8n ½ 5, we need to analyze the a. t. scroll over a curve case only.
By flatness an a. t. scroll over a curve is a scroll. The result follows from Theorem 1.4.

Now we classify those pairs for which KX + (ó � 1)L is spanned, but for which
î
�
KX + (ó � 1)L

�
Ú ó.

THEOREM 3.2. Let (X, L) be as above. Assume that KX + (ó � 1)L is spanned, i.e.,
(X, L) is not as in Theorem 3.1, but that it is not big. Then (X, L) is one of the following
pairs:

(3.2.1) (Del Pezzo variety): Type B); Type F);
(3.2.2) (Quadric Bundle over a curve): Type G);
(3.2.3) ( A. t. scroll over a surface): Type L); Type O).
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In particular, d � 12.

PROOF. Let KX + (ó � 1)L be as in the theorem. Then, by [8], page 381, (X, L) is
either a Del Pezzo variety, a quadric bundle or an a. t. scroll over a surface.

Let us assume that (X, L) is a Del Pezzo variety. By slicing with (dim X � 2) general
hyperplanes we get a surface in Q 4 with KS ≥ �LjS. Since S is Del Pezzo we getü(OS) ≥
g(L) ≥ 1. We plug these values in (3) and get:

d2 � 10d + 24 ≥ 0.

It follows that either d ≥ 4 or d ≥ 6. The conclusion follows from Proposition 1.3.
Let us assume that (X, L) is a quadric bundle. Let F ' Q n�3 be a general fiber of the
quadric fibration. Dotting (1) with F we get d ≥ 6. We conclude using Proposition 1.3.
Let us assume that (X, L) is an a. t. scroll over a surface. By [7], Proposition 14.1.3
(X, L) is an ordinary scroll with î

�
KX + (n� 1)L

�
≥ 2. We conclude by comparing with

Proposition 1.4.
Now we deal with the line bundle KX + (ó � 2)L. First we exclude the presence of

some special pairs.

LEMMA 3.3. Let (X, L) be as above. Then (X, L) cannot be isomorphic to any of
the three pairs

�
P4, OP4 (2)

�
,
�
P3, OP3 (3)

�
and

�
Q 3, OQ 3 (2)

�
. Moreover, there are no

Veronese bundles (X0, L0) associated with a pair (X, L) in Q 5.

PROOF. By contradiction assume that (X, L) '
�
P4, OP4 (2)

�
. We intersect two gen-

eral members of jLj and get a non-singular surface section (S, LjS) which is embedded in
Q 4 with d ≥ 16, g ≥ 1 and ü(OS) ≥ 1. This contradicts (3). We exclude the case in
which (X, L) '

�
Q 3, OQ 3 (2)

�
in a similar way.

The possibility (X, L) '
�
P3, OP3 (3)

�
is ruled out by Remark 1.2.

Let us assume that (X, L) is a pair for which (X0, L0) exists and is a Veronese bundle with
associated morphism p: X ! Y; in particular n ≥ 5. By Theorem 2.3 (X, L) ' (X0, L0).
Dotting (1) with a general fiber F we get d ≥ 10. Since for some ample line bundle L on
Y 2KX + 3L ≥ pŁL, we have the following relation on a general surface section S of X:

LjS ≥ �2KS + LjS,

which “squared" gives d ≥ 10 � 0 mod(4), a contradiction.

THEOREM 3.4. Assume that we are out of the lists of Theorems 3.1 and 3.2 so that
(X, L) ' (X0, L0). If KX + (ó � 2)L is not nef and big then (X, L) is one of the following
pairs:

(3.4.1) (Mukai variety): Type E); Type I);
(3.4.2) (Del Pezzo fibration over a curve): either Type N), d ≥ 10 or as in (4.5.1),

d ≥ 12;
(3.4.3) (Quadric bundle over a surface): n ≥ 5, 6, a flat quadric bundle over a non-

singular surface: if n ≥ 6, then d ≥ 12 and if n ≥ 5, then either d � 18 or
d ≥ 44.
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(3.4.4) (A. t. scroll over a threefold): n ≥ 6, the scroll map is not flat and d is either
14 or 20.

PROOF. Let KX + (ó � 1)L be as in the hypothesis. Then by [8] page 381–2 and
Lemma 3.3, (X, L) is either a Mukai variety, a Del Pezzo fibration over a curve, a quadric
bundle over a surface or an a. t. scroll of dimension ó ½ 4 over a normal threefold.

Let us assume that (X, L) is a Mukai variety. By slicing to a surface section S we find
that KS ≥ OS and, since X is simply connected, it follows that ô1(S) is trivial as well; S
is thus a K3 surface. Using (3) we get, using ü(OS) ≥ 2 and 2(g � 1) ≥ d, that either
d ≥ 6 or d ≥ 8; accordingly g ≥ 4, 5, respectively. The conclusion, in this case, follows
from Proposition 1.3.
We deal with the case of Del Pezzo fibrations over a curve in Lemma 4.1 and Proposi-
tion 4.5.
We now deal with quadric bundles over surfaces. Again, n ≥ 5, 6, by Remark 2.2.
Let n ≥ 5 and assume, by contradiction, that there is a divisorial fiber F of the quadric
bundle map p: X ! Y. Then F is as in [8], Theorem 2.3. This contradicts case (2.1.7)
of Lemma 2.1. It follows that all the fibers of p are equi-dimensional. By Lemma 5.6 it
follows that p is a quadric fibration in the sense of Section 5. The statement follows from
Proposition 5.4 and Remark 5.5.
Let n ≥ 6. Since (X, L) is a quadric bundle over a surface, p: X ! Y, so is its general
hyperplane section. By what was proved for the case n ≥ 5, the base surface Y is non-
singular and by Corollary 5.7 we deduce that p is flat. If we cut (1) with a general fiber
of p we get d ≥ 12. Case (3.4.3) follows.

Finally Case (3.4.4) follows from Proposition 1.4 which ensures us of the absence,
in Q 6, of adjunction theoretic scrolls over threefolds for which the map p is flat: for if
p were flat then Y would be non-singular by [21] Theorem 23.7 and then X would be a
projective bundle, a contradiction. If one of these scrolls occurs, since p is not flat and
�KX is p-ample, Lemma 5.6 and [21], Theorem 23. 1 ensures there must be a fiber F such
that either F contains a divisor or, by [7], 14.1.4, F is a surface S as in Lemma 2.1. In the
latter case we get d ≥ 14. In the former, by slicing with a general hyperplane section,
we get a threefold X̃ together with the morphism p̃ :≥ p

jX̃: X̃ ! Y, where Y is the base

of the scroll. p̃ is the second reduction morphism for (X̃, L
jX̃). In particular, by slicing

the fiber F with the same general hyperplane section, we obtain a scheme F0 � X̃ which
contains a divisor D contracted by p̃ to a point. This divisor D fits the assumptions of
Lemma 2.1, by virtue of the structure theorem of the second reduction morphism (cf. [5],
Theorem 0.2.1). This concludes the proof.

4. Fibrations over curves with general fiber a Del Pezzo manifold. In order to
prove Theorem 3.4, we need to analyze adjunction-theoretic Del Pezzo fibrations over
curves. In this section we study a class of fibrations which includes the ones above. The
main result is Proposition 4.5.

We now study codimension two non-singular subvarieties of Q n, n ½ 5, which admit
a morphism f : X ! Y, with connected fibers, onto a non-singular curve Y, such that the
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line bundle KX + (n � 4)L is trivial on the general fiber. The general fiber will thus be a
non-singular (adjunction-theoretic) Del Pezzo variety of the appropriate dimension n�3.
By Remark 2.2 we have n ≥ 5, 6.

A priori, not all such varieties are adjunction-theoretic Del Pezzo fibrations over a
curve. We study these a priori more general objects for completeness. Section 4.1 con-
tains some upper bounds for the degree of other special classes.

The following lemma ensures that these fibrations coincide with the Del Pezzo fibra-
tions over curves of Adjunction Theory. Let S be a surface section of X.

LEMMA 4.1. Let X be a fibration as above. Then KX + (n � 1)L is ample and
î
�
KX + (n � 2)L

�
≥ î(S) ≥ 1.

PROOF. By the above discussion, either n ≥ 5 or n ≥ 6. Without loss of generality
we may assume that n ≥ 5, for otherwise we could consider a general three-dimensional
hyperplane section of X and it is easy to show that if the statements we want to prove
hold for the threefold hyperplane section of X, then they also hold for X.
The generic fiber of f is a non-singular Del Pezzo surface F. Since KX + L is trivial on
the fibers we define

∆ :≥ L2 Ð F ≥ L2
jF ≥ K2

F.

Cut (1) with F, using the facts that KX jF ≥ KF and that x2 Ð F ≥ 12� ∆. We get

∆ ≥
24

16� d
.

Since F is a Del Pezzo surface and L is very ample, we get 3 � ∆ � 9. Since ∆ is an
integer we have only the following possibilities:

(7) (∆, d) ≥ (3, 8), (4, 10), (6, 12).

Using the above invariants, and the lists of Adjunction Theory, it is easy to show that
KX + (n � 1)L is ample and that î

�
KX + (n � 2)L

�
≥ 0, 1. By Theorem 3.4 the case

KX ≥ �(n�2)L cannot occur, since these manifolds do not carry any nontrivial fibration.
It follows that KX + 2L is ample, î(KX + L) ≥ 1 and, by adjunction, î(S) ≥ 1.

We need the following facts.

FACT 4.2. Let f : X ! Y be as above. By relative vanishing we have hi(OX) ≥ hi(OY),
8i.

FACT 4.3. g(Y) ≥ q(S), 2g � 2 � d ≥
�
pg(S) + q(S) � 1

�
∆; moreover the elliptic

fibration S ! Y has no multiple fibers.
The assertion about g(Y) ≥ q(S) follows from the Lefschetz Theorem on hyperplane
sections, q(S) ≥ h1(OX), and from Fact 4.2; the other assertion follows from [24], 0.5.1.

FACT 4.4. S Â� P4.
To prove this, assume that S � P4. We use jointly the double-point formula for surfaces
in P4, see [19], page 434, and (3) to compute the values of g and ü

�
O(S)

�
to conclude

that, d ≥ 8, 10 would yield non-integer values, a contradiction, and that if d ≥ 12 then
g ≥ 25, and ü(OS) ≥ 13; this system of invariants is inconsistent by Fact 4.3. This
proves the assertion.
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PROPOSITION 4.5. Let X � Q n, n ½ 5, be a non-singular, codimension two subvari-
ety which admits a fibration f : X ! Y in Del Pezzo manifolds onto a non-singular curve
Y; in particular

�
KX + (dim X � 2)L

�
jF
' OF, F a general fiber.

Then Y ' P1 and either (X, L) is of Type N) of Proposition 1.4 or only the following
systems of invariants is possible:

(4.5.1) n ≥ 5, d ≥ 12, K2
F ≥ 6, g ≥ 10, pg(S) ≥ 2, q(S) ≥ 0, hi(OX) ≥ 0, 8i Ù 0.

PROOF. By the proof of Lemma 4.1 and by the information of the cases of degree
d ≥ 8, 10 varieties stemming from Proposition 1.3, we only need to rule out the case
d ≥ 8 and make precise the invariants in the case d ≥ 12. Moreover, by the same
lemma, î(S) ≥ 1.
First let n ≥ 5.
Now we determine the invariants in the case d ≥ 12.
We apply formula (3) in the case d ≥ 12. We get

(8) 2(g � 1) � 3ü(OS) ≥ 9.

By Fact 4.4 and by [13], Proposition 1.4 we are in the position to apply the Castelnuovo
bound for curves in P4, which gives g � 13.
(8) implies that ü(OS) is not a non-negative integer, unless

�
g,ü(OS)

�
≥ (7, 1), (10, 3),

(13, 5). We can rule out the cases: d ≥ 12 and
�
g,ü(OS)

�
≥ (7, 1), (13, 5) using Fact 4.3

which gives g � 7 ≥ 3(pg + q � 1); this last equality together with the given values of
ü(OS) and g gives a non-integer value for q, a contradiction. It follows that if d ≥ 12,
then

�
g,ü(OS)

�
≥ (10, 3). To compute the values of pg and q we use again Fact 4.3 which

gives the number pg + q. Since we know ü(OS) we get the values of pg and q.
Since g ≥ q we see that Y ' P1. The assertions about hi(OX) follow from Fact 4.2.
The proposition is thus proved for n ≥ 5.
Let n ≥ 6, the only remaining case, by virtue of the Barth-Larsen theorem. By slicing
with a general hyperplane we get a threefold with a fibration onto a curve whose general
fiber is a Del Pezzo manifold so that the above analysis applies. The only difference is
that the case d ≥ 10 does not occur by Proposition 1.3.
Now we prove that the case d ≥ 12 also does not occur.
The general fiber of f is a Del Pezzo threefold with KF ≥ �2LjF and L3

jF ≥ 6. By explicit

classification, see [16], page 72, either F ' P1 ð P1 ð P1 or F ' P(TP2 ). In both cases
formula (2) dotted with F gives x3 Ð F ≥ x3(F) ≥ 24. But in the former case x3(F) ≥ 8,
in the latter x3(F) ≥ 6.

4.1 More upper bonds. This section is not needed for Theorem 3.4.
We now prove an upper bound for the degree of codimension two, non-singular sub-

varieties of Q n, n ½ 5, which admit a morphism onto a curve such that the general fiber
is a Fano variety. Again, by virtue of Remark 2.2, we need to worry only about the cases
n ≥ 5, 6.
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PROPOSITION 4.6. Let X � Q n a non-singular subvariety of codimension two and
degree d which admits a morphism onto a curve such that the general fiber is a Fano
variety.

If n ≥ 5, then d � 20.
If n ≥ 6, then d � 30.

PROOF. Let n ≥ 5 and L :≥ LjF. Assume that d ½ 22.
We cut (1) with a fiber, F, and obtain, on F:

(11 � dÛ2)L2 + 5KFL + K2
F � c2(F) ≥ 0.

Since c2(F) ≥ 12 � K2
F, we get:

(9) (dÛ2 � 11)L2 + 2K2
F � 12 + 5KFL ≥ 0.

Now we use K2
F � 9 to get

(10) (dÛ2 � 11)L2 � 6 + 5KFL.

Since KFL � �1, we see that either d ≥ 22, or d ≥ 24 and L2 ≥ �KFL ≥ 1. In the
latter case F ' P2 and the Hodge Index Theorem, applied to the surface F, says that
K2
P2 ≥ 1, a contradiction. In the former case we use (9):

2K2
F � 12 + 5KFL ≥ 0,

which gives a contradiction for each value K2
F ≥ 1, . . . , 9. It follows that d � 20.

The proof of the statement for n ≥ 6 is analogous to the proof of Proposition 4.7, where
we use (1) with n ≥ 6 cut with the cycle KX Ð F.

In the same spirit we prove an upper bound on the degree of Fano threefolds in Q 5.

PROPOSITION 4.7. Let X � Q 5 be a non-singular Fano threefold. Then d � 20.

PROOF (CF. [6], COROLLARY 1.2). We cut (1) with KX and get, using the fact that
x1x2 ≥ 24ü(OX) ≥ 24:

(11 � dÛ2)L2KX + 5LK2
X + K3

X + 24 ≥ 0.

Let
ï :≥ LK2

X, 2ñ :≥ �L2KX ≥ �2g + 2 + 2d;

clearly ï and ñ are positive integers and the above becomes:

(11) (d � 22)ñ + 5ñï + 24 ≥ �K3
X.

By the Generalized Hodge Index Theorem, see [4], we get (�K3
X)(�KXL2) � (K2

XL)2, or

(12) (�KX)3(2ñ) � ï2.
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By combining (11) and (12) we get

(13) ï2 � 10ñï � [2(d � 22)ñ2 + 48ñ] ½ 0.

If we solve the above in ï we get either ï Ú 0, a contradiction, or ï Ù 10ñ. This
implies, in turn, that ï ½ 11. Since, by the classification of Fano threefolds, �K3

X � 64,
(11) becomes

(d � 22)ñ + 55 + 24 � 64,

a contradiction for d ½ 22.

5. Quadric Fibrations. In order to prove Theorem 3.4, we need to analyze adjunc-
tion-theoretic quadric bundles. In this section we study a class of fibrations which in-
cludes the ones above.

The main results are Proposition 5.4 and Remark 5.5.
The term quadric bundle is to be intended in the sense of Adjunction Theory. The term

quadric fibration is introduced below. A priori, not all quadric fibrations are quadric
bundles. We study these, a priori, more general objects for completeness. Section 5.1
ensures us that a quadric fibration with one-dimensional fibers is a conic bundle with a
non-singular base.

By quadric fibration we mean a non-singular projective variety X � P, of dimension
x, together with a fibration p: X ! Y onto a (a fortiori) non-singular variety Y of positive
dimension y, all of which fibers are quadrics, not necessarily integral, of the appropriate
dimension (x � y). One has non integral fibers only if the relative dimension is one.

The case dim Y ≥ 0 is trivial. By virtue of Remark 2.2 we have:

FACT 5.1. There are no codimension two quadric fibrations in Q n, for n ½ 7 and,
for n ≥ 6, any such is simply connected.

We restrict ourselves to the case of n ½ 5.
We begin by fixing some notation and establishing some simple facts.

Let L denote the restriction to X of the hyperplane bundle. The sheaf E :≥ pŁL is locally
free on Y of rank (x� y + 2). It is easy to check that E is generated by its global sections.
The surjection pŁpŁ: L ! L defines an embedding : X !̈ P(E), where L ≥ òE jX and X is
defined by a nonzero section of the line bundle 2ò�ôŁM , for some M 2 Pic(Y), where
ô:P(E) ! Y is the bundle projection.

The following gives a sufficient condition for a general hyperplane section of X to be
a quadric fibration over Y. It is a well known “counting dimensions" argument.

LEMMA 5.2. Let X ! Y be a quadric fibration as above. Assume 2y Ú x + 2. Then
a general hyperplane section X0 of X is a quadric fibration over Y via pjX0: X0 ! Y.

PROOF. Since E is generated by global sections and, by assumption rank(E) Ù y, a
general section of it does not vanish on Y. Such a section will define, for every z 2 Y, a
hyperplane Λz of the corresponding fiberô�1(z) � P(E). In the case in which the quadrics
p�1(z) were integral 8z 2 Y, we would be done. This is, in general, not true. However,
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the singular quadrics of the fibration are parameterized by a proper closed subset D of Y
with dim D � (y � 1). The hyperplanes of P which contain the reduced part, Σ ' Px�y,
of one of the components of one non-integral quadric of the fibration form a linear space
of dimension (dim P � x + y � 1) contained in P_. The space of these bad hyperplanes
is of dimension at most (dim D + dimP � x + y � 1) � dim P � x + 2y � 2 Ú dim P_. It
follows that the general section of E gives a hyperplane section of X which cuts every
quadric of the fibration in a quadric of dimension one less.

PROPOSITION 5.3. There are no quadric fibrations over curves in Q 6. The only
quadric fibrations over curves in Q 5 are of Type G) of Proposition 1.4. If there is a
quadric fibration over a surface in Q 6, then it has degree d ≥ 12.

PROOF. As to quadric fibrations over curves, we cut (1) with a non-singular fiber
F ' Q n�3, we get d ≥ 6. We conclude by comparing with Proposition 1.3.
As to quadric fibrations over a surface we cut (1) with a non-singular fiber F ' Q n�4

and get d ≥ 12.
The following proposition and remark describe our knowledge of the situation for

threefolds in Q 5 which quadric bundles over surfaces.

PROPOSITION 5.4. Let X � Q 5 be a threefold quadric fibration (conic bundle) over
a surface Y. Then either d � 98 or X is contained in a hypersurface V 2 jOQ 5 (3)j and
d � 276.

PROOF. We denote the Chern classes of X and Y by xi and bi, respectively. We omit
the symbol “pŁ" for ease of notation. We follow closely the paper [10]. First we introduce
the following entities and we report from [10], for the reader’s convenience, the relations
among them which are essential to the computations below (one warning: some of the
equalities are only numerical equalities):

M was defined at the beginning of the section;
D 2 j2e1 � 3M j, it is called the discriminant divisor; its points correspond to the

singular fibers of p;
2R � Y the branching divisor associated with a general hyperplane section, S, of X,

which, in view of Lemma 5.2, is a cyclic double cover of Y;
e1 ≥ 3R�D;
M ≥ 2R�D;
x1 ≥ L + b1 � R;
x2 ≥ L2 + L Ð (b1 � 2R + D) + (�2R2 � R Ð b1 + D Ð R + b2 + e2);
x3 ≥ 2b2 �D2 + Db1;
L Ð W Ð W0 ≥ 2W Ð W0, for every pair of divisors W and W0 on Y;
L2 ÐW ≥ (4R�D) Ð W;
e2 ≥

1
2 (12R2 + D2 � 7DR� d).

Now we plug in the above values of x1 and x2 for x1 and x2 in (1):

(14) (6 �
d
2

)L2 � 4Lb1 + 5LR + b2
1 � b1R� LD + 3R2 �DR� b2 � e2 ≥ 0.
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Next we equate the expression above for x3 to the one of (2), using again the above
expressions for x1 and x2:

(15) �(2d+10)b1R+2dR2 +(
d
2

+4)Db1 +D2�10b2 +2b2
1�(

d
2

+5)DR�d(
d
2
�13) ≥ 0.

Now we set

x :≥ b2
1 and y :≥ DR,

we cut (14) with R,�b1, D and L, respectively, so that we obtain four linear equations to
which we add (15), after having substituted in x and y. The result is the following linear
system of equations:

(16) Mvt ≥ ct,

where

M :≥

0
BBBBBB@

�8 34� 2d 0 0 0
�2d � 34 0 � d

2 + 8 0 0
0 0 �8 d

2 � 8 0
�18 14 +4 0 �2

�2d � 10 2d d
2 + 4 1 �10

1
CCCCCCA

,

v :≥ ( b1R, R2, Db1, D2, b2 )

and

c :≥
�
(8 �

d
2

)y, �8x, (2d � 34)y, 2x + 4y + d(
d
2
� 7), �2x + (

d
2

+ 5)y + d(
d
2
� 13)

�
.

Since P :≥ � 1
2 det M ≥ 3d3 � 27d2 � 1520d + 18976 Ù 0, 8d Ù 0, we can solve the

above system (16) and obtain the unique solution:

b1R ≥ �
1
2

[(�128d2 + 4480d � 39168)x + (2d3 � 111d2 + 2020d� 12096)y

+ (2d5 � 120d4 + 2678d3 � 26304d2 + 95744d)]ÛP,

R2 ≥
1
4

[(�1024d + 18432)x + (3d3 � 8d2 � 2112d + 23552)y

+ (16d4 � 688d3 + 9728d2 � 45056d)]ÛP,

b1D ≥ �2[(�152d2 + 4440d � 32128)x + (2d3 � 113d2 + 2099d � 12852)y

+ (2d5 � 122d4 + 2766d3 � 27574d2 + 101728d)]ÛP,

D2 ≥ �4[(�1216d + 16064)x + (�3d3 + 46d2 + 893d � 13736)y

+ (16d4 � 720d3 + 10608d2 � 50864d)]ÛP,

b2 ≥
1
4

[(12d3 + 20d2 � 3648d + 13952)x + (d3 � 30d2 + 152d + 960)y

+ (d5 � 27d4 + 274d3 � 4448d2 + 46016d)]ÛP.
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Since E is generated by global sections and D is effective we see that e2 ½ 0, e1D ½ 0.
Also, [10], Lemma 2.9 gives y ≥ DR ½ 0. We can make explicit e2 and e1 by the
formulæ given at the beginning of this proof and deduce:

DR ≥ y ½ 0,

e2ÐP ≥ (896d�4480)x�(
19
2

d2�366d+3616)y�(
19
2

d4�
843

2
d3+5864d2�24656d) ½ 0,

e1D Ð P ≥ �(4864d � 64256)x� (3d3 � 103d2 + 988d � 1984)y

+ (64d4 � 2880d3 + 42432d2 � 203456d) ½ 0.

These three inequalities define a region of the plane (x, y). It is straightforward to check
that the two lines e2 ≥ 0 and e1D ≥ 0 have slopes a and b whose signs do not change
with d if d ½ 20. One can check easily that a Ù 0 and b Ú 0. The intersection of the first
line above with the x-axis is

(x1, 0)e2 ≥
� (19Û2)d4 � (843Û2)d3 + 5864d2 � 24656d

896d � 4480
, 0
�

;

the intersection of the second line with the x-axis is

(x2, 0)e1D ≥
�64d4 � 2880d3 + 42432d2 � 203456d

4864d � 64256
, 0
�

.

One can check, that, since d ½ 20, x1 Ú x2. The region we are interested in is a triangle
with vertices (x1, 0)e2 , (x2, 0)e1D and (x3, y3)(e2≥0)\(e1D≥0).
Now we compute the genus of a general curve section, C, of X. By adjunction x1 Ð L2 ≥
2d + 2 � 2g, so that by what above:

g� 1 ≥
d
2
� 2b1R +

Db1

2
+ 2R2 �

DR
2

≥ �2b1R +
Db1

2
+ 2R2 �

y
2

+
d
2

≥
h
(24d2 � 472d + 2176)x +

�
(23Û2)d2 � 375d + 3044

�
y

+
�
(23Û2)d4 � (891Û2)d3 + 5374d2 � 19024d

�i
ÛP.

Again it is not difficult to check that the absolute value of the slope of the above line is
bigger than jbj. It follows easily that the maximum possible value for g�1 in our region
is achieved at (x2, 0)e1D, while the minimum is at (x1, 0)e2 . We thus get

(17)
19d3 � 187d2 + 416d

224d � 1120
� g � 1 �

4d3 � 77d2 + 321d
38d � 502

.

Assume that C is not contained in any surface of Q 3 of degree strictly less than 2 Ð 11.
Then by (1.6) and by the left hand side inequality of (17), we get

19d3 � 187d2 + 416d
224d � 1120

�
d2

22
+

7
2

d,
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which, remembering that d is even and that we are assuming d ½ 20, implies d � 98.
Assume that C is contained in a surface of degree 2k, with k ≥ 10, 9, . . . , 3. By Proposi-
tion 1.5 we infer:

19d3 � 187d2 + 416d
224d � 1120

�
d2

4k
+

k � 3
2

d,

which implies, as above, that for k ≥ 10, 9, . . . , 3, d � 64, 58 54, 48, 44, 40, 40 and 276,
respectively.
Finally, assume that C is contained in a surface of degree four or two. Using the right
hand side inequality of (17) and Lemma 1.7 we get d � 42 and d � 16, respectively.
Actually in the last case we get a contradiction, since we are assuming d ½ 20.
Finally if C is in a surface of degree six, then X is in a hypersurface of degree six in Q 5,
provided, d Ù 18 (cf. [13], Proposition 1.4).

REMARK 5.5. We have checked with a Maple routine what are the possible degrees
of a threefold in Q 5 which is a quadric fibration over a surface. For d ½ 20, the results
of this paper impose the following restrictions on the triples (d, x, y):

(1) 20 � d � 276;
(2) for every fixed d as above (x, y) must belong to the triangle of the proof of

Proposition 5.4;
(3) b1R, R2, b1D, D2, b2, g � 1, ü

�
O(Y)

�
and ü

�
O(S)

�
must be integers;

(4) (g � 1) must satisfy inequality (17) and the bound of Theorem 2.3 in [18];
(5) ü

�
O(S)

�
must satisfy the two inequalities of Proposition 1.1;

(6) various inequalities stemming from the Hodge Index Theorem applied to Y
as, for example, (KYR)2 ½ K2

YR2;
(7) if d Ù 98 then g � 1 � (1Û12)d2, see Proposition 1.5;

The result is that the only possible degree, for d ½ 20 is d ≥ 44.
By taking double covers of the four scrolls of [23], we see that there are flat conic bundles
over surfaces for d ≥ 6, 12, 14, 18. We do not know whether the case d ≥ 44 occurs.

5.1 Digression.
In the course of the proof of Theorem 3.4 we used the fact, due to Besana [9], that

the base of an adjunction theoretic quadric bundle over a surface is non-singular. The
following lemma is a result with a similar flavor. It is probably well known. The first
corollary is used in the proof of Theorem 3.4. The second one is, in a sense, a converse
to the lemma.

LEMMA 5.6. Let X a non-singular projective variety of dimension n, p: X ! Y a
morphism onto a normal projective variety Y of dimension n�1 such that all fibers have
the same dimension, the general scheme theoretic fiber over a closed point is isomorphic
to a conic and �KX is p-ample. Then all the scheme-theoretic fibers are isomorphic to
conics, p is flat and Y is non-singular.

PROOF. The proof is the same as the one of [22] Lemma 3.25. The only necessary
changes are the following: a) replace the line bundle H of [22], by a pull-back pŁA of
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any ample line bundle A on Y and use Kleiman’s criterion of ampleness to obtain the
result analogous to the last assertion of [22] Lemma; b) replace [22] Lemma 3.12 by [1]
Lemma 1.5.

COROLLARY 5.7. Let X be a non-singular projective variety together with a mor-
phism p: X ! Y, where Y is a normal variety of dimension m. Let Di, i ≥ 1, . . . , n�m�1
be divisors on X such that they intersect transversally; denote by X0 their intersection.
Assume that pjX0: X0 ! Y satisfies the hypothesis of Lemma 5.6. Then p is flat and Y is
non-singular.

PROOF. By the lemma, pjX0 is flat. We can “lift" this flatness to p by virtue of [21],
Corollary to Theorem 22.5. As above the flatness of pjX0 (or of p) implies the non-
singularity of Y.

COROLLARY 5.8. Let X a non-singular projective variety of dimension n, p: X ! Y
a morphism onto a normal projective variety Y of dimension n � 1 such that all fibers
have the same dimension. If the general fiber of p is actually embeddable as conics with
respect to an embedding of X, then all scheme theoretic fibers are actually embedded
conics, p is flat, Y is non-singular and �KX is p-ample.

PROOF. We argue as in the proof of the lemma with the simplifications due to the
fact that a flat deformation of a conic in projective space is still a conic. The assertion
about�KX follows by observing that, if L denotes the line bundle with which we embed
X, KX + L is a pull-back from Y.

REMARK 5.9. The assumption�KX is p-ample is essential in the lemma, as the blow
up of a P1 bundle over a curve at two distinct points on a fiber shows. Moreover, the above
Lemma does not follow directly from [22] or [1], since there are conic bundles for which
the structural morphism is not a Mori contraction. Finally, the above theorem is certainly
false if one has dim X ≥ dim Y. It is a purely local question: consider the quotient of A2

by the involution (x, y) ! (�x,�y).
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