
Final Exam
MAT 534

December 16, 1999

Name: ID #:

Please answer all the questions in the space provided. As usual, you have give a solution, not just an
answer. You can use any results we covered in class, in homeworks, or any theorem in Artin’s book—if in
doubt, ask me. Good luck!

1. Consider the matrix

B =

 2 −1 0
−1 2 −1
0 −1 2


(a) Is the bilinear form on R3, given by (x, y) =

∑
bijxiyj , positive definite?

(b) Find an orthogonal matrix C such that CBCt is diagonal.

Solution: (1) By Sylvester criteria, B is positive definite iff the determinants |2|,
∣∣∣∣ 2 −1
−1 2

∣∣∣∣ ,detB are

positive. Explicit calculations shows that they are indeed positive, and so B is positive definite.

(2) By general theory, there exists an orthonormal basis {v1, v2, v3} consisting of eigenvectors of B,
and if P is a matrix with columns v1, v2, v3, then P−1BP = P tBP diagonal matrix with eigenvalues
λ1, λ2, λ3 on the diagonal.

To find the eigenvalues, we write det(B − λI) = 0, which gives λ1 = 2, λ2,3 = 2 ±
√

2. Finding

eigenvectors for each of them, we get

 1
0
−1

 ,
 1
−
√

2
1

 ,
 1√

2
1

. They are indeed orthogonal, but not of

unit length. Normalizing them, we get

v1 =

 1√
2

0
− 1√

2

 , v2 =

 1
2
− 1√

2
1
2

 v3 =

 1
2
1√
2

1
2


and thus

C = P t =


1√
2

0 − 1√
2

1
2 − 1√

2
1
2

1
2

1√
2

1
2


2. Let V,W be finite-dimensional vector spaces over C.

(a) Construct an isomorphism Hom(V,W ) ' (Hom(W,V ))∗.

(b) Describe explicitly the corresponding pairing Hom(V,W )⊗Hom(W,V )→ C.



Both constructions should be done without using bases in V,W . If you can’t do this, partial credit will
be given for a construction using a basis, but then you have to show that the result is independent of
the choice of basis.

Solution: (1) Using the isomorphism Hom(X,Y ) = X∗ ⊗ Y (discussed in class), we get

(Hom(W,V ))∗ ' (W ∗ ⊗ V )∗ 'W ∗∗ ⊗ V ∗ = W ⊗ V ∗ ' Hom(V,W )

(2) It is given by (f, g) = tr(fg), where f ∈ Hom(W,V ), g ∈ Hom(V,W ).

3. Let A be a complex matrix such that A3 = A2. Describe all possible Jordan normal forms of A.
Solution: Rewriting A3 − A2 = A2(A − I) = 0, we see that the only possible eigenvalues of A are
0, 1. Moreover, V = Ker(A − I) ⊕ Ker(A2) (this was used in proving the generalized eigenspace
decomposition). Therefore, the only Jordan blocks that can appear in JNF of A are those for which
either J = I or J2 = 0. The only Jordan blocks satisfying J2 = 0 are 1 × 1 and 2 × 2 blocks with
eigenvalue 0. Therefore, the JNF of A consists of the blocks

1 , 0 ,
0 1
0 0

4. Let V be the space of functions on R of the form f = eλxp(x), where p is a polynomial with complex
coefficients in x of degree ≤ n. Let T : V → V be the operator d

dx

(a) Find Jordan normal form of T .

(b) Find all values of λ for which there exists an operator Q such that Q2 = T .

Solution: (1) In the basis eλxxk, the operator T is given by the matrix
λ 1 0 . . . . . .
0 λ 2 0 . . .
. . . . . . . . . . . . . . . . .
. . . . . 0 λ n
. . . . . . . . 0 λ


Therefore, in the basis eλx x

n

n! , the matrix of T will be exactly the Jordan block of size (n+ 1) with λ
on the diagonal.

(2) This is almost the same as one of teh homework problems. Here is teh soution: if λ = 0, then such
a Q does not exist. Indeed, since T is nilpotent, the same must be true for Q. On the other hand, for
any nilpotent Q, dim Ker(Q2) ≥ 2 (suffices to check it for one Jordan block), while dim KerT = 1.

If λ 6= 0, then such Q exists. Indeed, take J to be (n+ 1) Jordan block with
√
λ on the diagonal. Then

explicit calculation (which was in one of the homeworks) shows that the JNF of J2 is a Jordan block
Jλ,n+1; thus, J2 = P−1TP for some P . Taking Q = PJP−1, we get Q2 = T .

5. Let V be a vector space of dimension n over C, and A : V → V—a linear operator. Denote by
A⊗2, S2(A),Λ2(A) the corresponding operators in the spaces V ⊗2, S2(V ),Λ2(V ) respectively: A⊗2(v⊗
w) = (Av)⊗ (Aw), etc. Calculate trA⊗2, trS2(A), tr Λ2(A) in terms of trAk.



Solution: If A is diagonalizable, with eigenbasis {vi} and eigenvalues λi, then the basis {vi⊗vj}1≤i,j≤n
in V ⊗ V is an eigenbasis for A⊗2, with eigenvalues λiλj . Thus,

trA⊗2 =
∑
i,j

λiλj = (
∑

λi)2 = (trA)2

Similarly,

tr Λ2(A) =
∑
i<j

λiλj =
1
2

((
∑

λi)2 −
∑

λ2
i ) =

1
2

((trA)2 − trA2).

trS2(A) =
∑
i≤j

λiλj =
1
2

((
∑

λi)2 +
∑

λ2
i ) =

1
2

((trA)2 + trA2).

If A is not diagonalizable, we can choose a basis {vi} in which A has upper triangular form; then A⊗2

will also have an upper triangular form if we suitably order the basis vi ⊗ vj ; thus, the above proof
works.

6. Classify all groups of order 44.

Solution: It follows from Sylow’s theorem that there is exactly one subgroup K of order 11 (which
implies that K is normal) and either one or 11 subgroups of order 4, all of them conjugate. Let H be
one of the subgroups of order 4. Note that H ∩K = {e} (all non-identity elments in K have order 11;
all non-identity elements in H have order 2 or 4). Thus, if we knew that K and H commute, it would
imply that G = K × H. The problem is, we do not know that K and H commute. However, since
K is normal, it follows that hkh−1 ∈ K; thus, if we choose a generator x of K, so that x11 = e, then
hxh−1 = xi for some i. Let us find possible values of i.

Since there are exactly two possible groups of order 4: Z2 × Z2 and Z4, we have two cases:

Case 1: H ' Z4. Let y be the generator of Z4; then y4 = e, and we must have yxy−1 = xi. Combining
this with y4xy−4 = xi

4
= x, we see that i4 ≡ 1 mod 11. Explicit checking shows that the only possible

values of i are 1 and 10 (for example: for i = 5, i2 ≡ 25 ≡ 4 mod 11, so i4 ≡ (i2)2 ≡ 42 ≡ 16 ≡ 5
mod 11). Thus, either yxy−1 = x, which means that H and K commute and G = H ×K = Z11 ×Z4,
or yxy−1 = x10 = x−1, in which case the group is generated by x, y with the relations x11 = 1, y4 =
1, yxy−1 = x−1.

Case 2: H ' Z2 × Z2. In this case the analysis is similar to the previous one, except that we have
two commuting generators y1, y2 of order 2, which gives 4 possible cases:

(i) y1xy
−1
1 = x, y2xy

−1
2 = x

(ii) y1xy
−1
1 = x−1, y2xy

−1
2 = x

(iii) y1xy
−1
1 = x, y2xy

−1
2 = x−1

(iv) y1xy
−1
1 = x−1, y2xy

−1
2 = x−1

The first case gives Z2×Z2×Z11; the other 3 cases can be shown to be isomorphic ( (ii) and (iii) – by
y1 ↔ y2, (ii) and (iv)—by y2 7→ y1y2).

Yes, this is indeed a complicated problem—I know that, and I didn’t really expect you to be able to
complete it, but I wanted to see how far you could go. As I promised, I will be rather generous on
partial credit for this problem.



7. Define the commutant [G,G] of a group G to be the subgroup generated by all elements of the form
xyx−1y−1, x, y ∈ G.

(a) Show that [G,G] is a normal subgroup in G and G/[G,G] is commutative

(b) Show that for the group T of complex upper-triangular matrices, the commutant [T, T ] is the
group N of upper-triangular matrices with 1 on the diagonal.

Solution: (a) Immediate from the definitions.

(b) Explicit calculation shows that every matrix of the form xyx−1y−1, x, y ∈ T has ones on the
diagonal, so [T, T ] ⊂ N . To show equality, consider matrices x = diag(λ1, . . . , λn); y = I + Eij , i < j.
Then: xyx−1y−1 = I + ( λiλj − 1)Eij . Therefore, [T, T ] contains all matrices of the form I +µEij , i < j.
But it is easy to show that these matrices generate N .


