
MAT 534: Solutions for problem Set 4

Instructor: Alexander Kirillov

These are solutions for some of the HW problems. If you didn’t solve
the problem yourself, be sure to look through the solutions.

3. (a) T is nilpotent iff χT (λ) = λn.

(b) T is nilpotent =⇒ T dimV = 0.

Proof: If T is nilpotent, then its eigenvalues are zero. Indeed, write T
in upper tringular form; then T k will have λki on diagonal, so T k = 0
implies that all λi = 0.

Conversely: assume that all λi = 0. Write T in an upper triangular
form; it will be strictly upper triangular, i.e. will have zeros on the
diagonal. Explicit calculation shows that T 2 will have zeros on the
diagonal and immediately above it; T 3 will have zeros on the diagonal
and the two adjacent subdiagonals, etc. This implies T dimV = 0,
proving both (a) and (b).

4. Prove trAi = 0 for all i =⇒ A is nilpotent.

Idea of proof: Writing A in upper-triangular form and using the pre-
vious problem, we see that

∑
λki = 0 for all k. Now we need the

following lemma:

Coefficients of the polynomial
∏

(λ−λi) can be written as polynomials
without constant term in σ1 =

∑
λi, σ2 =

∑
λ2
i , . . . (For example: for

n = 2, the coefficients are

−(λ1 + λ2) = −σ1

λ1λ2 =
1
2

[(λ1 + λ2)2 − λ2
1 − λ2

2] =
1
2

(σ2
1 − σ2)

This lemma is not easy to prove, but it can be done by induction.
Using this lemma, we see that the chracteristic polynomial of A is λn;
by previous probelm, it means that A is nilpotent.



5. Prove: det(eA) = etrA

Idea of proof: suffices to check for upper triangular matrix A with
eigenvalues λ1, . . . , λn. In this case, Ak is also upper-triangular with
eigenvalues λk1, . . . , λ

k
n. Thus, eA =

∑
Ak/k! is also upper triangular

with eλ1 , . . . , eλn on the diagonal.

7. Let A be a diagonalizable operator such that λ1 = 1 and |λi| < 1
for i > 1. Prove that P = limn→∞A

n exists and satisfies P 2 = P .
Describe ImP .

Idea of proof: In a suitable basis, A = diag(1, λ2, . . . ). Thus, An =
diag(1, λn2 , . . . )→ diag(1, 0, . . . ) = P . It is easy to see that ImP = v1

– the first eigenvector.

8. Let A,B be commuting linear operators: AB = BA. Prove that

(a) they have a common eigenvector.

(b) they have a common invariant flag, i.e., there exists a basis in
which both A and B are upper-triangular.

(c) the eigenvalues of AB are products of eigenvalues of A and B.

(d) Which of these statements still hold if AB 6= BA?

Idea of proof: (a) Let λ be an eigenvalue of A, and Vλ = Ker(A−λ) the
space of eigenvectors. We claim that Vλ is invariant under B. Indeed:
if v ∈ Vλ, then A(Bv) = BAv = Bλv = λBv and thus, Bv is an
eigenvector for A with eigenvalue λ.

Consider the restriction of B to Vλ. This restricted operator has at
least one eigenvector (say, w) in Vλ. On the other hand, every vector
in Vλ is an eigenvector for A, so w is an eigenvector for both A and B.

(b) This is done in exactly the same way as for one opertor, by in-
duction in dimension of V . That is: let v1 be a common eigenvector
for A,B. Consider the space V ′ = V/Cv1. The operators A,B act
on V ′ and commute. By induction assumption, there exists a ba-
sis v′1, . . . , v

′
n−1 in V ′ in which these operators have upper triangular

form. Lift v′1 to a vector in V (that is: choose a representative in
the equivalence class v′1); denote it by v2. Do the same with all other
basis elements v′i; this will give us vectors v2, . . . , vn ∈ V . As dis-
cussed before, the vectors v1, v2, . . . , vn form a basis in V , and A,B
are upper-triangular in this basis.
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(c) is obvious from (b)

(d) None of these statements hold: take A = diag(1, 2), B =
(

0 1
1 0

)
.
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