MAT 534: Solutions for problem Set 4

Instructor: Alexander Kirillov

These are solutions for **some** of the HW problems. If you didn't solve the problem yourself, be sure to look through the solutions.

- 3. (a) T is nilpotent iff $\chi_T(\lambda) = \lambda^n$.
 - (b) T is nilpotent $\implies T^{\dim V} = 0.$

Proof: If T is nilpotent, then its eigenvalues are zero. Indeed, write T in upper tringular form; then T^k will have λ_i^k on diagonal, so $T^k = 0$ implies that all $\lambda_i = 0$.

Conversely: assume that all $\lambda_i = 0$. Write T in an upper triangular form; it will be strictly upper triangular, i.e. will have zeros on the diagonal. Explicit calculation shows that T^2 will have zeros on the diagonal and immediately above it; T^3 will have zeros on the diagonal and the two adjacent subdiagonals, etc. This implies $T^{\dim V} = 0$, proving both (a) and (b).

4. Prove tr $A^i = 0$ for all $i \implies A$ is nilpotent.

Idea of proof: Writing A in upper-triangular form and using the previous problem, we see that $\sum \lambda_i^k = 0$ for all k. Now we need the following lemma:

Coefficients of the polynomial $\prod (\lambda - \lambda_i)$ can be written as polynomials without constant term in $\sigma_1 = \sum \lambda_i, \sigma_2 = \sum \lambda_i^2, \ldots$ (For example: for n = 2, the coefficients are

$$-(\lambda_1 + \lambda_2) = -\sigma_1$$

$$\lambda_1 \lambda_2 = \frac{1}{2} [(\lambda_1 + \lambda_2)^2 - \lambda_1^2 - \lambda_2^2] = \frac{1}{2} (\sigma_1^2 - \sigma_2)$$

This lemma is not easy to prove, but it can be done by induction. Using this lemma, we see that the chracteristic polynomial of A is λ^n ; by previous probelm, it means that A is nilpotent.

5. Prove: $\det(e^A) = e^{\operatorname{tr} A}$

Idea of proof: suffices to check for upper triangular matrix A with eigenvalues $\lambda_1, \ldots, \lambda_n$. In this case, A^k is also upper-triangular with eigenvalues $\lambda_1^k, \ldots, \lambda_n^k$. Thus, $e^A = \sum A^k/k!$ is also upper triangular with $e^{\lambda_1}, \ldots, e^{\lambda_n}$ on the diagonal.

7. Let A be a diagonalizable operator such that $\lambda_1 = 1$ and $|\lambda_i| < 1$ for i > 1. Prove that $P = \lim_{n \to \infty} A^n$ exists and satisfies $P^2 = P$. Describe Im P.

Idea of proof: In a suitable basis, $A = diag(1, \lambda_2, ...)$. Thus, $A^n = diag(1, \lambda_2^n, ...) \rightarrow diag(1, 0, ...) = P$. It is easy to see that $\operatorname{Im} P = v_1$ – the first eigenvector.

- 8. Let A, B be commuting linear operators: AB = BA. Prove that
 - (a) they have a common eigenvector.
 - (b) they have a common invariant flag, i.e., there exists a basis in which both A and B are upper-triangular.
 - (c) the eigenvalues of AB are products of eigenvalues of A and B.
 - (d) Which of these statements still hold if $AB \neq BA$?

Idea of proof: (a) Let λ be an eigenvalue of A, and $V_{\lambda} = \text{Ker}(A - \lambda)$ the space of eigenvectors. We claim that V_{λ} is invariant under B. Indeed: if $v \in V_{\lambda}$, then $A(Bv) = BAv = B\lambda v = \lambda Bv$ and thus, Bv is an eigenvector for A with eigenvalue λ .

Consider the restriction of B to V_{λ} . This restricted operator has at least one eigenvector (say, w) in V_{λ} . On the other hand, every vector in V_{λ} is an eigenvector for A, so w is an eigenvector for both A and B.

(b) This is done in exactly the same way as for one opertor, by induction in dimension of V. That is: let v_1 be a common eigenvector for A, B. Consider the space $V' = V/\mathbb{C}v_1$. The operators A, B act on V' and commute. By induction assumption, there exists a basis v'_1, \ldots, v'_{n-1} in V' in which these operators have upper triangular form. Lift v'_1 to a vector in V (that is: choose a representative in the equivalence class v'_1); denote it by v_2 . Do the same with all other basis elements v'_i ; this will give us vectors $v_2, \ldots, v_n \in V$. As discussed before, the vectors v_1, v_2, \ldots, v_n form a basis in V, and A, Bare upper-triangular in this basis. (c) is obvious from (b)

(d) None of these statements hold: take $A = diag(1,2), B = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$.