
MAT 534: Problem Set 10

SOLUTIONS

Instructor: Alexander Kirillov

In the problems below, V is a finite-dimensional vector space of dimension n, e1, . . . , en is a basis in V .
As always, Sd is the group of all permutations of {1, . . . , d}, acting on V ⊗d by permutation of components,
and

Sym =
1
d!

∑
s∈Sd

s, Alt =
1
d!

∑
s∈Sd

sgn(s)s

are projectors on the subspaces of symmetric (respectively, antisymmetric) tensors.

6. Let ξ ∈ Λ2V .

(a) Prove that it is possible to choose a basis e1, . . . , en in V such that ξ = e1∧e2+e3∧e4+. . . ek−1∧ek
for some even k ≤ n. (Hint: we have already proved this before, in different language...)
Solution: Suffices to note that Λ2V is the space of skew-symmetric bilinear forms on V ∗, and
apply the classification theorem for skew-symmetric bilinear forms.

(b) Show that ξ can be written in the form v ∧ w for some v, w ∈ V iff ξ ∧ ξ = 0.
Solution: One direction is obvious: if ξ = v ∧w, then ξ ∧ ξ = v ∧w ∧ v ∧w = −v ∧ v ∧w ∧w = 0.
Conversely, assume ξ ∧ ξ = 0. Write ξ as in part a. Explicit calculation shows that if k ≥ 2, then
ξ ∧ ξ = 2e1 ∧ e2 ∧ e3 ∧ e4+other monomials; thus, ξ ∧ ξ = 0 is only possible if k = 2, ξ = e1 ∧ e2.

7. Let W ⊂ V ⊗d be the subspace spanned by vectors of the form t − si(t), where si are elementary
transpositions. Also, denote by ϕ the natural surjection V ⊗d → V ⊗d/W

(a) Prove that Sym |W = 0.
Solution: Obvious from Sym si = Sym.

(b) Prove that SdV ∩W = {0} and thus

ϕ|SdV : SdV → V ⊗d/W (1)

is injective.
Solution: If t ∈ SdV ∩W , then Sym(t) = t = 0 (by part a).

(c) Prove that ϕ(t) = ϕ(sit) = ϕ(s(t)) for any s ∈ Sd, t ∈ V ⊗d, and thus ϕ(Sym(t)) = ϕ(t).
Solution: ϕ(sit)− ϕ(t) = ϕ(si(t)− t) = 0 since si(t)− t ∈W . Applying this repeatedly, we get

ϕ(si1 . . . sik(t)) = ϕ(si2 . . . sik(t)) = · · · = ϕ(t)

(d) Prove that the map (1) is an isomorphism.
Solution: This map is injective (by part b). It is also surjective: for any t ∈ V ⊗d, the class of t in
V ⊗d/W can be written as ϕ(Sym(t)) by part c.



*8 Define operators εi, ij : ΛV → ΛV by

εiw = ei ∧ w
ij(ej ∧ w) = w

ij(ei1 ∧ · · · ∧ eik) = 0 if none of il = j

(a) Show that these conditions uniquely define ij . Show that ij satisfies the skew-symmetric Leibniz
identity:

ij(ξ ∧ η) = (ijξ) ∧ η + (−1)dξ ∧ (ijη)

if ξ ∈ ΛdV . Thus, ij is the skew-symmetric analogue of the operator d
dej

on SV = C[e1, . . . , en].
Solution: It follows from the definition that

iik(ei1 ∧ · · · ∧ eik ∧ . . . )
= (−1)k−1iik(eik ∧ ei1 ∧ · · · ∧ eik−1 ∧ eik+1 ∧ . . . )
= (−1)k−1ei1 ∧ · · · ∧ eik−1 ∧ eik+1 ∧ . . .

(we assume all ia are distinct.) Leibniz identity is straightforward from this.

(b) Prove that the operators εi, ij satisfy the Clifford algebra relations:

εiεj + εjεi = 0
ij ik + ikij = 0

ijεi + εiij = δij

(compare with: xi d
dxj
− d

dxj
xi = δij , where xi is considered as the operator of multiplication by

xi on C[x1, . . . , xn]).
Solution: The first two are straightforward. As for the last one, let us apply the right-hand side
to a monomial in ΛdV . Such a monomial can always be written in the form x ∧ w, where x is
one of 1, ei, ej , ei ∧ ej and w does not contain ei, ej . For each of these cases the identity is easily
checked by direct calculation.

9. Show that the wedge product is associative:

(x1 ∧ · · · ∧ xp) ∧ (y1 ∧ · · · ∧ yq) = x1 ∧ · · · ∧ xp ∧ y1 ∧ · · · ∧ yq)

i.e.

Altp+q

(
Altp(x1 ⊗ · · · ⊗ xp)⊗Altq(y1 ⊗ · · · ⊗ yq)

)
= Altp+q(x1 ⊗ · · · ⊗ xp ⊗ y1 ⊗ · · · ⊗ yq)

Solution: It follows from Altp+q s = sgn(s) Altp+q for every s ∈ Sp+q and definition of Altp,Altq that

Altp+q(Altp⊗Altq) = Altp+q

as operators in V ⊗(p+q).

*10. (a) Show that dim Λn−1V = n

Solution: Follows from general formula: dim ΛkV =
(
n
k

)
.



(b) Construct an isomorphism Λn−1V = ΛnV ⊗ V ∗ (hint: look at Problem 2)
Solution: We have an obvious map Λn−1V ⊗V → ΛnV : ξ⊗v 7→ ξ∧v. As in problem 2, this gives
rise to a map f : Λn−1V → ΛnV ⊗ V ∗. This map can be decribed as follows: ξ 7→

∑
(ξ ∧ ei)⊗ ei.

One immediately sees that it is isomorphism.

(c) For a linear operator A : V → V , consider the corresponding operator Λn−1A : Λn−1V → Λn−1V .
Write the matrix of Λn−1A in the basis b1 = e2 ∧3 ∧ · · · ∧ en, b2 = e1 ∧ e3 ∧ · · · ∧ en, . . . .
Solution: There are several ways of doing this. Here is one: assume that A is invertible. Then
it is rather easy to show that if we identify Λn−1V = ΛnV ⊗ V ∗ as above, then Λn−1A =
ΛnA⊗ (A∗)−1 = detA(A∗)−1.
On the other hand, it is known that the matrix C = detA(At)−1 is the matrix of algebraic
complements: Cij = (−1)i+jMij , where Mij is the determinant of the matrix obtained from A
by removing i-th row and j-th column. Thus, the answer (at least for invertible A) is given by
the matrix Cij defined above; since the entries of this matrix are polynomials in entries of A, the
usual arguments show that the condition detA 6= 0 can be removed.


