MAT 534: Problem Set 10
SOLUTIONS

Instructor: Alexander Kirillov

In the problems below, V is a finite-dimensional vector space of dimension n, ej,...,e, is a basis in V.
As always, Sy is the group of all permutations of {1,...,d}, acting on V®? by permutation of components,
and i i

Sym = a Z 8, Alt = a Z sgn(s)s
s€Sy s€Sq

are projectors on the subspaces of symmetric (respectively, antisymmetric) tensors.

6. Let £ € A%V.

(a) Prove that it is possible to choose a basis e1, . .., e, in V such that £ = ey Aea+ezAeg+. .. ex_1Aek
for some even k < n. (Hint: we have already proved this before, in different language...)

Solution: Suffices to note that A%V is the space of skew-symmetric bilinear forms on V*, and
apply the classification theorem for skew-symmetric bilinear forms.

(b) Show that £ can be written in the form v A w for some v,w € V iff £ AE = 0.

Solution: One direction is obvious: if { = v Aw, then E ANE=vAwAVAW=—-vAvAwAw=0.
Conversely, assume & A £ = 0. Write £ as in part a. Explicit calculation shows that if £ > 2, then
ENE =2e1 Aey Aes A eg+other monomials; thus, £ A€ = 0 is only possible if £ =2, £ =e; Aes.

7. Let W C V®? be the subspace spanned by vectors of the form ¢ — s;(t), where s; are elementary
transpositions. Also, denote by ¢ the natural surjection V& — V&4 /1y

(a) Prove that Sym |y = 0.
Solution: Obvious from Sym s; = Sym.

(b) Prove that SV N W = {0} and thus
lgay : SV — VI W (1)
is injective.
Solution: If t € STV MW, then Sym(t) =t = 0 (by part a).
(c) Prove that o(t) = p(s;t) = @(s(t)) for any s € Sy, t € VO and thus p(Sym(t)) = ¢(t).
Solution: @(sit) — @(t) = @(s;(t) —t) = 0 since s;(t) —t € W. Applying this repeatedly, we get
80(81'1 - Sy (t)) = Qp(siz <o S (t)) == So(t)

(d) Prove that the map (1) is an isomorphism.

Solution: This map is injective (by part b). It is also surjective: for any ¢t € V®9, the class of ¢ in
V®d /W can be written as ¢(Sym(t)) by part c.



*8 Define operators ¢;,i; : AV — AV by

(a)

giw =¢e; \Nw
ij(e; ANw) =w
ij(es; A---Negy) =0 ifnoneof 4y =j
Show that these conditions uniquely define i;. Show that i; satisfies the skew-symmetric Leibniz
identity:
ij(EAn) = (i;€) An+ (=1 A (i)

if ¢ € A?V. Thus, i; is the skew-symmetric analogue of the operator % on SV =Cley,...,ep].
Solution: It follows from the definition that

L (€iy Ao Neig Ae)
(—1)F My (es, A€y Ao Aeiy Aejyy Ae.)
(_1)k_1ei1 N Nej oy Neg g N

(we assume all i, are distinct.) Leibniz identity is straightforward from this.

Prove that the operators ;,i; satisfy the Clifford algebra relations:

Ei€j + €4&; = 0

ijik + iki]‘ =0

ijé‘i + e’:‘iij = 51']‘
(compare with: a:,'%j — %xi = 0;j, where x; is considered as the operator of multiplication by
x; on Clzy, ..., z,]).
Solution: The first two are straightforward. As for the last one, let us apply the right-hand side
to a monomial in AYV. Such a monomial can always be written in the form 2 A w, where x is
one of 1,e;,¢e;,e; Aej and w does not contain e;, e;. For each of these cases the identity is easily
checked by direct calculation.

9. Show that the wedge product is associative:

i.e.

(@I A ANZ) AL A Ayg) =1 A Axp Ayr A+ A yg)

Alty g <A1tp(x1 R Qxp) @ Altg(y1 ® - -- ®yq)> =Altp1 (21 ® - QT QY1 @+ D Yq)

Solution: It follows from Alt,;, s = sgn(s) Alt,y, for every s € Sp4, and definition of Alt,, Alt, that

Altp+q(Altp ® Altq) == Altp+q

as operators in V®®+a),

*10. (a) Show that dim A"~V =n

Solution: Follows from general formula: dim A*V = (Z)



(b)

Construct an isomorphism A"~V = A"V ® V* (hint: look at Problem 2)

Solution: We have an obvious map A" 'V @V — A"V : £®v — £Av. As in problem 2, this gives
rise to a map f: A"~V — A"V ® V*. This map can be decribed as follows: £ — >_(£ Ae;) ® e’
One immediately sees that it is isomorphism.

For a linear operator A: V — V, consider the corresponding operator A" 1 A: A"~V — A1V,
Write the matrix of A»"1A in the basis by =ea A3 A---Aen, bo =€ AesA---Aen,....
Solution: There are several ways of doing this. Here is one: assume that A is invertible. Then
it is rather easy to show that if we identify A"~'V = A"V ® V* as above, then A" 1A =
A"A @ (A*)~t =det A(A*)~L.

On the other hand, it is known that the matrix C' = det A(A")~! is the matrix of algebraic
complements: C;; = (—1)"*7M;;, where M;; is the determinant of the matrix obtained from A
by removing i-th row and j-th column. Thus, the answer (at least for invertible A) is given by
the matrix Cj; defined above; since the entries of this matrix are polynomials in entries of A, the
usual arguments show that the condition det A # 0 can be removed.



