MAT 534: Problem Set 10 SOLUTIONS

Instructor: Alexander Kirillov

In the problems below, V is a finite-dimensional vector space of dimension n, e_1, \ldots, e_n is a basis in V. As always, S_d is the group of all permutations of $\{1, \ldots, d\}$, acting on $V^{\otimes d}$ by permutation of components, and

$$Sym = \frac{1}{d!} \sum_{s \in S_d} s, \qquad Alt = \frac{1}{d!} \sum_{s \in S_d} sgn(s)s$$

are projectors on the subspaces of symmetric (respectively, antisymmetric) tensors.

- 6. Let $\xi \in \Lambda^2 V$.
 - (a) Prove that it is possible to choose a basis e_1, \ldots, e_n in V such that $\xi = e_1 \wedge e_2 + e_3 \wedge e_4 + \ldots + e_{k-1} \wedge e_k$ for some even $k \leq n$. (Hint: we have already proved this before, in different language...) Solution: Suffices to note that $\Lambda^2 V$ is the space of skew-symmetric bilinear forms on V^* , and apply the classification theorem for skew-symmetric bilinear forms.
 - (b) Show that ξ can be written in the form v ∧ w for some v, w ∈ V iff ξ ∧ ξ = 0. Solution: One direction is obvious: if ξ = v ∧ w, then ξ ∧ ξ = v ∧ w ∧ v ∧ w = -v ∧ v ∧ w ∧ w = 0. Conversely, assume ξ ∧ ξ = 0. Write ξ as in part a. Explicit calculation shows that if k ≥ 2, then ξ ∧ ξ = 2e₁ ∧ e₂ ∧ e₃ ∧ e₄+other monomials; thus, ξ ∧ ξ = 0 is only possible if k = 2, ξ = e₁ ∧ e₂.
- 7. Let $W \subset V^{\otimes d}$ be the subspace spanned by vectors of the form $t s_i(t)$, where s_i are elementary transpositions. Also, denote by φ the natural surjection $V^{\otimes d} \to V^{\otimes d}/W$
 - (a) Prove that $\text{Sym}|_W = 0$. Solution: Obvious from $\text{Sym} s_i = \text{Sym}$.
 - (b) Prove that $S^d V \cap W = \{0\}$ and thus

$$\varphi|_{S^d V} : S^d V \to V^{\otimes d} / W \tag{1}$$

is injective.

Solution: If $t \in S^d V \cap W$, then Sym(t) = t = 0 (by part a).

(c) Prove that $\varphi(t) = \varphi(s_i t) = \varphi(s(t))$ for any $s \in S_d, t \in V^{\otimes d}$, and thus $\varphi(\text{Sym}(t)) = \varphi(t)$. Solution: $\varphi(s_i t) - \varphi(t) = \varphi(s_i(t) - t) = 0$ since $s_i(t) - t \in W$. Applying this repeatedly, we get

$$\varphi(s_{i_1} \dots s_{i_k}(t)) = \varphi(s_{i_2} \dots s_{i_k}(t)) = \dots = \varphi(t)$$

(d) Prove that the map (1) is an isomorphism. Solution: This map is injective (by part b). It is also surjective: for any $t \in V^{\otimes d}$, the class of t in $V^{\otimes d}/W$ can be written as $\varphi(\text{Sym}(t))$ by part c. *8 Define operators $\varepsilon_i, i_j : \Lambda V \to \Lambda V$ by

$$arepsilon_i w = e_i \wedge w$$

 $\mathrm{i}_j(e_j \wedge w) = w$
 $\mathrm{i}_j(e_{i_1} \wedge \dots \wedge e_{i_k}) = 0$ if none of $i_l = j$

(a) Show that these conditions uniquely define i_j . Show that i_j satisfies the skew-symmetric Leibniz identity:

$$\mathbf{i}_j(\xi \wedge \eta) = (\mathbf{i}_j \xi) \wedge \eta + (-1)^d \xi \wedge (\mathbf{i}_j \eta)$$

if $\xi \in \Lambda^d V$. Thus, i_j is the skew-symmetric analogue of the operator $\frac{d}{de_j}$ on $SV = \mathbb{C}[e_1, \ldots, e_n]$. Solution: It follows from the definition that

$$\mathbf{i}_{i_k}(e_{i_1} \wedge \dots \wedge e_{i_k} \wedge \dots)$$

= $(-1)^{k-1} \mathbf{i}_{i_k}(e_{i_k} \wedge e_{i_1} \wedge \dots \wedge e_{i_{k-1}} \wedge e_{i_{k+1}} \wedge \dots)$
= $(-1)^{k-1} e_{i_1} \wedge \dots \wedge e_{i_{k-1}} \wedge e_{i_{k+1}} \wedge \dots$

(we assume all i_a are distinct.) Leibniz identity is straightforward from this.

(b) Prove that the operators ε_i , i_j satisfy the *Clifford algebra* relations:

$$\varepsilon_i \varepsilon_j + \varepsilon_j \varepsilon_i = 0$$

$$\mathbf{i}_j \mathbf{i}_k + \mathbf{i}_k \mathbf{i}_j = 0$$

$$\mathbf{i}_j \varepsilon_i + \varepsilon_i \mathbf{i}_j = \delta_{ij}$$

(compare with: $x_i \frac{d}{dx_j} - \frac{d}{dx_j} x_i = \delta_{ij}$, where x_i is considered as the operator of multiplication by x_i on $\mathbb{C}[x_1, \ldots, x_n]$).

Solution: The first two are straightforward. As for the last one, let us apply the right-hand side to a monomial in $\Lambda^d V$. Such a monomial can always be written in the form $x \wedge w$, where x is one of $1, e_i, e_j, e_i \wedge e_j$ and w does not contain e_i, e_j . For each of these cases the identity is easily checked by direct calculation.

9. Show that the wedge product is associative:

$$(x_1 \wedge \dots \wedge x_p) \wedge (y_1 \wedge \dots \wedge y_q) = x_1 \wedge \dots \wedge x_p \wedge y_1 \wedge \dots \wedge y_q)$$

i.e.

$$\operatorname{Alt}_{p+q}\left(\operatorname{Alt}_p(x_1\otimes\cdots\otimes x_p)\otimes\operatorname{Alt}_q(y_1\otimes\cdots\otimes y_q)\right)=\operatorname{Alt}_{p+q}(x_1\otimes\cdots\otimes x_p\otimes y_1\otimes\cdots\otimes y_q)$$

Solution: It follows from $\operatorname{Alt}_{p+q} s = \operatorname{sgn}(s) \operatorname{Alt}_{p+q}$ for every $s \in S_{p+q}$ and definition of Alt_p , Alt_q that

$$\operatorname{Alt}_{p+q}(\operatorname{Alt}_p\otimes\operatorname{Alt}_q)=\operatorname{Alt}_{p+q}$$

as operators in $V^{\otimes (p+q)}$.

*10. (a) Show that $\dim \Lambda^{n-1}V = n$ Solution: Follows from general formula: $\dim \Lambda^k V = \binom{n}{k}$.

- (b) Construct an isomorphism $\Lambda^{n-1}V = \Lambda^n V \otimes V^*$ (hint: look at Problem 2) Solution: We have an obvious map $\Lambda^{n-1}V \otimes V \to \Lambda^n V : \xi \otimes v \mapsto \xi \wedge v$. As in problem 2, this gives rise to a map $f : \Lambda^{n-1}V \to \Lambda^n V \otimes V^*$. This map can be decribed as follows: $\xi \mapsto \sum (\xi \wedge e_i) \otimes e^i$. One immediately sees that it is isomorphism.
- (c) For a linear operator $A: V \to V$, consider the corresponding operator $\Lambda^{n-1}A: \Lambda^{n-1}V \to \Lambda^{n-1}V$. Write the matrix of $\Lambda^{n-1}A$ in the basis $b_1 = e_2 \wedge_3 \wedge \cdots \wedge e_n$, $b_2 = e_1 \wedge e_3 \wedge \cdots \wedge e_n$, Solution: There are several ways of doing this. Here is one: assume that A is invertible. Then it is rather easy to show that if we identify $\Lambda^{n-1}V = \Lambda^n V \otimes V^*$ as above, then $\Lambda^{n-1}A = \Lambda^n A \otimes (A^*)^{-1} = \det A(A^*)^{-1}$. On the other hand, it is known that the matrix $C = \det A(A^t)^{-1}$ is the matrix of algebraic

Complements: $C_{ij} = (-1)^{i+j} M_{ij}$, where M_{ij} is the determinant of the matrix obtained from A by removing *i*-th row and *j*-th column. Thus, the answer (at least for invertible A) is given by the matrix C_{ij} defined above; since the entries of this matrix are polynomials in entries of A, the usual arguments show that the condition det $A \neq 0$ can be removed.