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THERE ARE 8 PROBLEMS
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1. Let G be a group and CG = {c ∈ G | ∀g ∈ G cg = gc }.

a) Pove that CG is a normal subgroup of G.

Sol’s. Check that if c ∈ CG then c−1 ∈ CG. Check that if c, d ∈ CG,
then cd ∈ CG. Check that gCGg

−1 ⊆ CG.

b) Prove that if G contains exactly one element a of order two, then
a ∈ CG.

Sol’s. ag = ga iff g−1ag = a. (g−1ag)2 = g−1a2g = eG. It follows
that the order of g−1ag is two for every g ∈ G and by the uniqueness
of a we are done.

2. Let f : G→ H be a group homomorphism with kernel N . Prove
that for every subgroup K of G we have that f−1(f(K)) = K if and
only if N ⊆ K.

Sols. First prove that f−1(f(K)) = KN . Then prove that K =
f−1f(K) iff N ⊆ K.

3. Let p be the smallest prime number dividing the order of a finite
group G.

Show that any subgroup H of G of index p is normal in G.
(Hint. Consider the action of G on G/H.)

Sols. Consider G acting on the set of left cosets G/H by left trans-
lation: g ∗ (aH) := gaH. |G/H| = p. As discussed in class this defines
a group homomorphism G → Sp, where Sp is identifyed with the per-
mutations of the set G/H. The kernel K must be contained in H.

The image is isomorphic to the group G/K. The image is a subgroup
of Sp so that |G/K| = [G : K] divides p!.

[G : K] divides |G|.
The minimality of p implies that either [G : K] = 1 or [G : K] = p.
But K ⊆ H 6= G. So [G : K] = p. It follows that [H : K] = 1, i.e.

H = K.
But K is normal.

4. Let A = ||aij|| ∈ Mn×n(K) be a n × n matrix over a field K.
Assume that aii = a for some a ∈ K and every 1 ≤ i ≤ n. Assume also
that aij = 0 for every i < j.

a) Prove that (aIn − A)n = 0.
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Sol’s. A is lower triangular. The characteristic polynomial is, by
expansion, (x− a)n. Apply Cayley-Hamilton.

b) Can one always find an integer n′ such that 0 < n′ < n and (A −
aIn)n

′
= 0?

Sol’s. No:

A =

(
1 0
1 1

)
5. Let

B =

−3 1 −1
−7 5 −1
−6 6 −2


a) Find the characteristic polynomial and the eigenvalues of B.

Sol’s. The char. polynomial is |xI − B| = x3 − 12x − 16 = (t +
2)2(t− 4). The eigenvalues are l1 = −2 and l2 = 4.

b) Find a maximal set S of linearly independent eigenvectors of B.

Sol’s. Solve the linear system (−2I − B)X t = 0. The solutions are
multiples of v1 :=< 1, 1, 0 >. There is a unique eigenvector for l1 = −2.
Similarely, there is a unique eigenvector, v2 :=< 0, 1, 1 > for l2 = 4.
S = {v1, v2} is a set of the required form.

c) Is B diagonalizable? If yes, find and invertible matrix P such that
PBP−1 is diagonal.

Sol’s. No: B has two eigenvalues. One, l1 = −2 has algebraic mul-
tiplicity two, but the corresponding eigenspace, < v1 >, has dimension
one.

It follows that there cannot be a basis of eigenvectors and this implies
that B is not diagonalizable.

6. Let

A =

 2 1 −1
1 0 −1
−1 −1 0


a) Find an orthogonal matrix P such that P tAP is diagonal.

Sol’s. By the spectral theorem (real case) there is a orhtonormal
basis v1, v2, v3 of eigenvectors of A such that if P is the matrix with
columns v1, v2, v3 then P−1AP = P tAP is diagonal with the corre-
sponding eigenvectors l1, l2, l3 on the diagonal.
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We first find the eigenvalues: l1 = 0, l2 = −1 and l3 = 3. We then
find eigenvectors by solving (A− liI)X t = 0. We find v′1 =< 1,−1, 1 >
for l1 = 0; v′2 =< 0, 1, 1 > for l2 = −1; v′3 =< −2,−1, 1 > for
l3 =. They are orthogonal. We normalize them and find v1 =<
1/
√

3,−1/
√

3, 1/
√

3 >, v2 =< 0, 1/
√

2, 1/
√

2 >, v3 =< −2/
√

6,−1/
√

6, 1/
√

6 >.
It follows that

P t =

 1/
√

3 −1/
√

3 1/
√

3

0 1/
√

2 1/
√

2

−2/
√

6 −1/
√

6 1/
√

6


is a matrix of the required form.

b) Let f(x,y) =
∑

ij Aijxi yj be the corresponding bilinear form on R3.

Find the null space and the signature (p,m) of f .

Sol’s. By part a), we have one zero, one positive and one negative
eigenvalue. The null space is the one generated by the eigenvector
corresponding to l1 = 0, that is: v1. The signature is (1, 1).

7. Let M = Mn×n(R), S = {C ∈ M | C = Ct} and A = {C ∈
M | C = −Ct}.

a) Prove that every D ∈M can be written uniquely as D = DS +DA,
where DS ∈ S and DA ∈ A.

Sol’s. Define DS = 1
2
(D + Dt) and DA = 1

2
(D − Dt). Clearly

DS +DA = D. We have S∩A = {the zero matrix}. Let D′S +D′A = D
be another decomposition. Then DS −D′S = D′A−DA and both terms
are symmetric and anti-symmetric. It follows they are both zero.

b) Prove that dimR S = 1
2
n(n+ 1).

Sol’s. It is the number of pairs (i, j) with i ≤ j which can be counted
as 1 + 2 + 3 + . . .+ n.

c) Find the dimension of the trace zero linear transformations on a
n-dimensional real vector space which are symmetric with respect to
the dot product.

Sol’s. Pick an orthonormal basis for the dot product. Using this
basis, the matrices of the linear transformations f symmetric with re-
spect to the dot product are symmetric and, “viceversa.” Under this
identification the required matrices are the trace-zero symmetic matri-
ces. Their dimension is one less than the dimension of the space of
symmetric matrices computed above.
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8. Let V and W be finite dimensional vector spaces over a field.
a) Prove, using the properties of the tensor product, that (V ⊗W )∗ '
V ∗ ⊗W ∗.

(If you introduce a map, you must check that it is well-defined and
that it has the properties that you state and use. The map must be
independent of any choice of bases).

Sol’s. Define a bilinear map g : V ∗ ×W ∗ → (V ⊗W )∗ by setting
g(f, h)(v ⊗ w) := f(v)h(w).

By the basic property of the tensor product there exists a unique
linear map g′ : V ∗ ⊗W ∗ → (V ⊗W )∗ sending f ⊗ h to g(f, h).

Pick bases vi for V , wα for W and consider the dual bases: v∗i and w∗α.
Let t :=

∑
iα aiαv

∗
i ⊗w∗α be an element in V ∗⊗W ∗. g′(t)(vj⊗wβ) = ajβ.

It follows that t ∈ Kerg′ iff t = 0 and g′ is injective.
Since g′ is injective between vector spaces of the same finite dimen-

sion dimV × dimW , g′ is also surjective, i.e. it is an isomorphism.

b) Prove that there is a canonical isomorphism

Hom(V,W ∗) ' (Hom(V ∗,W ))∗.

Sol’s. Recall the isomorphisms Hom(A,B) ' A∗⊗B and C∗∗ ' C.
The RHS is isomorphic to ((V ∗)∗ ⊗W )∗ ' (V ⊗W )∗, which, by part
a), is isomorphic to V ∗ ⊗W ∗ which is isomorphic to the LHS.


