
Section 5.1

#1) By the definition of continuity, f is continuous at c if and only if limx→c f = f(c). By the Sequential
Criterion in Chapter 4, this is equivalent to the statement that if (xn) is a sequence converging to c
such that xn 6= c, then (f(xn)) converges to f(c). Clearly, this condition is satisfied if the Sequential
condition in 5.1.3 (which allows for ANY sequence converging to c) is satisfied. Conversely, let (xn) be
any sequence converging to c. Either it is ultimately constant and equal to c, and there is nothing to
prove since f(xn) will be ultimately constantly f(c), or the terms xnk

not equal to c form an infinite
subsequece converging to c. Thus, if f is continuous at c, f(xnk

) converges to f(c), and hence f(xn)
converges to f(c), since every term not in f(xnk

) is equal to f(c).

#3) Let ε > 0. If x0 ∈ [a, b), then we can find δ > 0 such that x0 + δ < b, and if x ∈ [a, b], |x − x0| < δ,
then |f(x) − f(x0)| < ε. (Note that if x ∈ [a, c], |x − x0| < δ, then automatically, x ∈ [a, b).) Since
h ≡ f on [a, b), then for x ∈ [a, c], if |x − x0| < δ, then |h(x) − h(x0)| = |f(x) − f(x0)| < ε. So h is
continuous at every point in [a, b).

Similarly, h is continuous at every point in (b, c].

To show that h is continuous at b, note that we can find δ1, δ2 > 0 such that if x1 ∈ [a, b], x2 ∈ [b, c],
and |xi − b| < δi for i = 1, 2, then |f(x1) − f(b)|, |g(x2) − g(b)| < ε. Choosing δ = min{δ1, δ2}, and
noting that |f(x1) − f(b)| = |h(x1) − h(b)| and |g(x2) − g(b)| = |h(x1) − h(b)|, we conclude that if
x ∈ [a, c] and |x− b| < δ, then |h(x)− h(b)| < ε.

#5) Away from x = 2, we see that x2+x−6
x−2 = x + 3. So limx=2 f = 5. Therefore, by defining f(2) = 5, we

extend f to a continuous function on the real line.

#10) Let ε > 0. Let δ > 0. Note that ||x| − |c|| ≤ |x − c|, so if |x − c| < δ, then ||x| − |c|| < ε, So |x| is
continuous at every point c.

#15) Since the limx→0 f does not exist, there is some sequence an > 0 such that an converges to 0, but
f(an) diverges. Since f is a bounded function, f(an) is a bounded sequence. By Bolzano-Weierstrass,
we can find a convergent subsequence f(ank

), which corresponds to a convergent subsequence ank
. By

3.4.9, since f(an) is a bounded subsequence, if all of its convergent subsequences had the same limit,
then f(an) would be convergent, contradicting the fact that we chose it to be divergent. Therefore, we
can find at least two subsequences f(ank

) and f(anj ) that converge to different limits. Let xk = ank

and yj = anj
.

Section 5.2

#1) All 4 functions are continuous wherever they are defined.

#3) Define f(x) =
{

1 x > c
−1 x ≤ c

And define g(x) = −f(x). Then f and g are both discontinuous at c,

f + g is constant 0 and fg is constant −1, which are both continuous.

#6) Let (xn) be an arbitrary sequence converging to c that is not ever equal to c. By the Sequential
Criterion of Convergence, f(xn) converges to b. By the Sequential Criterion for Continuity applied to
this sequence and g, g(f(xn)) converges to g(b). Therefore, by the sequential criterion for convergence,
g ◦ f(x) → g(b) as x → c.

#7) Let f(x) = 1 if x is rational, and f(x) = −1 if x is irrational. Then f is discontinuous at every point,
but |f | is the constant function 1.

#12) Say f is additive and continuous at x0, and let c be any other point. As x → c, x − c + x0 → x0.
Since f is continuous at x0, this implies that limx→c f(x) = limx→c[f(x − c + x0) + f(c − x0)] =
f(x0) + f(c− x0) = f(c), using additivity twice. Thus, f is continuous at c.
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#13) First, note that f(0) = 0, since f(0) = f(0 + 0) = f(0) + f(0) = 2f(0). Also note that 0 = f(0) =
f(x +−x) = f(x) + f(−x) so that f(−x) = −f(x). This last comment shows that it suffices to prove
the claim for positive numbers, and it will follow automatically for negative numbers.

Let c = f(1). Let m ∈ N. Then c = f(1) = f(1/m + 1/m + · · · + 1/m) = f(1/m) + f(1/m) + · · · +
f(1/m) = mf(1/m), where the each some has m terms. Thus, f(1/m) = c/m. Now let n ∈ N. Then
f(n/m) = f(1/m + · · ·+ 1/m) = f(1/m) + · · ·+ f(1/m) = nf(1/m) = c(n/m), where now each sum
has n terms. Therefore, f(q) = cq for all rational numbers q.

Let x ∈ R be arbitrary. Let qn be a sequence of rationals converging to x (this exists by the Density
Theorem). Since qn is rational, f(qn) = cqn. By The continuity of f , we pass to the limit on both
sides to find that f(x) = cx as desired.
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