3.5 Centiqued

that is: prove $x_{2j+4} > x_{2j+3}$. To show this, we note that $x_{2j+4} = \frac{1}{2}(x_{2j+3} + x_{2j+2}) = \frac{1}{4}(x_{2j+1} + 3x_{2j+2})$ and $x_{2j+3} = \frac{1}{2}(x_{2j+1} + x_{2j+2})$. So $x_{2j+4} - x_{2j+3} = \frac{1}{4}(x_{2j+2} - x_{2j+1}) > 0$ by assumption. Hence, our claim is proven by induction.

Now, for any n > 1. $|x_{n+1} - x_n| = \frac{1}{2}|x_n - x_{n-1}|$, and so the sequence is contractive. Moreover, we can expand this result by induction to get $|x_{n+1} - x_n| = \frac{1}{2^{n-1}}|x_2 - x_1| = \frac{l}{2^{n-1}}$. Since the sequence is contractive, we know that it is Cauchy, whence convergent. Let its limit be x. We examine the odd-indexed subsequence (x_{2k+1}) , and we claim that $x_{2k+1} = x_1 + \sum_{j=0}^k \frac{l}{2^{2j-1}}$. For k=1, this is true since $x_3 = \frac{1}{2}(x_2 + x_1) = \frac{1}{2}(l + x_1 + x_1) = x_1 + \frac{l}{2}$ as desired. Assume it is true for some k; we will prove it for k+1 and the result follows by induction: $x_{2(k+1)+1} = x_{2k+3} = \frac{1}{2}(x_{2k+2} + x_{2k+1})$. We know that $|x_{2k+2} - x_{2k+1}| = \frac{l}{2^{2k}}$. Moreover, we know that $x_{2k+2} > x_{2k+1}$ and so $x_{2k+2} = x_{2k+1} + \frac{l}{2^{2k}}$. It follows that $x_{2k+3} = \frac{1}{2}(2x_{2k+1} + \frac{l}{2^{2k}}) = x_{2k+1} + \frac{l}{2^{2k+1}} = x_1 + \sum_{j=0}^k \frac{l}{2^{2j-1}} + \frac{l}{2^{2k+1}} = x_1 + \sum_{j=0}^{k+1} \frac{l}{2^{2j-1}}$ as desired. Therefore,

$$x_{2k+1} = x_1 + \sum_{j=0}^{k} \frac{l}{2^{2j-1}} = x_1 + \frac{l}{2} \sum_{j=0}^{k-1} \frac{1}{4^j} = x_1 + \frac{l}{2} \left(\frac{1 - (\frac{1}{4})^k}{1 - \frac{1}{4}} \right) = x_1 + \frac{2l}{3} (1 - (1/4)^n)$$

Taking the limit of both sides yields $x = x_1 + \frac{2l}{3} = \frac{1}{3}x_1 + \frac{2}{3}x_2$.

#12) Note that $x_n > 0$ for all n so that $5 + 2x_n > 5$.

$$|x_{n+2} - x_{n+1}| = \left| \frac{1}{2 + \frac{1}{2 + x_n}} - \frac{1}{2 + x_n} \right| = \left| \frac{2 + x_n}{5 + 2x_n} - \frac{1}{2 + x_n} \right|$$

$$= \left| \frac{4 + 4x_n + x_n^2 - 5 - 2x_n}{(5 + 2x_n)(2 + x_n)} \right| \le \frac{1}{5} \left| \frac{-1 + 2x_n + x_n^2}{2 + x_n} \right| = \frac{1}{5} \left| \frac{-1}{2 + x_n} + x_n \right|$$

$$= \frac{1}{5} |x_n - x_{n+1}| = \frac{1}{5} |x_{n+1} - x_n|$$

Since $\frac{1}{5} < 1$, this shows the sequence is contractive. Its limit must be positive and satisfy $x = \frac{1}{2+x}$, and so the limit is $x = \sqrt{2} - 1$.

Section 3.5

- #1) The sequence $((-1)^n)$ is bounded (by -1 and 1), and not Cauchy (since it is not convergent).
- #2a) $(\frac{n+1}{n}) = (1+1/n)$. Let $\epsilon > 0$. Let $K \in \mathbb{N}$ be large enough so that $1/K < \epsilon/2$. Then for $n, m \ge K$, we have $|(1+1/n) (1+1/m)| = |1/n 1/m| \le 1/n + 1/m \le 1/K + 1/K < \epsilon/2 + \epsilon/2 = \epsilon$.
- #3b) Let $\epsilon = 1$. We will show that for all $K \in \mathbb{N}$, there exist $n, m \geq K$ such that $|x_n x_m| \geq 1$. Fix arbitrary $K \in \mathbb{N}$. Let m be an odd number greater than K and n = m + 1. Then $|x_n x_m| = |(m+1) + \frac{(-1)^{m+1}}{m+1} m \frac{(-1)^m}{m}| = |1 + \frac{1}{m+1} + \frac{1}{m}| > 1$ as desired.
- #6) Fix $p \in \mathbb{N}$. Let $s_n = \sum_{k=1}^n \frac{1}{k}$. Let $p \in \mathbb{N}$. First, the sequence (s_n) diverges (and so is not Cauchy) by 3.5.6(c) or 3.3.3(b). For all n, $|s_{n+p} s_n| = \sum_{k=1}^p \frac{1}{n+k} \le \sum_{k=1}^p \frac{1}{n} = \frac{p}{n}$, which converges to 0. Hence, $0 < |s_{n+p} s_n| \le \frac{p}{n}$, and by the Squeeze Theorem, $\lim |s_{n+p} s_n| = 0$.
- #7) Let $\epsilon = 1$. Since (x_n) is Cauchy, there exists $K \in \mathbb{N}$ such that for all $n, m \geq K$, $|x_n x_m| < 1$. In particular, $|x_n x_K| < 1$ for all $n \geq K$. It follows that for all $n \geq K$, $x_n \in (x_K 1, x_K + 1)$. Since x_K is an integer, it is the only integer in $(x_K 1, x_K + 1)$. Therefore, since x_n is an integer, we must have $x_n = x_K$ for all $n \geq K$. Therefore, the K-tail of the sequence is constant. Therefore, the sequence is ultimately constant.
- #9) Let $m, n \in \mathbb{N}$. Without loss of generality, we may assume $m \ge n$. Let p = m n. Then $|x_m x_n| = |x_{n+p} x_n| \le |x_{n+p} x_{n+p-1}| + |x_{n+p-1} x_{n+p-2}| + \dots + |x_{n+1} x_n| < r^{n+p-1} + r^{n+p-2} + \dots + r^n = r^n \sum_{k=0}^{p-1} r^k = r^n \frac{1-r^p}{1-r} < \frac{r^n}{1-r}$. $r^n \to 0$ as $n \to \infty$, so if $\epsilon > 0$, choose K such that $r^K < \epsilon(1-r)$. Then if $m \ge n \ge K$, we get $|x_m x_n| < \frac{r^K}{1-r} < \epsilon$, and hence the sequence is Cauchy.
- #10) Let $l = x_2 x_1$. First we prove (we will need it later) that $x_{2k+2} > x_{2k+1}$ for all $k \ge 0$. It is true that $x_2 > x_1$, so the base case holds. Assume it is true for some j. We must prove that it is true for j + 1,