Section 5.4

#2) $|1/x^2 - 1/y^2| = |y - x||x + y|/(x^2y^2) \le |y - x| \left(\frac{1}{|x|y^2} + \frac{1}{x^2|y|}\right)$. If $x, y \in [1 \to \infty$, then both $\frac{1}{xy^2}$ and $\frac{1}{x^2y}$ are less than or equal to 1. Hence, $|1/x^2 - 1/y^2| \le 2|x - y|$. So f is Lipschitz on $[1, \infty)$, and hence uniformly continuous.

Suppose f were uniformly continuous on $(0, \infty)$. Then in particular, it would be uniformly continuous on (0, 1). By the Continuous Extension Property, it could be extended to a continuous function on [0, 1]. But continuous functions on closed bounded intervals are bounded, which f is not. Contradiction.

- #7) It is obvious that f(x) = x is uniformly continuous. For all $x, y \in \mathbb{R}$,

$$|\sin(x) - \sin(y)| = 2|\sin(\frac{x-y}{2})||\cos(\frac{x+y}{2})| \le 2|\frac{1}{2}(x-y)| = |x-y|.$$

So $g(x) = \sin x$ is Lipschitz on \mathbb{R} , and hence uniformly continuous. To show that $x \sin x$ is not uniformly continuous, we use the third criterion for nonuniform continuity.

Let (x_n) be the sequence $(2\pi n)$, and let (u_n) be the sequence $(2\pi n + 2\pi/n)$. Then clearly, $\lim(x_n - u_n) = 0$. Also, $\sin(x_n) = 0$ and $\sin(u_n) = \sin(2\pi/n)$. Therefore, $|x_n \sin(x_n) - u_n \sin(u_n)| = (2\pi n + 2\pi/n) \sin(2\pi/n)$. Letting $y_n = 2\pi/n$, we have the sequence $4\pi^2 \frac{\sin y_n}{y_n} + y_n \sin y_n$. As $n \to \infty$, $y_n \to 0$, so $y_n \sin y_n \to 0$. Also, $\lim_{x \to 0^+} \frac{\sin x}{x} = 1$, so $\lim(4\pi^2 \frac{\sin y_n}{y_n} + y_n \sin y_n) = 4\pi^2$. In particular, there exists a K such that for $n \ge K$, $|x_n \sin(x_n) - u_n \sin(u_n)| > 1$. So $x \sin x$ is not uniformly continuous.

- #8) Let $\epsilon > 0$. By the uniform continuity of f, we can find $\eta > 0$ such that if $|x u| < \eta$, then $|f(x) f(u)| < \epsilon$. By the uniform continuity of g, we can find $\delta > 0$ such that if $|x u| < \delta$, then $|g(x) g(u)| < \eta$. Therefore, if $|x u| < \delta$, then $|f(g(x)) f(g(u))| < \epsilon$, as desired.
- **#11)** Suppose there exists a K such that $\sqrt{x} \leq Kx$ for all $x \in [0, 1]$. It follows that $K \geq \frac{1}{\sqrt{x}}$ for all $x \in (0, 1]$. But $1/\sqrt{x}$ is unbounded on this interval, contradicting that K is a bound for it. So there does not exist such a K. It follows that \sqrt{x} is not Lipschitz on [0, 1] despite being uniformly continuous there.
- #12) Let $\epsilon > 0$. f is uniformly continuous on $[a, \infty)$, so there exists $\delta_1 > 0$ such that if $x, y \in [a, \infty)$ and $|x y| < \delta_1$, then $|f(x) f(y)| < \epsilon/2$. f is continuous on the closed bounded interval [0, a], and hence uniformly continuous there. So there exists $\delta_2 > 0$ such that if $x, y \in [0, a]$ and $|x y| < \delta_2$, then $|f(x) f(y)| < \epsilon/2$. Let $\delta = \min\{\delta_1, \delta_2\}$.

Suppose $x, y \in [0, \infty)$ such that $|x - y| < \delta$. If $x, y \in [0, a]$, then $|x - y| < \delta_2 \implies |f(x) - f(y)| < \epsilon$. If $x, y \in [a, \infty)$, then $|x - y| < \delta_1 \implies |f(x) - f(y)| < \epsilon$. Finally, if one of x, y (say x) is in [0, a] and the other (say y) is in $[a, \infty)$, then $|x - a| < \delta_1$ and $|y - a| < \delta_2$. It follows that $|f(x) - f(y)| \le |f(x) - f(a)| + |f(a) - f(y)| < \epsilon/2 + \epsilon/2 = \epsilon$.

- #13) Let $\eta > 0$. Choose $\delta > 0$ such that if $|x y| < \delta$, then $|g_{\epsilon/3}(x) g_{\epsilon/3}(y)| < \epsilon/3$. (We can do this because $g_{\epsilon/3}$ is uniformly continuous. Therefore by the triangle inequality, if $|x y| < \delta$, then $|f(x) f(y)| \le |f(x) g_{\epsilon/3}(x)| + |g_{\epsilon/3}(x) g_{\epsilon/3}(y)| + |g_{\epsilon/3}(y) f(y)| < \epsilon/3 + \epsilon/3 + \epsilon/3 = \epsilon$.
- #14) For any $x \in \mathbb{R}$, there exists an integer n such that $x np \in [0, p]$. By induction, f(x np) = f(x). f is continuous, and [0, p] is closed and bounded, so f is a bounded function. Let M be a bound for fon [0, p]. Then for $x \in \mathbb{R}$, we choose n as above so that $|f(x)| = |f(x - np)| \le M$. Therefore, M is a bound for f on \mathbb{R} , and so f is bounded.

Now, since f is continuous on [0, p], it is uniformly continuous there. Let $\epsilon > 0$. Then we can find $\delta > 0$ such that if $x, y \in [0, p]$ and $|x - y| < \delta$ then $|f(x) - f(y)| < \epsilon/2$. Let $x, y \in \mathbb{R}$ such that $|x - y| < \delta$. We can assume without loss of generality that x < y. Let n_x, n_y be the integers such that $x - n_x p, y - n_y p \in [0, p]$. Then it follows from x < y that $n_y \ge n_x$. If $n_x = n_y$, then $|(x - n_x p) - (y - n_y p)| = |x - y| < \delta$. Hence by periodicity and choice of δ , $|f(x) - f(y)| = |f(x - n_x p) - f(y - n_y p)| < \epsilon/2 < \epsilon$. If $n_x < n_y$, then

$$|f(x) - f(y)| \leq |f(x) - f((n_x + 1)p)| + \sum_{k=n_x+1}^{n_y-1} |f(kp) - f((k+1)p)| + |f(n_yp) - f(y)|$$

= $|f(x) - f((n_x + 1)p)| + |f(n_yp) - f(y)|$

by the periodicity of f, all the middle terms are 0. Also, $x \leq (n_x+1)p \leq n_yp \leq y$, so $|x-(n_x+1)p| < \delta$ and $|y-n_yp| < \delta$. Therefore, $|(x-n_xp)-p| < \delta$, and $x-n_xp$, $p \in [0,p]$, and so $|f(x)-f((n_x+1)p)| = |f(x-n_xp)-f(p)| < \epsilon/2$. Likewise, $|f(y)-f(n_yp)| = |f(y-n_yp)-f(0)| < \epsilon/2$. Therefore, $|f(x)-f(y)| < \epsilon$.