Section 5.4

#2) [1/2% — 1/y?| = |y — z||lz + y|/(2?y?) < |y — 2] (myg + x2|y‘) If z,y € [1 — oo, then both 17112 and
%y are less than or equal to 1. Hence, |1/2? —1/y?| < 2|z —y|. So f is Lipschitz on [1, 00), and hence
uniformly continuous.

Suppose f were uniformly continuous on (0,00). Then in particular, it would be uniformly continuous
on (0,1). By the Continuous Extension Property, it could be extended to a continuous function on [0, 1].
But continuous functions on closed bounded intervals are bounded, which f is not. Contradiction.

#4) [f(2) — FW)| = | — ol it < o — |((W>('1+y o+ et ) Tl < 1, then [2]/((1 +
22)(1 +y )) < 1. If [z > 1, then |z|/((1 4+ 2®)(1 + ¢?)) < |z]/(#*(1 +y®)) < 1/|z| < 1. Hence,
(1+12)(1+y 5+ (1+£2|)(|1+ 7y <1+1=2 So|[f(z) - f(y)| < 2|z —yl|. So fis Lipschitz on R, and hence
uniformly continuous.

#7) It is obvious that f(x) = x is uniformly continuous. For all z,y € R,

| sin(z) — sin(y)| = 2| sin(m

-y r+y 1
cos <2|=(z— =|z —y|
SDllcos(I D) < 205 —y)l =le -y
So g(x) = sinx is Lipschitz on R, and hence uniformly continuous. To show that z sin « is not uniformly
continuous, we use the third criterion for nonuniform continuity.

Let (x,) be the sequence (27n), and let (uy) be the sequence (27n + 27 /n). Then clearly, lim(z, —
up) = 0. Also, sin(z,) = 0 and sin(u,) = sin(27/n). Therefore, |z, sin(x,) — up sin(u,)| = (27n +
27 /n) sin(27/n). Letting y, = 27/n, we have the sequence 47> E 4 ypsingn. Asn— 00, yp — 0,

sin x

SO Yy siny, — 0. Also, lim,_,q+ =1, so lim(4r? Slry‘ Un 4y, siny,) = 472, In particular, there exists

a K such that for n > K, |z, sln(xn) Uy sin(uy,)| > 1. So xsinz is not uniformly continuous.

#8) Let ¢ > 0. By the uniform continuity of f, we can find n > 0 such that if |z — u| < 7, then
|f(z) — f(u)] < e. By the uniform continuity of g, we can find § > 0 such that if | — u| < ¢, then
lg(x) — g(u)| < n. Therefore, if |z — u| < 4, then |f(g(x)) — f(g(u))| < €, as desired.

#11) Suppose there exists a K such that /z < Kz for all z € [0,1]. It follows that K > % for all

€ (0,1]. But 1/y/z is unbounded on this interval, contradicting that K is a bound for it. So there
does not exist such a K. It follows that /2 is not Lipschitz on [0, 1] despite being uniformly continuous
there.

#12) Let € > 0. f is uniformly continuous on [a,c0), so there exists §; > 0 such that if =,y € [a,00) and
|z —y| < 61, then | f(z) — f(y)| < €/2. f is continuous on the closed bounded interval [0, a], and hence
uniformly continuous there. So there exists d2 > 0 such that if 2,y € [0,a] and |z — y| < &2, then
|f(z) — f(y)] < €/2. Let § = min{dy,da}.

Suppose z,y € [0,00) such that |z — y| < d. If z,y € [0,a], then |z —y| < o = |f(z) — f(y)] < e.
If 2,y € [a,00), then |z —y| < 01 = |f(x) — f(y)| < e. Finally, if one of z,y (say z) is in [0, a
and the other (say y) is in [a, 00), then |z —a| < 01 and |y — a| < Ja. It follows that |f(x) — f(y)| <
[f(@) = fla) +1f(a) = f(y)l <€e/2+€¢/2=¢

#13) Let n > 0. Choose § > 0 such that if [z — y| < §, then |gc/3(x) — ge/3(y)| < ¢/3. (We can do
this because g./3 is uniformly continuous. Therefore by the triangle inequality, if |z — y| < 4, then

[f(@) = fW < [f(@) = gz (@) + 19e/3(2) — geyz (W)l + |ge/3(y) — f(W) < €/3+€/3+¢/3=e

#14) For any = € R, there exists an integer n such that z — np € [0,p]. By induction, f(x —np) = f(z).
f is continuous, and [0, p] is closed and bounded, so f is a bounded function. Let M be a bound for f
on [0,p]. Then for x € R, we choose n as above so that |f(z)| = |f(z — np)| < M. Therefore, M is a
bound for f on R, and so f is bounded.



Now, since f is continuous on [0, p], it is uniformly continuous there. Let € > 0. Then we can find 6 > 0
such that if z,y € [0,p] and |z —y| < § then |f(z) — f(y)| < €/2. Let z,y € R such that |z —y| < §. We
can assume without loss of generality that z < y. Let n,, n, be the integers such that x —n,p,y—nyp €
[0,p]. Then it follows from = < y that n, > n,. If n, = n,, then |(z — nyp) — (y — nyp)| = |z —y| < 9.
Hence by periodicity and choice of 6, |f(x) — f(y)| = |f(z — nzp) — f(y —nyp)| < €/2 <e. If ngy < ny,
then

ny—1

f(@) = f((ne + D)+ D |flkp) — F((k+ 1)p)| + |f(nyp) — F ()]

k=ngz+1

[f (@) = f((ne + Dp)| + | f(nyp) — f ()]

[f(x) = f(y)l

IN

by the periodicity of f, all the middle terms are 0. Also, z < (nz+1)p < nyp <y, so |z —(n,+1)p| <6
and |y — nyp| < &. Therefore, |(z — ngp) — p| < 0, and = — ngyp,p € [0,p], and so |f(z) — f((ns +
Dp)| = [f(z — nap) — f(p)| < €/2. Likewise, |f(y) — f(nyp)| = [f(y — nyp) — f(0)| < €/2. Therefore,
[f(z) = fly)l <e



