
Section 5.4

#2) |1/x2 − 1/y2| = |y − x||x + y|/(x2y2) ≤ |y − x|
(

1
|x|y2 + 1

x2|y|

)
. If x, y ∈ [1 → ∞, then both 1

xy2 and
1

x2y are less than or equal to 1. Hence, |1/x2− 1/y2| ≤ 2|x− y|. So f is Lipschitz on [1,∞), and hence
uniformly continuous.

Suppose f were uniformly continuous on (0,∞). Then in particular, it would be uniformly continuous
on (0, 1). By the Continuous Extension Property, it could be extended to a continuous function on [0, 1].
But continuous functions on closed bounded intervals are bounded, which f is not. Contradiction.

#4) |f(x) − f(y)| = |x − y| |x+y|
(1+x2)(1+y2) ≤ |x − y|

(
|y|

(1+x2)(1+y2) + |x|
(1+x2)(1+y2)

)
. If |x| ≤ 1, then |x|/((1 +

x2)(1 + y2)) ≤ 1. If |x| > 1, then |x|/((1 + x2)(1 + y2)) < |x|/(x2(1 + y2)) < 1/|x| < 1. Hence,
|y|

(1+x2)(1+y2) + |x|
(1+x2)(1+y2) ≤ 1 + 1 = 2. So |f(x)− f(y)| ≤ 2|x− y|. So f is Lipschitz on R, and hence

uniformly continuous.

#7) It is obvious that f(x) = x is uniformly continuous. For all x, y ∈ R,

| sin(x)− sin(y)| = 2| sin(
x− y

2
)|| cos(

x + y

2
)| ≤ 2|1

2
(x− y)| = |x− y|.

So g(x) = sin x is Lipschitz on R, and hence uniformly continuous. To show that x sinx is not uniformly
continuous, we use the third criterion for nonuniform continuity.

Let (xn) be the sequence (2πn), and let (un) be the sequence (2πn + 2π/n). Then clearly, lim(xn −
un) = 0. Also, sin(xn) = 0 and sin(un) = sin(2π/n). Therefore, |xn sin(xn) − un sin(un)| = (2πn +
2π/n) sin(2π/n). Letting yn = 2π/n, we have the sequence 4π2 sin yn

yn
+ yn sin yn. As n → ∞, yn → 0,

so yn sin yn → 0. Also, limx→0+
sin x

x = 1, so lim(4π2 sin yn

yn
+yn sin yn) = 4π2. In particular, there exists

a K such that for n ≥ K, |xn sin(xn)− un sin(un)| > 1. So x sinx is not uniformly continuous.

#8) Let ε > 0. By the uniform continuity of f , we can find η > 0 such that if |x − u| < η, then
|f(x) − f(u)| < ε. By the uniform continuity of g, we can find δ > 0 such that if |x − u| < δ, then
|g(x)− g(u)| < η. Therefore, if |x− u| < δ, then |f(g(x))− f(g(u))| < ε, as desired.

#11) Suppose there exists a K such that
√

x ≤ Kx for all x ∈ [0, 1]. It follows that K ≥ 1√
x

for all
x ∈ (0, 1]. But 1/

√
x is unbounded on this interval, contradicting that K is a bound for it. So there

does not exist such a K. It follows that
√

x is not Lipschitz on [0, 1] despite being uniformly continuous
there.

#12) Let ε > 0. f is uniformly continuous on [a,∞), so there exists δ1 > 0 such that if x, y ∈ [a,∞) and
|x− y| < δ1, then |f(x)− f(y)| < ε/2. f is continuous on the closed bounded interval [0, a], and hence
uniformly continuous there. So there exists δ2 > 0 such that if x, y ∈ [0, a] and |x − y| < δ2, then
|f(x)− f(y)| < ε/2. Let δ = min{δ1, δ2}.
Suppose x, y ∈ [0,∞) such that |x − y| < δ. If x, y ∈ [0, a], then |x − y| < δ2 =⇒ |f(x) − f(y)| < ε.
If x, y ∈ [a,∞), then |x − y| < δ1 =⇒ |f(x) − f(y)| < ε. Finally, if one of x, y (say x) is in [0, a]
and the other (say y) is in [a,∞), then |x − a| < δ1 and |y − a| < δ2. It follows that |f(x) − f(y)| ≤
|f(x)− f(a)|+ |f(a)− f(y)| < ε/2 + ε/2 = ε.

#13) Let η > 0. Choose δ > 0 such that if |x − y| < δ, then |gε/3(x) − gε/3(y)| < ε/3. (We can do
this because gε/3 is uniformly continuous. Therefore by the triangle inequality, if |x − y| < δ, then
|f(x)− f(y)| ≤ |f(x)− gε/3(x)|+ |gε/3(x)− gε/3(y)|+ |gε/3(y)− f(y)| < ε/3 + ε/3 + ε/3 = ε.

#14) For any x ∈ R, there exists an integer n such that x − np ∈ [0, p]. By induction, f(x − np) = f(x).
f is continuous, and [0, p] is closed and bounded, so f is a bounded function. Let M be a bound for f
on [0, p]. Then for x ∈ R, we choose n as above so that |f(x)| = |f(x− np)| ≤ M . Therefore, M is a
bound for f on R, and so f is bounded.
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Now, since f is continuous on [0, p], it is uniformly continuous there. Let ε > 0. Then we can find δ > 0
such that if x, y ∈ [0, p] and |x−y| < δ then |f(x)−f(y)| < ε/2. Let x, y ∈ R such that |x−y| < δ. We
can assume without loss of generality that x < y. Let nx, ny be the integers such that x−nxp, y−nyp ∈
[0, p]. Then it follows from x < y that ny ≥ nx. If nx = ny, then |(x− nxp)− (y− nyp)| = |x− y| < δ.
Hence by periodicity and choice of δ, |f(x)− f(y)| = |f(x− nxp)− f(y − nyp)| < ε/2 < ε. If nx < ny,
then

|f(x)− f(y)| ≤ |f(x)− f((nx + 1)p)|+
ny−1∑

k=nx+1

|f(kp)− f((k + 1)p)|+ |f(nyp)− f(y)|

= |f(x)− f((nx + 1)p)|+ |f(nyp)− f(y)|

by the periodicity of f , all the middle terms are 0. Also, x ≤ (nx +1)p ≤ nyp ≤ y, so |x−(nx +1)p| < δ
and |y − nyp| < δ. Therefore, |(x − nxp) − p| < δ, and x − nxp, p ∈ [0, p], and so |f(x) − f((nx +
1)p)| = |f(x − nxp) − f(p)| < ε/2. Likewise, |f(y) − f(nyp)| = |f(y − nyp) − f(0)| < ε/2. Therefore,
|f(x)− f(y)| < ε.

2


