MAT 205 SPRING 2000 FINAL EXAM

,						
	N	•	n	n	Δ	٠

SSN:

THERE ARE TEN PROBLEMS. SHOW YOUR WORK!

1. Let
$$z = x \cos y$$
, $x = t^4$, $y = e^{2t}$. Find $\frac{dz}{dt}$.

2. Find the equation of the plane containing the points (0,2,0), (1,1,0), and (-1,0,1).

3. Find the derivative of the function $f(x,y) = e^{2x+y}$ in the direction of the unit vector $\frac{\sqrt{3}}{2}\mathbf{i} + \frac{-1}{2}\mathbf{j}$ at the point (1,-1).

4. The velocity vector of a particle is given by $\mathbf{v}(\mathbf{t}) = 3t^2\mathbf{i} + e^{2t}\mathbf{j} + t\mathbf{k}$. Find $\mathbf{r}(\mathbf{1})$, the position vector of the particle when t = 1, given that $\mathbf{r}(\mathbf{0}) = \mathbf{i} + \mathbf{j}$.

5. Compute

$$\int \int_{D} x \cos x^{2} dA$$

 $\int \int_D x \cos x^2 dA$ where D is bounded by $y=0, \ y=\pi, \ y=x^2, \ {\rm and} \ x\geq 0.$

6. Calculate

$$\int \int_S {f F} \cdot {f dS}$$

where $\mathbf{F}(x,y,z) = ye^{z^2}\mathbf{i} + y^2\mathbf{j} + e^{xy}\mathbf{k}$ and S is the surface of the solid bounded by the cylinder $x^2 + y^2 = 9$ and the planes z = 0 and z = 3 given the outward orientation.

7. Calculate

$$\int \int_{S} curl \mathbf{F} \cdot \mathbf{dS}$$

The Calculate $\int \int_S curl \mathbf{F} \cdot \mathbf{dS}$ where $\mathbf{F}(x,y,z) = yz\mathbf{i} + xz\mathbf{j} + x^2y^2\mathbf{k}$ and S is the part of the paraboloid $z = x^2 + y^2$, oriented upward, that lies inside the cylinder $x^2 + y^2 = 4$.

You will need to use the identity $\int \cos^2 t dt = \frac{1}{2}t + \frac{1}{4}\sin 2t + C$

8. Evaluate

$$\int_C xy\,dx + y^5\,dy$$

 $\int_C xy\,dx+y^5\,dy$ where C is the triangle with vertices $(0,0),\,(2,0),\,$ and (2,1) positively oriented.

9. Let
$$\mathbf{F} = (x + y^2)\mathbf{i} + (2xy + y^2)\mathbf{j}$$
.

1. Is \mathbf{F} conservative?

2. Find a function f(x, y) such that $\nabla f = \mathbf{F}$.

3. Find $\int_C \mathbf{F} \cdot \mathbf{dr}$ where C is any curve starting at (0,0) and ending at (1,1).

10. Evaluate

$$\int_C 3y \, ds$$

 $\int_C 3y\,ds$ where C is the curve paramatrized by $x=t,\,y=t^3,\,0\leq t\leq 1.$