Computing Symplectic Homology of Affine
Varieties

(using Spectral Sequences)

http://www.math.stonybrook.edu/~markmclean/talks/spectralsequencealltogether.pdf



Related Projects (in progress)

v

Diogo-Lisi

v

Ganatra, Pomerleano

v

Sheridan, Borman

v

Hilya Arguz

v

Joint work with Tehrani, Zinger.



Disclaimer: only one of the spectral sequences in this presentation
has been constructed in detail (the second one). The details of the
first one have not been worked out fully yet.
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An Introduction to Spectral Sequences.

» “The words 'spectral sequence’ strike fear into the hearts of
many hardened mathematicians. These notes will attempt to
demonstrate that spectral sequences are not so scary, and also
very powerful.” - M. Hutchings

> “The machinery of spectral sequences, stemming from the
algebraic work of Lyndon and Koszul, seemed complicated
and obscure to many topologists. Nevertheless, it was
successful...” - G. W. Whitehead.

> “A spectral sequence is an algebraic object, like an exact
sequence, but more complicated” - J. F. Adams.



> “After my article was published, John Harper sent me email
and said that when he was a graduate student back in the
1960s, he personally asked Leray about the term ‘spectral’
and in particular asked whether it had something to do with
the spectrum of an operator. Leray began his reply by saying,
"Non"; unfortunately, before he could continue, some
professors approached and interrupted the conversation.”
-Source: Timothy Chow/ Mathoverflow.net



» We will talk about homological spectral sequences since the
workshop is on symplectic homology.



A spectral sequence is a sequence of bigraded chain complexes.
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A spectral sequence is a sequence of bigraded chain complexes.

This is page 2.
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A spectral sequence is a sequence of bigraded chain complexes.

This is page 3.
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The total degree is the sum of the degrees. Diagonal lines have

been drawn to highlight groups of the same total degree.
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The total degree is the sum of the degrees. Diagonal lines have
been drawn to highlight groups of the same total degree.
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The total degree is the sum of the degrees. Diagonal lines have
been drawn to highlight groups of the same total degree.
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The total degree is the sum of the degrees. Diagonal lines have

been drawn to highlight groups of the same total degree.

E
Ega

3
E0,3

E0,2

Eys

3

3

3
Eqo

Ele B4 B, E, E,
Els  Es By By Ej
E, B, B, E, E,
B, B, B, B, B,
Elo——ESo——ESo——Eio—Edp

3
Eg4

)

3
Eg >

3
Eg+

3
E6,o*



» The differential d on E[, has degree (—r,r —1). In other
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» The differential d on E[, has degree (—r,r —1). In other
words, we have maps:

— r . r r
dle;, = dpg* Epg = Ep—rgr—1-

» Note that d , has total degree —1 since
(p=r)+(@+r-1)=p+qg-1

» Also Eﬂf’i‘l is the homology of the previous page E/ . In other
words,

Epit =ker(d) )/im(d] 7 o iq)-



Here the differential has degree (—0,0 —
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Here the differential has degree (—1,1 —

1).
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Here the differential has degree (—2,2 — 1).
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Here the differential has degree (—3,3 — 1).
N
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What is the E* page?

> It is the set of elements which ‘survive' forever.
> In our case, all the pages E; , for r > 0 will be finite
dimensional and they decrease in dimension as r increases.

» Therefore, for each p, q there is a constant C, 4 so that
Ejtt =E]  forall r > C, 4. Hence we can define EJ to be
Ejqforr==Cpg



» Definition: We say that a spectral sequence (E,;q) converges
to a graded group H, if there is a filtration

---Fi1CcFCFHCFC---CH,

so that
Epg=Fp N Hpiq/Fp1N Hpig.



» Definition: We say that a spectral sequence (E,;q) converges
to a graded group H, if there is a filtration

~--F_1CFOCF1CF2C"'CH*

so that
Epg=FpN Hp+q/Fp—1 N Hpq.
> In our case the filtration will be nice enough so that if the

above spectral sequence converges then H, = @,E;5 .



Spectral Sequence from a filtered complex

» Theorem: Suppose we have a nice filtration
--‘F_lC* C F()C* (@ FlC* C FQC* C --- C C, of a chain
complex (Cy,d). Then there is a spectral sequence converging
to H.(C.,0) with E' page equal to:

E/},q = H*(FpCerq/Fp—leJrqa 9).

» The filtration for us will be the action filtration.
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p + q = n and the differentials dj, , and d;,, , .., vanish for
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How to use spectral sequences in our context

1. Start with a filtered chain complex (in our case, the Floer
chain complex with some filtration induced by the action
functional).

2. Write down the El-page
Eﬁiq = Hi(FpCptq/Fp-1Cptq, D).

3. Hope that the differentials that we are interested in vanish, or
at least are understandable. For instance, if we wish to show
that H, # 0 then it is sufficient for us to find p, g so that

p + q = n and the differentials dj, , and d;,, , .., vanish for
all r > 1.
4. Compute H, = ©pESS,_, (the direct sum of everything along

the diagonal line containing (n,0)).



E01,1 E11,1 Ezl,l E3},1 E41,1\ 0

1 1 1 1 1
EO,O El,O E2,0 E3,0 E4,0 E5 0

Here H3 o = Hs is non-zero.



"... the behavior of this spectral sequence ... is a bit like an
Elizabethan drama, full of action, in which the business of each
character is to kill at least one other character, so that at the end
of the play one has the stage strewn with corpses and only one
actor left alive (namely the one who has to speak the last few
lines)” - J. F. Adams.



A Spectral Sequence for Symplectic Homology.

» We will construct a spectral sequence converging to SH,(A)
(symplectic homology of A) where A is a smooth affine variety
of dimension n with c¢1(A) = 0 (there is also a similar spectral
sequence when ¢;(A) is torsion but we will not focus on that).
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A Spectral Sequence for Symplectic Homology.

» We will construct a spectral sequence converging to SH,(A)
(symplectic homology of A) where A is a smooth affine variety
of dimension n with c¢1(A) = 0 (there is also a similar spectral
sequence when ¢;(A) is torsion but we will not focus on that).

» Choose a non-zero section k4 of the canonical bundle
Ka= A"T*A of A.

» Such a section (up to homotopy) gives SH,(A) a Z-grading.



» Definition: A smooth normal crossing divisor in a smooth
projective variety X is a finite union of transversely
intersecting smooth complex hypersurfaces (D;);cs.
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» Theorem (Hironaka) Every smooth affine variety A is
isomorphic to X — U;csD; for some X, (D;)jcs as above.
From now on fix this notation.



» Definition: A smooth normal crossing divisor in a smooth
projective variety X is a finite union of transversely
intersecting smooth complex hypersurfaces (D;);cs.

» Theorem (Hironaka) Every smooth affine variety A is
isomorphic to X — U;csD; for some X, (D;)jcs as above.
From now on fix this notation.

» Forany | C S, define D; = Nj¢/D;. Here, Dy = X.

D12
Eg A=C?
= / X = CP! x CPL
D1 = (CPI X {OO}
X = Dy D, = {00} x CP!
D12 = {OO} X {OO}
A D>




» We'll assume k4 is a meromorphic section of the canonical
bundle of X which is non-zero along A.
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minus the order of x,'(c0) along D;. le. ka = zj' in some
chart z1,- - , z, satisfying D; = {z; = 0}.
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We'll assume k4 is a meromorphic section of the canonical
bundle of X which is non-zero along A.

We define the discrepancy a; of D; to be the order of /{;1(0)
minus the order of x,'(c0) along D;. le. ka = zj' in some
chart z1,- - , z, satisfying D; = {z; = 0}.

Choose an ample line bundle L on X and a holomorphic
section s4 of L so that sa restricted to A is non-zero and
D= 5;1(0).

We define the wrapping number w; of D; to be minus the
order of s,(0) along D;.



» Definition: For each | C S let ND; be a small tubular
neighborhood of D; so that ND; N Dy: is a tubular
neighborhood of Dy for all I’ € S. Also OND; should
intersect Dy transversally for all I’ C S.



» Definition: For each | C S let ND; be a small tubular
neighborhood of D; so that ND; N Dy: is a tubular
neighborhood of Dy for all I’ € S. Also OND; should
intersect Dy transversally for all I’ C S.

» Define ND/ = ND; — U;csD;. This as a bundle over
V, =D, — Ujes—yD; with fiber a product of punctured disks.
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» Definition: For each /| C S let ND; be a small tubular
neighborhood of D; so that ND; N Dy is a tubular
neighborhood of Dy for all I’ € S. Also OND; should
intersect Dy transversally for all I’ C S.

» Define ND; = ND; — Ujes—yD;. This as a bundle over
V, =D, — Ujes—yD; with fiber a product of punctured disks.

D15
Dy




» Definition: For each | C S let ND; be a small tubular
neighborhood of D; so that ND; N Dy: is a tubular
neighborhood of D, for all I’ € S. Also OND; should
intersect D;/ transversally for all I’ C S.

» Define I\VID/ = ND; — Ujcs_;D;. This as a bundle over
V, =D, — Ujes—yD; with fiber a product of punctured disks.
D12

! a




Theorem (M - in progress):
There is a spectral sequence converging to SH,(A) with E! page

E,}q — EB Hn—P—a—2(%; k;(a,-+1))(/\“/D,(k‘))
{(k)eNs : 3=, kjwi=—p}

where N° is the set of tuples of non-negative integers indexed by S
and [y ={i €S : ki #0}.



» There is a similar spectral sequence for SH?(A) where we
sum over everything except the term corresponding to
(0) € N>,
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(0) € N>,

» If ¢ is torsion then k4 is a section of K/i\@' and the
discrepancies a; are now defined to be the order of mzl(O)
minus the order of x;'(c0) along D; divided by r. The
associated spectral sequence is identical but the pages could
potentially have entries with non-integer p, g since a; may not
be an integer. The differentials have the same gradings.



» There is a similar spectral sequence for SH?(A) where we
sum over everything except the term corresponding to
(0) € N>,

» If ¢ is torsion then k4 is a section of K/i\@' and the
discrepancies a; are now defined to be the order of mzl(O)
minus the order of x;'(c0) along D; divided by r. The
associated spectral sequence is identical but the pages could
potentially have entries with non-integer p, g since a; may not
be an integer. The differentials have the same gradings.

» The future work of Diogo-Lisi and Ganata-Pomerleano

hopefully should give better descriptions of the differentials in
some cases.



Other Grading Conventions

> There are other grading conventions.

» You might need to replace (p, g) with (—p, n—q) or (—p, —q)
and your spectral sequence differentials will go in the other
direction (this would be a cohomological spectral sequence).
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Sanity Check

» X =CP", D; =CP" ! and A= C".

» wg = —land a; = —n—1.
w () [ Z ifx=00r2n-1
> H'(NDy) _{ 0 otherwise. '

Z if x=0
0 otherwise

v

H(NIDy) = H*(A) = {



Case: n=3

0

0

0 for all p,q

2

p:q

SH.(A)

=0

0

0

0—0—0—0—0—0—0—>
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Example

» Let X be a smooth degree 5 hypersurface in CP? and let D;
be the intersection of X with a generic degree 1 hypersurface
and A= X — Dy.

» wg = —1and a; = 1.

Z ifx=0o0r3

H*(ND;) ={ Z'? ifx=1or2 .

0 otherwise.
7 ifx=0

H*(NDy) = H*(A) = { Z0* ifx=2

0 otherwise

v

v

» Computations using ideas from Milnor's paper “On simply
connected 4-manifolds”. See also
https://amathew.wordpress.com/2012/03/05/the-
cohomology-of-projective-hypersurfaces/



7,0 0 0 0 0
(:) 00000
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000 00 00
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0 0/ 0 0 0
0000 00
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Therefore
SH.(A) =
Z if x =2
A if x =0

7Z ifx<—-land*=0o0or1 mod4
Z? ifx< —land *=2or3 mod 4
0 otherwise.
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Example with two divisors

» X be a smooth degree 6 hypersurface in CP3, Dy, D, are
generic degree 1 hypersurfaces and A= X — D; — D».
> W1:W2:—].and 31232:1.
7% ifx=0o0r2
H*(NDyp) =< Z?  ifx=1
0 otherwise.

v

Z ifx=0
I I Z?°  ifx=1
> HY(NDy) = H"(ND2) = q o5 . _ 5

0 otherwise.

7Z ifx=0o0rl
» H*(NDy) = H*(A) = Z¥  ifx=2
0 otherwise
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Weinstein Conjecture
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» Definition: A cooriented contact manifold (C, &) satisfies the
Weinstein conjecture if every contact form « compatible with
& has a Reeb orbit.

» Which contact manifolds satisfy the Weinstein conjecture?
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Recall that positive symplectic homology SHZ (M) of a

Liouville domain M has a chain complex freely generated by
two copies of each Reeb orbit on 9M. In other words, we do
not consider critical points of the Hamiltonian in the interior.

Definition: M satisfies the algebraic Weinstein conjecture
if SHZO(M) # 0.

Lemma: If M satisfies the algebraic Weinstein conjecture
then OM satisfies the Weinstein conjecture.

Question: Which smooth affine varieties satisfy the algebraic
Weinstein conjecture?



» X = smooth projective variety and A = X — U;D; where
(Di)jes is a smooth normal crossing divisor.
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» X = smooth projective variety and A = X — U;D; where
(Di)jes is a smooth normal crossing divisor.

» Theorem: Suppose that the discrepancy a; of D; is < —1 for
all i € S. Then A satisfies the algebraic Weinstein conjecture.

» Proof of the main Theorem:

This is the highest non-zero

E' term on the highest diagonal.

This term exists since a; < —1, Vi
and it survives to the E*° page
since all differentials connecting this

term have source or target 0.
O




An Additional Grading.

» We have a direct sum decomposition

SH.(A)= P SH.a(A)

aEHl(A)

where SH, o(A) is the subgroup generated by periodic orbits
representing a.

» This grading can be seen in our spectral sequence.



» The Hi-class associated to D; is a class a; € Hi(A)
represented by the boundary of a small disk in X intersecting

D; once transversely and negatively at 0 and intersecting no
other D;'s.
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» For each aw € Hy(A), there is a spectral sequence converging
to SH*,a(A) with E! page
2 —p—q=2(3; ki(ai+1)) (
Epq= @ Hn—p—a—2(3; ki(a ))(NDI(k,-))'
{(kI)ENS : Ziak(i‘TVi:—p,}

k)=

where Qi) = Zl, Kic.



» For each aw € Hy(A), there is a spectral sequence converging
to SH, (A) with E! page

1 n—p=q-2 'ki i+1 v
Epgq= @ Hn—P—q—2(3; ki(ai+ ))(NDI(k,-))'
{(k,’)ENS : Z,-a/;;w,-:_p}

ki)=&
where Qg = > i kiai.
» Our original spectral sequence is the direct sum of the above
ones over all o € Hy(A).



» Simple Corollary. Our spectral sequence degenerates at the
E! page when the affine variety A is one dimensional and not
equal to C.
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equal to C.

» Therefore if A= C — {p1,---, p;} where C is a Riemann
surface and pi,-- -, p; distinct points then

/
SH*(A) _ Hl—*(C) ® @ <@k21H1—*—2k(ai+1)(51))
i=1

Here a; is the discrepancy of the divisor p;, which isn’t unique.
The only constraint is ) . a; = —x(C).



» Simple Corollary. Our spectral sequence degenerates at the
E! page when the affine variety A is one dimensional and not
equal to C.

» Therefore if A= C — {p1,---, p;} where C is a Riemann
surface and pi,-- -, p; distinct points then

/
SH*(A) _ Hl—*(C) ® @ <@k21H1—*—2k(ai+1)(51))
i=1

Here a; is the discrepancy of the divisor p;, which isn’t unique.
The only constraint is ) . a; = —x(C).

» Proof:
The spectral sequence computing SH, o (A) is non-zero only in
one column for each a € Hy(A). O



» Theorem
The spectral sequence degenerates at the E1 page when A is
the complement of > n + 2 generic linear hypersurfaces in
CP". l.e.

SH.(A) = @ Hr2iklat (D, ).
(k;)ENS



» Theorem
The spectral sequence degenerates at the E1 page when A is
the complement of > n + 2 generic linear hypersurfaces in
CP". l.e.

SH.(A) = @ Hr2iklat (D, ).
(k;)ENS

> Proof:
We have that H;(A) is the quotient of the free abelian group
generated by («;);cs quotiented out by the relation
Y ics @ = 0 where o; is the Hi-class associated to D;. This
means that for each o € Hy(A), there is at most one
representation of « of the form Y ._, ki where |I| < n and
ki > 0.
Therefore the E! page of the spectral sequence computing
SH,.o(A) is contained in at most one column and hence must
degenerate.

i€l

O



» Open Question: What happens when the linear hypersurfaces
are not generic?
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» Open Question: What happens when the linear hypersurfaces
are not generic?

» Can we still compute SH,(A) in this case?
» Does it detect the dual graph of these hypersurfaces?
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Additional Structure

» For many important varieties (e.g log Calabi-Yau varieties),
the spectral sequence does not help us compute SH,(A) as
the differentials may not be 0. Also we wish to compute
SH,(A) as an algebra with the pair of pants product.

> A spectral sequence Ef , is a spectral sequence of algebras
if each page E/, is a differential bigraded algebra so that the
product structure on E*'jl is induced by the product structure
on EJ, for each r.

» Convergence is defined in the same way, except that the
filtration has to respect the product structure on the algebra
H,.
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» Assume: ND;,  NDj for all | C I
> Let ¢y ND// — I\lel be the natural inclusion map.



» Assume: ND;,  NDj for all | C I
> Let ¢y ND// — I\lel be the natural inclusion map.
» Forall I,J C S, define:

P[_j : H*(ND/) & H*(NDJ) — H*(NDlu_j)
a® b — LTUJJa U LTUJ,Jb‘



Conjecture

The spectral sequence above is in fact a spectral sequence of
algebras converging to SH,,1.(A) with the pair of pants product.
The product structure

1 1
E,q®Ey ,—>E+pq+q

on the E! page

E;q = @ H—p—q—2(2,-k,-(a,-+1))(/vD,(k'))'
{( )GNS : Z kW/—*P}

is induced by the maps P;; above.



Recall: «; is the Hi-class associated to D;.

Theorem (assuming conjecture): Suppose that «; # «; for all
i # j and a; # 0 for all i € S and suppose the union of all images
of the restriction maps Py : H*(ND;) — H*(NDy) for all i € I
generate H*(IVD/) as an algebra for all / C S. Then the spectral
sequence above degenerates on the first page. Hence there is a
filtration on SH,.(A) whose associated graded algebra is:

@ H—*—2(32 ki(ai+1)) (/\V/Dl(k.))7
(ki)eN® |

graded by >, k;.



» Folklore Theorem(?) If a degree n or n — 1 element in the
p = 0 page is killed then the affine variety A is ruled by lines
C.

Related to the work of Diogo-Lisi and Ganata-Pomerleano.



» Folklore Theorem(?) If a degree n or n — 1 element in the
p = 0 page is killed then the affine variety A is ruled by lines
C.

Related to the work of Diogo-Lisi and Ganata-Pomerleano.
» Why?
Because one should be able to make the Hamiltonian H
defining SH.(A) equal to 0 and then a limiting argument
produces a family of curves isomorphic to C passing through
every point of a real hypersurface and hence through every
point of A (since the space of such curves has even real
dimension).



Other Floer Cohomology Groups

1. Floer homology HF.(¢) of a symplectomorphism
¢: M — M. The chain complex here is generated by fixed
points of ¢ and the differential counts holomorphic strips
u: R x[0,1] — M satisfying ¢(u(s, 1)) = u(s,0) for all
s eR.



Other Floer Cohomology Groups

1. Floer homology HF.(¢) of a symplectomorphism
¢: M — M. The chain complex here is generated by fixed
points of ¢ and the differential counts holomorphic strips
u: R x[0,1] — M satisfying ¢(u(s, 1)) = u(s,0) for all
s eR.

2. Full contact homology CH.(C,¢&) of a 2n — 1-contact
manifold (C, &) indexed by Conley-Zehnder index +(n — 3).
Chain complex is the free supercommutative algebra
generated by Reeb orbits of a compatible contact form A. The

differential is:

Number of holomorphic, 7

in the symplectization is
the ~y coefficient of 9(~v17v273).

et 72 73
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Floer homology of a symplectomorphism

» (M, 0) = Liouville domain and ry is the cylindrical coordinate
near OM.

» Let ¢ : M — M be an exact symplectomorphism (l.e.
¢*0 = 0+ dFy) so that ¢ = id near OM and Fy = 0 near OM.

» A positive slope perturbation of ¢ is a C° small
perturbation to ¢ so that ¢ is the time 1 flow of the
Hamiltonian &ry; near 9M where § > 0 is small (l.e. ¢ is the
time § Reeb flow near OM).



» Assume that ¢ is a graded symplectomorphism (enabling us to
give fixed points a grading).
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Fix almost complex structures (J¢)¢c[o,1] which are cylindrical
near M. The differential counts smooth maps
u: R x [0,1] — M connecting these fixed points satisfying
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1. Osu(s,t) + JrOru(s, t) = 0.



Assume that ¢ is a graded symplectomorphism (enabling us to
give fixed points a grading).

Choose a generic positive slope perturbation ¢ of ¢.

The chain complex for HF.(¢, +) is the free group generated
by fixed points of ¢.
Fix almost complex structures (J¢)¢c[o,1] which are cylindrical
near M. The differential counts smooth maps
u: R x [0,1] — M connecting these fixed points satisfying
1. Osu(s,t) + JrOru(s, t) = 0.
2. ¢(u(s,1)) = u(s,0) for all s € R.



» Let f : C™! — C be a polynomial with at most one isolated
singularity at 0 and no other singularities.



» Let f : C™! — C be a polynomial with at most one isolated
singularity at 0 and no other singularities.

» Choose 0 < § < ¢ < 1 and let B(e) € C™! be the closed
ball of radius €. Then
(M,,0;) = (f~X(z) N B(e), 3 3=, xidy; — yidx;) is a Liouville
domain for all |z| < ¢ called the Milnor fiber of .

f~10) F-1(,
(O)fJ( )

T

M, = f~1(z) N B(e s
— Milnor fibe?\) \



» Let f : C™! — C be a polynomial with at most one isolated
singularity at 0 and no other singularities.

» Choose 0 < § < ¢ < 1 and let B(e) € C™! be the closed
ball of radius €. Then
(M,,0;) = (f~X(z) N B(e), 3 3=, xidy; — yidx;) is a Liouville
domain for all |z| < ¢ called the Milnor fiber of .

F1(0) -1(,
(O)le( )

ML e e <<

» The monodromy map ¢r : Ms — Ms around the loop
ee, t €[0,27] can be deformed to an exact
symplectomorphism as above. It has a grading induced from

(Cn+1



» Defintion: A log resolution of (C"*1, f=1(0)) is a proper map
m:Y — C so that
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» Defintion: A log resolution of (C"*1, f=1(0)) is a proper map
m:Y — C so that
L. 7|y_z-1(f-1(0)) is @ biholomorphism onto its image.
2. 771(f71(0)) is a smooth normal crossing divisor (D;);cs.
> The hypersurfaces (D;)ics are called resolution divisors and
the hypersurfaces (D), g, S C S satisfying 7(D;) = {0} are
called exceptional divisors.
Ds
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Exceptional divisors __—Dy S {

i
Dy = 7 L(f1(0) — 0)



» Defintion: A log resolution of (C"*1, f=1(0)) is a proper map
m:Y — C so that
L. 7|y_z-1(f-1(0)) is @ biholomorphism onto its image.
2. 771(f71(0)) is a smooth normal crossing divisor (D;);cs.
> The hypersurfaces (D;)ics are called resolution divisors and
the hypersurfaces (D), g, S C S satisfying 7(D;) = {0} are
called exceptional divisors.
Ds

7__ f~1(0
Exceptional divisors __—Dy S {

i
Dy = 7 L(f1(0) — 0)

» Goal: compute (parts of) HF.(¢r,+) from a log resolution.
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> (20, ,2n) = 2.

» The Milnor fiber is the ball of radius € in C".

» The monodromy map ¢r is the identity map, but the grading
is non-trivial.



Simple example

v

f(zo,- - ,2zn) = 20.
The Milnor fiber is the ball of radius € in C".

The monodromy map ¢r is the identity map, but the grading
is non-trivial.

v

v

m ) Z ifx=n+2m
HF.(07) = { 0  otherwise

v



» Define
N@T) = Y20 (~ 1Y Tr((¢6) : Hi( Mg Z) — Hi(Mri Z)).
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along D;.



> Define
NOF) = 220 (— 1Y Tr((06)T : Hi(Mr; Z) — H;(My; Z)).

» The multiplicity m; of f along D; is the order of (f o 7)~%(0)
along D;.

» Define DY = D; — Ujes_;D; forall i € S.



v

v

v

v

Define

NOF) = 220 (— 1Y Tr((06)T : Hi(Mr; Z) — H;(My; Z)).
The multiplicity m; of f along D; is the order of (f o 7)~%(0)
along D;.

Define D = D; — Ujes—;D; for all i € S.

Theorem (A’'Campo)

NoF)= > mx(Df), Ym>0.

{ie5 : m; | m}



» Definition Let sy be a meromorphic section of an ample line
bundle on Y with a pole of order w; along D; for all i € S and
which is non-zero and holomorphic away from 7=1(0). The
wrapping number of D; is defined to be w;.



» Definition Let sy be a meromorphic section of an ample line
bundle on Y with a pole of order w; along D; for all i € S and
which is non-zero and holomorphic away from 7=1(0). The
wrapping number of D; is defined to be w;.

» Definition Choose a holomorphic coordinate chart
X1, ,Xpt1 centered at some point of D;. The discrepancy
a; of D; is the order of the Jacobian of 7(xy,- - , x,) along D;.



» Definition A multiplicity m separating resolution
7:Y — C"Lis a log resolution as above so that
m; +m; > m for all i,j € S satisfying Dj; # 0. l.e. the sum of
the multiplicities of adjacent resolution divisors is greater than

m.



» Definition For each i € S let ND; be a small tubular
neighborhood of D; with boundary transverse to all of the
strata of U;D;. Define D; = f=1(8) N ND; for 6 > 0
sufficiently small.

This is homotopic to an m;-fold cover of D?.

NDs




Theorem (M - 98% done):

Fixm>0,and let 7: Y — C""1 be a multiplicity m
separating resolution. Then there is a spectral sequence
converging to HF.(¢) with E' page

E/},q - @ H,,+p+q,2m<a,-+1) (D)

mj
S . m;|m
oS i)



» Theorem (M - 98% done):
Fixm>0,and let 7: Y — C""1 be a multiplicity m
separating resolution. Then there is a spectral sequence
converging to HF.(¢) with E' page

E/},q - @ H,,+p+q,2m(a,-+1) (D)

mj
icS . m;|m
oS i)

» The Euler characteristic of the right hand side is naturally
equal to (—1)" times the right hand side of A’Campo’s
formula above. Similarly the left hand side of A'Campo’s
formula is (—1)"x(HF. (7))
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Simplest Example, m=1.

» Suppose f(z1,- -+ ,2zp4+1) = z1 and m = 1.
» Multiplicity 1 separating resolution is 1-point blowup at 0.
D
Dy = £-1(0)| Bl

Dy

>»m=1m=1,w=1and ap =n—1.

» Our spectral sequence degenerates and we get:

7Z ifx=n
0 otherwise.

HF.(¢f) = {



Simplest Example, m=2, n=2.

» Suppose n =2, f(z1,2) = z; and m = 2.



Simplest Example, m=2, n=2.

» Suppose n =2, f(z1,2) = z; and m = 2.

> Multiplicity 1 separating resolution is 1-point blowup at 0
followed by an additional blowup along the intersection of the
exceptional divisor with the proper transform.

D,
D,

Dy=f10)| B | Bipyp, T3

Dy D1



Simplest Example, m=2, n=2.

» Suppose n =2, f(z1,2) = z; and m = 2.

» Multiplicity 1 separating resolution is 1-point blowup at 0
followed by an additional blowup along the intersection of the
exceptional divisor with the proper transform.

D
D>
_ 1 Ds
Dy = f~(0)| Bl Bip,np,
Dq Dy

> W2:~2,W3:3, m2:1,mi:2, 31:1,32:2and
H.(DS) = H.(pt) and H.(DS) = H.(S1).



Case: n=2

0O 0 0 0 O
0 0 0 0 O
0 0 0 0 0 O

|

Z

if x=14
0 otherwise.

HE.(67) = {

o 0o Z 7 o

0 07 oo
0—0—0—0—0—0——

0
0



5
— 1727 3747

3 =
24+ y3

Example 2, x

6 as=14
mg =

=14
w3 =
1
®2_ H.(SY) Dy
H.(Dg) = 0 . |
2 +_y3 = D2 ] :2
X Dy my =2 23 :
< mp = a = 1 W3 B
Wo = 5

~15
if m=
F(op) =01 -

1. H * ¢2) — H*—2 51) .
2 HF*( g) — H*—4(51)

3 Hli*éz‘g) = H.—s(

4. HF,



fx.y) =x*+y°

Having said that, we cannot use the spectral sequence to compute
0—0—0—0—0—0—0—0—0—0—0—0—0—0—0—0—0—0—

HF.(4%) since our E! page is:



7 is fine.
But, of
>

my = 6
D4
0 N D3_ |
X2 + y3 _(_ ms :; m3
dg =
=1 b
my = .

1)_
7y — H*—ll(s
> HF.(¢7)




» Theorem 2 Fix m > 0. Let 7 : Y — C"*! be a multiplicity
m separating resolution with exceptional divisors (D), g of
multiplicity (m;),_¢ and discrepancy (a;);_g. Define
Sm={i¢€ 5 mi|m}. Then

inf{a:HFa(gZ)’f",+)7&0}:inf{2m<ai+1> _n ieSm}.

mj

In particular, HF.(¢7",+) vanishes if and only if m; does not
divide m for each i € S.



This is the lowest non-zero
E' term on the lowest diagonal.

This term exists since dim(®p,qE} ;) < 00
and it survives to the E*° page

since all differentials connecting this

term have source or target 0.



Multiplicity

» Definition The multiplicity multgf of f at 0 is defined to be
the degree of the lowest homogeneous term of f.



Multiplicity

» Definition The multiplicity multgf of f at 0 is defined to be
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Multiplicity

» Definition The multiplicity multgf of f at 0 is defined to be
the degree of the lowest homogeneous term of f.

» E.g. multg(x® + y3) = 2.
» Lemma: multgf = min,
Eg.

esMi-

ma =6
Dy

x®+y3=0

m=1 [m=2 m3 =

Here multo(x? + y3) = min(ma, m3, my) = 2.



Corollary of Theorem 2: multy(f) = inf,, HF.(¢f,+) # 0.
This proves a conjecture by Seidel.

Eg.
If f =x?+ y3 then HF,(¢f,+) = 0 but
HF.(¢2,4) = H._o(S*) # 0.
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Icto(f) = sup {s >0 : is locally integrable near 0} .
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growth of the number of solutions of f in Z/p™Z as m — oo

(Igusa).
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growth of the number of solutions of f in Z/p™Z as m — oo
(Igusa).

> A version of this invariant can be used as a criterion for the
existence of Kahler Einstein metrics (Tian).
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1
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v
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Used for proving vanishing theorems in algebraic geometry
(helpful in birational geometry).



Log Canonical Threshold
» The log canonical threshold of f at 0 is defined as

Icto(f) = sup {s >0 : is locally integrable near O} .

1
|f|25

v

Introduced by work of Atiyah.

If f € Z[xo,- -, xn] then Icto(f) is related to the rate of
growth of the number of solutions of f in Z/p™Z as m — oo
(Igusa).

A version of this invariant can be used as a criterion for the
existence of Kahler Einstein metrics (Tian).

v

v

v

Used for proving vanishing theorems in algebraic geometry
(helpful in birational geometry).

v

A version of Ict has been used to prove certain Fano manifolds
are non-rational (Corti, de Fernex, Ein, Mustata).



» Lemma: Let 7: Y — C™! be a log resolution for
(Cr+1, £71(0)) with exceptional divisors (D), g of
multiplicity (m;),.g and discrepancy (a;),.g. Then

i

ai+1

1

Icto(f) = min {B c B= for someior[?:l}.



» Lemma: Let 7: Y — C™! be a log resolution for
(Cr+1, £71(0)) with exceptional divisors (D), g of
multiplicity (m;),.g and discrepancy (a;),.g. Then

i

ai+1

1

Icto(f) = min {B c B= for someiorﬁzl}.

» proof idea: # is integrable near 0 iff its pullback to Y is

integrable near 771(0) with respect to the pullback measure.
Use a change of variables formula.



» Lemma: Let 7: Y — C™! be a log resolution for
(Cr+1, £71(0)) with exceptional divisors (D), g of
multiplicity (m;),.g and discrepancy (a;),.g. Then

i

ai+1

1

Icto(f) = min {B c B= for someiorﬁzl}.

» proof idea: # is integrable near 0 iff its pullback to Y is

integrable near 771(0) with respect to the pullback measure.
Use a change of variables formula. Ol

» Corollary: Icto(f) is a rational number.



Eg.
mg =6 az= 4
Dy

x2 + y3 =0
‘< — Dl D2 D3

m1:1 m2:2
=1

leto(x? + %) = min (553, 258, %¢%) = 8.
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solutions of £ = 0 mod p* (p is a fixed prime).

» Theorem (Igusa). Zy(f) := > ,cn P K"Niz¥ is a
meromorphic function whose nearest pole is at —lcto(f).
(Proof uses p-adic integration).



Aside:

Counting Solutions Mod p™

Suppose f € Z[zy,- - , z,] and let Ny be the number of
solutions of £ = 0 mod p* (p is a fixed prime).
Theorem (Igusa). Zy(f) := > ,cn P K"Niz¥ is a
meromorphic function whose nearest pole is at —lcto(f).
(Proof uses p-adic integration).

This means that we know the radius of convergence of Z,(f)
which can be used to estimate the growth of N.



» E.g. (ratio test):

—(k+1)npg N
P k+1 k+1 :
W <1 iff |Z’ < ICto(f).

[im N

|z| = lim



» E.g. (ratio test):

—(k+1)n N
P N1 ML 1 i 2] < leto(F).
pfank

[im N

|z| = lim

» Hence 3 (i, G, such that

n k n k
p p
k.
G (Icto(f)) <N <G (Icto(f)) v




» Reminder: Theorem 2 gives us the formula:

inf{a:HFa(qﬁ}",—i—);&O}_inf{2m<ai+1> —n : iESm}.

m;j

Hence:



» Reminder: Theorem 2 gives us the formula:

inf{a:HFa(qﬁ}",—i—);&O}_inf{2m<ai+1> —n : iESm}.

m;j

Hence:

» Corollary of Theorem 2:

. a+n m oa+n
Icto(f)—mf{ Sk HF . (¢F) # 0 or 5 _1}
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submanifold L C S(e).
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> Definition: The embedded link of f at zero is the contact
submanifold L C S(e).

» f and f» have contactomorphic embedded links if there is
a coorientation preserving contactomorphism S(e) — S(e)
sending Ly to Lyg,.



Lemma (Varchenko) For all sufficiently small ¢ > 0,

Lr = f71(0) N S(e) is a contact submanifold of the e-sphere
S(e) c C*L

Definition: The embedded link of f at zero is the contact
submanifold L C S(e).

f1 and f, have contactomorphic embedded links if there is
a coorientation preserving contactomorphism S(e) — S(e)
sending Ly to Lyg,.

Theorem If f; and f, have contactomorphic embedded links
then HF.(¢F) = HF.(¢7]), ¥V m > 0.



» Zariski Conjecture: Let f;,f, : C"*1 — C have isolated
singularities at 0 and suppose that there is a diffeomorphism
S(e) — S(€) sending L, to Lg, then is the multiplicity of f;
equal to the multiplicity of 7
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» Question: What about log canonical Threshold? (See N.
Budur 2012).



» Zariski Conjecture: Let f;,f, : C"*1 — C have isolated
singularities at 0 and suppose that there is a diffeomorphism
S(e) — S(€) sending L, to Lg, then is the multiplicity of f;
equal to the multiplicity of 7

» Question: What about log canonical Threshold? (See N.
Budur 2012).

» Corollary: Suppose f; and f» have contactomorphic
embedded links, then they have the same multiplicity and log
canonical threshold at 0.



Zariski Conjecture: Let f, f, : C"' — C have isolated
singularities at 0 and suppose that there is a diffeomorphism
S(e) — S(€) sending L, to Lg, then is the multiplicity of f;
equal to the multiplicity of 7

Question: What about log canonical Threshold? (See N.
Budur 2012).

Corollary: Suppose f; and f; have contactomorphic
embedded links, then they have the same multiplicity and log
canonical threshold at 0.

For instance, if fi, f» € Z[z, -+ , z,] then the number N}, N2
of solutions of ; = 0 and f, = 0 mod p* respectively satisfy

CIN; < N < GN?

for some constants Cq, G,.



Full Contact Homology

Full contact homology CH.(C,&) of a 2n — 1-contact manifold
(C,¢) indexed by Conley-Zehnder index +(n — 3). Chain complex
is the free supercommutative algebra generated by Reeb orbits of a
compatible contact form A. The differential is:

Number of holomorphic, 7

in the symplectization is
the 7 coefficient of J(y17273).

Ba! 2 V3



» An isolated singularity A C CV is the germ at 0 of an affine
variety A={ze C" : fi =--- = fj =0} with an isolated

singularity at 0, or is smooth at 0 (l.e. the matrix (%) has
J ,L]

constant rank on U — {0} where U is a neighborhood of 0).
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» An isolated singularity A C CV is the germ at 0 of an affine
variety A={ze C" : fi =--- = fj =0} with an isolated

singularity at 0, or is smooth at 0 (l.e. the matrix (%) has
J ,L]

constant rank on U — {0} where U is a neighborhood of 0).
» Lemma (Varchenko): Ly = AN S(€) is a contact manifold

with contact structure £4 = TLa N Jo TLa where

Jo: TCN — TCN is the standard complex structure.

» We call (La,&a) the link of A at 0.



» A resolution of A at 0 is a proper morphism 7: Y — A so
that

1. Y is smooth.

2. T|r-1(u—{o}) is a biholomorphism onto its image for some
small neighborhood U of 0,

3. 771(0) is a smooth normal crossing divisor (D;)ics.

The divisors (D;)cs are called exceptional divisors.

D, Ds
—~

Dl/

-

<)



» An isolated singularity A is numerically Gorenstein if
c1(La,€a) = 0. It is numerically Q-Gorenstein if ¢1(La,{a)
is torsion.



» An isolated singularity A is numerically Gorenstein if
c1(La,€a) = 0. It is numerically Q-Gorenstein if ¢1(La,{a)
is torsion.

» The discrepancy a; of an exceptional divisor D; of a
numerically Q-Gorenstein singularity is defined as follows:
Let Ac =7 (AN B(c)) where B(e) is the closed € ball. Then
OAc = La. Also one can show that ¢1(Ai; Q) € H?(A; Q) lifts
to a unique class in H?(Ac, La; Q). The Lefschetz dual of this
class is a unique sum ), a;[Dj] € Hn—2(Ac; Q). We define the
discrepancy of D; to be a;.

A




» Let 7 : Y — A be a resolution. Suppose that we have an
ample line bundle and a meromorphic section which is
non-zero away from 7~ 1(0) and has a non-trivial pole of order
w; along D; for each i € S. Then the wrapping number w;
of D; is the order of this pole along D;.



» Let ND; be a small tubular neighborhood of D; whose
boundary is transverse to the strata of U;D; and so that
ND; N Dy is a tubular neighborhood of ND; ;s for all
I,I' C S. Define ND; = ND; — Ujes_D;.



» Let ND; be a small tubular neighborhood of D; whose
boundary is transverse to the strata of U;D; and so that
ND; N Dy is a tubular neighborhood of ND; ;s for all
I,I' C S. Define ND; = ND; — Ujes_D;.

» This is a fiber bundle over D; — Ujcs_;D; with fiber (D — O)“'.



» Let ND; be a small tubular neighborhood of D; whose
boundary is transverse to the strata of U;D; and so that
ND; N Dy is a tubular neighborhood of ND; ;s for all
I,I' C S. Define ND; = ND; — Ujes_D;.

» This is a fiber bundle over D; — Ujcs_;D; with fiber (D — O)“'.
» Hence for each tuple (bj);es of integers, there is a U(1) action
on NDj preserving the fibers so that 5 € U(1) sends a point
(X,'),'E[ € (]D - 0)“‘ to (Bbixi)iel- Let NDI/(b') be the

corresponding quotient.



Conjecture.

Let m: Y — A be a resolution of an isolated numerically
Q-Gorenstein singularity A with exceptional divisors (D;);es.
Define

K
Apq = @ Hp+q722,k;a;(ND//(£i) ) Q)
{(ki)eNs : 32, kiwi=p}

where Iy ={i €S : k #0}.

Then there is a spectral sequence converging to CH.(La,{a) with
E' page equal to the free supercommutative algebra generated by
the bigraded vector space A, .. l.e.

Ef. =P Symj (A.s).

n>0



» Definition: A is a log canonical singularity if a; > —1 for
all i € S.
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is min;a;. This measures how ‘singular’ A is at 0 (the higher
the number, the less singular). We define mdg(A) = —oc if A
is not log canonical.
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Definition: A is a log canonical singularity if a; > —1 for
all i € S.

The minimal discrepancy mdg(A) of log canonical singularity
is min;a;. This measures how ‘singular’ A is at 0 (the higher
the number, the less singular). We define mdg(A) = —oc if A
is not log canonical.

Shokurov Conjecture A is smooth at 0 if mdo(A) is n — 1.

Work of de Fernex and Yu-Chao proves this conjecture when
the tangent cone of A at 0 has a reduced component.



» Theorem (assuming spectral sequence conjecture.) If A
is log canonical and numerically Q-Gorenstein then the
smallest degree for which CH,(La, &a)/Q(id) is non-zero is

2mdp(A). Here Q(id) is the subvector space spanned by the
identity element.



» Theorem (assuming spectral sequence conjecture.) If A
is log canonical and numerically Q-Gorenstein then the
smallest degree for which CH,(La, &a)/Q(id) is non-zero is
2mdp(A). Here Q(id) is the subvector space spanned by the
identity element.

» Proof idea: Find the largest p satisfying E;},q # 0 where
g = 2mdo(A) — p. This cannot kill or be killed by any

differential dl;q, r> 0.



» Question: Can CH,(La,&a) detect whether A is log canonical
or not? (l.e. whether mdg(A) = —oo or not)?



» Question: Can CH,(La,&a) detect whether A is log canonical
or not? (l.e. whether mdg(A) = —oo or not)?

» This would reprove the theorem (M - 2014) that (La,&a)
detects smoothness of A at 0 assuming Shokurov's conjecture.
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sequences. What are they?
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» Let (C,«) be a manifold with contact form. A Morse-Bott
submanifold is a submanifold of C consisting of periodic
Reeb orbits of o which is non-degenerate in the normal
direction (l.e. the 1-eigenspace of the linearized return map is
tangent to our submanifold).



Construction of the Spectral Sequence.

» All of the above spectral sequences are Morse-Bott spectral
sequences. What are they?

» Let (C,«) be a manifold with contact form. A Morse-Bott
submanifold is a submanifold of C consisting of periodic
Reeb orbits of o which is non-degenerate in the normal
direction (l.e. the 1-eigenspace of the linearized return map is
tangent to our submanifold).

» We say that (C, «) is Morse-Bott if every Reeb orbit sits
inside a Morse-Bott submanifold.



» Now suppose that we have a Liouville domain (M, #). Recall
that the chain complex for SH.(M, 0) consists of critical
points of some Morse function in the interior of M plus two
copies of each Reeb orbit after perturbing the Liouville form
generically so that the contact form is non-degenerate.



» Now suppose that we have a Liouville domain (M, #). Recall
that the chain complex for SH.(M, 0) consists of critical
points of some Morse function in the interior of M plus two
copies of each Reeb orbit after perturbing the Liouville form
generically so that the contact form is non-degenerate.

» This chain complex has a natural increasing filtration given by
the length of these Reeb orbits and where the critical points
are at the bottom of this filtration. We will call this the
action filtration.



> Let (M, 0) be the completion of (M, 0).
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Let (/\Aﬂ, 0) be the completion of (M, 0).
A Hamiltonian H on M is admissible if it is equal to Ary
near infinity where ry; is the cylindrical coordinate.

Define CF=(H) to be the Hamiltonian Floer chain complex
consisting of 1- periodic orbits of H of action < b (l.e

— Jo1 770 — [s: H(7(t))dt < b).

Define CFI**I(H) := CFEP(H)/ CF=(H) and let HF™)(H)
be the homology of this chain complex.



> Define SHI?I(M,0) := lim , HF*®)(H) where our direct limit
is taken over admissible Hamiltonians H satisfying H|y < 0.

H

[1,00) x OM.



» Lemma: Let a; € R, i € N be an increasing sequence tending
to infinity where a; is not the length or a Reeb orbit or 0.
There is a spectral sequence converging to SH,(M, 6) with E*

page

El, = SHE2» (M, 6).



» Lemma: Let a; € R, i € N be an increasing sequence tending
to infinity where a; is not the length or a Reeb orbit or 0.
There is a spectral sequence converging to SH,(M, 6) with E*
page

dap,a
El, = SHE (M, ).

» Lemma: Suppose that the set of Reeb orbits of length in
[ap, ap+1] is a finite union of connected Morse-Bott families
(B{;)J-E,p of Reeb orbits all of the same length. Then

SHyzaP UM, 0) = e, HP+a=CZE)(By, L)) where L is

a certain local coefficient system.



» By the two lemmas above:

Proposition: Suppose that (M, 6) has a Morse-Bott
boundary and let (Bj)ken jes, be the set of all of the
Morse-Bott submanifolds so that

1. they are connected,

2. Iy is a finite set for all k € N,

3. the length of B{; is the length of B{: for all j,j" € I and these
lengths tend to infinity as kK — oo and
the length of B{; is less than the length of B{H for all k € N,
j € I, and j/ € Ik+1.

>

Then there is spectral sequence converging to SHp4(M) with
E! page
-CZ(B '
Erg =D H 5B} L)
J€

where L is a certain local coefficient system.
P



» Definition. An isolated family of Reeb orbits B of (C, «)
of length / is a subset B C C consisting of Reeb orbits of
length / so that there is a neighborhood N of B so that there
are no Reeb orbits in N of length in [/ — €,/ + €] for some
small € > 0.
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subset of length / is a closed subset B C C so that there is a
function f : C — (0, 00) and a submanifold N C C (possibly
with boundary) satisfying
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length / so that there is a neighborhood N of B so that there
are no Reeb orbits in N of length in [/ — €,/ + €] for some
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subset of length / is a closed subset B C C so that there is a
function f : C — (0, 00) and a submanifold N C C (possibly
with boundary) satisfying

1. BCN,

2. B is an isolated family of Reeb orbits of length /,
3. N is a Morse-Bott submanifold of (C, fa),

4. f~1(1) = B and 1 is the maximum of f.



» Definition. An isolated family of Reeb orbits B of (C, «)
of length / is a subset B C C consisting of Reeb orbits of
length / so that there is a neighborhood N of B so that there
are no Reeb orbits in N of length in [/ — €,/ + €] for some
small € > 0.

» Definition (c.f. Kirwan 1985): A minimally degenerate
subset of length / is a closed subset B C C so that there is a
function f : C — (0, 00) and a submanifold N C C (possibly
with boundary) satisfying

1. BCN,
2. B is an isolated family of Reeb orbits of length /,
3. N is a Morse-Bott submanifold of (C, fa),
4. f~1(1) = B and 1 is the maximum of f.
» Definition : A minimally degenerate contact pair a
contact pair (C, «) so that every periodic orbit is contained
inside a minimally degenerate subset.



We have a similar spectral sequence in this case (this isn't
proven yet, really).

Proposition: Suppose that the boundary of (M, 0) is a

minimally degenerate contact pair and let (B;)ken jes, be the
set of all of the minimally degenerate subsets so that
1. they are connected,
2. i is a finite set for all k € N,
3. the length of B{; is the length of B{: for all j,j' € I, and these
lengths tend to infinity as kK — oo and

4. the length of B{; is less than the length of B{H for all k € N,
j € Il and jl € Ik+1.
Then there is spectral sequence converging to SHp4(M) with
E! page
1 _ p+q—CZ(B J .
Ep,q - @ H ( p)(BwLpr)
JEb

where EBJ- is a certain local coefficient system.
P
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appropriate minimally degenerate contact form on the
boundary of our Liouville domain.
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» In order to find a such a boundary, we need to construct a
symplectically nice neighborhood of the divisor in question
(resolution divisor or compactifying divisor).



» Qur spectral sequence will be obtained by constructing an
appropriate minimally degenerate contact form on the
boundary of our Liouville domain.

» In order to find a such a boundary, we need to construct a
symplectically nice neighborhood of the divisor in question
(resolution divisor or compactifying divisor).

> We need a purely symplectic notion of divisor. See 1011.2542
and work of M-Tehrani-Zinger.



» Let (X,w) be a symplectic manifold. Let (D;);cs be
transversally intersecting codimension 2 symplectic
submanifolds so that D; = Nj¢;D; is symplectic form all
I cS.

» Definition: The symplectic orientation of D is the
orientation on D; induced by the symplectic structure.



» Since (X, w) is oriented by w”, there is a natural 1-1
correspondence between orientations on the normal bundle
NxD; = ®;c;ND;i|p, and orientations on D.
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Nx D; has an induced orientation for all i € | and hence D,
has an induced orientation called the intersection
orientation of D, for all | C S.



» Since (X, w) is oriented by w”, there is a natural 1-1
correspondence between orientations on the normal bundle
NxD; = ®;c;ND;i|p, and orientations on D.

» Definition: Since D; has a natural orientation, we get that
Nx D; has an induced orientation for all i € | and hence D,
has an induced orientation called the intersection
orientation of D, for all | C S.

» We say that (D;);es is a symplectic SNC divisor if the
symplectic orientation of D; is equal to the intersection
orientation of D; for all | C S.



» Example:
Let M be a Kahler manifold with Kahler form w. Let (D;)jecs
be smooth transversally intersecting complex hypersurfaces.
Then (D;j)jecs is a symplectic SNC divisor.
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» Non-example Let M = T*R? with the standard symplectic
form. Let D; be the graph of the 1-form xdy and let D, be
the graph of ydx. Then D, D, are transversely intersecting
but they intersect negatively and hence cannot be a
symplectic SNC divisor.



» Example:

Let M be a Kahler manifold with Kahler form w. Let (D;)jecs
be smooth transversally intersecting complex hypersurfaces.
Then (D;j)jecs is a symplectic SNC divisor.

» Non-example Let M = T*R? with the standard symplectic
form. Let D; be the graph of the 1-form xdy and let D, be
the graph of ydx. Then D, D, are transversely intersecting
but they intersect negatively and hence cannot be a
symplectic SNC divisor.

» Non-example 2. There is a 3-dimensional example of three
codimension two linear hypersurfaces Dy, D>, D3 in RS in
which the intersection orientation is equal to the symplectic
orientation for | = {1,2}, {2,3}, {1,2,3} but not for
I ={1,3}.



» We wish to deform any symplectic SNC divisor so that it looks
nice. What does nice mean?
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» Definition: Let 7 : E — B be a fiber bundle and let wg be
a symplectic form on E making the fibers symplectic. Then
the associated symplectic connection is the Ehresmann
connection induced by vectors symplectically orthogonal to
the fibers.



» We wish to deform any symplectic SNC divisor so that it looks
nice. What does nice mean?

» Definition: Let 7 : E — B be a fiber bundle and let wg be
a symplectic form on E making the fibers symplectic. Then
the associated symplectic connection is the Ehresmann
connection induced by vectors symplectically orthogonal to
the fibers.

» Definition: Let S C W be a submanifold of a manifold W. A
tubular fibration is a smooth fibration P : Us — S where
Us C W is a neighborhood of S in W so that the differential
of P along S is the identity map.



>

Dy

A regularization of a symplectic SNC divisor (D;);cs inside
(X,w) consists of tubular fibrations (7);cs of (D;);cs with
symplectic fibers so that
1. mul = 7, oy, on their common domain of definition for all
I, bhC S and
2. the fibers of 7/ are symplectomorphic to a product [];., D(e)
of € disks and the associated symplectic connection has parallel
transport maps rotating these disks giving us a U(l)“|
structure group.
3. There should also be a particular almost complex structure but
we won't need this.

1o = T1 O T2

b

T ey
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» Theorem M (2011), M-Tehrani-Zinger (2014): Every
symplectic SNC divisor is isotopic through symplectic SNC
divisors to one which admits a regularization.



» Theorem M (2011), M-Tehrani-Zinger (2014): Every
symplectic SNC divisor is isotopic through symplectic SNC
divisors to one which admits a regularization.

» The proof first involves proving the Theorem in the linear case
first and then using a Moser argument to extend this linear
argument to the general non-linear case.
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» Let D; C C" be equal to C'™1 x 0 x C"/ and let w be a
linear symplectic form on C” so that (D;)?_; is a symplectic
SNC divisor. Let D; C C" be the complementary subspace
0 x C x 0 where C is the ith C factor.
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> Then we = (1 — p(t))w + Co(t)5 (wlp,) + ()P} (wIp,) s 3
smooth family of symplectic forms making (D;)"_, into a
symplectic SNC divisor for C > 0.



Proof idea in the Linear Case

» Let D; C C" be equal to C'™1 x 0 x C"/ and let w be a
linear symplectic form on C” so that (D;)?_; is a symplectic
SNC divisor. Let D; C C" be the complementary subspace
0 x C x 0 where C is the ith C factor.

» Let pi : C" — Dj, pj : C" —s D; be the natural projection
maps. Let p: [0,1] — R be equal to:

1

1

> Then we i= (1 p(6)w + Cp(t)B (wl) + p(e)pi(wlo,) is 3
smooth family of symplectic forms making (D;)"_, into a
symplectic SNC divisor for C > 0.

> Repeat this process for all i until w = -, G;p} (w|p,) for large
Ci > 0 (this has a regularization).



» Lemma: If two symplectic SNC divisors are isotopic to each
other through symplectic SNC divisors then their complements
are naturally symplectomorphic (note that there may not be a
symplectomorphism sending one divisor to the other though).



» We now need to know which divisors have a natural (concave
or convex) contact neighborhood.



» We now need to know which divisors have a natural (concave
or convex) contact neighborhood.

> In algebraic geometry, if we have an effective ample divisor
representing a Kahler form then it has a natural concave
contact neighborhood. Conversely if we have an anti-effective
ample divisor then it has a convex contact neighborhood.



> Let L be an ample line bundle on some smooth
quasi-projective variety Y. Choose a Hermitian metric | - | on
L so that —/ times its curvature form is a Kahler form w.
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» Suppose that L admits a holomorphic section s so that
s71(0) = U;D; is an SNC divisor.



> Let L be an ample line bundle on some smooth
quasi-projective variety Y. Choose a Hermitian metric | - | on
L so that —/ times its curvature form is a Kahler form w.

» Suppose that L admits a holomorphic section s so that
s71(0) = U;D; is an SNC divisor.
> Then the set

(M, 0):=({xeY : In(Js(x)]) > C},—dIn(|s(x)])

is a Liouville submanifold for all large enough C.
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Let L be an ample line bundle on some smooth
quasi-projective variety Y. Choose a Hermitian metric | - | on
L so that —/ times its curvature form is a Kahler form w.

Suppose that L admits a holomorphic section s so that
s71(0) = U;D; is an SNC divisor.
Then the set

(M, 0):=({xeY : In(Js(x)]) > C},—dIn(|s(x)])

is a Liouville submanifold for all large enough C.

Y — M is a neighborhood of U;D; with concave boundary.



» There is a similar construction when s has poles along D; and
no zeros, and then we get a convex neighborhood of U;D;.



» There is a similar construction when s has poles along D; and
no zeros, and then we get a convex neighborhood of U;D;.

» We need a symplectic version of this (anti-)ampleness
condition so that we can mimic the above construction of a
neighborhood with concave (or convex) boundary. We will do
this by defining a purely symplectic notion of wrapping
number.



» Definition: An exact symplectic SNC divisor ((D;)jcs, )
in (X,w) is a symplectic SNC divisor (D;)jcs and a 1-form
0 € QY(X — U;D;) satisfying df = w.



» Definition: An exact symplectic SNC divisor ((D;)jcs, )
in (X,w) is a symplectic SNC divisor (D;j);es and a 1-form
0 € QY(X — U;D;) satisfying df = w.

» Definition: Let ((Dj)ics,6) be an exact symplectic SNC
divisor. Let D; C X be a small symplectic disk intersecting D;
once at 0 positively and not intersecting D; for all j # i with
polar coordinates (r, ). The wrapping number of D; is the
unique w; € R so that 32dv € Q!(ID; — 0) is cohomologous to
(0= 3r*)Ip,~o.

D12
Dl D1 /
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Alternative Definition of Wrapping Number

> Let U be a neighborhood of U;D; which deformation retracts
on to U;Dj. Then Hz,_2(U) is freely generated by [D;].
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> Let p: U — R be equal to 1 near U;D; and have compact
support.



Alternative Definition of Wrapping Number

» Let U be a neighborhood of U;D; which deformation retracts
on to U;Dj. Then Hz,_2(U) is freely generated by [D;].

> Let p: U — R be equal to 1 near U;D; and have compact
support.

» Then w; are the unique numbers so that
=Y wi[Di] € Hop—2(U) is the Lefschetz dual of

d(pf) outside U; D;
2 _
Qe (v), Q= { w near U; D;



» Let rj : X —> R be the the distance from D; with respect to
some metric. A function f : X — U;D; — R is compatible
with (D,'),'es if

f=0+ Z cilog(r?)
1

for some constants (¢;)jcs and a smooth function
oc: X —R.



» Let rj : X —> R be the the distance from D; with respect to
some metric. A function f : X — U;D; — R is compatible
with (D,'),'es if

f=0+ Z cilog(r?)
1

for some constants (¢;)jcs and a smooth function
oc: X —R.

» This is our ‘symplectic version’ of In(|s|) mentioned earlier (s
was our holomorphic section and | - | our Hermitian metric.).



» Proposition M. Let (D;);cs, w;, 0 be as above. Suppose that
all of the wrapping numbers w; are negative. Then there is a
smooth function g : X —U;D; — R so that df (Xp;q4g) > 0
near U;D;. In particular (f~1(—C), 0 + dg) is a concave
contact boundary of a small neighborhood of U;D; for C > 1.

» Also (f}(—C,00),0) is a Liouville submanifold for all C > 1.



» Proposition The contactomorphism type of
(f~1(—C),0 + dg) does not depend on the choice of f or g
although it does depend on the choice of 1-form 6.
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» Definition: We will call this contact manifold the
contact boundary of ((D;)cs,0).



» Proposition The contactomorphism type of
(f~1(—C),0 + dg) does not depend on the choice of f or g
although it does depend on the choice of 1-form 6.

» Definition: We will call this contact manifold the
contact boundary of ((D;)cs,0).

» Similarly if all the wrapping numbers are positive we can
choose g so that df (Xyyqg) < 0 near D;. Hence f~1(C) is
convex contact boundary of a neighborhood of U;D; also
called the contact boundary of ((D;)iecs, 6).



» Proposition: If there is a smooth family of exact symplectic
SNC divisors, ((D})ies, 0:) t € [0,1] so that the wrapping
numbers of D are all positive or all negative, then the contact
boundaries of (D});cs are all naturally contactomorphic.

» Hence the contact boundary of U;D; is an invariant up to
isotopy.



» Now suppose that our symplectic SNC divisor (D;);es admits
a regularization (7/);cs (recall, these are tubular fibrations of
D;) and that the wrapping numbers w; of ((D;)ies, ) are
negative.
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group, we have radial coordinates r; : Dom(7¢;3) — R.
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Then f is compatible with (D;)cs.



Now suppose that our symplectic SNC divisor (D;);cs admits
a regularization (7/);cs (recall, these are tubular fibrations of
D;) and that the wrapping numbers w; of ((D;)ies, ) are
negative.

Since the tubular fibrations 7¢;y have a natural U(1) structure
group, we have radial coordinates r; : Dom(7¢;3) — R.

Let f =), In(p(r;)) where p is:

1

€
Then f is compatible with (D;)jes.

We can choose g so that 6 + dg restricted to each fiber
[Tic;( —0) of Dy is (7 + 32)dv; where (r;, ;) are polar
coordinates on the ith D factor.



» We have df (Xpidg) > 0 near U;D; and so
(FY(=C),ac =0+ dglf-1(c)) is a contact boundary of
U;D; called a regular contact boundary of U;D;.
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» We have df (Xpidg) > 0 near U;D; and so
(FY(~C),ac =0+ dglf-1(c)) is a contact boundary of
U;D; called a regular contact boundary of U;D;.

» The contact form ¢ is minimally degenerate.

» For each | C S and each (k;)ie/ € NL, there is a minimally
degenerate subset B, of length —3 . [;(2mrw; + ¢) and all
Reeb orbits are contained in one such subset.



We have df (Xp4dg) > 0 near U;D; and so

(FY(~C),ac =0+ dglf-1(c)) is a contact boundary of
U;D; called a regular contact boundary of U;D;.

The contact form a¢ is minimally degenerate.

For each | C S and each (k;);e; € N there is a minimally
degenerate subset B, of length —3 . [;(2mrw; + ¢) and all
Reeb orbits are contained in one such subset.

B(k;);, is diffeomorphic to a U(1) fibration over

Dy — Ujes—;Dom(7;) and is homotopic to ND;.



what about Conley-Zehnder index?

» Now suppose that ¢;(X — U;D;) = 0. Then we can choose a
(not necessarily unique) representative . a;[D;] € Hap—2(X)
Poincaré dual to ci(X).



what about Conley-Zehnder index?

» Now suppose that ¢;(X — U;D;) = 0. Then we can choose a
(not necessarily unique) representative . a;[D;] € Hap—2(X)
Poincaré dual to ci(X).

> a; is called the discrepancy of D;.



what about Conley-Zehnder index?

» Now suppose that ¢;(X — U;D;) = 0. Then we can choose a
(not necessarily unique) representative . a;[D;] € Hap—2(X)
Poincaré dual to ci(X).

> a; is called the discrepancy of D;.

> |t coincides with the definition of discrepancy earlier when X
was projective.



what about Conley-Zehnder index?

» Now suppose that ¢;(X — U;D;) = 0. Then we can choose a
(not necessarily unique) representative . a;[D;] € Hap—2(X)
Poincaré dual to ci(X).

> a; is called the discrepancy of D;.

> |t coincides with the definition of discrepancy earlier when X
was projective.

» The Conley-Zehnder index of By,
2% ki(ai+1)—n— 1

i€S



» Main idea:
1. Deform the symplectic SNC divisor so that it has a

regularization.
2. This does not change the contact boundary of such a divisor

up to contactomorphism.
3. Then construct the regular contact boundary using this
regularization as above.

» We will now use this technique for affine varieties.



Recall that we wish to prove the following:
There is a spectral sequence converging to SH,(A) with E* page
—p—q— i ki(aj \]
El;l’q = @ Hn—P—a—2(%; ki(a +1))(NDI(I<,-))
{(k)eNs : 32, kjwi=—p}

where N° js the set of tuples of non-negative integers indexed by S
and I(ki) = {i €S : k# O}




Proof Sketch:

1. First of all we compactify our affine variety A to a smooth
projective variety X so that X — A is an SNC divisor (D;)jes.
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1. First of all we compactify our affine variety A to a smooth
projective variety X so that X — A is an SNC divisor (D;)jes.

2. Since SH.(A) is a biholomorphic invariant we can compute it
with respect to any Stein structure. We choose the Stein
structure with plurisubharmonic function ¢ = —d< log(||s||)
where s is a section of an ample line bundle on X so that
s71(0) = U;D; and || - || is a positive metric. The critical set
of ¢ is compact.



Proof Sketch:

1. First of all we compactify our affine variety A to a smooth
projective variety X so that X — A is an SNC divisor (D;)jes.

2. Since SH.(A) is a biholomorphic invariant we can compute it
with respect to any Stein structure. We choose the Stein
structure with plurisubharmonic function ¢ = —d< log(||s||)
where s is a section of an ample line bundle on X so that
s71(0) = U;D; and || - || is a positive metric. The critical set
of ¢ is compact.

3. Therefore in order to compute SH,(A) we need to compute
SH.(M, 0) where (M, 0) = (¢~1(—o0, C], —d¢) for some
C> 1



4. Lemma: The wrapping numbers of the exact symplectic SNC
divisor ((Dj)jcs, —d“¢) are equal to the wrapping numbers
defined in the first lecture using s (l.e. minus the order of
s~1(0) along D;). Also (OM, 8) is contactomorphic to the
contact boundary of the symplectic SNC divisor (D;)jes.
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5. Now we isotope ((D;)ics, —d“¢) through exact symplectic
SNC divisors so that it admits a regularization and hence has
a regular contact boundary.
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defined in the first lecture using s (l.e. minus the order of
s~1(0) along D;). Also (OM, 8) is contactomorphic to the
contact boundary of the symplectic SNC divisor (D;)jes.

5. Now we isotope ((D;)ics, —d“¢) through exact symplectic
SNC divisors so that it admits a regularization and hence has
a regular contact boundary.

6. Since this regular contact boundary is contactomorphic to
#~Y(C) we can deform our Liouville domain (M, #) so that it
is minimally degenerate as described earlier.



. Lemma: The wrapping numbers of the exact symplectic SNC
divisor ((Dj)jcs, —d“¢) are equal to the wrapping numbers
defined in the first lecture using s (l.e. minus the order of
s~1(0) along D;). Also (OM, 8) is contactomorphic to the
contact boundary of the symplectic SNC divisor (D;)jes.

. Now we isotope ((Dj)ics, —d°¢) through exact symplectic
SNC divisors so that it admits a regularization and hence has
a regular contact boundary.

. Since this regular contact boundary is contactomorphic to
#~Y(C) we can deform our Liouville domain (M, #) so that it
is minimally degenerate as described earlier.

. The spectral sequence is then the associated Morse-Bott
spectral sequence.



